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Abstract

Let A be a pseudo-differential operator with negative definite symbol q. In this paper
we establish a sufficient condition such that the well-posedness of the (A,C∞

c (Rd))-
martingale problem implies that the unique solution to the martingale problem is
a Feller process. This provides a proof of a former claim by van Casteren. As an
application we prove new existence and uniqueness results for Lévy-driven stochastic
differential equations and stable-like processes with unbounded coefficients.
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1 Introduction

Let (Lt)t≥0 be a k-dimensional Lévy process with characteristic exponent ψ : Rd → C

and σ : Rd → Rd×k a continuous function which is at most of linear growth. It is known
that there is a intimate correspondence between the Lévy-driven stochastic differential
equation (SDE)

dXt = σ(Xt−) dLt, X0 ∼ µ, (1.1)

and the pseudo-differential operator A with symbol q(x, ξ) := ψ(σ(x)T ξ), i. e.

Af(x) = −
∫
Rd
q(x, ξ)eix·ξ f̂(ξ) dξ, f ∈ C∞c (Rd), x ∈ Rd,

where f̂ denotes the Fourier transform of a smooth function f with compact support.
Kurtz [6] proved that the existence of a unique weak solution to the SDE for any initial
distribution µ is equivalent to the well-posedness of the (A,C∞c (Rd))-martingale problem.
Recently, we have shown in [7] that a unique solution to the martingale problem – or,
equivalently, to the SDE (1.1) – is a Feller process if the Lévy measure ν satisfies

ν({y ∈ Rk; |σ(x) · y + x| ≤ r}) |x|→∞−−−−→ 0 for all r > 0
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which is equivalent to saying that A maps C∞c (Rd) into C∞(Rd), the space of continuous
functions vanishing at infinity.

In this paper, we are interested in the following more general question: Consider a
pseudo-differential operator A with continuous negative definite symbol q,

q(x, ξ) = q(x, 0)− ib(x) ·ξ+
1

2
ξ ·Q(x)ξ+

∫
y 6=0

(1−eiy·ξ+ iy ·ξ1(0,1)(|y|)) ν(x, dy), x, ξ ∈ Rd,

such that the (A,C∞c (Rd))-martingale problem is well-posed, i. e. for any initial distri-
bution µ there exists a unique solution to the (A,C∞c (Rd))-martingale problem. Under
which assumptions does the well-posedness of the (A,C∞c (Rd))-martingale problem imply
that the unique solution to the martingale problem is a Feller process? Since the infinites-
imal generator of the solution is, when restricted to C∞c (Rd), the pseudo-differential
operator A, it is clear that A has to satisfy Af ∈ C∞(Rd) for all f ∈ C∞c (Rd). In a paper
by van Casteren [17] it was claimed that this mapping property of A already implies
that the solution is a Feller process; however, this result turned out to be wrong, see [1,
Example 2.27(ii)] for a counterexample. Our main result states van Casteren’s claim is
correct if the symbol q satisfies a certain growth condition; the required definitions will
be explained in Section 2.

Theorem 1.1. Let A be a pseudo-differential operator with continuous negative definite
symbol q such that q(·, 0) = 0 and the (A,C∞c (Rd))-martingale problem is well-posed. If
A maps C∞c (Rd) into C∞(Rd) and

lim
|x|→∞

sup
|ξ|≤|x|−1

|q(x, ξ)| <∞, (G)

then the solution (Xt)t≥0 to the martingale problem is a conservative rich Feller process
with symbol q, i. e. (Xt)t≥0 is a conservative Feller process and the infinitesimal generator
(L,D(L)) associated with (Xt)t≥0 satisfies Lf = Af for any f ∈ C∞c (Rd) ⊆ D(L).

Remark 1.2. (i). If the martingale problem is well-posed and A(C∞c (Rd)) ⊆ C∞(Rd),
then the solution is a Cb-Feller process, i. e. the associated semigroup (Tt)t≥0

satisfies Tt : Cb(R
d) → Cb(R

d) for all t ≥ 0. The growth condition (G) is needed
to prove the Feller property; that is, to show that Ttf vanishes at infinity for any
f ∈ C∞(Rd) and t ≥ 0.

(ii). There is a partial converse to Theorem 1.1: If (Xt)t≥0 is a Feller process and
C∞c (Rd) is a core for the generator A of (Xt)t≥0, then the (A,C∞c (Rd))-martingale
problem is well-posed, see e. g. [5, Theorem 4.10.3] or [11, Theorem 1.37] for a
proof.

(iii). The mapping property A(C∞c (Rd)) ⊆ C∞(Rd) can be equivalently formulated in
terms of the symbol q and its characteristics, cf. Lemma 2.1.

(iv). For the particular case that A is the pseudo-differential operator associated with
the SDE (1.1), i. e. q(x, ξ) = ψ(σ(x)T ξ), we recover [7, Theorem 1.1]. Note that the
growth condition (G) is automatically satisfied for any function σ which is at most
of linear growth.

(v). If one of the conditions in Theorem 1.1 is violated – i. e. A does not map C∞c (Rd)

into C∞(Rd) or the growth condition (G) is not satisfied – then, in general, the
unique solution fails to be a Feller process. The following (counter)examples are
taken from [5, Exercise 4.1.2] (see also [1, Example 2.27]) and [15, Remark 3.4].

Example I : The process

Xt =
x√

1 + tx2
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is the unique solution to the SDE

dXt = −X3
t dt, X0 = x,

and, hence, also the unique solution to the martingale problem for the pseudo-
differential operator A with symbol q(x, ξ) := ix3ξ. As Xt → 1/

√
2t as x → ∞

it follows easily that (Xt)t≥0 does not satisfy the Feller property; this is not a
contradiction to Theorem 1.1 since the growth condition (G) is violated.

Example II : Let (Nt)t≥0 be a Poisson process. The SDE

dXt = −Xt− dNt, X0 = x,

has a unique strong solution, and therefore the martingale problem for the pseudo-
differential operator with symbol q(x, ξ) = 1−e−ixξ is well-posed. However, (Xt)t≥0

is not a Feller process since it does not satisfy the Feller property. Indeed: Choose
a function u ∈ C∞(Rd), u ≥ 0, such that u(0) = 1. As

Px(Xt = 0) ≥ P(Nt ≥ 1)

we have
Exu(Xt) ≥ u(0)P(Nt ≥ 1) = P(Nt ≥ 1),

and so Exu(Xt) does not converge to 0 as |x| → ∞. This is not a contradiction to
Theorem 1.1 since A does not map C∞c (Rd) into C∞(Rd); this follows e. g. from
Lemma 2.1(i).

Although it is, in general, hard to prove the well-posedness of a martingale problem,
Theorem 1.1 is very useful since it allows us to use localization techniques for martin-
gale problems to establish new existence results for Feller processes with unbounded
coefficients.

Corollary 1.3. Let A be a pseudo-differential operator with symbol q such that q(·, 0) = 0,
A(C∞c (Rd)) ⊆ C∞(Rd) and

lim
|x|→∞

sup
|ξ|≤|x|−1

|q(x, ξ)| <∞.

Assume that there exists a sequence (qk)k∈N of symbols such that qk(x, ξ) = q(x, ξ) for
all |x| < k, ξ ∈ Rd, and the pseudo-differential operator Ak with symbol qk maps C∞c (Rd)

into C∞(Rd). If the (Ak, C
∞
c (Rd))-martingale problem is well posed for all k ≥ 1, then

there exists conservative rich Feller process (Xt)t≥0 with symbol q, and (Xt)t≥0 is the
unique solution to the (A,C∞c (Rd))-martingale problem.

The paper is organized as follows. After introducing basic notation and definitions
in Section 2, we prove Theorem 1.1 and Corollary 1.3. In Section 4 we present applica-
tions and examples; in particular we obtain new existence and uniqueness results for
Lévy-driven stochastic differential equations and stable-like processes with unbounded
coefficients.

2 Preliminaries

We consider Rd endowed with the Borel σ-algebra B(Rd) and write B(x, r) for the
open ball centered at x ∈ Rd with radius r > 0; Rd∆ is the one-point compactification
of Rd. If a certain statement holds for x ∈ Rd with |x| sufficiently large, we write
“for |x| � 1”. For a metric space (E, d) we denote by C(E) the space of continuous
functions f : E → R; C∞(E) (resp. Cb(E)) is the space of continuous functions which
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vanish at infinity (resp. are bounded). A function f : [0,∞) → E is in the Skorohod
space D([0,∞), E) if f is right-continuous and has left-hand limits in E. We will always
consider E = Rd or E = Rd∆.

An E-valued Markov process (Ω,A,Px, x ∈ E,Xt, t ≥ 0) with càdlàg (right-continuous
with left-hand limits) sample paths is called a Feller process if the associated semigroup
(Tt)t≥0 defined by

Ttf(x) := Exf(Xt), x ∈ E, f ∈ Bb(E) := {f : E → R; f bounded, Borel measurable}

has the Feller property, i. e. Ttf ∈ C∞(E) for all f ∈ C∞(E), and (Tt)t≥0 is strongly

continuous at t = 0, i. e. ‖Ttf − f‖∞
t→0−−−→ 0 for any f ∈ C∞(E). Following [13]

we call a Markov process (Xt)t≥0 with càdlàg sample paths a Cb-Feller process if
Tt(Cb(E)) ⊆ Cb(E) for all t ≥ 0. An Rd∆-valued Markov process with semigroup (Tt)t≥0 is
conservative if Tt1Rd = 1Rd for all t ≥ 0.

If the smooth functions with compact support C∞c (Rd) are contained in the domain
of the generator (L,D(L)) of a Feller process (Xt)t≥0, then we speak of a rich Feller
process. A result due to von Waldenfels and Courrège, cf. [1, Theorem 2.21], states that
the generator L of an Rd-valued rich Feller process is, when restricted to C∞c (Rd), a
pseudo-differential operator with negative definite symbol:

Lf(x) = −
∫
Rd
ei x·ξq(x, ξ)f̂(ξ) dξ, f ∈ C∞c (Rd), x ∈ Rd

where f̂(ξ) := Ff(ξ) := (2π)−d
∫
Rd
e−ix·ξf(x) dx denotes the Fourier transform of f and

q(x, ξ) = q(x, 0)− ib(x) · ξ+
1

2
ξ ·Q(x)ξ+

∫
Rd\{0}

(1− eiy·ξ + iy · ξ1(0,1)(|y|)) ν(x, dy). (2.1)

We call q the symbol of the Feller process (Xt)t≥0 and of the pseudo-differential
operator; (b,Q, ν) are the characteristics of the symbol q. For each fixed x ∈ Rd,
(b(x), Q(x), ν(x, dy)) is a Lévy triplet, i. e. b(x) ∈ Rd, Q(x) ∈ Rd×d is a symmetric positive
semidefinite matrix and ν(x, dy) a σ-finite measure on (Rd\{0},B(Rd\{0})) satisfying∫
y 6=0

min{|y|2, 1} ν(x, dy) <∞. We use q(x,D) to denote the pseudo-differential operator
L with continuous negative definite symbol q. A family of continuous negative definite
functions (q(x, ·))x∈Rd is locally bounded if for any compact set K ⊆ Rd there exists c > 0

such that |q(x, ξ)| ≤ c(1 + |ξ|2) for all x ∈ K, ξ ∈ Rd. By [14, Lemma 2.1, Remark 2.2],
this is equivalent to

∀K ⊆ Rd cpt. : sup
x∈K

(
|q(x, 0)|+ |b(x)|+ |Q(x)|+

∫
y 6=0

(|y|2 ∧ 1) ν(x, dy)

)
<∞. (2.2)

If (2.2) holds for K = Rd, we say that q has bounded coefficients. We will frequently use
the following result.

Lemma 2.1. Let L be a pseudo-differential operator with continuous negative definite
symbol q and characteristics (b,Q, ν). Assume that q(·, 0) = 0 and that q is locally
bounded.

(i). lim|x|→∞ Lf(x) = 0 for all f ∈ C∞c (Rd) if, and only if,

lim
|x|→∞

ν(x,B(−x, r)) = 0 for all r > 0. (2.3)

(ii). If lim|x|→∞ sup|ξ|≤|x|−1 |Re q(x, ξ)| = 0, then (2.3) holds.

(iii). L(C∞c (Rd)) ⊆ C(Rd) if, and only if, x 7→ q(x, ξ) is continuous for all ξ ∈ Rd.
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For a proof of Lemma 2.1(i),(ii) see [1, Lemma 3.26] or [8, Theorem 1.27]; 2.1(iii)
goes back to Schilling [13, Theorem 4.4], see also [10, Theorem A.1].

If the symbol q of a rich Feller process (Lt)t≥0 does not depend on x, i. e. q(x, ξ) = q(ξ),
then (Lt)t≥0 is a Lévy process. This is equivalent to saying that (Lt)t≥0 has stationary
and independent increments and càdlàg sample paths. The symbol q = q(ξ) is called
characteristic exponent. Our standard reference for Lévy processes is the monograph
[12] by Sato. Weak uniqueness holds for the Lévy-driven stochastic differential equation
(SDE, for short)

dXt = σ(Xt−) dLt, X0 ∼ µ,

if any two weak solutions of the SDE have the same finite-dimensional distributions. We
refer the reader to Situ [16] for further details.

Let (A,D) be a linear operator with domain D ⊆ Bb(E) and µ a probability measure
on (E,B(E)). A d-dimensional stochastic process (Xt)t≥0, defined on a probability space
(Ω,A,Pµ), with càdlàg sample paths is a solution to the (A,D)-martingale problem with
initial distribution µ, if X0 ∼ µ and

Mf
t := f(Xt)− f(X0)−

∫ t

0

Af(Xs) ds, t ≥ 0,

is a Pµ-martingale with respect to the canonical filtration of (Xt)t≥0 for any f ∈ D.
By considering the measure Qµ induced by (Xt)t≥0 on D([0,∞), E) we may assume
without loss of generality that Ω = D([0,∞), E) is the Skorohod space and Xt(ω) := ω(t)

the canonical process. The (A,D)-martingale problem is well-posed if for any initial
distribution µ there exists a unique (in the sense of finite-dimensional distributions)
solution to the (A,D)-martingale problem with initial distribution µ. For a comprehensive
study of martingale problems see [2, Chapter 4].

3 Proof of the main results

In order to prove Theorem 1.1 we need the following statement which allows us to
formulate the linear growth condition (G) in terms of the characteristics.

Lemma 3.1. Let (q(x, ·))x∈Rd be a family of continuous negative definite functions with
characteristics (b,Q, ν) such that q(·, 0) = 0. Then

lim sup
|x|→∞

sup
|ξ|≤|x|−1

|q(x, ξ)| <∞ (G)

if, and only if, there exists an absolute constant c > 0 such that each of the following
conditions is satisfied for |x| � 1.

(i).
∣∣∣b(x) +

∫
1≤|y|<|x|/2 y ν(x, dy)

∣∣∣ ≤ c(1 + |x|).
(ii). |Q(x)|+

∫
|y|≤|x|/2 |y|

2 ν(x, dy) ≤ c(1 + |x|2).

(iii). ν(x, {y ∈ Rd; |y| ≥ 1 ∨ |x|/2}) ≤ c.

If (G) holds and q is locally bounded, cf. (2.2), then (i)–(iii) hold for all x ∈ Rd.

Proof. First we prove that (i)–(iii) are sufficient for (G). Because of (i) and (ii) it suffices
to show that

p(x, ξ) :=

∫
y 6=0

(1− eiy·ξ + iy · ξ1(0,|x|/2)(|y|)) ν(x, dy)

satisfies the linear growth condition (G). Using the elementary estimates

|1− eiy·ξ| ≤ 2 and |1− eiy·ξ + iy · ξ| ≤ 1

2
|ξ|2|y|2
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we find

|p(x, ξ)| ≤ |ξ|
2

2

∫
0<|y|<|x|/2

|y|2 ν(x, dy) + 2

∫
|y|≥|x|/2

ν(x, dy)

for all |x| ≥ 1 which implies by (ii) and (iii) that

lim sup
|x|→∞

sup
|ξ|≤|x|−1

|p(x, ξ)| <∞.

It remains to prove that (G) implies (i)-(iii). For (ii) and (iii) we use a similar idea as in
[13, proof of Theorem 4.4]. It is known that the function g defined by

g(η) :=
1

2

∫
(0,∞)

1

(2πr)d/2
exp

(
−|η|

2

2r
− r

2

)
dr, η ∈ Rd,

has a finite second moment, i. e.
∫
Rd
|η|2g(η) dη <∞, and satisfies

|z|2

1 + |z|2
=

∫
Rd

(1− cos(η · z))g(η) dη (3.1)

for all z ∈ Rd. As

inf
|z|≥1/2

|z|2

1 + |z|2
=

1

5
> 0

we obtain by applying Tonelli’s theorem

1

5
ν(x, {y; |y| ≥ |x|/2}) ≤

∫
|y|≥|x|/2

(
|y|
|x|

)2

1 +
(
|y|
|x|

)2 ν(x, dy)

=

∫
|y|≥|x|/2

∫
Rd

(
1− cos

η · y
|x|

)
g(η) dη ν(x, dy)

≤
∫
Rd

Re q

(
x,

η

|x|

)
dη.

Since
|ψ(ξ)| ≤ 2 sup

|ζ|≤1

|ψ(ζ)|(1 + |ξ|2), ξ ∈ Rd,

for any continuous negative definite function ψ, cf. [1, Proposition 2.17d)], we get

ν(x, {y; |y| ≥ |x|/2}) ≤ 10 sup
|ξ|≤1

∣∣∣∣q(x, ξ|x|
)∣∣∣∣ ∫

Rd
(1 + |η|2)g(η) dη,

and this gives (iii) for |x| � 1. Next we prove (ii). First of all, we note that

0 ≤ ξ ·Q(x)ξ ≤ Re q(x, ξ) ≤ |q(x, ξ)|

and therefore |Q(x)| ≤ c(1 + |x|2) is a direct consequence of (G). On the other hand,

inf
|y|≤|x|/2

1

|x|2 + |y|2
≥ 4

5

1

|x|2

implies that

4

5

1

|x|2

∫
|y|≤ |x|2

|y|2 ν(x, dy) ≤
∫
|y|≤ |x|2

|y|2

|x|2 + |y|2
ν(x, dy) =

∫
|y|≤ |x|2

(
|y|
|x|

)2

1 +
(
|y|
|x|

)2 ν(x, dy).
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Using (3.1) and applying Tonelli’s theorem once more, we find∫
|y|≤|x|/2

|y|2 ν(x, dy) ≤ 5

4
|x|2

∫
Rd

Re q

(
x,

η

|x|

)
g(η) dη.

Hence, ∫
|y|≤|x|/2

|y|2 ν(x, dy) ≤ 5

4
|x|2 sup

|ξ|≤1

∣∣∣∣q(x, ξ|x|
)∣∣∣∣ ∫

Rd
(1 + |η|2)g(η) dη

and (ii) follows. Finally, as (ii) and (iii) imply that

lim sup
|x|→∞

sup
|ξ|≤|x|−1

∣∣∣∣∣q(x, ξ)− iξ ·
(
b(x) +

∫
1≤|y|<|x|/2

y ν(x, dy)

)∣∣∣∣∣ <∞,
see the first part of the proof, a straightforward application of the triangle inequality
gives

lim sup
|x|→∞

sup
|ξ|≤|x|−1

∣∣∣∣∣iξ ·
(
b(x) +

∫
1≤|y|<|x|/2

y ν(x, dy)

)∣∣∣∣∣ <∞
which proves (i).

Corollary 3.2. Let A be a pseudo-differential operator with continuous negative definite
symbol q such that q(·, 0) = 0. If A maps C∞c (Rd) into C∞(Rd) and q satisfies the linear
growth condition (G), then there exists for any initial distribution µ a solution to the
(A,C∞c (Rd))-martingale problem which is conservative.

Proof. As A(C∞c (Rd)) ⊆ C∞(Rd) and A satisfies the positive maximum principle, it fol-
lows from [2, Theorem 4.5.4] that there exists an Rd∆-valued solution to the (A,C∞c (Rd))-
martingale problem with initial distribution µ := δx. By considering the probability
measure induced by (Xt)t≥0 on the Skorohod space D([0,∞),Rd∆), we may assume with-
out loss of generality that Xt(ω) := ω(t) is the canonical process on Ω := D([0,∞),Rd∆).
Lemma 3.1 implies that

lim
r→∞

sup
|z−x|≤2r

sup
|ξ|≤r−1

|q(z, ξ)| <∞ for all x ∈ Rd,

and therefore [10, Corollary 3.2] shows that the solution with initial distribution δx does
not explode in finite time with probability 1. By construction, see [2, proof of Theorem
4.5.4], the mapping x 7→ Px(B) is measurable for all B ∈ FX∞ := σ(Xt; t ≥ 0). If we define

Pµ(B) :=

∫
Rd
Px(B)µ(dx), B ∈ FX∞

then Pµ gives rise to a conservative solution to the (A,C∞c (Rd))-martingale problem
with initial condition µ.

In Section 4 we will formulate Corollary 3.2 for solutions of stochastic differential
equations, cf. Theorem 4.1. The next result is an important step to prove Theorem 1.1.

Lemma 3.3. Let L be a pseudo-differential operator with continuous negative definite
symbol p and characteristics (b,Q, ν) such that p(·, 0) = 0 and L(C∞c (Rd)) ⊆ C∞(Rd).
Assume that ν(x, {y ∈ Rd; |y| ≥ |x|/2}) = 0 for |x| � 1 and

lim sup
|x|→∞

sup
|ξ|≤|x|−1

|p(x, ξ)| <∞. (G)
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(i). For any initial distribution µ there exists a probability measure Pµ on D([0,∞),Rd)

such that the canonical process (Yt)t≥0 solves the (L,C∞c (Rd))-martingale problem
and

Pµ(B) =

∫
Px(B)µ(dx) for all B ∈ FY∞ := σ(Yt; t ≥ 0). (3.2)

(ii). For any t ≥ 0, R > 0 and ε > 0 there exist constants % > 0 and δ > 0 such that

Pµ
(

inf
s≤t
|Ys| < R

)
≤ ε (3.3)

for any initial distribution µ such that µ(B(0, %)) ≤ δ.
(iii). For any t ≥ 0, ε > 0 and any compact set K ⊆ Rd there exists R > 0 such that

µ(Kc) ≤ ε

2
=⇒ Pµ

(
sup
s≤t
|Ys| ≥ R

)
≤ ε. (3.4)

Proof. (i) is a direct consequence of Corollary 3.2; we have to prove (ii) and (iii). To
keep notation simple we show the result only in dimension d = 1. Since L maps C∞c (R)

into C∞(R), the symbol p is locally bounded, cf. [1, Proposition 2.27(d)], and therefore
Lemma 3.1 shows that 3.1(i)–(iii) hold for all x ∈ R. Set u(x) := 1/(1 + |x|2), x ∈ R, then

|u′(x)| ≤ 2|x|u(x)2 and |u′′(x)| ≤ 6u(x)2 for all x ∈ R. (3.5)

Clearly, |Lu(x)| ≤ I1 + I2 where

I1 :=

∣∣∣∣∣b(x) +

∫
1≤|y|<|x|/2

y ν(x, dy)

∣∣∣∣∣ |u′(x)|+ 1

2
|Q(x)| |u′′(x)|

I2 :=

∣∣∣∣∣
∫
y<|x/2

(u(x+ y)− u(x)− u′(x)y) ν(x, dy)

∣∣∣∣∣
for all |x| � 1. By Lemma 3.1 and (3.5) there exists a constant c1 > 0 such that I1 ≤ c1u(x)

for all x ∈ R. On the other hand, Taylor’s formula shows

I2 ≤
1

2

∫
|y|<|x|/2

|y|2 |u′′(ζ)| ν(x, dy)

for some intermediate value ζ = ζ(x, y) between x and x+ y. Since |y| < |x|/2, we have
|ζ| ≥ |x|/2; hence, by (3.5),

|u′′(ζ)| ≤ 6u(ζ)2 ≤ 24u(x)2.

Applying Lemma 3.1, we find that there exists a constant c2 > 0 such that

I2 ≤ 24u(x)2

∫
|y|<|x|/2

|y|2 ν(x, dy) ≤ c2u(x).

Consequently, |Lu(x)| ≤ (c1 + c2)u(x) for all |x| � 1. As Lu is bounded and u is bounded
away from 0 on compact sets, we can choose a constant c3 > 0 such that

|Lu(x)| ≤ c3u(x) for all x ∈ R. (?)

Define τR := inf{t ≥ 0; |Yt| < R}. Using a standard truncation and stopping technique it
follows that

Eµu(Yt∧τR)− Eµu(Y0) = Eµ

(∫
(0,t∧τR)

Lu(Ys) ds

)
.
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Hence, by (?),

Eµu(Yt∧τR) ≤ Eµu(Y0) + c3E
µ

(∫
(0,t)

u(Ys∧τR) ds

)
.

An application of Gronwall’s inequality shows that there exists a constant C > 0 such
that

Eµu(Yt∧τR) ≤ eCtEµu(Y0) for all t ≥ 0.

By the Markov inequality, this implies that

Pµ
(

inf
s≤t
|Ys| < R

)
≤ Pµ(|Yt∧τR | ≤ R) ≤ Pµ

(
u(Yt∧τR) ≥ u(R)

)
≤ 1

u(R)
Eµu(Yt∧τR)

≤ 1

u(R)
eCtEµu(Y0).

If µ is an initial distribution such that µ(B(0, %)) ≤ δ, then Eµu(Y0) ≤ δ + %−2. Choosing
% sufficiently large and δ > 0 sufficiently small, we get (3.3). The proof of (iii) is similar.
If we set v(x) := x2 + 1, then there exists by Lemma 3.1 a constant c > 0 such that
|Lv(x)| ≤ cv(x) for all x ∈ R. Applying Gronwall’s inequality another time, we find a
constant C > 0 such that

Eµv(Yt∧σR) ≤ eCtEµv(Y0), t ≥ 0,

where σR := inf{t ≥ 0; |Yt| ≥ R} denotes the exit time from the ball B(0, R). Hence, by
the Markov inequality,

Pµ
(

sup
s≤t
|Ys| ≥ R

)
≤ Pµ

(
v(Yt∧σR) ≥ v(R)

)
≤ 1

v(R)
eCtEµv(Y0).

In particular we can choose for any compact set K ⊆ R and any ε > 0 some R > 0 such
that

Px
(

sup
s≤t
|Ys| ≥ R

)
≤ ε

2
for all x ∈ K.

Now if µ is an initial distribution such that µ(Kc) ≤ ε/2, then, by (3.2),

Pµ
(

sup
s≤t
|Ys| ≥ R

)
=

∫
K

Px
(

sup
s≤t
|Ys| ≥ R

)
µ(dx) +

∫
Kc

Px
(

sup
s≤t
|Ys| ≥ R

)
µ(dx)

≤ ε

2
+
ε

2
.

For the proof of Theorem 1.1 we will use the following result which follows e. g. from
[4, Theorem 4.1.16, Proof of Corollary 4.6.4].

Lemma 3.4. Let A be a pseudo-differential operator with negative definite symbol q
such that A : C∞c (Rd) → Cb(R

d). If the (A,C∞c (Rd))-martingale problem is well-posed
and the unique solution (Xt)t≥0 satisfies the compact containment condition

sup
x∈K

Px
(

sup
s≤t
|Xs| ≥ r

)
r→∞−−−→ 0

for any compact set K ⊆ Rd, then x 7→ Exf(Xt) is continuous for all f ∈ Cb(Rd).
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The well-posedness implies that the solution (Xt)t≥0 is a Markov
process, see e. g. [2, Theorem 4.4.2], and by Corollary 3.2 the (unique) solution is
conservative. In order to prove that (Xt)t≥0 is a Feller process, we have to show that the
semigroup Ttf(x) := Exf(Xt), f ∈ C∞(Rd), has the following properties, cf. [1, Lemma
1.4]:
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(i). continuity at t = 0: Ttf(x)→ f(x) as t→ 0 for any x ∈ Rd and f ∈ C∞(Rd).

(ii). Feller property: Tt(C∞(Rd)) ⊆ C∞(Rd) for all t ≥ 0.

The first property is a direct consequence of the right-continuity of the sample paths and
the dominated convergence theorem. Since we know that the martingale problem is well
posed, it suffices to construct a solution to the martingale problem satisfying (ii). Write
ν(x, dy) = νs(x, dy) + νl(x, dy) where

νs(x,B) :=

∫
|y|<1∨|x|/2

1B(y) ν(x, dy) νl(x,B) :=

∫
|y|≥1∨|x|/2

1B(y) ν(x, dy)

are the small jumps and large jumps, respectively, and denote by p the symbol with
characteristics (b,Q, νs). By Corollary 3.2 there exists for any initial distribution µ a
conservative solution to the (p(x,D), C∞c (Rd))-martingale problem, and the solution
satisfies 3.3(ii) and 3.3(iii). Using the same reasoning as in [2, proof of Proposition
4.10.2] it is possible to show that we can use interlacing to construct a solution to the
(A,C∞c (Rd))-martingale problem with initial distribution µ = δx:

Xt :=
∑
k≥0

Y
(k)
t−τk1[τk,τk+1)(t)

where

• τk := inf{t ≥ 0;Nt = k} =
∑k
j=1 σj are the jump times of a Poisson process (Nt)t≥0

with intensity λ := supz∈Rd νl(z,R
d\{0}), i. e. σj ∼ Exp(λ) are independent and

identically distributed. Note that λ <∞ by Lemma 3.1.

• (Y
(k,µk)
t )t≥0 := (Y

(k)
t )t≥0 is a solution to the (p(x,D), C∞c (Rd))-martingale problem

with initial distribution

µk(B) :=
1

λ
Ex
(∫

1B(z + y) νl(z, dy) + (λ− νl(z,Rd\{0}))δz(B)

∣∣∣∣
z=Y

(k−1)
σk−1−

)
(3.6)

for k ≥ 1 and µ0(dy) := δx(dy). Moreover, Y (k) and (σj)j≥k+1 are independent for
all k ≥ 0.

• Px is a probability measure which depends on the initial distribution µ = δx of
(Xt)t≥0.

Note that if we define a linear operator P by

Pf(z) :=

∫
f(z + y) νl(z, dy) + (λ− νl(z,Rd\{0}))f(z), f ∈ C∞(Rd), z ∈ Rd (3.7)

then (3.4) implies that

Exf(Y
(k)
0 ) =

1

λ
Ex(Pf(Y

(k−1)
σk−1−)) for all f ∈ Bb(Rd), k ≥ 1. (3.8)

Before we proceed with the proof, let us give a remark on the construction of (Xt)t≥0. The
intensity of the Poisson process (Nt)t≥0, which triggers the “large jumps”, is λ = supz λ(z)

where λ(z) := νl(z,R
d\{0}) is the “state-space dependent intensity” of the large jumps.

Roughly speaking the second term on the right-hand side of (3.6) is needed to thin out
the large jumps; with probability λ−1Ex((λ− λ(Y

(k−1)
σk−1−)) there is no large jump at time

σk−1, and therefore the effective jump intensity at time t = σk−1 is λ(Y
(k−1)
σk−1−).

We will prove that (Xt)t≥0 has the Feller property. To this end, we first show that for
any t ≥ 0, ε > 0, k ≥ 1 and any compact set K ⊆ Rd there exists R > 0 such that

Px
(

sup
s≤t
|Y (j,µj)
s | ≥ R

)
≤ ε for all x ∈ K, j = 0, . . . , k; (3.9)
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we prove (3.9) by induction. Note that µj = µj(x) depends on the initial distribution of
(Xt)t≥0.

Base (k = 0): This is a direct consequence of Lemma 3.3(ii) since µ0(dy) = δx(dy).
Inductive step (k → k + 1): Because of Lemma 3.3(ii) and the induction hypothesis, it

suffices to show that there exists C ⊆ Rd compact such that Px(Y
(k+1,µk+1)
0 /∈ C) ≤ ε/2

for all x ∈ K. Choose m ≥ 0 sufficiently large such that Px(σk ≥ m) ≤ ε′ := ε/8, and
choose R > 0 such that (3.9) holds with ε := ε′, t := m. Then, by (3.8) and our choice of
R,

Px(|Y (k+1)
0 | ≥ r) =

1

λ
Ex
(

(P1
B(0,r)

c)(Y
(k)
σk−)

)
≤ ε′ + 1

λ
Ex
(
1{sups≤m |Y

(k)
s |≤R}(P1B(0,r)

c)(Y
(k)
σk−)

)
which implies for r > R, x ∈ K

Px(|Y (k+1)
0 | ≥ r)

≤ ε′ + 1

λ
Ex
(
1{sups≤m |Y

(k)
s |≤R}

[∫
1B(0,r)c(Y

(k)
σk− + y) νl(Y

(k)
σk−, dy) + 2λ1B(0,r)c(Y

(k)
σk−)

])
≤ 3ε′ +

1

λ
Ex

(
1{sups≤m |Y

(k)
s |≤R}

∫ m

0

∫
|y|≥r−R

ν(Y
(k)
t− , dy)Pxσk(dt)

)

≤ 3ε′ +
1

λ
sup
|z|≤R

ν(z,B(0, r −R)c).

The second term on the right-hand side converges to 0 as r →∞, cf. [13, Theorem 4.4]
or [10, Theorem A.1], and therefore we can choose r > 0 sufficiently large such that
Px(|Y (k+1)

0 | ≥ r) ≤ 4ε′ = ε/2 for all x ∈ K.

This finishes the proof of (3.9). For fixed ε > 0 choose a number k ≥ 1 such that
Px(Nt ≥ k + 1) ≤ ε. By definition of (Xt)t≥0 and (3.9), we get

sup
x∈K

Px
(

sup
s≤t
|Xs| ≥ R

)
≤ sup
x∈K

Px

 k⋃
j=0

{
sup
s≤t

∣∣∣Y (j,µj)
s

∣∣∣ ≥ R}
+ ε ≤ (k + 1)ε.

Thus, by Lemma 3.4, x 7→ Ttf(x) = Exf(Xt) is continuous for any f ∈ C∞(Rd). It
remains to show that Ttf vanishes at infinity; to this end we will show that for any r > 0,
ε > 0 there exists a constant M > 0 such that

Px
(

inf
s≤t
|Xs| < r

)
≤ ε for all |x| ≥M. (3.10)

It follows from Lemma 3.1 and the very definition of λ that Pf defined in (3.7) is bounded
and

|Pf(x)| ≤
∫
|x+y|<r

|f(x+ y)| νl(x, dy) +

∫
|x+y|≥r

|f(x+ y)| νl(x, dy) + 2λ|f(x)|

≤ ‖f‖∞ν(x,B(−x, r)) + λ sup
|z|≥r

|f(z)|+ 2λ|f(x)|

|x|→∞−−−−→ λ sup
|z|≥r

|f(z)| r→∞−−−→ 0,

i. e. Pf vanishes at infinity for any f ∈ C∞(Rd). We claim that for any k ≥ 0, ε > 0, t ≥ 0

and r > 0 there exists a constant M > 0 such that

Px
(

inf
s≤t
|Y (j,µj)
s | < r

)
≤ ε for all j = 0, . . . , k, |x| ≥M. (3.11)
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We prove (3.11) by induction.

Base (k = 0): This follows from Lemma 3.3(ii) since µ0(dy) = δx(dy).

Inductive step (k → k + 1): For fixed r > 0 choose δ > 0 and % > 0 as in 3.3(ii). By
3.3(ii) it suffices to show that there exists M > 0 such that

µk+1(B(0, %)) ≤ δ for all |x| ≥M. (?)

(Note that µk+1 = µk+1(x) depends on the initial distribution of (Xt)t≥0.) Pick a cut-off
function χ ∈ C∞c (Rd) such that 1B(0,%) ≤ χ ≤ 1B(0,%+1), then by (3.6),

µk+1(B(0, %)) ≤ Exχ(Y
(k+1,µk+1)
0 ) =

1

λ
Ex
(
(Pχ)(Y

(k,µk)
σk− )

)
.

If ‖Pχ‖∞ = 0 this proves (?). If ‖Pχ‖∞ is strictly larger than 0, then we can choose
m ≥ 1 such that Px(σ1 ≥ m) ≤ δ/(2‖Pχ‖∞). Since Pχ vanishes at infinity, we have
sup|z|≥R |Pχ(z)| ≤ λδ/4 for R > 0 sufficiently large. By the induction hypothesis, there
exists M > 0 such that (3.11) holds with ε := λδ/4, r := R and t := m. Then

|Ex(Pχ)(Y
(k,µk)
s− )| ≤ Px

(
|Y (k,µk)
s− | < R

)
‖Pχ‖∞ + sup

|z|≥R
|Pχ(z)| ≤ 1

2
λδ

for all s ≤ m and |x| ≥M , and therefore

µk+1(B(0, %)) =
1

λ
Ex(Pχ)(Y

(k,µk)
σk− ) ≤ 1

λ
Ex

(∫
(0,∞)

Pχ(Y
(k,µk)
s− )Pxσk(ds)

)

≤ δ

2
+ ‖Pχ‖∞

∫
(m,∞)

Pxσ1
(ds) ≤ δ.

This finishes the proof of (3.11). For fixed ε > 0 and t ≥ 0 choose k ≥ 1 such that
Px(Nt ≥ k + 1) ≤ ε. Choose M > 0 as in (3.11), then

Px(|Xt| < R) ≤ Px
 k⋃
j=0

{
inf
s≤t
|Y (j)
s | < R

}+ ε ≤ 2ε for all |x| ≥M.

Consequently, we have shown that (Xt)t≥0 is a Feller process. Since (Xt)t≥0 solves the
(A,C∞c (Rd))-martingale problem, we have

Exu(Xt∧τxr )− u(x) = Ex

(∫
(0,t∧τxr )

Au(Xs) ds

)
, u ∈ C∞c (Rd),

where τxr := inf{t ≥ 0; |Xt − x| ≥ r} denotes the exit time from the ball B(x, r). Using
that A(C∞c (Rd)) ⊆ C∞(Rd), it is not difficult to see that the generator of (Xt)t≥0 is, when
restricted to C∞c (Rd), a pseudo-differential operator with symbol q, see e. g. [7, Proof of
Theorem 3.5, Step 2] for details. This means that (Xt)t≥0 is a rich Feller process with
symbol q.

Proof of Corollary 1.3. By Corollary 3.2 there exists for any initial distribution µ a solu-
tion to the (A,C∞c (Rd))-martingale problem, and by assumption the martingale problem
for the pseudo-differential operator Ak with symbol qk is well-posed. Therefore [3, Theo-
rem 5.3], see also [2, Theorem 4.6.2], shows that the (A,C∞c (Rd))-martingale problem is
well-posed. Now the assertion follows from Theorem 1.1.
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4 Applications

In this section we apply our results to Lévy-driven stochastic differential equations
(SDEs) and stable-like processes. Corollary 3.2 gives the following general existence
result for weak solutions to Lévy-driven SDEs.

Theorem 4.1. Let (Lt)t≥0 be a k-dimensional Lévy process with characteristic exponent
ψ and Lévy triplet (b,Q, ν). Let ` : Rd → Rd, σ : Rd → Rd×k be continuous functions
which grow at most linearly. If

ν({y ∈ Rk; |σ(x) · y + x| ≤ r}) |x|→∞−−−−→ 0 for all r > 0, (4.1)

then the SDE

dXt = `(Xt−) dt+ σ(Xt−) dLt, X0 ∼ µ (4.2)

has for any initial distribution µ a weak solution (Xt)t≥0 which is conservative.

Note that (4.1) is, in particular, satisfied if

lim
|x|→∞

sup
|ξ|≤|x|−1

|Reψ(σ(x)T ξ)| = 0,

e. g. if σ is at most of sublinear growth, cf. Lemma 2.1(ii).

Proof. Denote by A the pseudo-differential operator with symbol

q(x, ξ) := −i`(x) · ξ + ψ(σ(x)T ξ).

Since q is locally bounded and x 7→ q(x, ξ) is continuous for all ξ ∈ Rd it follows from (4.2)
that A(C∞c (Rd)) ⊆ C∞(Rd), cf. Lemma 2.1. Because `, σ are at most of linear growth,
q satisfies the growth condition (G). Applying Corollary 3.2 we find that there exists a
conservative solution (Xt)t≥0 to the (A,C∞c (Rd))-martingale problem. By [6], (Xt)t≥0 is
a weak solution to the SDE (4.2).

For α ∈ (0, 1] we denote by

Cαloc(Rd,Rn) :=

{
f : Rd → Rn;∀x ∈ Rd : sup

|y−x|≤1

|f(y)− f(x)|
|y − x|α

<∞

}

Cα(Rd,Rn) :=

{
f : Rd → Rn; sup

x 6=y

|f(y)− f(x)|
|y − x|α

<∞

}

the space of (locally) Hölder continuous functions with Hölder exponent α.

Theorem 4.2. Let (Lt)t≥0 be a k-dimensional Lévy process with Lévy triplet (b,Q, ν) and
characteristic exponent ψ. Suppose that there exist α, β ∈ (0, 1] such that the Lévy-driven
SDE

dXt = f(Xt−) dt+ g(Xt−) dLt, X0 ∼ µ

has a unique weak solution for any initial distribution µ and any two bounded functions
f ∈ Cα(Rd,Rd) and g ∈ Cβ(Rd,Rd×k) such that

|g(x)T ξ| ≥ c|ξ|, ξ ∈ Rd, x ∈ Rd

for some constant c > 0. Then the SDE

dXt = `(Xt−) dt+ σ(Xt−) dLt, X0 ∼ µ
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has a unique weak solution for any ` ∈ Cαloc(Rd,Rd), σ ∈ Cβloc(Rd,Rd×k) which are at
most of linear growth and satisfy

ν({y ∈ Rk; |σ(x) · y + x| ≤ r}) |x|→∞−−−−→ 0 for all r > 0 (4.3)

and

∀n ∈ N ∃cn > 0 ∀|x| ≤ n, ξ ∈ Rd : |σ(x)T ξ| ≥ cn|ξ|. (4.4)

The unique weak solution is a conservative rich Feller process with symbol

q(x, ξ) := −i`(x) · ξ + ψ(σ(x)T ξ), x, ξ ∈ Rd.

Proof. Let ` ∈ Cαloc(Rd,Rd) and σ ∈ Cβloc(Rd,Rd×k) be two functions which grow at most
linearly and satisfy (4.3), (4.4). Lemma 2.1 shows that the pseudo-differential operator A
with symbol q satisfies A(C∞c (Rd)) ⊆ C∞(Rd). Moreover, since σ, ` are at most of linear
growth, the growth condition (G) is clearly satisfied. Set

`k(x) :=

{
`(x), |x| < k

`
(
k x
|x|

)
, |x| ≥ k

and σk(x) :=

{
σ(x), |x| < k,

σ
(
k x
|x|

)
, |x| ≥ k.

By assumption, the SDE

dXt = `k(Xt−) dt+ σk(Xt−) dLt, X0 ∼ µ,

has a unique weak solution for any initial distribution µ for all k ≥ 1. By [6] (see also
[7, Lemma 3.3]) this implies that the (Ak, C

∞
c (Rd))-martingale problem for the pseudo-

differential operator with symbol qk(x, ξ) := −i`k(x) · ξ + ψ(σk(x)T ξ) is well-posed. Since
σk is bounded, we have

ν({y ∈ Rk; |σk(x) · y + x| ≤ r}) |x|→∞−−−−→ 0 for all r > 0,

and therefore Lemma 2.1 shows that Ak maps C∞c (Rd) into C∞(Rd). Now the assertion
follows from Corollary 1.3.

Applying Theorem 4.2 we obtain the following generalization of [9, Corollary 4.7],
see also [11, Theorem 5.23].

Theorem 4.3. Let (Lt)t≥0 be a one-dimensional Lévy process such that its characteristic
exponent ψ satisfies the following conditions:

(i). ψ has a holomorphic extension Ψ to

U := {z ∈ C; | Im z| < m} ∪ {z ∈ C\{0}; arg z ∈ (−ϑ, ϑ) ∪ (π − ϑ, π + ϑ)}

for some m ≥ 0 and ϑ ∈ (0, π/2).

(ii). There exist α ∈ (0, 2], β ∈ (1, 2) and constants c1, c2 > 0 such that

Re Ψ(z) ≥ c1|Re z|β for all z ∈ U, |z| � 1,

and

|Ψ(z)| ≤ c2(|z|α1{|z|≤1} + |z|β1{|z|>1}), z ∈ U.

(iii). There exists a constant c3 > 0 such that |Ψ′(z)| ≤ c3|z|β−1 for all z ∈ U , |z| � 1.
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Figure 1: The domain U = U(m,ϑ) for m > 0 (left) and m = 0 (right).

Let ` : R→ R and σ : R→ (0,∞) be two locally Hölder continuous functions which grow
at most linearly. If

ν({x; |σ(x)y + x| ≤ r}) |x|→∞−−−−→ 0 for all r > 0,

then the SDE
dXt = `(Xt−) dt+ σ(Xt−) dLt, X0 ∼ µ,

has a unique weak solution for any initial distribution µ. The unique solution is a
conservative rich Feller process with symbol q(x, ξ) := −i`(x)ξ + ψ(σ(x)ξ).

Proof. [9, Corollary 4.7] shows that the assumptions of Theorem 4.2 are satisfied, and
this proves the assertion.

Theorem 4.3 applies, for instance, to Lévy processes with the following characteristic
exponents:

(i). (isotropic stable) ψ(ξ) = |ξ|α, ξ ∈ R, α ∈ (1, 2],

(ii). (relativistic stable) ψ(ξ) = (|ξ|2 + %2)α/2 − %α, ξ ∈ R, % > 0, α ∈ (1, 2),

(iii). (Lamperti stable) ψ(ξ) = (|ξ|2 + %)α − (%)α, ξ ∈ R, % > 0, α ∈ (1/2, 1), where
(r)α := Γ(r + α)/Γ(r) denotes the Pochhammer symbol,

(iv). (truncated Lévy process) ψ(ξ) = (|ξ|2 + %2)α/2 cos(α arctan(%−1|ξ|)) − %α, ξ ∈ R,
α ∈ (1, 2), % > 0,

(v). (normal tempered stable) ψ(ξ) = (κ2 + (ξ − ib)2)α/2 − (κ2 − b2)α/2, ξ ∈ R, α ∈ (1, 2),
b > 0, |κ| > |b|.

For further examples of Lévy processes satisfying the assumptions of Theorem 4.3 we
refer to [9, 11].

We close this section with two further applications of Corollary 1.3. The first is an
existence result for Feller processes with symbols of the form p(x, ξ) = ϕ(x)q(x, ξ). Recall
that p(x,D) denotes the pseudo-differential operator with symbol p.

Theorem 4.4. Let A be a pseudo-differential operator with symbol q such that q(·, 0) = 0,
A(C∞c (Rd)) ⊆ C∞(Rd) and

lim
|x|→∞

sup
|ξ|≤|x|−1

|q(x, ξ)| <∞.
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Assume that for any continuous bdd. function σ : Rd → (0,∞) the (σ(x)q(x,D), C∞c (Rd))-
martingale problem for the pseudo-differential operator with symbol σ(x)q(x, ξ) is well-
posed. If ϕ : Rd → (0,∞) is a continuous function such that

lim
|x|→∞

sup
|ξ|≤|x|−1

(
ϕ(x)|q(x, ξ)|

)
<∞, (4.5)

and

ϕ(x)ν(x,B(−x, r)) |x|→∞−−−−→ 0 for all r > 0, (4.6)

then there exists a conservative rich Feller process (Xt)t≥0 with symbol p(x, ξ) :=

ϕ(x)q(x, ξ) and (Xt)t≥0 is the unique solution to the (p(x,D), C∞c (Rd))-martingale prob-
lem.

Theorem 4.4 is more general than [10, Theorem 4.6]. Indeed: If there exists a rich
Feller process (Xt)t≥0 with symbol q and C∞c (Rd) is a core for the infinitesimal generator
of (Xt)t≥0, then, by [1, Theorem 4.2], there exists for any continuous bounded function
σ > 0 a rich Feller process with symbol σ(x)q(x, ξ) and core C∞c (Rd), and therefore the
(σ(x)q(x,D), C∞c (Rd))-martingale problem is well-posed, cf. [5, Theorem 4.10.3].

Proof of Theorem 4.4. For given ϕ define

ϕk(x) := ϕ(x)1B(0,k)(x) + ϕ

(
k
x

|x|

)
1B(0,k)c(x).

By assumption, the (ϕk(x)q(x,D), C∞c (Rd))-martingale problem is well-posed. More-
over, the boundedness of ϕk and the fact that q(x,D)(C∞c (Rd)) ⊆ C∞(Rd) imply that
ϕk(x)q(x,D) maps C∞c (Rd) into C∞(Rd). On the other hand, (4.6) gives, by Lemma 2.1,
p(x,D)(C∞c (Rd)) ⊆ C∞(Rd). Applying Corollary 1.3 proves the assertion.

Example 4.5. Let ϕ : Rd → (0,∞) be a continuous fuction and α : Rd → (0, 2] a locally
Hölder continuous function. If there exists a constant c > 0 such that ϕ(x) ≤ c(1+ |x|α(x))

for all x ∈ Rd, then there exists a conservative rich Feller process (Xt)t≥0 with symbol

p(x, ξ) := ϕ(x)|ξ|α(x), x, ξ ∈ Rd,

and (Xt)t≥0 is the unique solution to the (p(x,D), C∞c (Rd))-martingale problem.

Indeed: If we set

αj(x) := α(x)1B(0,j)(x) + α

(
j
x

|x|

)
1B(0,j)c(x),

then [8, Theorem 5.2] shows that for each j ≥ 1 there exists a rich Feller process with
symbol qj(x, ξ) := |ξ|αj(x)(x), and that C∞c (Rd) is a core for the generator. By [1, Theorem
4.2], there exists for any continuous bounded function σ > 0 a rich Feller process with
symbol σ(x)qj(x, ξ) and core C∞c (Rd). This implies that the (σ(x)qj(x,D), C∞c (Rd))-
martingale problem is well posed, see e. g. [5, Theorem 4.10.3] or [8, Theorem 1.37].
Applying Theorem 4.4 we find that there exists a conservative rich Feller process with
symbol pj(x, ξ) := ϕ(x)qj(x, ξ), and that the (pj(x,D), C∞c (Rd))-martingale problem is
well-posed. Now the assertion follows from Corollary 1.3.

Example 4.5 shows that Corollary 1.3 is useful to establish the existence of stable-like
processes with unbounded coefficients. For relativistic stable-like processes we obtain
the following general existence result.
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Theorem 4.6. Let α : Rd → (0, 2], m : Rd → (0,∞) and κ : Rd → (0,∞) be locally Hölder
continuous functions. If

sup
|x|≥1

κ(x)

|x|2m(x)2−α(x)
<∞ (4.7)

and

κ(x)m(x)e−|x|m(x)/4 |x|→∞−−−−→ 0, (4.8)

then there exists a conservative rich Feller process (Xt)t≥0 with symbol

q(x, ξ) := κ(x)
[
(|ξ|2 +m(x)2)α(x)/2 −m(x)α(x)

]
, x, ξ ∈ Rd,

and (Xt)t≥0 is the unique solution to the (q(x,D), C∞c (Rd))-martingale problem.

Note that κ and m do not need to be of linear growth; for instance if infx α(x) > 0,
then we can choose m(x) := e|x| and κ(x) := (1 + |x|k) for k ≥ 1.

Proof of Theorem 4.6. For a function f : Rd → R set

fi(x) := f(x)1B(0,i)(x) + f

(
i
x

|x|

)
1B(0,i)c(x)

and define
qi(x, ξ) := κi(x)

[
(|ξ|2 +mi(x)2)αi(x)/2 −mi(x)αi(x)

]
.

Since κi, αi and mi are bounded Hölder continuous functions which are bounded away
from 0, it follows from [11], see also [8], that the (qk(x,D), C∞c (Rd))-martingale problem
is well-posed. Consequently, the assertion follows from Corollary 1.3 if we can show that
q satisfies (G) and that the pseudo-differential operators q(x,D) and qi(x,D), i ≥ 1, map
C∞c (Rd) into C∞(Rd). An application of Taylor’s formula yields

sup
|ξ|≤|x|−1

|q(x, ξ)| ≤ κ(x)
[
(|x|−2 +m(x)2)α(x)/2 − (m(x)2)α(x)/2

]
≤ κ(x)

1

|x|2
α(x)

2
m(x)α(x)−2,

and by (4.7) this implies (G). It remains to prove the mapping properties of q(x,D) and
qi(x,D). Since x 7→ qi(x, ξ) is continuous and

sup
|ξ|≤|x|−1

|q(x, ξ)| ≤ ‖κi‖∞
(

inf
|x|≤i

m(x)

)−2
1

|x|2
|x|→∞−−−−→ 0,

it follows from Lemma 2.1 that qi(x,D)(C∞c (Rd)) ⊆ C∞(Rd) for all i ≥ 1. To prove
q(x,D)(C∞c (Rd)) ⊆ C∞(Rd) we note that x 7→ q(x, ξ) is continuous, and therefore it
suffices to show by Lemma 2.1 that

lim
|x|→∞

ν(x,B(−x, r)) |x|→∞−−−−→ 0, r > 0,

where ν(x, dy) is for each fixed x ∈ Rd the Lévy measure of a relativistic stable Lévy
process with parameters (κ(x),m(x), α(x)). It is known that ν(x, dy) ≤ cκ(x)e−|y|m(x)/2 dy

on B(0, 1)c, and therefore

ν(x,B(−x, r)) ≤ cκ(x)

∫
B(−x,r)

e−|y|m(x)/2 dy = cκ(x)
(
e−|x−r|m(x)/2 − e−|x+r|m(x)/2

)
.

For |x| � 1 and fixed r > 0 we obtain from Taylor’s formula

ν(x,B(−x, r)) ≤ cκ(x)m(x)e−|x|m(x)/4 |x|→∞−−−−→
(4.8)

0.
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