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Abstract

Considering a determinantal point process on the real line, we establish a connec-
tion between the sine-kernel asymptotics for the correlation kernel and the CLT for
mesoscopic linear statistics. This implies universality of mesoscopic fluctuations for
a large class of unitary invariant Hermitian ensembles. In particular, this shows
that the support of the equilibrium measure need not be connected in order to see
Gaussian fluctuations at mesoscopic scales. Our proof is based on the cumulants
computations introduced in [45] for the CUE and the sine process and the asymptotic
formulae derived by Deift et al. [13]. For varying weights e−N TrV (H), in the one-cut
regime, we also provide estimates for the variance of linear statistics Tr f(H) which
are valid for a rather general function f . In particular, this implies that the logarithm
of the absolute value of the characteristic polynomials of such Hermitian random
matrices converges in a suitable regime to a regularized fractional Brownian motion
with logarithmic correlations introduced in [17]. For the GUE and Jacobi ensembles,
we also discuss how to obtain the necessary sine-kernel asymptotics at mesoscopic
scale by elementary means.
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1 Introduction and results

A point process onR is called determinantal if its correlation functions (with respect
to the Lebesgue measure) exist and are of the form:

ρk(x1, . . . , xk) = det
k×k

[
K(xi, xj)

]
, ∀x1, . . . , xk ∈ R, ∀k ∈ N, (1.1)

where K : R×R→ R is called the correlation kernel. Such processes arise in random
matrix theory to describe eigenvalues of the so-called unitary (invariant) ensembles; see
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Mesoscopic fluctuations for UIE

theorem 1.1 below and section 3 for further details. There are many other interesting
examples of determinantal processes such as random tilings or the positions of non-
colliding stochastic diffusions that we will not discuss here. We refer to [46, 24, 20, 2, 36]
for various introductions to the general theory and more examples. A fundamental
feature of determinantal processes is that all the information about the process is
encoded in the correlation kernel. For instance, for unitary ensembles, universality of
the local correlations in the bulk of the spectrum follows from the uniform convergence
of the rescaled correlation kernel to the sine-kernel, [12, 40, 44]. In this work, we show
that at mesoscopic scales, the sine-kernel asymptotics still hold and this leads to the
following central limit theorem:

Theorem 1.1. Let V : R→ R be real-analytic such that

lim inf
|x|→∞

V (x)

log(x2 + 1)
= +∞, (1.2)

and consider the probability measure PVN = Z−1
V,Ne

−N TrV (H)dH on the space of N ×N
Hermitian matrices equipped with the Lebesgue measure dH. If (λ1, . . . , λN ) denote the
eigenvalues of a random matrix H distributed according to PVN , then for any x0 ∈ JV ,
any 0 < α < 1, and for any f ∈ C1(R) with compact support, we have

N∑
k=1

f
(
Nα(λk − x0)

)
− EVN

[
N∑
k=1

f
(
Nα(λk − x0)

)]
=⇒
N→∞

N
(
0, ‖f‖2H1/2

)
. (1.3)

Proof. Section 3.2.

The condition (1.2) guarantees that ZV,N <∞, so that the measure PVN is well-defined.
This also implies that for large N , the eigenvalue process is supported on a deterministic
compact set JV with high probability. Hence, the potential V is confining and the
condition x0 ∈ JV means that we zoom in around a point x0 which lies in the bulk of the
spectrum.

In theorem 1.1, the parameter α ∈ [0, 1] is called the scale. Since the eigenvalue
density is of order N in the bulk, if α = 0, the random variable on the LHS of (1.3)
depends on the whole spectrum of H and this regime is called global or macroscopic. On

the other hand, if α = 1, the rescaled point process
{
N(λk − x0)

}N
k=1

converges to the
sine process as the size N of the matrix tends to infinity and this regime is called local
or microscopic. Any intermediate scale, 0 < α < 1, is called mesoscopic. Note that in
this regime, the limit (1.3) is independent of the potential V , the scale α and x0. Hence,
this establishes universality of fluctuations for a large class of Hermitian random matrix
ensembles. The variance in formula (1.3) is given by

‖f‖2H1/2 =

∫
R

∣∣f̂(u)
∣∣2|u|du =

1

4π2

∫∫
R2

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 dxdy, (1.4)

where f̂(u) =

∫
f(x)e−i2πxudx denotes the Fourier transform of the test function f .

Formula (1.4) defines a complete normed subspace of L2(R) that we denote by H1/2(R).
Most of the work on unitary invariant ensembles has focused on the asymptotics of local
or global statistics and we briefly review the main results, further references can be
found in the textbooks [12, 40]. Under the assumptions of theorem 1.1, there exists a
probability density %V with compact support JV on R such that for any f continuous and
bounded on R, one has PVN almost surely,

1

N

N∑
k=1

f(λk) −→
N→∞

∫
f(x)%V (x)dx. (1.5)
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Mesoscopic fluctuations for UIE

It means that for large N , the eigenvalues of a random matrix sampled according to PVN
are distributed according to the equilibrium density %V . Moreover, it is known that
the fluctuations around this equilibrium configuration remain bounded as N →∞. The
precise behavior of linear statistics depends on the support of %V . In the simplest case,
there exists c0 ∈ R and ` > 0 so that

JV =
(
c0 − `, c0 + `), (1.6)

then the potential V is said to satisfy the one-cut condition and there is a CLT: for any
f ∈ C2 ∩ L∞(R),

N∑
k=1

f
(λk − x0

`

)
−N`

∫
f(x)%V

(
x0 + `x

)
dx =⇒

N→∞
N
(
0,Σ(f)2

)
, (1.7)

where

Σ(f)2 :=
1

4π2

∫∫
[−1,1]2

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 1− xy
√

1− x2
√

1− y2
dxdy. (1.8)

The CLT (1.7) was first proved in [23] when V is a polynomial of even degree using
a variational method. We refer to [3] for further developments and to [11, 31] for
alternative proofs which also are valid for more general determinantal processes. It
is known that (1.6) holds when the potential V is strictly convex on R and, if Ṽ (x) =

V (c0 + `x), by considering the ensemble PṼN instead of PVN , we can always assume that
c0 = 0 and ` = 1. The one-cut condition is crucial to observe a Gaussian process in the
limit. If JV = supp(%V ) is not connected, then for a generic test function f , the behavior
of the linear statistic

∑
f(λk) is quasi-periodic in N and, even though this sequence of

random variables is tight, it has no limit as N →∞, [38]. This complicated behavior is
explained by the fact that the numbers of eigenvalues in the different components of JV
fluctuate. Nevertheless, along appropriate subsequences, the asymptotic behavior of the
random variable

∑
f(λk) can still be described and it is generally not Gaussian, [4]. On

the other hand, it is known that at the local scale, the behavior of the eigenvalue process
is independent of the equilibrium density and it is described by the sine process in the
bulk. Theorem 1.1 shows that mesoscopic fluctuations are universal as well regardless
of the geometry of the equilibrium measure. Actually, this results was first derived
heuristically by Pastur in [38] based on the semi–classical asymptotic formulae derived
in [13] for the orthogonal polynomials with respect to the measure e−NV (x)dx on R.

Theorem 1.1 has the following interpretation when viewing the eigenvalue process
as a random measure

Ξx0,α
N :=

N∑
k=1

δNα(λk−x0). (1.9)

Once centered, Ξx0,α
N converges in distribution to a random Gaussian process G with

covariance structure

E [G(f)G(g)] =

∫
R

f̂(u)ĝ(−u)|u|du. (1.10)

The random process G is called the H1/2-Gaussian field, see [22, chapter 1]. Its special
feature is that it is scale invariant. If fη(x) = f(ηx), then G(fη) ∼ G(f) for any η > 0,
as can be seen from (1.10). Heuristically, this explains why this process is expected
to describe mesoscopic fluctuations of point processes with strong repulsion such as
eigenvalues of random matrices, see the discussion in [47]. In some respect, these
ensembles behave like the sine process and this is the main idea behind the proof of

EJP 23 (2018), paper 7.
Page 3/33

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP120
http://www.imstat.org/ejp/


Mesoscopic fluctuations for UIE

theorem 1.2 below. The mesoscopic correlations can also be guessed from formulae
(1.7–1.8). Namely, if x0 = 0 and ` = 1, by a change of variables

Σ(fη)2 =
1

4π2

∫∫
[−η,η]2

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 1− xy/η2√
1− (x/η)2

√
1− (y/η)2

dxdy,

and, if f decays sufficiently fast, we obtain

lim
η→∞

Σ(fη)2 =
1

4π2

∫∫
R2

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 dxdy = ‖f‖2H1/2 .

It is natural to investigate whether (1.3) holds under the optimal condition f ∈
H1/2(R). To the author’ knowledge, this question remains open even for the Gaussian
Unitary Ensemble (GUE). To some extent, this issue is addressed in section 3.3. If the
potential V satisfies the one-cut condition (1.6), we provide bounds for the variance of
the random variable Ξx0,α

N f which allows us to extend the mesoscopic CLT to e.g. all
bounded functions of class H1/2(R) with compact support, see proposition 3.5 below.
In an appendix, we provide additional variance estimates valid in the global regime.
Once more, the goal is to extend a CLT from [31] from polynomials to more general test
functions; see theorem A.4. This result is the analogue for one-cut unitary invariant
ensembles of that obtained by Sosoe and Wong in [48, Thm 3] for a class of Hermitian
Wigner matrices.

Mesoscopic spectral statistics were first considered in [7, 8] for Hermitian and
symmetric Wigner matrices. In particular, the authors proved a result analogous to (1.3)
for the GUE and GOE using the resolvent of the matrix as a test function. Their results
were recently generalize down to the optimal scale and for a wide class of Hermitian
Wigner matrices in [26]. One of the pioneering works on the subject which has been of
inspiration for this article is Soshnikov’s CLT for eigenvalue statistics of Haar distributed
random matrices from the compact groups, [45]. In the case of the unitary group, this
point process is known as the Circular Unitary Ensemble (CUE) and it is determinantal
with a correlation kernel

KUN (x, y) =
sin
(
N(x− y)/2

)
2π sin

(
(x− y)/2

) , ∀x, y ∈ R/2πZ, (1.11)

and one may interpret the counterpart of (1.3) as a continuous analogue of the Strong
Szegő theorem. Theorem 1.1 is also closely related to the main result of [17] which
establishes that, at mesoscopic scales, the logarithm of the absolute value of the charac-
teristic polynomial of a GUE matrix converges weakly to a H = 0 fractional Brownian
motion (see definition 4.1) which is a Gaussian generalized function whose correlation
kernel has a logarithmic singularity on the diagonal. On the one hand, one can infer from
[17, Thm 2.4] a CLT for mesoscopic linear statistics of Schwartz-class test functions. On
the other hand, we show in section 4 that one can deduce the result of [17] from a meso-
scopic CLT provided that it is valid for sufficiently general test functions. As an important
consequence of theorem 3.5, this allows us to generalize the work of Fyodorov et al. to
the characteristic polynomials of other one-cut matrix models; see theorem 4.2. This
elaborates on the intriguing connection between logarithmically correlated Gaussian
processes and random matrix theory which has been an active research direction since
the work of [21]. For instance, based on the so-called freezing transition scenario, Fyo-
dorov et al. produced interesting conjectures for the distributions of the extreme values
of these polynomials and, by analogy, for the extreme values the Riemann Zeta function
on some large intervals high up along the critical line, [16, 18]. This also indicates that
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Mesoscopic fluctuations for UIE

the characteristic polynomials of random matrices give raise to regularizations of certain
Gaussian Multiplicative Chaos measures which have recently played a significant role
in some physical theories such as turbulence, disordered systems or Liouville quantum
gravity; see [15, 50] and references therein.

The proof of theorem 1.1 is based on the so-called Plancherel-Rotach asymptotics for
the orthogonal polynomials (OP) with respect to the weight e−NV (x) on R derived in [13]
and the following general result. For any function ρ : R→ R+ which is locally integrable,
we let

Jρ := {t ∈ R : ρ(t) > 0 and ρ(t) is continuous} (1.12)

and, for all x ∈ R, we define

Fρ(x) :=

∫ x

0

ρ(t)dt. (1.13)

We also denote by Ck0 (R) the space of compactly supported real-valued functions with k
continuous derivatives on R.

Theorem 1.2. Consider a determinantal process on R with a correlation kernel KN

which is locally trace-class. For any x0 ∈ R, α ∈ [0, 1] and f ∈ C0(R), we consider the
linear statistic

Ξx0,α
N f =

∑
f
(
Nα(λk − x0)

)
,

where the sum is over the point configuration {λk} of the process. Assume that there
exists a function ρ : R→ R+ such that x0 ∈ Jρ and uniformly for all x, y ∈ [x0−εN , x0+εN ],

KN (x, y) =
sinπN

(
Fρ(x)− Fρ(y)

)
π(x− y)

+ O(1)
N→∞

, (1.14)

Then, if lim
N→∞

εNN
α = +∞ for some α < 1, we obtain for any f ∈ C1

0 (R),

Ξx0,α
N f − E [Ξx0,α

N f ] =⇒
N→∞

N
(
0, ‖f‖2H1/2

)
(1.15)

and for any f ∈ C0(R),
Ξx0,1
N f =⇒

N→∞
Ξsin
ρ(x0)f. (1.16)

Proof. Section 2.

On the RHS of (1.16), Ξsin
ν denotes the sine process with density ν > 0, i.e. the

determinantal process on R with the correlation kernel

Ksin
ν (ξ, ζ) =

sin[πν(ξ − ζ)]

π(ξ − ζ)
. (1.17)

In the local regime, (1.16) implies the convergence of the process Ξx0,1
N to the sine

process. As we already emphasized, this behavior is universal for Hermitian ensembles.
In the context of theorem 1.1, it was proved in [39, 13, 32, 33]. Assuming that the
kernel KN is locally trace-class is standard, it means that for any function f ∈ L∞(R)

with compact support, the integral operator h 7→
∫
h(x)KN (·, x)f(x)dx is trace-class on

L2(R) and it implies that the linear statistic
∑
f(λk) has a finite Laplace transform and

its cumulants are well-defined, see formula (2.4) below. In the context of theorem 1.1
or, in greater generality, for the orthogonal polynomials discussed in section 3, their
correlation kernels define some rank N projection operators on L2(R). However, note
that in theorem 1.2, we do not assume that the kernel KN is reproducing, nor have finite
rank. Thus, our result still applies if the configuration {λk} has a random number of
points or infinitely many.
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It is obvious that the CUE kernel (1.11) has an asymptotic expansion of the form
(1.14) with ρ = 1/2π on R, so that Soshnikov’s CLT is a special case of theorem 1.2. In
fact, our main observation is that, if the correlation kernel satisfies (1.14), then we can
still apply Soshnikov’s method to prove a central limit theorem. In particular, the fact
that the limiting process is Gaussian follows from the Main combinatorial Lemma of [45],
theorem 2.7 below. For any determinantal process within the sine process universality
class, it is plausible that the asymptotics (1.14) hold at sufficiently small scales, so
that theorem 1.2 explains the appearance of the H1/2-Gaussian field in this context.
However, the general mechanism behind universality of mesoscopic fluctuations is still
far from being understood. In particular, it would be interesting to understand further
the connection between random matrix theory and logarithmically correlated Gaussian
fields as discussed in [17]. Within other symmetry classes and for Dyson’s β-ensembles,
mesoscopic fluctuations are also conjectured to be described by the H1/2-Gaussian field.
For instance, this has been rigorously established for the Gaussian β-Ensembles in [5],
for random matrices from the special orthogonal and symplectic groups in [45] as well
as in number theory when considering mesoscopic linear statistics of the zeros of the
Riemann ζ function [6, 42].

In this article, we focus on applications to random matrices, but theorem 1.2 should
be useful to investigate mesoscopic fluctuations for other instances of determinantal
processes. Based on the Riemann-Hilbert formulation of [14], it is possible to derive very
precise asymptotics for the orthogonal polynomials and the Christoffel-Darboux kernels
for large families of measures on R. These results combined with theorem 1.2 allow
us to prove universality of the mesoscopic correlations for a extensive pool of unitary
invariant random matrix ensembles. For the GUE, it is possible to derive the asymptotics
(1.14) using only the Plancherel-Rotach asymptotics for the Hermite polynomials, [41],
and this leads to a rather elementary proof of theorem 1.1; see section 3.1. Finally, let
us mention that for non-varying compactly supported measures, an alternative approach
to universality has been developed in [11, 10]. This approach relies on the asymptotics
of the OP recurrence coefficients rather than on that of the correlation kernel and is
further discussed in remarks 3.1 and 3.14 below. In particular, we discuss applications
to the so-called modified Jacobi ensembles in section 3.4 and, by using theorem 1.2, we
provide a new and perhaps simpler proof of [10, Thm 1.1].

The rest of the paper is organized as follows. In section 2, we review the cumulant
method introduced in [45] to study linear statistics of determinantal processes and we
prove theorem 1.2. The proof relies on ideas developed in [25]. In section 3, we begin
by a brief introduction to the theory of unitary invariant ensembles focusing on the
orthogonal polynomials method. The core of this section is dedicated to show that the
asymptotics (1.14) are valid for the correlation kernels of a large class of orthogonal
polynomial ensembles. In section 3.1, we start by giving an elementary derivation of
the asymptotics of the GUE kernel based on the Plancherel-Rotach asymptotics for the
Hermite polynomials, [41]. In section 3.2, we review the Riemann-Hilbert formulation
for the orthogonal polynomials and the fundamental results of [13], hence completing
the proof of theorem 1.1. In section 3.4, we prove the counterpart of theorem 1.1 for
the so-called Modified Jacobi ensembles. In section 3.3, focusing on the one-cut regime,
we provide some estimates for the variance of linear statistics. This is necessary in
order to extend the mesoscopic CLT to a wider class of test functions and to generalize
the result of [17] to the characteristic polynomials of other matrix models. The proof
is given in section 4. Finally, in the appendix A, we further generalize the variance
estimates obtained in section 3.3 so that there are valid in the global regime for general
test functions with at most polynomial growth.
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In the sequel, we use the notation bN (x) = Oε(aN ) if there exists a set Aε such that
the estimate is uniform for all x ∈ Aε (similarly for oε). Moreover, C denotes a positive
constant which may change from line to line.

2 Proof of theorem 1.2

We consider a family of determinantal processes on R with correlation kernels KN

which depend on a parameter N > 0 and satisfy (1.14) for a given function ρ : R→ R+

and we let J = Jρ and F = Fρ according to (1.12), respectively (1.13). We want to study
the laws as N →∞ of the random variables

Ξx0,α
N f =

∑
f
(
Nα(λk − x0)

)
, (2.1)

where {λk} is a configuration of the determinantal process with kernel KN , f ∈ C1
0 (R)

is a test function such that supp(f) ⊂ [−L,L], and x0 ∈ J . For any real-valued random
variable Z with a well-defined Laplace transform, its cumulants Cn[Z] are defined by the
generating function:

logE
[
etZ
]

=

∞∑
n=1

Cn[Z]
tn

n!
. (2.2)

Observe that C1[Z] = E [Z] and the higher-order cumulants do not depend on E [Z]. In
particular, we have C2[Z] = Var[Z] and, if Z is Gaussian, Cn[Z] = 0 for all n ≥ 3. Hence,
to prove the CLT (1.15), it is enough to show that

lim
N→∞

C2
[
Ξx0,α
N f

]
= ‖f‖2H1/2 and lim

N→∞
Cn
[
Ξx0,α
N f

]
= 0 ∀n ≥ 3. (2.3)

Using formula (1.1), one can compute moments and cumulants of linear statistics of
determinantal processes. In particular, it was proved in [45] that, if the correlation
kernel is locally trace-class and f ∈ C0(R), then for any n ∈ N,

Cn
[∑

f(λk)
]

=

n∑
`=1

(−1)`+1

`

∑
m1,...,m`≥1
m1+···+m`=n

n!

m1! · · ·m`!
Tr [fm1KN · · · fm`KN ] , (2.4)

where

Tr [fm1K · · · fm`K] =

∫
R`
f(x1)m1K(x1, x2) · · · f(x`)

m`K(x`, x1)d`x. (2.5)

Let us denote for for all ξ, ζ ∈ R,

K̃N (ξ, ζ) = N−αKN

(
x0 +N−αξ, x0 +N−αζ

)
.

Then, by (2.1), (2.4) and a change of variables, we get

Cn
[
Ξx0,α
N f

]
=

n∑
`=1

(−1)`+1

`

∑
m1,...,m`≥1
m1+···+m`=n

n!

m1! · · ·m`!
Tr
[
fm1K̃N · · · fm`K̃N

]
. (2.6)

It was observed in [25] that, if the correlation kernel KN satisfy the uniform asymp-
totics (1.14), then we can relate its cumulants to those of the sine process as N →∞. In
particular, lemma 2.1 which is the main ingredient to prove proposition 2.2 below is a
straightforward adaptation of [25, Lemma 2.6].

Lemma 2.1. Let us consider two families of kernels (SN )N>0 and (S̃N )N>0 on R. If
there exist α > 0, L > 0, and a function ΓN : R→ R+ such that when N is sufficiently
large:
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(1) for all x, y ∈ [−L,L],
∣∣S̃N (x, y)− SN (x, y)

∣∣ ≤ CLN−α .

(2) for all x, y ∈ [−L,L],
∣∣SN (x, y)

∣∣ ≤ ΓN (x− y) .

(3)

∫ 2L

−2L

ΓN (s)ds ≤ C log(LN) .

Then, for all ε > 0, ` ∈ N, and for any functions fN,1, . . . , fN,` with support in [−L,L]

such that sup
{
‖fN,k‖∞ : k = 1, . . . , `} ≤ C`, one has

Tr[fN,1S̃N · · · fN,`S̃N ] = Tr[fN,1SN · · · fN,`SN ] + O
N→∞

(
N−α+ε

)
.

Let us define

SN (ξ, ζ) =
sin
[
πN
(
F (x0 + ξN−α)− F (x0 + ζN−α)

)]
π(ξ − ζ)

and

ΓN (ξ − ζ) =

{
C0N

1−α if |ξ − ζ|−1 ≤ 1
N

1/π|ξ − ζ| if |ξ − ζ|−1 > 1
N

. (2.7)

When εNN
α → +∞, the asymptotics (1.14) imply that the kernels K̃N and SN satisfy

condition (1) of lemma 2.1 for any L > 0. Moreover, we claim that the conditions (2) and
(3) hold as well so that we obtain for any m1, . . . ,m` ∈ N,

Tr
[
fm1K̃N · · · fm`K̃N

]
= Tr [fm1SN · · · fm`SN ] + O

N→∞

(
N−α+ε

)
. (2.8)

By (2.7), it is straightforward to check that for any C0 > 0,∫ 2L

−2L

ΓN (s)ds ≤ log(LN) +O(1),

so that condition (3) holds. To check condition (2), note that by definition of J , for any
0 < ε0 < 1/2, there exists δ0 > 0 so that the density ρ is continuous on [x0 − δ0, x0 + δ0]

and for all |x− x0| < δ0,

1− ε0 ≤
ρ(x)

ρ(x0)
≤ 1 + ε0. (2.9)

If Nα > L/δ0 and C0 ≥ ρ(x0)(1 + ε0), this implies that for all ξ, ζ ∈ [−L,L],

∣∣F (x0 + ξN−α)− F (x0 + ζN−α)
∣∣ = N−α

∣∣∣∣∣
∫ ζ

ξ

ρ(x0 + sN−α)ds

∣∣∣∣∣ ≤ C0N
−α|ξ − ζ|.

Thus, if we use the trivial bound | sinx| ≤ |x| ∨ 1, by (2.7), we conclude that
∣∣SN (ξ, ζ)

∣∣ ≤
ΓN (ξ − ζ). The map F is continuous non-decreasing, so it has a generalized inverse:

G(x) = inf
{
t ∈ R : F (t) ≥ x

}
. (2.10)

In the sequel, we will assume that δ0 is sufficiently small, so that (2.9) holds and the map
G is continuously differentiable on [F (x0)− δ0, F (x0) + δ0] with

G′(x) =
1

F ′(G(x))
=

1

ρ(G(x))
. (2.11)

Finally, recall that the sine process Ξsin
ν is the determinantal process on R with a

correlation kernel Ksin
ν given by (1.17).
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Proposition 2.2. Let f ∈ C0(R) and α ∈ (0, 1]. We have for any n ≥ 1,

lim
N→∞

Cn [Ξα,x0

N f ] = lim
N→∞

Cn
[
Ξsin
νN fN

]
,

where νN = N1−αρ(x0) and

fN (x) = f
(
Nα

{
G
(
F (x0) + ρ(x0)

x

Nα

)
− x0

})
. (2.12)

Remark 2.3. Observe that for any 0 < ε0 < 1/2, by (2.9) and (2.11), if Nα > 2ρ(x0)L/δ0,
then for all x ∈ [−2L, 2L],

1

1 + ε0
≤ ρ(x0)G′

(
F (x0) + ρ(x0)

x

Nα

)
≤ 1

1− ε0
.

If we integrate this estimate, since f ∈ C0

(
[−L,L]

)
, this implies that the function

fN ∈ C0(R) has support in
[
− L0, L0

]
where L0 = L(1 + ε0).

Proof of proposition 2.2. We fix m1, . . . ,m` ∈ N and we suppose that Nα is sufficiently
large. We can make the change of variables

yk =
Nα

ρ(x0)

{
F
(
x0 +N−αxk

)
− F (x0)

}
(2.13)

in the formula

Tr [fm1SN · · · fm`SN ] =

L∫
−L

· · ·
L∫
−L

∏̀
k=1

f(xk)mk
sin
[
πN1−αρ(x0)(yk − yk+1)

]
π(xk − xk+1)

d`x.

If we let
g(y) = G (F (x0) + ρ(x0)y)− x0, (2.14)

and fN be given by (2.12), according to remark 2.3, this leads to

Tr [fm1SN · · · fm`SN ] =

L0∫
−L0

· · ·
L0∫
−L0

∏̀
k=1

fN (yk)mk S̃N (yk, yk+1)d`y

= Tr
[
fm1

N S̃N · · · fm`N S̃N

]
, (2.15)

where

S̃N (y, z) :=
g′(yN−α) sin

[
πρ(x0)N1−α (y − z)

]
πNα

{
g(yN−α)− g(zN−α)

} .

For any 0 < α ≤ 1, a Taylor expansion in (2.14) yields for all y, z ∈ [−L0, L0],

g′
(
yN−α

)−1
Nα
{
g
(
yN−α

)
− g

(
zN−α

) }
= (y − z)

{
1 +O

(
|y − z|N−α

)}
.

This implies that uniformly for all y, z ∈ [−L0, L0],

S̃N (x, y) =
sin [πνN (y − z)]

y − z
+O

(
N−α

)
,

where νN = N1−αρ(x0). Thus, the kernels S̃N and Ksin
νN also satisfy condition (1) of

lemma 2.1. Moreover, if ΓN is given by (2.7) with C0 = ρ(x0), the kernel Ksin
νN also

satisfies condition (2). Therefore, since the functions fN,k = fmkN have support in
[−L0, L0] and

sup
{
‖fN,k‖∞ : k = 1, . . . , `} ≤ ‖f‖m1∨···∨m`

∞ ,
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by lemma 2.1, we obtain

Tr
[
fm1

N S̃N · · · fm`N S̃N

]
= Tr

[
fm1

N Ksin
νN · · · f

m`
N Ksin

νN

]
+O

(
N−α+ε

)
. (2.16)

If we combine formulae (2.8), (2.15) and (2.16), we have proved that for any m1, . . . ,m` ∈
N,

Tr
[
fm1K̃N · · · fm`K̃N

]
= Tr

[
fm1

N Ksin
νN · · · f

m`
N Ksin

νN

]
+O

(
N−α+ε

)
. (2.17)

Since, by formula (2.6), the cumulants of the random variable Ξx0,α
N f are linear combina-

tions of such traces, we conclude by (2.17) that for any n ≥ 1,

Cn [Ξα,x0

N f ] = Cn
[
Ξsin
νN fN

]
+O

(
N−α+ε

)
. (2.18)

Remark 2.4. In the physics literature, the change of variables (2.13) is known as un-
folding the spectrum since it corresponds to rescaling the eigenvalue process so that it
has a constant density νN in a mesoscopic range around the point x0 ∈ Jρ. Note that
in formula (1.14), if the density ρ is smooth and ρ(x0) 6= 0, a Taylor expansion of the
function Fρ shows that we recover the classical sine-kernel asymptotics in the regime
α > 1/2. Namely, if ξ, ζ ∈ [−L,L] and we make the change of variables x = x0 + ξ/Nα

and y = x0 + ζ/Nα, then

sinπN
(
Fρ(x)− Fρ(y)

)
π(x− y)

=
sin
[
πN1−αρ(x0)(ξ − ζ)

]
π(x− y)

+ OL
N→∞

(∣∣∣∣ ξ − ζx− y

∣∣∣∣N1−2α

)
(2.19)

N−αKN (x, y) =
sin
[
πN1−αρ(x0)(ξ − ζ)

]
π(ξ − ζ)

+ OL
N→∞

(N1−2α).

Hence, at sufficiently small scales, the fact that the eigenvalues are not uniformly
distributed is not relevant and, if the integrated density of states Fρ is smooth on Jρ,
we can deduce proposition 2.2 directly from lemma 2.1 without making the change of
variables (2.13).

First, let us apply proposition 2.2 to obtain local correlations. In the regime α = 1,
for any n ≥ 1,

lim
N→∞

Cn
[
Ξ1,x0

N f
]

= lim
N→∞

Cn
[
Ξsin
ρ(x0)fN

]
. (2.20)

By (2.11), a Taylor expansion of the map G yields for all |x| < L0,

lim
N→∞

Nα
{
G
(
F (x0) + ρ(x0)

x

Nα

)
− x0

}
= x. (2.21)

By remark 2.3, the function fN has support in [−L0, L0] and by continuity of f , the
limit (2.21) implies that lim

N→∞
fN (x) = f(x) for all x ∈ R. Hence, by the dominated

convergence theorem, we get

lim
N→∞

Cn
[
Ξsin
ρ(x0)fN

]
= Cn

[
Ξsin
ρ(x0)f

]
.

By (2.20), this proves that lim
N→∞

Cn
[
Ξ1,x0

N f
]

= Cn
[
Ξsin
ρ(x0)f

]
for any f ∈ C0(R) and (1.16)

follows from the fact that compactly supported linear statistics of the sine process are
characterized by their cumulants.

We now turn to the proof of (1.15) in the mesoscopic regime, 0 < α < 1. The argument
is different because, in formula (2.18), the density of the sine-process νN →∞ as N →∞.
A relevant result in this regime is a CLT due to Soshnikov for the sine process:
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Theorem 2.5 (Thm 4, [47]). For any function f ∈ H1/2(R), as ν →∞,

Ξsin
ν f − E

[
Ξsin
ν f

]
⇒ N (0, ‖f‖H1/2) .

The proof is based on Fourier analysis and a combinatorial argument given in the
article [45]. Although the original proof is given for Schwartz functions, using a density
argument, it is not difficult to extend Soshnikov’s CLT to all test functions in the Sobolev
space H1/2(R). In order to deduce theorem 1.2 from proposition 2.2, we see that it
suffices to extend the proof of theorem 2.5 to deal with test functions fN of the form
(2.12). In order to proceed, we need to recall two key lemmas from [45]. For any tuple
m ∈ N`, we define

Υn(u1, . . . , un) =

n∑
`=1

(−1)`+1

`

∑
m1,...,m`≥1
m1+···+m`=n

n!

m1! · · ·m`!
max
1≤i≤`

{u1 + · · ·+um1+···+mi}. (2.22)

Lemma 2.6 ([45]). There exists a constant Cn > 0 which depends only on n ≥ 2 such
that for any ν > 0 and any function f ∈ L1(R),∣∣∣∣∣Cn [Ξsinν f

]
+ 2

∫
Rn0

<
{∏

i

f̂(ui)

}
Υn(u1, . . . , un)dn−1u

∣∣∣∣∣
≤ Cn

∫
Anν

∣∣∣∣∏
i

f̂(ui)

∣∣∣∣(|u1|+ · · · |un|
)
dn−1u,

where Rn0 =
{
u ∈ Rn : u1 + · · ·+ un = 0

}
and Anν =

{
u ∈ Rn0 : |u1|+ · · ·+ |un| > ν

}
.

Lemma 2.7 (Main Combinatorial lemma, [45]). For any u ∈ Rn0 ,

∑
σ∈Sn

Υn

(
uσ(1), . . . , uσ(n)

)
=

{
|u1| if n = 2

0 if n > 2
.

If g ∈ C1
0 (R), we define

‖g‖2H1 =

∫
R

|ĝ(u)|2|u|2du =
1

4π2

∫
R

∣∣g′(x)
∣∣2dx. (2.23)

We will also need the following result.

Lemma 2.8. If f ∈ C1
0 (R) and the function fN is given by (2.12), then

lim
N→∞

‖fN − f‖H1 = 0.

Proof. Since G ∈ C1
(
[F (x0) − δ0, F (x0) + δ0]

)
, by remark 2.3, if Nα > 2ρ(x0)L/δ0, the

functions fN are continuously differentiable on R and

f ′N (x) = ρ(x0)G′
(
F (x0) + ρ(x0)

x

Nα

)
f ′
(
Nα

{
G
(
F (x0) + ρ(x0)

x

Nα

)
− x0

})
.

Then, by the triangle inequality,∣∣f ′N (x)− f ′(x)
∣∣ ≤ ‖f ′‖∞ ∣∣∣ρ(x0)G′

(
F (x0) + ρ(x0)

x

Nα

)
− 1
∣∣∣ (2.24)

+
∣∣∣f ′ (Nα

{
G
(
F (x0) + ρ(x0)

x

Nα

)
− x0

})
− f ′(x)

∣∣∣ .
First note that, by (2.21) and the continuity of f ′,

lim
N→∞

∣∣∣f ′ (Nα
{
G
(
F (x0) + ρ(x0)

x

Nα

)
− x0

})
− f ′(x)

∣∣∣ = 0. (2.25)
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Second, by remark 2.3, we have

lim
N→∞

∣∣∣ρ(x0)G′
(
F (x0) + ρ(x0)

x

Nα

)
− 1
∣∣∣ = 0. (2.26)

In the end, by the dominate convergence and the estimates (2.24–2.26), we conclude
that

lim
N→∞

‖fN − f‖H1 = lim
N→∞

1

4π2

∫ L0

−L0

∣∣f ′N (x)− f ′(x)
∣∣ = 0.

Observe that, if g ∈ C1
0 (R), according to (1.4) and (2.23),

‖g‖2H1/2 ≤ ‖ĝ‖2∞ + ‖g‖2H1

≤ ‖g‖2L1 + ‖g‖2H1 .

By (2.21) and the dominated convergence theorem, we get lim
N→∞

‖fN − f‖L1 = 0. Thus,

by lemma 2.8, we obtain for any f ∈ C1
0 (R),

lim
N→∞

‖fN − f‖H1/2 = 0. (2.27)

For now, let us also assume that, with νN = Nαρ(x0) and Anν defined in lemma 2.6,
one has

lim
N→∞

∫
AnνN

∣∣∣∣∏
i

f̂N (ui)

∣∣∣∣(|u1|+ · · · |un|
)
dn−1u = 0. (2.28)

Then one gets for any n ≥ 2,

lim
N→∞

Cn
[
Ξsin
νN fN

]
= 2 lim

N→∞

∫
Rn0

<
{∏

i

f̂N (ui)

}
Υn(u1, . . . , un)dn−1u.

Since f is real-valued and Υ2(u,−u) = |u|/2, by lemma 2.7, this implies that

lim
N→∞

Cn
[
Ξsin
νN fN

]
=

 lim
N→∞

∫
R

∣∣f̂N (u)
∣∣2|u|du if n = 2

0 if n > 2
.

By proposition 2.2 and (2.27), we conclude that for any f ∈ C1
0 (R),

lim
N→∞

Cn [Ξα,x0

N f ] =

{
‖f‖2

H1/2 if n = 2

0 if n > 2
.

A special case of the limit (2.28) was computed in [25, proposition 4.13]. The proof
relies on lemma 2.8 and it is straightforward to generalize the argument of [25] to obtain
(2.28). Hence, by (2.3), the CLT (1.15) holds for any x0 ∈ J and f ∈ C1

0 (R).

3 Unitary invariant ensembles

The most well-known probability measure on the space of N ×N Hermitian matrices
is the Gaussian Unitary Ensemble:

PGUE
N = Z−1

N e−2N Tr H2

dH. (3.1)

In this section, we will consider various generalizations of the GUE of the form:

PωN = Z−1
ω,Ne

Tr logω(H)dH, (3.2)
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where the function ω : R→ [0,+∞) is upper-semicontinuous and such that for all k ≥ 0,∫
|x|kω(x)dx <∞. (3.3)

This condition implies that the partition function Zω,N < ∞ so that the measure is
well-defined. For scaling reasons, the weight ω might also depend on the dimension
N even though we will not emphasize this to keep our notations as simple as possible.
The matrix logω(H) is defined by functional calculus and the measure (3.2) is invariant
under the transformation H 7→ UHU∗ for any U ∈ U(N). Hence, the name unitary
invariant ensemble. In particular, if we use the spectral decomposition of H, under PωN ,
the eigenvectors are independent of the spectrum Λ and Λ =

{
λ1, . . . , λN

}
has a joint

density on RN which is given by

PωN (x1, . . . , xN ) = Z−1
ω,N det

N×N

[
xk−1
j

]
det
N×N

[
xk−1
j ω(xj)

]
. (3.4)

In order to analyse the behavior of the eigenvalues, in [37], Gaudin and Metha
introduced a method based on the orthogonal polynomials with respect to the measure
ω(x)dx on R. The condition (3.3) guarantees that these polynomials exist and we define
for any k ≥ 0,

πk(x) = xk + αkx
k−1 + · · · and

∫
πk(x)πj(x)ω(x)dx = γ−2

k 1k=j . (3.5)

Then, it follows from formula (3.4) that the eigenvalues density is

PωN (x1, . . . , xN ) =
1

N !
det
N×N

[
Kω
N (xj , xk)

]
, (3.6)

where

Kω
N (x, y) = γ2

N−1

πN (x)πN−1(y)− πN−1(x)πN (y)

x− y
√
ω(x)ω(y). (3.7)

Formulae (3.6–3.7) implies that the eigenvalue point process Λ is determinantal with
correlation kernel Kω

N in the sense of (1.1). These facts are well-known and we refer
to e.g. [12, 27] for an introduction to the subject. By theorem 1.2, this reduces the
question of universality of mesoscopic fluctuations for the ensembles (3.2) to obtain
precise asymptotics for the OPs with respect to the measure ω(x)dx.

Remark 3.1. Beyond the context of random matrix theory, one may consider the deter-
minantal process (3.6) associated with a more general measure, e.g. certain discrete
measures corresponds to random tilings models, [27]. These processes are known as
orthogonal polynomial ensembles and significant research developments have focused
on proving the sine-process universality at the local scale, see [35, 43] and reference
therein. At mesoscopic scales, another universality result just appeared in [10] from
which the authors deduced a weaker version of theorem 3.12 below. Instead of working
with the correlation kernel of the process, Breuer and Duits reformulate the cumulant
problem in terms of the so-called Jacobi matrix of the measure ω(x)dx and this reduces
the question of universality to controlling the asymptotics of the recurrence coefficients
which define the OPs. The drawback of this method is that, for technical reasons, it
fails when the reference measure varies with the dimension N , like in the context of
theorem 1.1 where ω(x) = e−NV (x). However, it requires only the asymptotics of the re-
currence coefficients and applies to discrete or singular measures where the asymptotics
of the correlation kernel can be difficult to derive.
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Under general conditions and provided that the weight ω is suitably normalized as
N →∞, see [9, 19], it is known that there is a Law of Large numbers:

1

N

N∑
k=1

f(λk) −→
N→∞

∫
f(x)dµω(x)dx, PωN–almost surely, (3.8)

where µω is called the equilibrium measure and it has compact support. In the following,
we will suppose that it is absolutely continuous: dµω = %ω(x)dx. The equilibrium density
%ω plays a fundamental role in the non-linear steepest descent introduced in [14, 12] and
therefore appears in the asymptotics of the Christoffel-Darboux kernel. Namely, we will
show below, based on the results of [13, 29, 30], that for a large class of weight ω, we
have the global asymptotics:

Kω
N (x, y) =

sin
[
πN
(
Fω(x)− Fω(y)

)]
π(x− y)

+ O(1)
N→∞

, (K)

where the error is uniform for all x, y ∈ I, for any closed interval I ⊂ supp(%ω), and
Fω = F%ω according to formula (1.13). Note that one shall interpret the RHS of (K)
according to (3.8),

Fω(x)− Fω(y) ' # eigenvalues in [x, y]

N
for any x < y,

which is why the function Fω is usually called the integrated density of states.

This section is organized as follows. First, in section 3.1, we provide an elementary
proof of formula (K) for the GUE kernel (with weight ω(x) = e−2Nx2

) based on the
classical Plancherel–Rotach asymptotics, [41]. In section 3.2, we give the proof of
theorem 1.1 using the Riemann-Hilbert formulation for the OPs and the results of Deift
et al., [13]. Then, in section 3.3, we provide estimates for the variance of linear statistics
valid for the so-called one-cut ensembles. As mentioned in the introduction, the main
goal is to use these estimates to extend the scope of the mesoscopic CLT to a wider
class of test functions, see theorem 3.5. Finally, in section 3.4, we briefly discuss the
case of non-varying weights ω, focusing on the so-called modified Jacobi ensembles.
Although the technique of section 3.2 applies as well in this setting, we provide another
elementary proof of (K) which is inspired from the case of the Chebyshev’s polynomials.

3.1 The Gaussian unitary ensemble

The GUE (3.1) was introduced by E. Wigner as a model to describe scattering
resonances of Heavy nuclei. In addition to being unitary invariant, the entries of a
GUE matrix are independent Gaussian random variables, which makes the GUE a
central model in random matrix theory. So, we dedicate this section to provide an
elementary proof of the mesoscopic CLT. By theorem 1.2, it suffices to obtain the
following asymptotics for the GUE correlation kernel:

Theorem 3.2. Let %sc(x) = 2
√

1−x2

π 1[−1,1](x) and Fsc(x) =

∫ x

0

%sc(u)du. For any ε > 0, we

have for all |x|, |y| ≤ 1− ε,

KGUE
N (x, y) =

sin
[
πN
(
Fsc(x)− Fsc(y)

)]
π(x− y)

+ Oε
N→∞

(1). (3.9)

In particular, theorem 3.2 implies that KGUE
N (x, x) = N%sc(x) + O(1) for all |x| < 1,

and we recover that, with our normalization, the GUE equilibrium measure is the Wigner
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semicircle law %sc. We shall show that formula (3.9) follows from the basic properties of
the Hermite functions and the classical Plancherel–Rotach asymptotics. First of all, let
us observe that the GUE weight satisfies ω(x) = ωG(

√
2Nx) where ωG(x) = e−x

2

and the
OPs with respect to the Gaussian weight ωG are the classical Hermite polynomials, for
all k ≥ 0,

πk(x) = ex
2

(
−1

2

d

dx

)k
e−x

2

and γk =

√
2k√
πk!

. (3.10)

Therefore, if we let φk(x) =
√
ωG(x)γkπk(x), according to formula (3.7), the correlation

kernel of the GUE eigenvalue process satisfies KGUE
N (x, y) =

√
2NKωG

N (
√

2Nx,
√

2Ny)

where

KωG
N (x, y) =

√
N

2

φN (x)φN−1(y)− φN−1(x)φN (y)

x− y
.

That is, if we let φ̃k(x) =
(
N
2

)1/4
φk(
√

2Nx), then the GUE kernel is given by

KGUE
N (x, y) =

φ̃N (x)φ̃N−1(y)− φ̃N−1(x)φ̃N (y)

x− y
. (3.11)

The functions φk are usually called the Hermite (wave) functions, they form an orthonor-
mal basis of L2(R), and they have well-known asymptotic expansions:

Proposition 3.3 ([40], Proposition 5.1.3). Let for all |x| < 1 and N > 0,

H(x) = θ(x)− x
√

1− x2 and ΨN (x) = NH(x)− arcsin(x)

2
, (3.12)

where θ(x) = arccos(x). For any ε > 0 and κ ≥ 0, we have for all |x| ≤ 1− ε,

φ̃N−κ(x) =
cos
[
ΨN (x)− κθ(x)

]
√
π(1− x2)1/4

+ Oε,κ
N→∞

(
N−1

)
. (3.13)

We note that the asymptotics (3.13) were first obtained in [41] using an integral for-
mula for the Hermite polynomials (3.10) and the steepest descent method. Interestingly,
Plancherel and Roctach not only obtained the leading order, but the full asymptotic
expansion; see [41, formula 7]. In order to obtain the uniform asymptotics of theorem 3.2,
we shall use the representation of [1, section 3.5.2] for the kernel (3.11):

KGUE
N (x, y) =

∫ 1

0

(
φ̃N (x)φ̃′N−1(x+ ξt)− φ̃N−1(x)φ̃′N (x+ ξt)

)
dt, (3.14)

where ξ = y − x, and the following lemma.

Lemma 3.4. For any ε > 0 and κ ≥ 0, we have for all |x| ≤ 1− ε,

φ̃′N−κ(y) = −
√

2

π

Ψ′N (y) sin
[
ΨN (y)− κθ(x)

]
(1− y2)1/4

+ Oε,κ
N→∞

(1). (3.15)

Proof. It is well-known that the Hermite polynomials are an Appell sequence, so that for
all k ≥ 0,

φ′k(x) =
kγk
γk−1

φk−1(x)− xφk(x) =
√

2kφk−1(x)− xφk(x)

φ̃′k(x) = 2
√
kNφ̃k−1(x)− 2Nxφ̃k(x).

Thus, φ̃′N−κ(x) = 2N
(
{1 +O(κ/N)}φ̃N−κ−1(x)−xφ̃N−κ(x)

)
and the asymptotics of propo-

sition 3.3 imply that

φ̃′N−κ(x) =
2N√

π(1− x2)1/4

{
cos
[
ΨN (x)− (κ+ 1)θ(x)

]
−x cos

[
ΨN (x)−κθ(x)

]}
+ Oε,κ
N→∞

(1).
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Then, applying the trigonometric identity cos[α− θ(x)]− x cos[α] =
√

1− x2 sin[α] which
is valid for all α ∈ R and x ∈ [−1, 1], we obtain for all |y| ≤ 1− ε,

φ̃N−κ(y) =
2N
√

1− y2

√
π(1− y2)1/4

sin
[
ΨN (y)− κθ(y)

]
+ Oε,κ
N→∞

(1).

To complete the proof, it remains to check that the function H ∈ C1(−1, 1) with

H ′(x) = −2
√

1− x2, (3.16)

and note that for all |x| ≤ 1− ε,

Ψ′N (x) = NH ′(x)− 1

2
√

1− x2
= −2N

√
1− x2 + Oε

N→∞

(
1
)
. (3.17)

Proof of theorem 3.2. Fix 0 < ε < 1. Using the asymptotics (3.13), (3.15), and some
elementary trigonometry, we obtain for all |x|, |z| ≤ 1− ε,

φ̃N (x)φ̃′N−1(z)− φ̃N−1(x)φ̃′N (z)

= Ψ′N (z)
sin
[
ΨN (z)

]
cos
[
ΨN (x)− θ(x)

]
− cos

[
ΨN (x)

]
sin
[
ΨN (z)− θ(z)

]
π(1− x2)1/4(1− z2)1/4

+Oε(1)
N→∞

= Ψ′N (z)
sin
[
ΨN (z)

]
sin
[
ΨN (x)]

√
1− x2 + cos

[
ΨN (x)

]
cos
[
ΨN (z)

]√
1− z2

π(1− x2)1/4(1− z2)1/4

+ Ψ′N (z)
sin
[
ΨN (z)

]
cos
[
ΨN (x)](x− z)

π(1− x2)1/4(1− z2)1/4
+Oε(1)

N→∞

=
Ψ′N (z) cos[ΨN (z)−ΨN (x)]

π
+ f(x, z)Ψ′N (z) sin

[
ΨN (z)

]
sin
[
ΨN (x)] (3.18)

+ f(z, x)Ψ′N (z) cos
[
ΨN (z)

]
cos
[
ΨN (x)] + Z(x, z)Ψ′N (z) sin

[
ΨN (z)

]
cos
[
ΨN (x)] +Oε(1)

N→∞
,

where

f(x, z) =
1

π

((
1− x2

1− z2

)1/4

− 1

)
and Z(x, z) =

x− z
π(1− x2)1/4(1− z2)1/4

.

In particular, since f(x, x) = Z(x, x) = 0, this implies that

φ̃N (x)φ̃′N−1(x)− φ̃N−1(x)φ̃′N (x) =
Ψ′N (x)

π
+Oε(1)

N→∞
.

Thus, by formulae (3.14) with ξ = 0 and (3.17), this shows that

KGUE
N (x, x) = φ̃N (x)φ̃′N−1(x)− φ̃N−1(x)φ̃′N (x) = N%sc(x) +Oε(1)

N→∞
, (3.19)

which is consistent with (3.9). For now, we suppose that ξ 6= 0. Then, we claim that∫ 1

0

Ψ′N (x+ ξt) cos[ΨN (x+ ξt)−ΨN (x)]dt = − sin[ΨN (x+ ξ)−ΨN (x)]

ξ
,

and that for any function Q ∈ C1(J) such that Q(x) = 0 and sup
|z|≤1−ε

∣∣Q′(z)∣∣ ≤ Cε, we have

∣∣∣∣∫ 1

0

Q(x+ ξt)Ψ′N (x+ ξt) sin
[
ΨN (x+ ξt)

]
dt

∣∣∣∣ ≤ 2Cε. (3.20)
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So, if we apply this estimate to the functions z 7→ f(x, z) and z 7→ Z(x, z) (the same holds
as well for z 7→ f(z, x) if we replace sin by cos in (3.20)), taking z = x + ξt in formula
(3.18), we obtain for all |x|, |x+ ξ| ≤ 1− ε,

KGUE
N (x, y) =

∫ 1

0

(
φ̃N (x)φ̃′N−1(x+ ξt)− φ̃N−1(x)φ̃′N (x+ ξt)

)
dt

=
sin[ΨN (x)−ΨN (x+ ξ)]

πξ
+Oε(1)

N→∞
.

To conclude, it remains to see that by (3.12) and (3.16), if ξ = y − x, then

ΨN (x)−ΨN (x+ ξ) = N
(
H(x)−H(y)

)
+Oε(ξ)

= −Nπ
∫ x

y

%sc(du) +Oε(ξ).

Finally, to complete the proof, note that we may prove (3.20) by integration by parts. By
assumption |Q(x+ ξ)| ≤ Cε|ξ| so that∫ 1

0

Q(x+ ξt)Ψ′N (x+ ξt) sin
[
ΨN (x+ ξt)

]
dt =− Q(x+ ξ)

ξ
cos
[
ΨN (x+ ξt)

]
+

∫ 1

0

Q(x+ ξt) cos
[
ΨN (x+ ξt)

]
dt,

and obviously both terms are bounded by the constant Cε.

3.2 Proof of theorem 1.1

In this section, we focus on a varying weight of the type ω(x) = e−NV (x) where the
potential V is real-analytic on R and satisfies the condition (1.2). Then, the equilibrium
density %V is smooth on the set JV = J%V which is composed of finitely many bounded
intervals; see [13, 12] for further references. As we already mentioned, by theorem 1.2,
it suffices to know the global asymptotics (K) of the correlation kernel which follow
from the results of the steepest descent for the OP Riemann-Hilbert problem developed
in [13]. The formulae referenced by {#} belwo are taken from this paper. The authors
of [13] were interested in universality of the local correlations and convergence of the
gap probability for the eigenvalue process, so that the asymptotics (K) are not stated
explicitly in their paper and we may only refer to [13, Lemma 6.1] for an analogous
result valid in the local regime. So, for completeness, we review below the main steps of
the proof of (K).

We fix a component of JV , denoted (b, a), and according to formula {6.7}, we let

φ(x) =

∫ a

x

%V (s)ds. (3.21)

Note that in [13], the equilibrium density is denoted by Ψ, {1.6}, instead of %V . By {2.2},
we can write the correlation kernel (3.7) as

Kω
N (x, y) = −e−N(V (x)+V (y))/2Y11(x)Y21(y)− Y11(y)Y21(x)

2πi(x− y)
, (3.22)

where the 2 × 2 matrix Y is the solution of an appropriate Riemann-Hilbert problem.
Transforming the problem, cf. {6.8− 6.9}, the authors proved that for any x ∈ (a, b),{
Y11(x) = M11(x) exp

[
N(V (x) + `+ 2πiφ(x))/2

]
+M12(x) exp

[
N(V (x) + `− 2πiφ(x))/2

]
Y21(x) = M21(x) exp

[
N(V (x)− `+ 2πiφ(x))/2

]
+M22(x) exp

[
N(V (x)− `− 2πiφ(x))/2

]
(3.23)
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where the 2 × 2 matrices M(z) and d
dzM(z), which depends on the dimension N , are

uniformly bounded for all z in a complex neighborhood of any point x0 ∈ JV and for all
N > N0, cf. {5.161}. Using formulae (3.23), a little of algebra shows that for all x, y ∈ I,

e−N(V (x)+V (y))/2
(
Y11(x)Y21(y)− Y11(y)Y21(x)

)
= eiπN(φ(x)−φ(y))

{
detM(x)−M11(x)

(
M22(x)−M22(y)

)
+M21(x)

(
M12(x)−M12(y)

)}
+ e−iπN(φ(x)−φ(y))

{
−detM(x) +M22(x)

(
M11(x)−M11(y)

)
−M12(x)

(
M21(x)−M21(y)

)}
+ eiπN(φ(x)+φ(y))

{
M21(y)

(
M11(x)−M11(y)

)
−M11(y)

(
M21(x)−M21(y)

)}
+ e−iπN(φ(x)+φ(y))

{
M22(y)

(
M12(x)−M12(y)

)
−M12(y)

(
M22(x)−M22(y)

)}
= 2idetM(x) sin

(
πN(φ(x)− φ(y))

)
+O(x− y).

Hence, since detM(z) = 1 for all z ∈ C, by formula (3.22), we obtain

Kω
N (x, y) =

sinπN
(
φ(y)− φ(x)

)
π(x− y)

+O(1). (3.24)

Moreover, formula (3.24) holds uniformly for any points x, y ∈ I where I ⊂ (a, b) is any
closed interval. To conclude it remains to observe that by (3.21), one has φ(y)− φ(x) =

Fω(x)− Fω(y).

3.3 Extension of the mesoscopic CLT in the one-cut case

The goal of this section is to provide estimates on the variance of linear statistics
valid for determinantal process whose correlation kernel are of the type (3.7) and the
OPs satisfy certain semiclassical asymptotics. Our main motivation is to upgrade the CLT
of theorem 1.1 to a larger class of test functions. In particular, we obtain the following
result:

Proposition 3.5. Let V : R→ R be a real-analytic function which satisfies the conditions
(1.2) and (1.6) with c0 = 0 and ` = 1. Under PVN , the CLT (1.3) holds for any x0 ∈ JV , any
0 < α < 1, and for all test function f ∈ H1/2(R) such that there exists L > 0 and

lim sup
|x|→∞

sup

{
|x|
∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ : |y| ≤ |x|
}
< L. (H.1)

Remark 3.6. It is straightforward to check that (H. 1) holds in both cases:
i) f ∈ C1(R) and |f ′(x)| ≤ L/|x|.
ii) f is bounded and has compact support.

We will focus on the one-cut regime because the asymptotics of the OPs are simpler,
but we expect that similar variance estimates holds in the multi-cut as well even though
the analysis would be more involved. According to formula (3.5), we let Φk(x) =

γkπk(x)
√
ω(x). Thus

(
Φk
)∞
k=0

is an orthonormal family in L2(R) and the Christoffel-
Darboux kernel for the weight ω(x) on R is given by

Kω
N (x, y) =

γN−1

γN

ΦN (x)ΦN−1(y)− ΦN−1(x)ΦN (y)

x− y
. (3.25)

For now on, we suppose that supp(%ω) = (−1, 1) and that the OPs have the following
asymptotics for all |x| < 1,

ΦN−κ(x) =

√
2

π

cos
[
NπFω(x) + ψω(x) + κθ(x)

]
(1− x2)1/4

+ oε(1)
N→∞

, (3.26)

where κ = 0, 1, θ(x) = arccos(x), the function ψω ∈ C(−1, 1). Moreover, we also suppose
that

lim
N→∞

γN−1

γN
=

1

2
. (3.27)
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Remark 3.7. Formulae (3.26–3.27) are sometimes referred as semiclassical or Plancherel-
Rotach asymptotics, [38]. This terminology comes by analogy with the GUE case, see
proposition 3.3. Generally, if ω(x) = e−NV (x), V (x) is real-analytic, and supp %V = [−1, 1],
these asymptotics follow from the steepest descent for the OP Riemann-Hilbert prob-
lem, see [13, Thm 1.1 and formula (1.64)] and ψω(x) = arcsin(x)/2. Finally, the case of
non-varying weights is discussed by theorem 3.11 in section 3.4 below.

We consider the determinantal process ΞN with correlation kernel (3.25) and let
ΞNf :=

∑
f(λk) where the sum is over the configuration {λk}Nk=1. To prove theorem 3.5,

our goal is to first show that there exists a constant C > 0 (independent of N and f ) so
that

Var [ΞNf ] ≤ CΣ̃(f)2 where Σ̃(f)2 =
1

π2

∫∫
[−1,1]2

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 dxdy
√

1− x2
√

1− y2
, (3.28)

for any function f ∈ H1/2(R) such that there exists δ > 0 and L > 0 so that

sup

{∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ : |x| ∨ |y| > 1− δ
}
< L. (H.2)

To obtain the estimate (3.28), we use that the kernel Kω
N defines a projection on

L2(R), cf. e.g. [25, Lemma 3.1], so that

Var [ΞNf ] =
1

2

∫∫
|f(x)− f(y)|2

∣∣Kω
N (x, y)

∣∣2dxdy, (3.29)

and the following lemma:

Lemma 3.8. For any 0 < ε < 1, if Jε = [−1 + ε, 1− ε], we have for κ = 0, 1,∫
Jε

∣∣ΦN−κ(x)
∣∣2dx =

2 arcsin(1− ε)
π

+ oε(1)
N→∞

.

Proof. By (3.26), for any |x| < 1,∣∣ΦN (x)
∣∣2 =

2

π
√

1− x2

{
1 + cos

[
2NπFω(x) + 2ψω(x)

]
2

+ oε(1)

}
,

and this implies that∫
Jε

∣∣ΦN (x)
∣∣2dx =

∫
Jε

1 + oε(1)

π
√

1− x2
dx+

∫
Jε

cos
[
2NπFω(x) + 2ψω(x)

]
π
√

1− x2
dx.

The first integral converges to 2 arcsin(1−ε)/π as N →∞ and it remains to show that the
second integral which is oscillatory converges to 0. By assumption, F ′ω(x) = %ω(x) > 0

for all x ∈ (−1, 1) and we can make the change of variable x = G(y) where G = F−1
ω ,

(2.10). So that, if g ∈ L1(R) with compact support in (−1, 1), we have∫
g(x)ei2NπFω(x)dx =

∫
g(G(y))G′(y)ei2Nπydy,

and, since y 7→ g(G(y))G′(y) is integrable, lim
N→∞

∫
g(x)ei2NπFω(x)dx = 0 by the Riemann-

lebesgue lemma. Applying this argument to the function g(x) = ei2ψω(x)

π
√

1−x2
1Jε(x), we

conclude that for any 0 < ε < 1,

lim
N→∞

∫
Jε

cos
[
2NπFω(x) + 2ψω(x)

]
π
√

1− x2
dx = 0

and this complete the proof (of course, we may use the same argument when κ = 1).
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Proposition 3.9. Suppose that the OPs with respect to the weight ω(x) on R satisfy
(3.26–3.27), then for any function f ∈ H1/2(R) which satisfies the condition (H.2), we
have for any 0 < ε < δ,

Var [ΞNf ] ≤ ∆N (ε)Σ̃(f)2 + O
N→∞

(
L2Θ(ε)

)
, (3.30)

where Θ(ε) = 1− 2 arcsin(1−ε)
π , ∆N (ε) > 0 and lim

N→∞
∆N (ε) = 8 for any 0 < ε < 1.

Proof. For any 0 < ε < 1, let Jε = [−1 + ε, 1− ε]. By (3.25), we have

∣∣Kω
N (x, y)

∣∣2 ≤ 2γN−1

γN

∣∣ΦN (x)ΦN−1(y)
∣∣2 +

∣∣ΦN−1(x)ΦN (y)
∣∣2

|x− y|2
. (3.31)

Using the asymptotics (3.26–3.27), we get for all |x|, |y| < 1− ε,

∣∣Kω
N (x, y)

∣∣2 ≤ 1

π2

∆N (ε)
√

1− x2
√

1− y2

1

|x− y|2
, (3.32)

where ∆N (ε) > 0 and limN→∞∆N (ε) = 8 for any 0 < ε < 1. By (3.28), this implies that∫∫
J2
ε

|f(x)− f(y)|2
∣∣Kω

N (x, y)
∣∣2dxdy ≤ ∆N (ε)Σ̃(f)2. (3.33)

On the other hand, if f satisfies the hypothesis (H.2) and 0 < ε < δ, by formula (3.31),∫∫
R2\J2

ε

|f(x)− f(y)|2
∣∣Kω

N (x, y)
∣∣2dxdy ≤ 4γN−1

γN
L2

∫∫
R2\J2

ε

∣∣ΦN (x)ΦN−1(y)
∣∣2dxdy.

(3.34)
By symmetry∫∫

R2\J2
ε

∣∣ΦN (x)ΦN−1(y)
∣∣2dxdy

≤
∫
R

∣∣ΦN−1(y)
∣∣2dy ∫

R\Jε

∣∣ΦN (x)
∣∣2dx+

∫
R

∣∣ΦN (x)
∣∣2dx ∫

R\Jε

∣∣ΦN−1(y)
∣∣2dy,

and since ‖ΦN‖L2 = ‖ΦN−1‖L2 = 1, by lemma 3.8, we obtain

lim sup
N→∞

∫∫
R2\J2

ε

∣∣ΦN (x)ΦN−1(y)
∣∣2dxdy ≤ 2

(
1− 2 arcsin(1− ε)

π

)
.

Since γN−1

γN
→ 1

2 , this upper-bound and (3.34) imply that for any 0 < ε < δ,∫∫
R2\J2

ε

|f(x)− f(y)|2
∣∣Kω

N (x, y)
∣∣2dxdy = O

N→∞

(
L2Θ(ε)

)
. (3.35)

The claim follows from formula (3.29) by combining the estimates (3.33) and (3.35).

We are now ready to complete the proof of proposition 3.5. The method consists in
using a density argument, combined with the variance estimate of proposition 3.9 and
lemma A.5 which is borrowed from [48].

EJP 23 (2018), paper 7.
Page 20/33

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP120
http://www.imstat.org/ejp/


Mesoscopic fluctuations for UIE

Proof of proposition 3.5. The assumption (H.1) implies that there exists C > 0 so that, if
|x| ≥ C, for all |y| ≤ |x|, ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ L

|x|
.

Fixing x0 ∈ J , if we let gN (x) = f
(
Nα(x− x0)

)
, this implies that for all |x− x0| > CN−α

and for all |y − x0| < |x− x0|, ∣∣∣∣gN (x)− gN (y)

x− y

∣∣∣∣ ≤ L

|x− x0|
.

This inequality shows that, if |x0 − 1| ∧ |x0 + 1| = 2δ, then for all N > (C/δ)1/α and for all
|x| > 1− δ, ∣∣∣∣gN (x)− gN (y)

x− y

∣∣∣∣ ≤ L

δ
. (3.36)

Hence, since the LHS of (3.36) is symmetric, this proves that for sufficiently large N , the
functions gN satisfy the condition (H.2) and by proposition 3.9, we have for any0 < ε < 1,

Var [Ξx0,α
N f ] = Var [ΞNgN ] ≤ ∆N (ε)Σ̃(gN )2 + O

N→∞

(
L2δ−2Θ(ε)

)
. (3.37)

By (3.28), if we set Jε = [−1 + ε, 1− ε], then

Σ̃(gN )2 = I1(f ;N, ε) + I2(f ;N, ε) (3.38)

=
1

π2

∫∫
Jε

∣∣∣∣gN (x)− gN (y)

x− y

∣∣∣∣2 dxdy
√

1− x2
√

1− y2

+
1

π2

∫∫
[−1,1]2\Jε

∣∣∣∣gN (x)− gN (y)

x− y

∣∣∣∣2 dxdy
√

1− x2
√

1− y2
.

By a change of variables,

I1(f ;N, ε) =
1

π2

∫∫
BN

∣∣∣∣f(u)− f(v)

u− v

∣∣∣∣2 dudv√
1− (x0 +N−αu)2

√
1− (x0 +N−αv)2

,

where BN =
[
Nα(−1 + ε − x0), Nα(1 − ε − x0)

]2
. Since f ∈ H1/2(R), by the dominated

convergence theorem, we obtain for any 0 < ε < 1,

lim
N→∞

I1(f ;N, ε) =
1

π2

∫∫
R2

∣∣∣∣f(u)− f(v)

u− v

∣∣∣∣2 dudv = 4‖f‖2H1/2 .

On the other hand, using the estimate (3.36), we have for all 0 < ε < δ,

I2(f ;N, ε) ≤ L2

π2δ2

∫∫
[−1,1]2\Jε

dxdy
√

1− x2
√

1− y2
=

L2

4δ2
Θ(ε)2.

Thus, according to formula (3.38), we obtain

Σ̃(gN )2 = 4‖f‖2H1/2 + O
N→∞

(
Θ(ε)2

)
.

and combined with (3.37), it shows that there exists a constant C > 0 so that for any
0 < ε < δ,

lim sup
N→∞

Var [ΞNgN ] ≤ 32‖f‖2H1/2 + CΘ(ε).

Since this holds for any 0 < ε < δ and lim
ε↘0

Θ(ε) = 0, this implies that

lim sup
N→∞

Var [Ξx0,α
N f ] ≤ 32‖f‖2H1/2 . (3.39)

Using this estimate, we can apply lemma A.5 with F =
{
f ∈ H1/2(R) : f satisfies (H.1)

}
and X = C∞0 (R) in order to complete the proof.
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3.4 Modified Jacobi ensembles

In this section, we apply theorem 1.2 to orthogonal polynomial ensembles with
respect to a non-varying measure with support on [−1, 1], hence providing an alternative
proof of the main result of [10]. In particular, we obtain an elementary proof of the
mesoscopic CLT for the classical Jacobi ensembles. We consider the following family of
weights:

ω(x) =

{
h(x)(1− x)γ−(1 + x)γ+ if |x| ≤ 1

0 else
, (3.40)

where γ+, γ− > −1 and h(x) is a function which is real-analytic and strictly positive on
the interval (−1− ε, 1 + ε) for some ε > 0 and normalized so that ω(x)dx is a probability
measure. Note that these correspond to unitary invariant measures, which are called
the modified Jacobi unitary ensembles, of the form:

PωN = Z−1
ω,N det

[
ω(H)

]
1‖H‖≤1dH, (3.41)

where ‖H‖ is the operator norm of H. Therefore, PωN induces a determinantal process on
J = (−1, 1) with correlation kernel (3.7). Moreover, if h is constant, the OPs with respect
to ω are the classical Jacobi polynomials and their asymptotics are well-known, cf. [49,
Thm 8.21.8 and Thm 12.1.4]. In general, the asymptotics of the OPs with respect to
the weight (3.40) have been analyzed in [29, 30] using the Deift–Zhou steepest descent
method. We note that the formulation is analogous to [13] but the set-up is more
elementary since the weight (3.40) does not vary with the dimension N . Thus, going
through the proof of section 3.2, we obtain the following asymptotics for the correlation
kernels of the modified Jacobi ensembles:

Proposition 3.10. Let %(x) = 1
π
√

1−x2
1|x|≤1 be the arcsine measure on J and

F%(x) =
arcsin(x)

π
if |x| ≤ 1. (3.42)

For any weight ω of the type (3.40) and for any ε > 0, we have for all |x|, |y| ≤ 1− ε,

Kω
N (x, y) =

sin
[
πN
(
F%(x)− F%(y)

)]
π(x− y)

+ Oε
N→∞

(1). (3.43)

Proposition 3.10 implies that the arcsine law % is the equilibrium density for the
eigenvalue process of the modified Jacobi ensembles. In contrast to the varying weights
e−NV (x) analyzed in section 3.2, the global eigenvalues distribution is independent of
the parameters of the model and is always one-cut. Moreover, it was proved in [29] that
the OPs satisfy formulae (3.26–3.27). This follows readily from the next theorem and the
fact that with our notation θ(x) = arccos(x) and −θ(x) = π

(
F%(x)− 1/2

)
.

Theorem 3.11 (Thm. 1.6, Thm. 1.12, [29]). For any weight ω of type (3.40), there exists
D∞ > 0 and ϑ ∈ C1(−1, 1) such that the OPs with respect to ω(x)dx satisfy

πN (x) =
D∞

2N
√
πω(x)

√
1− x2

cos
[
(N + 1/2)θ(x) + ϑ(x)− π/4

]
+ O
N→∞

(N−1),

uniformly for all |x| ≤ 1− ε for any ε > 0 and γN = 2N
√

2
D∞

{
1 + O

n→∞
(N−1)

}
.

Hence, by theorem 1.2, combining the asymptotics of proposition 3.10 with the
variance estimates of section (3.3), we obtain the following result:
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Theorem 3.12. If {λ1, . . . , λN} denote the eigenvalues of a random matrix distributed
according to PωN , (3.41), then for any x0 ∈ (−1, 1), any 0 < α < 1, and for all f ∈
H1/2 ∩ L∞(R) with compact support, one has

N∑
k=1

f
(
Nα(λk − x0)

)
− EωN

[
N∑
k=1

f
(
Nα(λk − x0)

)]
=⇒
N→∞

N
(
0, ‖f‖2H1/2

)
.

As mentioned in the introduction, this is an extension of [10, Thm 1.1] for bounded
test functions which are in the Sobolev classH1/2

0 (R). In the remainder of this section, we
will provide an elementary proof of proposition 3.10 for the Chebyshev ensemble and
explain how to general the argument to all weights of the type (3.40). In particular, for
the classical Jacobi ensembles, this provides a proof of theorem 3.12 which does not relie
on the Riemann–Hilbert machinery. The main observation is that when γ+ = γ− = −1/2

and h = 1/π, i.e. ω = %, the OPs which appear in the correlation kernel (3.7) are the
Chebyshev polynomials of the first kind, πk = 2−kTk, and they satisfy for all k ≥ 0 and
x ∈ [−1, 1],

πk(x) = 2−k cos
[
(k + 1)θ(x)

]
and γk = 2k

√
2.

Thus, the correlation kernel of the Chebychev process is given explicitly by

K%
N (x, y) =

cos[(N + 1)θ(x)] cos[Nθ(y)]− cos[(N + 1)θ(y)] cos[Nθ(x)]

π(1− x2)1/4(1− y2)1/4(x− y)
. (3.44)

In this case, the proof of proposition 3.10 just relies on elementary trigonometric
identities which are summarized by the following lemma.

Lemma 3.13. For any function ΨN ∈ C(J), we define the kernel

KΨN (x, y) =
cos
[
ΨN (x)

]
cos
[
ΨN (y)− θ(y)

]
− cos

[
ΨN (y)

]
cos
[
ΨN (x)− θ(x)

]
π(1− x2)1/4(1− y2)1/4(x− y)

. (3.45)

For any ε > 0, one has for all |x|, |y| < 1− ε,

KΨN (x, y) =
sin
[
ΨN (y)−ΨN (x)

]
π(x− y)

+ Oε(1)
|x−y|→0

. (3.46)

Proof. Using that cos
[
ΨN (x) − θ(x)

]
= x cos

[
ΨN (x)

]
+
√

1− x2 sin
[
ΨN (x)

]
, we deduce

that for all |x|, |y| < 1,

KΨN (x, y) =− cos
[
ΨN (x)

]
cos
[
ΨN (y)

]
+

√
1− y2 cos

[
ΨN (x)

]
sin
[
ΨN (y)

]
−
√

1− x2 cos
[
ΨN (y)

]
sin
[
ΨN (x)

]
π(1− x2)1/4(1− y2)1/4(x− y)

.

Then, the estimate
∣∣( 1−x2

1−y2
)1/4 − 1

∣∣ ≤ |x−y|1−y2 implies that for all |x|, |y| < 1− ε,

KΨN (x, y) =
cos
[
ΨN (x)

]
sin
[
ΨN (y)

]
− cos

[
ΨN (y)

]
sin
[
ΨN (x)

]
π(x− y)

+ Oε(1)
|x−y|→0

,

and formula (3.46) follows directly from another trigonometric identity.

In particular, for the Chebyshev process, by formula (3.44), we have K%
N = KΨN

with the phase ΨN (x) = (N + 1)θ(x) and the asymptotics (3.43) follow directly from
lemma 3.13 and the fact that for all x, y ∈ [−1, 1],

θ(y)− θ(x) = π
(
F%(x)− F%(y)

)
. (3.47)
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Remark 3.14. By theorem 1.2, this argument provides an elementary proof of the
mesoscopic CLT for the Chebyshev eigenvalue process. Then, we note that universality
for the modified Jacobi ensembles can be deduced directly from [10, Thm 1.2] and the
asymptotics of the recurrence coefficients which are given by [29, Thm 1.10] for any
weight of the form (3.40).

Proof of proposition 3.10. For a general modified Jacobi ensemble, according to theo-
rem 3.11, we may sill apply lemma 3.13 with ΨN (x) = (N + 1/2)θ(x) + ϑ(x)− π/4. Then,
by formula (3.47), one has

ΨN (y)−ΨN (x) = Nπ
(
F%(x)− F%(y)

)
+ Oε
|x−y|→0

(
|x− y|

)
,

and we obtain the asymptotics which are valid for all |x|, |y| ≤ 1− ε,

Kω
N (x, y) =

sin
[
Nπ
(
F%(x)− F%(y)

)]
π(x− y)

+ Oε
N→∞

(
1 +

N−1

|x− y|

)
. (3.48)

The error term in formula (3.48) is not uniform. However, we may observe that in the
regime |x − y| ≤ 1/N , the asymptotics of the correlation kernel already follow from
local universality considerations. Local asymptotics for Christoffel-Darboux kernels
have been extensively studied and are known in great generality, see e.g. the work of
Lubinsky [34] or the surveys [43, 35]. Moreover, they can be derived without using the
Riemann-Hilbert formulation for the OPs. Local universality is usually formulated stating
that for any L, ε > 0,

1

N
Kω
N

(
x0 +

ξ

N
, x0 +

ζ

N

)
=

sin [π%(x0)(ξ − ζ)]

π(ξ − ζ)
+ Oε,L
N→∞

(
N−1

)
, (3.49)

for all |x0| < 1 − ε and all ξ, ζ ∈ [−L,L]. Now, by reverse engineering the argument
of remark 2.4 (cf. the Taylor expansion (2.19)), we deduce from formula (3.49) that if
|x− y| ≤ 1/N ,

Kω
N (x, y) =

sin
[
Nπ
(
F%(x)− F%(y)

)]
π(x− y)

+Oε (1)
N→∞

.

Combining these asymptotics and formula (3.48), it completes the proof.

4 Regularized characteristic polynomial and log-correlated Gaus-
sian processes

In [21], it was first established that the logarithm of the modulus of the characteristic
polynomial of a CUE random matrix converges weakly to a random generalized function
on the unit circle whose correlation kernel has a logarithmic singularity. In [17], Fyodorov
et al. recently explained to how to perform an analogous construction at mesoscopic
scales for a certain regularization of the characteristic polynomial of a GUE matrix.
Namely, let 0 < α < 1, x0 ∈ R, η > 0, zt = t+ iη, and define

WN (t) = log
∣∣det

[
H− x0 − ztN−α

]∣∣− log
∣∣det

[
H− x0 − z0N

−α]∣∣ .
Then, if H ∼ PGUE

N is a GUE matrix, (3.1), the main result of [17] states that the random
process t 7→ WN (t) − E [WN (t)] converges weakly in L2[a, b] (for any a, b ∈ R) to a
Gaussian Gaussian process Bη defined as follows:

Definition 4.1. The η-regularized fractional Brownian motion with Hurst exponent
H = 0 is a real-valued Gaussian process Bη characterized by the following properties:
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i) Bη is a continuous process with mean 0 and Bη(0) = 0 almost surely.

ii) Bη has stationary increments.

iii) Var
[
Bη(t)

]
=

1

2
log

(
1 +

t2

4η2

)
for any t ∈ R.

In particular, the process Bη converges as η → 0 to a Gaussian generalized function
whose correlation kernel has a logarithmic singularity along the diagonal; we refer to
[17] for some background and references on fractional Brownian motion. Let us just
point out that the process Bη has the following representation, for any t ∈ R,

Bη(t) = <
{∫ ∞

0

e−ηs(e−its − 1)
dZs√

2s

}
,

where Z is a complex Brownian motion with unit variance. Inspired by certain Fisher–
Hartwig asymptotics obtained by Krasovsky in [28], the authors of [17] computed the
limits of the Laplace transform of the random variable WN (t) for any t ∈ R and show
that the finite-dimentionnal distributions of WN − E [WN ] converges to that of B0. In the
following, using the central limit theorem 3.5, we are able to generalize their result to
other unitary invariant ensembles. In fact, theorem 4.2 should be true in the multi-cut
situation as well, but we have not pushed the estimates of section 3.3 in this case.

Theorem 4.2. Let ω be any weight satisfying (3.3) and the one-cut condition supp(%ω) =

[−1, 1] and let H ∼ PωN , (3.2). Then, for any |x0| < 1, any 0 < α < 1, the stochastic
process t 7→WN (t)−EωN [WN (t)] converges weakly as N →∞ in L2[a, b] (for any a, b ∈ R)
to the Gaussian process Bη characterized by definition 4.1.

First, let us observe that the random variable WN (t) is a linear statistic:

WN (t) = <
{

log det

[
M − x0 − ztN−α

M − x0 − z0N−α

]}
= <

{
Tr

[
log

(
M − x0 − ztN−α

M − x0 − z0N−α

)]}
= Ξx0,α

N gt (4.1)

where the function gt(x) = <
{

log

(
x− zt
x− z0

)}
is defined using the principal branch of

the logarithm and zt = t+ iη. It is easily seen that, even though gt /∈ L1(R), its Fourier
transform is well defined in L2(R) and, by lemma 4.3 below, it is given by

ĝt(u) = (1− e−2πiut)
e−2π|u|η

2|u|
. (4.2)

Lemma 4.3. For any η > 0 and x, t ∈ R, one has∫
R

e2πiux(1− e−2πiut)
e−2πη|u|

2|u|
du = gt(x) =

1

2
log

(
(x− t)2 + η2

x2 + η2

)
.

Proof. Proof. This identity is classical and it can be proved by observing that, for any
t > 0,

1− e−2πitu

2|u|
= i sgn(u)π

∫ t

0

e−2πisuds,
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and, by Fubini’s theorem,∫
R

e2πiux(1− e−2πiut)
e−2πη|u|

2|u|
du = iπ

∫ t

0

∫
R

e2πiu(x−s) sgn(u)e−2πη|u|du ds

= −2π

∫ t

0

=
{∫ ∞

0

e−2πu(η−i(x−s))du

}
ds

= −=
{∫ t

0

ds

η − i(x− s)

}
.

We conclude by observing that, by definition, for any t > 0, gt(x) = <
{∫ x

x−t

dv

v + iη

}
. The

proof in the case t < 0 is almost identical.

Formula (4.2) shows that the functions gt ∈ H1/2(R). Indeed, one has

ĝt(u)ĝs(−u)|u| = (1− e−i2πut − ei2πus + ei2πu(s−t))
e−4π|u|η

4|u|
.

According to formula (1.4) and lemma 4.3 with x = 0, we obtain for any t, s ∈ R

〈gt, gs〉H1/2 =

∫
R

ĝt(u)ĝs(−u)|u|

=
1

4

{
log

(
1 +

t2

4η2

)
+ log

(
1 +

s2

4η2

)
− log

(
1 +

(t− s)2

4η2

)}
. (4.3)

Hence, by (4.1) and theorem 3.5, it suffices to check that the functions gt satisfies the
condition (H.1) to deduce that for any t ∈ R,

WN (t)− EωN [WN (t)] =⇒
N→∞

N
(

0,
1

2
log

(
1 +

t2

4η2

))
.

By remark 3.6, this follows immediately from the facts that gt ∈ C1(R) and for any t ∈ R,

g′t(x) = <
{

−t
(x− z0)(x− zt)

}
= O
|x|→∞

(
1

x2

)
.

In fact, given t1 < · · · < tk and ξ1, . . . , ξk ∈ R, the test function f =
∑k
j=1 ξjgtj also satis-

fies the assumption of theorem 3.5 and according to definition 4.1, a similar argument
shows that for any k ∈ N,(

WN (t1)− EωN [WN (t1)] , . . . ,WN (tk)− EωN [WN (tk)]
)

=⇒
N→∞

(
Bη(t1), . . . , Bη(tk)

)
. (4.4)

Note that the fact that the Gaussian process Bη has independent increments follows
immediately from the covariance structure (4.3) and the continuity of its sample paths
follows from Kolmogorov’s regularity theorem. Following [17, Thm. 2.3], the convergence
(4.4) of the finite-dimensional distributions and the estimate (3.39):

lim sup
N→∞

Var [Ξx0,α
N f ] ≤ 32‖f‖2H1/2

allows us to conclude that the random process WN converges in distribution to Bη in
L2[a, b] for any a, b ∈ R.
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A Variance estimate in the global regime

In this section, we consider the unitary invariant ensemble PVN introduced in theo-
rem 1.1 and we assume that there exists B > 2 and η > 0 so that for all |x| > B.

V (x) ≥ 2(1 + η) log |x|. (A.1)

We also suppose that the potential V satisfies the one-cut condition and JV = (−1, 1)

so that we may use the results of section 3.3. The aim of this appendix is to derive an
estimate for the variance of global linear statistics valid for rather general continuously
differentiable test functions.

Proposition A.1. Suppose that the potential V satisfies the assumptions above. We
denote ΞNh =

∑
h(λk) where the sum is over the eigenvalues of a random matrix

distributed according to PVN . If h ∈ C1(R) and there exists Q,n > 0 so that |h′(x)| ≤ Q|x|n
for all |x| ≥ 1, then

lim sup
N→∞

Var
[
ΞNh

]
≤ 16Σ̃(h)2, (A.2)

where

Σ̃(h)2 =
1

π2

∫∫
[−1,1]2

∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣2 dxdy
√

1− x2
√

1− y2
. (A.3)

Note that since the point process ΞN is supported in a small neighborhood of JV
with very high probability, we expect that, apart form some mild growth assumption,
the behavior of the test function h outside of JV should be irrelevant to estimate the
variance of the linear statistics ΞNh. Moreover, as Johansson put forward in [23], the only
important regularity condition should be that the quantity Σ(h) <∞, see (1.8). However,
mostly because of the effects of the spectral edges, it is a very difficult task to obtain an
estimate of the form Var

[
ΞNh

]
≤ CΣ(h)2 under optimal conditions. It seems that this

question remains open even for the GUE; see [48, Theorem 2] for a very general result.
Note also that even though the asymptotic variance Σ(f) ≤ Σ̃(f) in the estimate (A.2), if
it exists, it is difficult to exhibit a function h ∈ H1/2(R) such that Σ(h) <∞ and Σ̃(h) =∞.

The remainder of this section is devoted to the proof of proposition A.1. The main
motivation for these variance estimates is to extend a CLT from [31] from polynomials
to general test functions; see theorem A.4 below. We say that a real-valued function f
belong to the space H1/2

0 and we denote f ∈ H1/2
0 if f ∈ L∞(R) with compact support

and ∫∫
[−1,1]2

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 dxdy <∞.
Lemma A.2. If f ∈ H1/2

0 and satisfies the condition (H. 2), then f ∈ H1/2(R).

Proof. Suppose that supp(f) ⊆ [−A,A] and let K =
{
|x| ≤ A, 1 ≤ |y| ≤ A + 1

}
and

B = [−A,A]× [A + 1,∞). By symmetry, we have

‖f‖2H1/2 ≤
∫∫

[−1,1]2

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 dxdy+2

∫∫
K

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 dxdy+4

∫∫
B

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 dxdy.
By definition, the first term is finite. Since f satisfies the condition (H.2), the second
term is bounded by 4A2L. By construction of the set B, the third term satisfies∫∫

B

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣2 dxdy ≤ ∫∫
B

∣∣∣∣ f(x)

y −A

∣∣∣∣2 dxdy
≤ 2A‖f‖2L∞ ,
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and we conclude that ‖f‖2
H1/2 <∞.

The proof of proposition A.1 is based on the result of proposition 3.9 and the expo-
nential decay of the Christoffel-Darboux kernel outside of the bulk; see lemma A.3 below.
We suppose that h ∈ C1(R) in order to simplify the proof, however this condition is not
necessary. In fact, by a simple modification of our method, it suffices to suppose that
h ∈ H1/2 and there exists Q > 0 and n > 0 so that for all |x| > 1− δ,

sup

{∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣ : |y| ≤ |x|
}
≤ Q|x|n.

Lemma A.3. Under the assumption of proposition A.1, if we also suppose that h(x) = 0

for all |x| ≤ B. Then, there exists C > 0 so that

Var
[
ΞNh

]
≤ CB−ηN .

Proof. By [13, formula 1.58], for any ε > 0, we have

∣∣ΦN (x)
∣∣ ≤ ( 1

2
√
π

∣∣∣∣x+ 1

x− 1

∣∣∣∣1/4 + Oε
N→∞

(
N−1

))
e−NHV (x), ∀|x| > 1 + ε, (A.4)

where for all x ∈ R,

HV (x) =
V (x) + `

2
−
∫

log |x− s|%V (s)ds and ` ∈ R.

This function appears in the determination of the equilibrium density %V . In fact,
%V (x)dx is the unique minimizer of a weighted energy functional and it is uniquely
determined by the following Euler-Lagrange conditions:{

HV (x) = 0 ∀x ∈ JV
HV (x) ≥ 0 ∀x ∈ R\JV .

Moreover, since supp(%V ) = [−1, 1], we have for all |x| > 1∫
log |x− s|%V (s) ≤ log(2|x|) .

Hence, if the potential V (x) satisfies the condition (A.1), then HV (x) ≥ η log |x|+ `
2 − log 2

for all |x| > B. In fact, choosing a larger constant B if necessary, we can suppose that
HV (x) ≥ η log |x|

2 . By formula (A.4), this implies that there exists C > 0 so that for all
|x| > B, ∣∣ΦN (x)

∣∣ ≤√C/2 e−Nη log |x|/2. (A.5)

Using [13, formula 1.59] instead, we can show that the estimate (A.5) holds for the
function ΦN−1 as well. By formula (3.31), this implies that for all |x| ≥ B,

∣∣Kω
N (x, y)

∣∣2 ≤ C
γN−1

γN

∣∣ΦN−1(y)
∣∣2 +

∣∣ΦN (y)
∣∣2

|x− y|2
e−Nη log |x|.

Hence, since ‖ΦN‖L2 = ‖ΦN−1‖L2 = 1, we obtain for all |x| ≥ B,∫
R

∣∣(x− y)Kω
N (x, y)

∣∣2dy ≤ C
γN−1

γN
e−Nη log |x|. (A.6)
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On the other hand, by assumptions, we have for all |y| ≤ |x|,∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣ ≤ 1|x|>B sup
{
h′(t) : |t| ≤ |x|

}
≤ Q|x|n1|x|>B.

According to formula (3.29) and (A.6), we obtain

Var [ΞNh] =
1

2

∫∫
|h(x)− h(y)|2

∣∣Kω
N (x, y)

∣∣2dxdy
≤ Q2

2

∫
R\[−B,B]

|x|2n
(∫

R

∣∣(x− y)Kω
N (x, y)

∣∣2dy) dx
≤ CQ2 γN−1

γN

∫ ∞
B

x2ne−Nη log(x)dx. (A.7)

Because of the asymptotics (3.27), C := CQ2 sup
N∈N
{γN−1

γN
}B2n < ∞ and this completes

the proof.

Proof of proposition A.1. Let A > B and χ ∈ C1
(
R+ → [0, 1]

)
such that −χ′ ∈ [0, 1] and

χ(x) =

{
1 if x ≤ B

0 if x ≥ A
.

We decompose h = f + g where f = χh has compact support and g = (1− χ)h, then one
has

Var
[
ΞNh

]
≤ 2

(
Var

[
ΞNf

]
+ Var

[
ΞNg

])
. (A.8)

First, since g(x) = 0 for all |x| ≤ B and |g′(x)| ≤ |h(x)| + |h′(x)|, by assumptions there
exists a constant Q̃ so that |g′(x)| ≤ Q̃|x|n+1 for all |x| ≥ 1. Then, by lemma A.3,

lim sup
N→∞

Var
[
ΞNg

]
= 0. (A.9)

Next, we will show that the function f satisfies the condition (H.2). By definition, one
has ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ ∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣χ(x) + |h(y)|
∣∣∣∣χ(x)− χ(y)

x− y

∣∣∣∣ .
Hence, using the properties of the cutoff function χ, one has

sup
|y|≤|x|
|x|<A+1

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ sup
|t|≤A+1

{
|h′(t)|+ |h(t)|

}
.

On the other hand, if |x| ≥ A + 1, for all |y| ≤ |x|,∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ |h(y)|χ(y)

|x− y|
≤

{
0 if |y| ≥ A

sup
{
|h(t)| : |t| ≤ A

}
else

Hence, there exists L > 0 so that

sup
x∈R

{∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ : |y| ≤ |x|
}

= L,

and, by symmetry, the function f satisfies the condition (H.2). Moreover, by lemma A.2,
f ∈ H1/2(R) and by proposition 3.9, this implies that

lim sup
N→∞

Var [ΞNf ] ≤ 8Σ̃(f)2. (A.10)
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Combining the estimates (A.8–A.10), we conclude that

lim sup
N→∞

Var [ΞNh] ≤ 16Σ̃(f)2.

It completes the proof since Σ̃(f) = Σ̃(h) because h(x) = f(x) for all |x| ≤ 1.

Proposition A.1 is used in [31] to give a new proof of the CLT (1.7). Moreover, for
general one-cut potential, theorem A.4 is to the author’s knowledge up to now valid for
the most general class of test functions.

Theorem A.4. Let V : R→ R be a real-analytic function which satisfies the condition
(A.1) and such that JV = (−1, 1). If (λ1, . . . , λN ) denote the eigenvalues of a random
matrix distributed according to PVN , then for any f ∈ C1(R) such that there exists
Q,n > 0 so that |f ′(x)| ≤ Q|x|n for all |x| ≥ 1, one has

N∑
k=1

f(λk)− E

[
N∑
k=1

f(λk)

]
=⇒
N→∞

N
(
0,Σ(f)2

)
. (A.11)

The proof relies on the following approximation result:

Lemma A.5 ([48], Lemma 2.1). Let F(R) be a vector space of functions equipped with a
seminorm Σ̃ and let ΞN be a sequence of point processes on R such that for all f ∈ F(R),

lim sup
N→∞

Var [ΞNf ] ≤ CΣ̃(f)2.

If there exists a subspace X which is dense in F(R) such that for all g ∈ X,

ΞNg − E [ΞNg] =⇒
N→∞

N
(
0,Σ(g)2

)
, (A.12)

where Σ(g) ≤ Σ̃(g), then the CLT (A.12) holds as well for all test function f ∈ F(R).

The formulation is slightly more general than in [48] but the proof which is based on
the characteristic function method and Lévy’s theorem is exactly the same.

Proof of theorem A.4. Let

F(R) =
{
f ∈ C1(R) : ∃ n,Q,C > 0 so that |f ′(x)| ≤ C +Q|x|n

}
.

It is not difficult to check that the functional Σ̃ given by (A.3) defines a seminorm on F(R)

and, by using Weierstrass approximation theorem, to check that real-valued polynomials
are dense in F(R). Now, if (1.7) holds for any polynomials (this follows e.g. by [31,
Theorem 2.6]), the estimate (A.2) combined with lemma A.5 implies that the CLT must
hold for all test functions in the class F(R).

Remark A.6. For the GUE kernel, using Cramér’s inequality, ‖φk‖∞ ≤ 1 for all k ≥ 0, so
that ∣∣KGUE

N (x, y)
∣∣ ≤ N, ∀x, y ∈ R.

Moreover, by Theorem 5.2.3 in [40], for any ε > 0 there exists β,C > 0 so that
KGUE
N (x, x) ≤ CNe−βNx

2

for all |x| ≥ 1 + ε. Hence, by the Cauchy-Schwartz inequality,
we obtain for all |x| ≥ 1 + ε and y ∈ R,∣∣KGUE

N (x, y)
∣∣2 ≤ KGUE

N (y, y)KGUE
N (x, x)

≤ CN2e−βNx
2

.

This implies that proposition A.1 and the CLT (A.11) hold for any test function h(x) =

o
x→∞

(
e|x|

α)
with 0 < α < 2 and such that there exists 0 < δ < 1 and L > 0 so that

sup

{∣∣∣∣h(x)− h(y)

x− y

∣∣∣∣ : |y| ≤ |x|, 1− δ < |x| < 1 + δ

}
≤ L.
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