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Abstract

We establish new general sufficient conditions for the existence of an invariant mea-
sure for stochastic functional differential equations and exponential or subexponential
convergence to the equilibrium. The obtained conditions extend the Veretennikov–
Khasminskii conditions for SDEs and are optimal in a certain sense.
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1. Introduction

While ergodic properties of stochastic differential equations (SDEs) are more or
less understood by now, less is known about ergodic properties of stochastic functional
(or delay) differential equations (SFDEs). In this article we establish new general
sufficient conditions for existence of an invariant measure for SFDEs and obtain estimates
for the rate of convergence to the equilibrium.

SFDEs in general have quite a peculiar ergodic behavior that can be very different
from the ergodic behavior of SDEs. Let us briefly describe the main features. First of all,
as was shown in [24], an SFDE might have a reconstruction property. Namely, consider
the equation

dX(x)(t) = f(X(x)(t− 1))dt+ g(X(x)(t− 1))dW (t), t ≥ 0, (1.1)

X(x)(t) = x(t), t ∈ [−1, 0].
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Invariant measures for SFDEs

where f : R → R is a Lipschitz function, g : R → R is a positive strictly increasing
bounded Lipschitz function, x : [−1, 0] → R is a continuous function and W is a 1-
dimensional Brownian motion. It turns out that if for some N > 0 (that might be
arbitrarily large) one observes a single piece of trajectory {X(t, ω), t ∈ [N,N + 1]}, then
with probability 1 one can reconstruct the initial condition {X(t), t ∈ [−1, 0]} of the SFDE.
Clearly, this is not the case for SDEs.

As a result of this, the solution to (1.1) is not a strong Feller process and it does not
have a mixing property. Indeed, if x 6= y, then the measures Law{X(x)(t), t ∈ [N,N + 1]}
and Law{X(y)(t), t ∈ [N,N + 1]} are mutually singular for any N > 0. Therefore, one
cannot hope to construct a classical coupling between these measures to show asymptotic
stability.

SFDEs might also have a resonance property. If one considers a delay version of a
classical Ornstein–Uhlenbeck process,

dX(t) = −λX(t− 1) dt+ dW (t), t ≥ 0, (1.2)

where λ > 0, then (contrary to the non-delay case) for large enough λ (more precisely,
λ ≥ π/2) this equation does not have an invariant measure [14]. Moreover, for large λ
the equation oscillates to infinity with rapidly increasing diameter of oscillations.

Due to the above mentioned challenges the question of existence of an invariant
measure and rate of convergence to the equilibrium remained open even for a relatively
simple SFDE (1.1) if f is not affine. In the current paper we present an answer to this
question.

Let us recall that there are two quite general approaches that are used to study
the ergodic properties of Markov processes. The first approach is based on functional
inequalities, see, e.g., [1]. The second approach is based on the concept of small sets and
utilizes the coupling method, see, e.g., [17]. Using these techniques, it was shown that if
the drift vector field of an SDE points towards the origin (the so-called Veretennikov–
Khasminskii condition), then, under some further non-degeneracy assumptions, the SDE
has a unique invariant measure and converges to it in total variation, see [4], [13], [26].
More general SDEs are treated in [11].

Unfortunately, these methods are not applicable for SFDEs due to their lack of mixing
properties. Note though that ergodic properties of affine SFDEs can be treated by
comparison with the deterministic case and by studying the fundamental solutions, see
[7], [14], [18], [20]. However this technique also does not work for non-affine SFDEs.

Some sufficient conditions for the existence of an invariant measure for SFDEs are
obtained in [12, Theorem 3]. Let us note though that it might be quite hard to verify
these conditions in practice.

To overcome these difficulties and to derive verifiable sufficient conditions M. Hairer,
J. Mattingly and M. Scheutzow suggested a new approach targeted specifically at Markov
processes with bad mixing properties [10]. They introduced a new concept of a d-small
set, and showed that under certain conditions (much weaker than mixing) a Markov
process has a unique invariant measure and converges to it. The price to pay is that
this convergence occurs in the Wasserstein metric rather than in total variation. This
approach was further developed in [3].

In this paper we apply this general approach to SFDEs. The main obstacle here
is to construct a proper Lyapunov function. Due to the memory property it is much
more challenging than in the SDE case. Indeed, a solution to an SFDE is an infinite
dimensional Markov process with non-locally compact state space and rather involved
generator. We develop a new technique inspired by some ideas from [23].

Another obstacle was to obtain a condition that is general enough to cover drifts
in (1.1) of the form f(x) = −|x(−1)|β sign(x(−1)), β ∈ [0, 1) (in this case an invariant
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Invariant measures for SFDEs

measure exists), but not “too general” since (1.1) with the drift f(x) = −λx(−1) does not
have an invariant measure for λ ≥ π/2.

The obtained result can be formulated as follows: one should check that the drift
vector field f(x) points towards the origin only for “typical” x. This extends and general-
izes the corresponding theorems for SFDEs in [23], [10], [3]. The obtained conditions
and rates are optimal in a certain sense. We explain our result in more details below in
Section 2.

Note also that there is an alternative fruitful approach, which is also suitable for
SFDEs, that was suggested and developed in [10], [16]. It is based on the generalized
coupling method. Using this approach it is possible to establish uniqueness of an
invariant measure and asymptotic stability under some natural conditions. However,
this approach does not allow directly to obtain the results on existence of an invariant
measure and on the convergence rate. Therefore we do not use it here.

The paper is organized as follows. We formulate and discuss our main results in
Section 2. Section 3 contains specific applications of our results to different SFDEs as
well as some counterexamples. All proofs are placed in Section 4.
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2. Main results

We assume that all random objects are defined on a common probability space
(Ω,F ,P). Fix r > 0, positive integers d, m and let C := C([−r, 0],Rd) be the space of
continuous functions endowed with the supremum norm ‖ · ‖. We study a stochastic
functional differential equation

dX(t) = f(Xt) dt+ g(Xt) dW (t), t ≥ 0 (2.1)

X0 = x

where f : C → Rd and g : C → Rd×m are measurable functions, W is an m-dimensional
Brownian motion, the initial condition x ∈ C, and we used the standard notation Xt(s) :=

X(t+ s), s ∈ [−r, 0].
For a matrix M ∈ Rd×m we denote by |||M ||| its Frobenius norm, that is, |||M ||| :=√∑
M2
ij . For a real a we put a+ := max(a, 0). We suppose that the drift and diffusion of

(2.1) satisfy the following condition:

Assumption A1. The drift f is continuous and bounded on bounded subsets of C. The
diffusion g is non-degenerate, that is, for any x ∈ C the matrix g(x) admits a right inverse
g−1(x) and

sup
x∈C
|||g−1(x)||| <∞.
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Invariant measures for SFDEs

Furthermore, f satisfies the one-sided Lipschitz condition and g is Lipschitz. Namely,
there exists C > 0 such that for any x, y ∈ C we have

〈f(x)− f(y), x(0)− y(0)〉+ + |||g(x)− g(y)|||2 ≤ C‖x− y‖2.

It follows from [21] that under Assumption A1 SFDE (2.1) has a unique strong
solution. Moreover, this solution X = (Xt)t≥0 is a strong Markov process with the state
space (C,B(C)), see Proposition 4.1 below. We denote the transition probabilities of X by
Pt(x, ·), where t ≥ 0, x ∈ C.

In this article we study the invariant probability measures of X. Further, we will drop
the word “probability” and refer to these measures just as invariant measures.

It was shown in [10, Theorems 3.1 and 3.7] (see also [16, Section 6.1]) that under A1
X has at most one invariant measure and if it has one, then the transition probabilities
weakly converge to this measure. Note however that A1 does not guarantee the existence
of the invariant measure of X. Indeed, the equation

dX(t) = dW (t), t ≥ 0

satisfies A1 but does not have an invariant measure. Also assumption A1 alone does not
imply any bound on convergence rate, see [10, Remark 3.4].

We will provide two different sets of conditions for the existence of an invariant
measure for SFDE (2.1) and present upper bounds for the rate of convergence to the
equilibrium. To formulate our results we need to introduce some notation.

Let (E,B(E)) be a Polish space. Recall that the Wasserstein (or Kantorovich ) distance
between two probability measures µ, ν on (E,B(E)) is defined as follows:

Wd(µ, ν) := inf Ed(X,Y ),

where d is a lower semicontinuous metric on E and the infimum is taken over all random
variables X, Y that are distributed as µ and ν, correspondingly. If the metric d is the
discrete metric, that is d(x, y) = 1(x 6= y), then the Wasserstein distance is equivalent to
the total variation distance which is defined by

dTV (µ, ν) := inf P(X 6= Y ) = sup
A∈B(E)

|µ(A)− ν(A)|,

where again the infimum is taken over all random variables X, Y that are distributed as
µ and ν, correspondingly. In the paper we will consider only bounded distances d. In this
case, convergence in total variation implies convergence in the Wasserstein metric; the
latter is also equivalent to the weak convergence (see, e.g., [2]).

Throughout the paper, we will take the space C as the state space E. For x ∈ C we
denote the diameter of the range of x by

D(x) := sup
t1,t2∈[−r,0]

|x(t1)− x(t2)|.

As in [10, Section 5], we consider the following family of distances on C:

dρ(x, y) :=
‖x− y‖

ρ
∧ 1, x, y ∈ C,

where ρ > 0.
Now we are in position to present our main results. We consider two different groups

of conditions which are sufficient for the existence of invariant measure and exponential
or subexponential convergence to the equilibrium.

Assumption A2 (Exponential convergence). The diffusion g is globally bounded and the
drift f is sublinear. The latter means that there exist constants β ∈ [0, 1), C > 0 such that

|f(x)| ≤ C(1 + ‖x‖β), x ∈ C. (2.2)
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Furthermore, there exist constants σ,M > 0 and a function κ : R+ → R+ such that
limz→∞

(
κ(z)z−β

)
=∞ and

〈f(x), x(0)〉 ≤ −σ|x(0)|, for any x ∈ C with D(x) ≤ κ(|x(0)|) and |x(0)| ≥M. (2.3)

Assumption A3 (Subexponential convergence). The diffusion g and drift f are globally
bounded. Furthermore, there exist α ∈ (0, 1), σ > 0, M > 0 and a function κ : R+ → R+

such that limt→∞
(
κ(z)/

√
log z

)
=∞ and

〈f(x), x(0)〉 ≤ −σ|x(0)|α, for any x ∈ C with D(x) ≤ κ(|x(0)|) and |x(0)| ≥M. (2.4)

We will also present results concerning convergence in the total variation distance.
To state these results we need an additional assumption on the structure of the drift and
the diffusion.

Assumption A4 (Convergence in total variation). The drift f is globally Lipschitz and
the diffusion g depends on x only through x(0).

Theorem 2.1. Suppose that Assumptions A1 and A2 hold. Then SFDE (2.1) has a unique
invariant measure π and the transition probabilities Pt(x, ·) converge to it exponentially
in the Wasserstein metric. That is, for any ρ > 0 there exist C > 0, λ1 > 0, λ2 > 0 such
that for all x ∈ C we have

Wdρ(Pt(x, ·), π) ≤ Ceλ1|x(0)|+D(x)e−λ2t, t ≥ 0. (2.5)

Moreover, if additionally Assumption A4 holds, then the convergence in the Wasserstein
metric in (2.5) can be replaced by convergence in total variation metric.

It is interesting to compare the obtained theorem with the corresponding result for
SDEs. Recall that in the non-delay case the following condition is sufficient [25] for
existence and uniqueness of the invariant measure and exponential convergence of
transition probabilities in total variation:

〈f(y), y〉 ≤ −σ|y|, |y| ≥M,y ∈ Rd, (2.6)

where M > 0, σ > 0. In other words, for large enough y ∈ Rd the drift f should point
towards the origin. Therefore, condition (2.3) is a direct equivalent of (2.6) for SFDEs.
We can call it the extended Veretennikov–Khasminskii condition.

Note that it is sufficient to check (2.3) only for trajectories x with not too large
diameters. This is quite important as it makes verifying (2.3) in practice much easier,
see Section 3. The intuition here is the following. As one can see from the results of
Section 4 below, for large enough n with high probability D(Xn) is approximately of
the size O(|X(n)|β) regardless of the initial conditions. Thus, it is very unlikely that
the trajectory will have a much bigger diameter. Even if it happens, one can just wait
till the trajectory has a smaller diameter and then the drift would point towards the
origin. Thus, one has to check the extended Veretennikov–Khasminskii condition only
for “typical” trajectories. Note that this additional assumption limz→∞

(
κ(z)z−β

)
=∞ is

optimal, see Section 3 for counterexamples.
The convergence in the Wasserstein metric in (2.5) cannot be replaced by the conver-

gence in total variation without additional Assumption A4. This is due to the reconstruc-
tion property discussed above. If the diffusion does not depend on the past, then SFDE
does not have the reconstruction property and the convergence occurs in total variation.

Let us also mention that one cannot hope to replace (2.3) by something like

〈f(x), x(−1)〉 ≤ −σ|x(−1)|, |x(−1)| ≥M.

Indeed, the delayed Ornstein–Uhlenbeck equation (1.2) satisfies this assumption, but it
does not have an invariant measure.

Let us move on to our second main result that concerns subgeometrical convergence.
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Theorem 2.2. Suppose that Assumptions A1 and A3 hold. Then SFDE (2.1) has a
unique invariant measure π and the transition probabilities Pt(x, ·) converge to it subex-
ponentially in the Wasserstein metric. That is, for any ρ > 0 there exist C > 0, λ1 > 0,
λ2 > 0 such that for all x ∈ C we have

Wdρ(Pt(x, ·), π) ≤ Ceλ1|x(0)|α+λ1D(x)2e−λ2t
α/(2−α)

, t ≥ 0. (2.7)

Moreover, if additionally Assumption A4 holds, then the convergence in the Wasserstein
metric in (2.7) can be replaced by convergence in total variation metric.

We see that in the subgeometrical case it is also enough to check the extended
Veretennikov–Khasminskii condition only for trajectories with not too big diameter. The
explanation is the same. It is worth mentioning that since the drift f “pushes” to the
origin weaker than in the exponential case, one has to check (2.4) for a slightly bigger
set of x than just “typical trajectories”.

We also would like to mention that the obtained rate of convergence to infinity in the
right-hand side of (2.7) matches the corresponding rate for the SDE case. The latter
cannot be improved, see [8, Section 7.1].

The proofs of Theorems 2.1 and 2.2 are postponed till Section 4.

Convention on constants. Throughout the paper, we denote by C a positive con-
stant whose value may change from line to line.

3. Examples and counterexamples

In this section we present a number of examples showing how the theoretical results
from Section 2 can be used for studying convergence of SFDEs. In addition to it,
we provide some counterexamples that show the optimality (in a certain sense) of
Assumptions A2 and A3.

We begin with the following example.

Example 3.1. Let d = m = 1. Consider an equation

dX(t) = h(X(t− r))dt+ g(Xt)dW (t), t ≥ 0, (3.1)

where the memory r ≥ 0, h : R→ R is a smooth function such that h(z) = −|z|γ sign z for
|z| ≥ 1, γ ∈ (−1, 1) and the diffusion g is bounded Lipschitz and non-degenerate.

Clearly, Assumption A1 holds and hence equation (3.1) has a unique strong solution.
Let us check A2 and A3. Put κ(z) := z(1+γ)/2. Note that there exists large enough M0

such that for any x ∈ C with D(x) ≤ κ(|x(0)|) and |x(0)| ≥M0 we have

|x(−r)| ≥ |x(0)| −D(x) ≥ |x(0)| − |x(0)|(1+γ)/2 ≥ 1 (3.2)

and hence h(x(−r)) = − sign(x(−r))|x(−r)|γ .
Take now any x ∈ C with D(x) ≤ κ(|x(0)|) and |x(0)| ≥M0. Using (3.2), we derive

h(x(−r))x(0) = − sign(x(−r))|x(−r)|γx(0)

= − sign(x(−r))|x(−r)|γ(x(−r) + x(0)− x(−r))
≤ −|x(−r)|γ+1 + |x(−r)|γD(x)

≤ −
∣∣x(0)− |x(0)|(1+γ)/2

∣∣γ+1
+ (|x(0)|γ +D(x)γ + 1)D(x)

≤ −
∣∣x(0)− |x(0)|(1+γ)/2

∣∣γ+1
+ 3|x(0)|(1+γ)/2+(γ∨0).

This implies that there exists large enough M > M0, such that if |x(0)| ≥ M and
D(x) ≤ κ(|x(0)|), then

h(x(−r))x(0) ≤ −1

2
|x(0)|γ+1.
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Now if γ ∈ [0, 1], then A2 holds. Therefore, by Theorem 2.1 SFDE (3.1) has a unique
invariant measure and converges to it exponentially in the Wasserstein metric.

If γ ∈ (−1, 0), then A3 holds. In this case we apply Theorem 2.2. We obtain that (3.1)
still has a unique invariant measure but converges to it subexponentially with the rate
given in (2.7).

Remark 3.2. In Example 3.1 it was crucial that it was sufficient to check condition (2.3)
or (2.4) only for x ∈ C with not “too large” diameter. Evidently, these conditions are not
satisfied for all x ∈ C. Thus, the exponential/subexponential ergodicity of (3.1) cannot
be obtained by [10, Remark 5.2] or [3, Theorem 3.3].

Example 3.3. Using the same method we can study more general equations. Let
d,m ∈ N, r ≥ 0. We are interested in ergodic properties of the SFDE

dX(t) = h
(∫ 0

−r
X(t+ s)µ(ds)

)
dt+ g(Xt)dW (t), t ≥ 0, (3.3)

where h : Rd → Rd is a smooth function with h(z) := −z|z|γ−1 for |z| > 1, γ ∈ (−1, 1); µ
is a finite signed measure with µ([−r, 0]) > 0; g is as in Example 3.1. We see that the
drift and diffusion of equation (3.3) satisfy Assumption A1 and thus this equation has a
unique strong solution.

In order to verify A2 and A3, we choose again κ(z) := z(1+γ)/2. We consider the
Jordan decomposition of the measure µ:

µ = µ+ − µ−,

where µ+ and µ− are two finite nonnegative measures, and note that for any x ∈ C with
D(x) ≤ κ(|x(0)|) we have∣∣∣∫ 0

−r
x(s)µ(ds)

∣∣∣ ≥∣∣∣∫ 0

−r
x(s)µ+(ds)

∣∣∣− ∣∣∣∫ 0

−r
x(s)µ−(ds)

∣∣∣
≥µ+([−r, 0])|x(0)| −

∫ 0

−r
|x(s)− x(0)|µ+(ds)

− µ−([−r, 0])|x(0)| −
∫ 0

−r
|x(s)− x(0)|µ−(ds)

≥|x(0)|µ([−r, 0])−D(x)(µ+([−r, 0]) + µ−([−r, 0]))

≥c1|x(0)| − c2|x(0)|(1+γ)/2,

where c1 = µ([−r, 0]) and c2 = (µ+([−r, 0]) + µ−([−r, 0])). By our assumptions, we have
c1 > 0. The verification of A2 and A3 is completed exactly as in Example 3.1. Thus,
applying Theorems 2.1 and 2.2, we obtain that X has a unique invariant measure and
converges to it exponentially if γ ∈ [0, 1) or subexponentially if γ ∈ [−1, 0).

Now we move on and present some counterexamples to demonstrate a certain
optimality of the conditions in Theorems 2.1 and 2.2.

First, we consider the case β = 0. The next example shows that in this case it
may happen that no invariant measure exists if the drift and diffusion satisfy all the
conditions of Theorem 2.1 with the only exception that the condition limz→∞ κ(z) =∞ in
Assumption A2 is replaced by lim infz→∞ κ(z) ≥ N , where N > 0 is an arbitrarily large
constant.

Example 3.4. Let d = m = 1, r = 2, N > 0. Put κ(z) := N , z ≥ 0. Consider an equation

dX(t) = f(Xt)dt+ dW (t), t ≥ 0
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where f is a Lipschitz continuous function which takes values in [−1, A], and satisfies
f(x) = A whenever D(x) ≥ N + 1 and 〈f(x), x(0)〉 ≤ −|x(0)| whenever D(x) ≤ N and
|x(0)| ≥ 1. We claim that A > 0 can be chosen in such a way that for every fixed initial
condition we have

lim
t→+∞

X(t) = +∞ a.s. (3.4)

This would imply in particular that X does not have an invariant measure.
To verify the claim we fix the initial condition x ∈ C and introduce an auxiliary

sequence

Y (n) := x(0)− n+W (n) +A

n−1∑
i=1

1
(
W (i)−W (i− 1) ≥ N + 2

)
, n ∈ Z+.

Since the drift f is bounded from below by −1, we derive for n ∈ Z+, n ≥ 1

X(n+ 1)−X(n) = W (n+ 1)−W (n) +

∫ n+1

n

f(Xt)dt

≥W (n+ 1)−W (n)− 1 +A1
(

inf
t∈[n,n+1]

D(Xt) ≥ N + 1)

≥W (n+ 1)−W (n)− 1 +A1
(
X(n)−X(n− 1) ≥ N + 1

)
≥W (n+ 1)−W (n)− 1 +A1

(
W (n)−W (n− 1) ≥ N + 2

)
= Y (n+ 1)− Y (n), (3.5)

where we also used the fact that the memory r = 2 and hence X(n)−X(n− 1) ≥ N + 1

implies that D(Xt) ≥ N + 1 for all t ∈ [n, n+ 1]. Recall that by definition X(0) = x(0) =

Y (0) and X(1) ≥ x(0) − 1 + W (1) = Y (1). Therefore (3.5) implies X(n) ≥ Y (n) for any
n ∈ Z+.

By the strong law of large numbers,

Y (n)/n→ −1 +AP(ξ ≥ N + 2), a.s. whenever n→∞,

where ξ denotes the standard Gaussian random variable. Hence by taking large enough
A we get Y (n)/n → 1, a.s. as n → ∞. Since X(n) ≥ Y (n), this yields (3.4); thus the
claim is proved and the process X does not have an invariant measure.

Next we consider the case β ∈ (0, 1). We show that the condition limz→∞ κ(z)z−β =∞
in A2 cannot be replaced with the condition lim infz→∞ κ(z)z−β ≥ N . Since we need to
construct an example with unbounded κ, the proof here will be different from the proof
in Example 3.4.

Example 3.5. Let β ∈ (0, 1), N > 1. Put κ(z) := (N − 1)zβ , z ≥ 0. Consider the following
stochastic delay equation for d = m = 1, r = 2:

dX(t) = f(Xt)dt+ dW (t), (3.6)

where f is a Lipschitz continuous function such that f(x) = 5Nx(0)β if x(0) ≥ 1 and
D(x) ≥ Nx(0)β. Similar to Example 3.4, one can easily extend f in such a way that
Assumptions A1 and A2 hold with the only exception that condition (2.3) is satisfied for
all x ∈ C with D(x) ≤ (N − 1)|x(0)|β and |x(0)| ≥ 1. Let us prove that SFDE (3.6) does
not have an invariant measure.

Put z0 := (2N)1/(1−β). We need the following technical statement.

Lemma 3.6. Let x ∈ C be such that for some t1, t2 ∈ [−2, 0] we have x(t2) ≥ z0 and

x(t1) ≥ x(t2) + 2Nx(t2)β .

Then D(x) ≥ N |x(0)|β .
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Proof. We consider two different cases. If x(0) < 0, then

D(x) ≥ x(t2)− x(0) ≥ N1/(1−β) + |x(0)| = N |x(0)|β
(Nβ/(1−β)

|x(0)|β
+
|x(0)|1−β

N

)
.

If now |x(0)|1−β > N , then by above D(x) ≥ N |x(0)|β . If |x(0)|1−β ≤ N , then Nβ/(1−β) ≥
|x(0)|β and, again, by above D(x) ≥ N |x(0)|β .

If x(0) ≥ 0 we derive

Nx(0)β ≤ N(x(0) ∨ x(t1))β

≤ N((x(0) ∨ x(t1))− x(t2))β +Nx(t2)β

≤ ((x(0) ∨ x(t1))− x(t2))
( N

(x(t1)− x(t2))1−β +
1

2

)
≤ D(x)

( N

(2N)1−βz
β(1−β)
0

+
1

2

)
= D(x).

Now we go back to our equation (3.6). Define the “bad” set

G := {x ∈ C : x(−1) ≥ z0 and x(0) ≥ x(−1) + 2Nx(−1)β}.

Let us prove that if the process X starts with any initial condition from G, then it tends
to infinity with positive probability.

Put τ := inf{t ≥ 0 : X(t) = 1} and W∗ := infs∈[0,1]W (s). Note that if X0 ∈ G, then,
thanks to Lemma 3.6, we have D(Xs) ≥ N |X(s)|β for any s ∈ [0, 1]. Hence, it follows
from the definition of f that

Px
(
f(Xs∧τ ) = 5NX(s ∧ τ)β for every s ∈ [0, 1]

)
= 1,

for any x ∈ G. This and (3.6) imply that if X0 ∈ G, then for any s ∈ [0, 1] we have

X(s ∧ τ) ≥ X(0) +W (s ∧ τ) ≥ X(0) +W∗. (3.7)

Therefore on the set {W∗ ≥ −X(0) + 1} we have τ ≥ 1. We employ this observation
together with (3.7) to deduce for any x ∈ G

Px(X1 ∈ G) = Px
(
X(1) ≥ x(0) + 2Nx(0)β

)
≥ Px

(
X(1) ≥ x(0) + 2Nx(0)β , W∗ ≥ −x(0)β/2

)
≥ Px

(
5N(x(0) +W∗)

β +W∗ ≥ 2Nx(0)β , W∗ ≥ −x(0)β/2
)

= P(W∗ ≥ −x(0)β/2
)

≥ 1− 2 exp{−x(0)2β/8},

where in the fourth transition we used the fact that x(0) ≥ 1 and hence

5N(x(0) +W∗)
β +W∗ ≥ 5N(x(0)− x(0)β/2)β − x(0)β/2 ≥ x(0)β(5N − 1)/2 ≥ 2Nx(0)β ,

whenever W∗ ≥ −x(0)β/2.
We apply the Markov property of X to get for any x ∈ G

Px(Xn ∈ G for all n ∈ Z+) ≥ 1− 2

∞∑
n=0

exp{−y2β
n /8}, (3.8)

where we defined recursively y0 := x(0) and yn := yn−1 + 2Nyβn−1. Since β > 0 and
yn ≥ x(0) + n, we see that there exists large enough Z0 ≥ 0 such that the right–hand
side of (3.8) is positive whenever x(0) ≥ Z0. Thus for any x ∈ G′ := G ∩ {x(0) ≥ Z0} we
have Px(limn→∞X(n) = +∞) > 0. This implies by [23, Theorem 3a and 3c] that X does
not have an invariant measure.

EJP 22 (2017), paper 98.
Page 9/23

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP122
http://www.imstat.org/ejp/


Invariant measures for SFDEs

Example 3.7. Finally, let us mention that the condition that the diffusion g depends on
x only through x(0) in Assumption A4 also cannot be dropped. Indeed, consider again
SFDE (3.1) with γ = 0, g(x) = g̃(x(−r)), r > 0, x ∈ C and g̃ : R → R+ is a bounded
increasing and strictly positive function. This equation satisfies Assumptions A1 and A2
and its drift is Lipschitz. Nevertheless, as shown in [24] this equation converges to its
invariant measure only weakly and not in total variation. Hence without this additional
assumption, one cannot replace convergence in the Wasserstein metric in (2.5) and (2.7)
by the convergence in total variation.

4. Proofs of the Theorems 2.1 and 2.2

Till the end of this section without loss of generality and to simplify the notation we
assume that the memory r = 1. In Section 4.1 we establish general lemmas that are
useful for the proofs of our main results. In Sections 4.2 and 4.3 we prove Theorems 2.1
and 2.2.

4.1. General tools

First let us verify that the strong solution to SFDE (2.1) has indeed a Markov property.
Whilst this statement is well–known for the case of Lipschitz drift and diffusion, we were
not able to find in the literature the proof of the Markov property of SFDE in the case of
the one–sided Lipschitz drift. Thus we provide it here for the sake of completeness.

Proposition 4.1. Suppose that Assumption A1 holds. Then the unique strong solution
to (2.1) X = (Xt)t≥0 is a strong Markov process with the state space (C,B(C)).

Proof. We establish the Markov property using the standard technique (see, e.g., [20,
proof of Proposition 3.4]). The authors are grateful to Alexei Kulik for communicating
the main idea of the proof.

Fix t ≥ s ≥ 0 and a bounded measurable function f : C → R. Introduce the filtration
Fr := σ(W (u), 0 ≤ u ≤ r) ∨N , where r ≥ 0 and N denotes the collection of null-sets in
F . Similarly, put Gr,s := σ(W (u)−W (s), s ≤ u ≤ r) ∨N , r ≥ s. Our goal is to show that

E(f(Xt)|Fs) = E(f(Xt)|Xs). (4.1)

Since the function f is arbitrary, (4.1) would imply the Markov property for X.
To establish (4.1) consider the equation

X(s,x)(r) = x(0) +

∫ r

s

b(X(s,x)
u )du+

∫ r

s

σ(X(s,x)
u )dW (u), r ≥ s, x ∈ C. (4.2)

It follows from [21, Theorem 2.3] and a simple shift argument that for each fixed x ∈ C,
equation (4.2) has a unique strong solution and X(s,x)

t is a Gt,s| B(C) measurable function.

Introduce now a function Φ: C × Ω→ C, (x, ω) 7→ X
(s,x)
t (ω). By above, for any fixed

x ∈ C the function Φ(x, ·) is Gt,s| B(C)–measurable. By [10, Proposition 5.4], there exists
C > 0 such that

E‖X(s,x)
t −X(s,y)

t ‖4 ≤ eC(1+t)2‖x− y‖4, x, y ∈ C. (4.3)

Therefore Φ(x, ·) is continuous in probability with respect to x. Since the space C is
Polish, [6, Theorem 3.1] implies that Φ has a modification Φ̃ that is (B(C)⊗ Gt,s)| B(C)–
measurable.

Strong uniqueness of solutions to (4.2) ([21, Theorems 2.2 and 2.3]) yields that

Xt(ω) = Φ̃(Xs, ω) a.s.,
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where we also used the fact that Xs is Fs measurable and the σ-algebras Fs and Gt,s are
independent.

Now let us prove (4.1). It follows from the measurability properties of Φ̃ established
above, that f(Φ̃(Xs, ·)) is σ(Xs,Gt,s)–measurable. Using again the independence of Fs
and Gt,s and a standard approximation argument (see, e.g., [19, Theorem 7.1.2]), we
derive

E(f(Xt)|Fs) = E(f(Φ̃(Xs, ·))|Fs) = Ef(Φ̃(x, ·))|x=Xs .

Similarly,
E(f(Xt)|Xs) = E(f(Φ̃(Xs, ·))|Xs) = Ef(Φ̃(x, ·))|x=Xs

and therefore identity (4.1) holds.
To establish the strong Markov property we employ again bound (4.3). This inequality

and the Portmanteau theorem imply that the process X is Feller. Since it has also
continuous trajectories, it is strongly Markov [22, Theorem 3.3.1].

As mentioned above, our approach for establishing ergodicity is based on Lyapunov
functions. The propositions below state that if one is able to construct a “good” Lya-
punov function, then SFDE (2.1) possesses all the required ergodic properties. These
propositions essentially follow from the corresponding results in [3] and [10].

Recall that by Pt we denoted the Markov semigroup associated with the strong
solution to (2.1).

Proposition 4.2. Suppose that Assumption A1 holds. Suppose that there exists a
measurable function V : C → R+ such that lim‖x‖→∞ V (x) = +∞ and

ExV (X1) ≤ V (x)−Ψ(V (x)) + C, x ∈ C, (4.4)

where Ψ: R+ → (0,+∞) is a differentiable concave function increasing to infinity. Then
SFDE (2.1) has a unique invariant measure π. Furthermore, for any ρ > 0, ε > 0 there
exist constants C1 > 0, C2 > 0 such that

Wdρ(Pt(x, ·), π) ≤ C1(1 + V (x))

Ψ(H−1
Ψ (C2t))1−ε

, t ≥ 0, x ∈ C. (4.5)

Here HΨ(t) :=
∫ t

1
1

Ψ(s) ds, t ≥ 0, and H−1
Ψ is the inverse function.

Proof. Fix ρ > 0. It follows from [10, Sections 5.1 and 5.2] that for some n0 ∈ N, δ ∈ (0, ρ)

we have
Wdδ(Pn0

(x, ·), Pn0
(y, ·)) ≤ dδ(x, y), x, y ∈ C. (4.6)

and for any N > 0 there exists γ ∈ (0, 1) such that

Wdδ(Pn0
(x, ·), Pn0

(y, ·)) ≤ γdδ(x, y), x, y ∈ C, ‖x‖ ≤ N, ‖y‖ ≤ N. (4.7)

Consider now an auxiliary skeleton Markov chain with the state space (C, dδ) and
transition kernel

P̃ (x,A) := Pn0
(x,A), x ∈ C, A ∈ B(C).

Let us check that this chain satisfies all the conditions of [3, Theorem 2.1]. By
iterating (4.4) n0 times, we see that∫

C
V (y)P̃ (x, dy) = ExV (Xn0

) ≤ V (x)−Ψ(V (x)) + n0C, x ∈ C.

Therefore the first condition of [3, Theorem 2.1] holds. As explained above, the space
(C, dδ) is a complete separable metric space, therefore the second condition is also met.
It follows from estimates (4.6), (4.7), and our assumption lim‖x‖→∞ V (x) = +∞ that the
third and the fourth conditions of [3, Theorem 2.1] are also satisfied.
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Thus, all conditions of [3, Theorem 2.1] are met. Hence the skeleton chain has a
unique invariant measure π, and there exist constants C1 > 0, C2 > 0 such that

Wdρ(P̃n(x, ·), π) ≤Wdδ(P̃n(x, ·), π) ≤ C1(1 + V (x))

Ψ(H−1
Ψ (C2n))1−ε

, n ∈ Z+, x ∈ C,

where we also used the fact that dρ ≤ dδ. Now by a standard argument (see, e.g., [3,
p. 550]), we see that the measure π is also a unique invariant measure for our original
Markov kernel Pt and that bound (4.5) holds.

Proposition 4.3. Assume that all conditions of Proposition 4.2 are met. Suppose addi-
tionally that Assumption A4 is satisfied. Then the convergence in the Wasserstein metric
in (4.5) can be replaced by convergence in total variation metric.

Proof. We begin by observing that, thanks to the additional Assumption A4, the Markov
semigroup Pt satisfies the Harnack inequality. Namely, it follows from [27, Theorem 4.1]
(see also [5, Theorem 1.1]) that for any t > 1 and large enough p > p0, there exists
C = C(p) such that(

Pt(x,A)
)p ≤ Pt(y,A)eC(1+‖x−y‖2), x, y ∈ C, A ∈ B(C).

Therefore for any x, y ∈ C, A ∈ B(C) we have

Pt(x,A)− Pt(y,A) ≤ Pt(x,A)−
(
Pt(x,A)

)p
(e−C(1+‖x−y‖2) ∧ p−1)

≤ 1− (e−C(1+‖x−y‖2) ∧ p−1).

Thus, we have the following bound on the total variation distance.

dTV (Pt(x, ·), Pt(y, ·)) ≤ 1− (e−C(1+‖x−y‖2) ∧ p−1), x, y ∈ C.

Now similar to the proof of Proposition 4.2 we fix t = 2 and consider the skeleton
Markov chain with the transition kernel

P̃ (x,A) := P2(x,A), x ∈ C, A ∈ B(C).

It follows from the above that P̃ satisfies all the assumptions of [15, Theorem 1.15 and
Theorem 1.13]. Note that we do not have to check that the skeleton Markov chain is
irreducible or aperiodic, see also the related discussion in [9, Remark 3.3].

Thus, if π denotes the invariant measure of P (its existence and uniqueness was
already established in Proposition 4.2), then by [15, Theorem 1.15 and Theorem 1.13]
we have

dTV (P2n(x, ·), π) = dTV (P̃n(x, ·), π) ≤ C1(1 + V (x))

Ψ(H−1
Ψ (C2n))1−ε

, n ∈ Z+, x ∈ C.

Therefore if t = 2n+ s, where n ∈ Z+ and s ∈ [0, 2], then for any x ∈ C we derive

dTV (Pt(x, ·), π) = dTV (P2n+s(x, ·), Psπ) ≤ dTV (P2n(x, ·), π) ≤ C1(1 + V (x))

Ψ(H−1
Ψ (C2t))1−ε

,

where we made use of the nonexpanding property of the total variation metric. This
completes the proof of the proposition.

The following two lemmas describe the behaviour of D(Xt). These lemmas provide
very important estimates that will be used in the sequel.

Lemma 4.4. Suppose that Assumption A1 holds. Assume that the drift f satisfies the
growth condition (2.2) with β ∈ [0, 1) and the diffusion g is globally bounded. Then there
exists a constant C > 0 such that for any λ ≥ 0 we have

Exe
λD(X1) ≤ eCλ(|x(0)|β+D(x)β+λ+1), x ∈ C. (4.8)
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Moreover, there exist C > 0, λ0 > 0 such that

Exe
λ0D(X1)2 ≤ eC(|x(0)|2β+D(x)2β+1), x ∈ C. (4.9)

Finally, there exist constants C1, C2 > 0 such that for any z > 0 we have

Px(D(X1) ≥ z) ≤ C1e
C1|x(0)|2β+C1D(x)2β−C2z

2

, x ∈ C. (4.10)

Proof. We begin by observing that for any x ∈ C

D(X1) ≤ 2 sup
0≤t≤1

|X(t)−X(0)| ≤ 2

∫ 1

0

|f(Xs)| ds+ 2 sup
0≤t≤1

|M(t)|, (4.11)

where we denoted M(t) :=
∫ t

0
g(Xs) dW (s). We make use of the growth condition (2.2)

and the estimate D(Xs) ≤ D(x) +D(X1), valid for all s ∈ [0, 1], to derive∫ 1

0

|f(Xs)| ds ≤ C
∫ 1

0

(‖Xs‖β + 1) ds ≤ C(|x(0)|β +D(x)β +D(X1)β + 1)

≤ 1

4
D(X1) + C|x(0)|β + CD(x)β + C, (4.12)

where we also used the fact that β < 1 and hence for some Cβ > 0 one has Czβ ≤ z/4+Cβ
for all z ≥ 0. Substituting (4.12) into (4.11), we get

D(X1) ≤ C|x(0)|β + CD(x)β + C sup
0≤t≤1

|M(t)|+ C. (4.13)

To estimate the exponential moments of sup0≤t≤1 |M(t)| we use the Dambis–Dubins–
Schwarz theorem and the global boundedness of g. It follows that

M(t) = (B1(τ1), . . . , Bd(τd)), t ∈ [0, 1],

where B1, B2, . . . , Bd are (possibly dependent) one-dimensional Brownian motions and

τi = τi(t) :=

∫ t

0

m∑
j=1

(gij(Xs))
2 ds ≤ Cg, t ∈ [0, 1], i = 1, 2, . . . , d.

and the constant Cg does not depend on x. Thus,

sup
t∈[0,1]

|M(t)| ≤
d∑
i=1

sup
t∈[0,Cg ]

|Bi(t)|.

Therefore, we apply the Cauchy–Schwarz inequality to get for any λ ≥ 0, x ∈ C

Ex exp{λ sup
t∈[0,1]

|M(t)|} ≤ E exp
{
λ

d∑
i=1

sup
t∈[0,Cg ]

|Bi(t)|
}
≤ E exp{dλ sup

t∈[0,Cg ]

|B(t)|}

= E exp{Cλ|B(1)|} ≤ exp{C(λ+ λ2)},

where by B we denoted a standard Brownian motion. This together with (4.13) implies
(4.8).

Arguing as above, we see that there exists constants C > 0, λ0 > 0 such that for any
x ∈ C we have

Ex exp{λ0 sup
t∈[0,1]

M(t)2} < C.

This together with (4.13) implies (4.9).
Estimate (4.10) follows directly from (4.9) and the Chebyshev inequality.
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Lemma 4.5. Suppose that the assumptions of Lemma 4.4 hold. Let ψ : R+ → R+ be an
increasing continuous concave function such that ψ(t) ≤ Cψ(t+ 1) for some Cψ ≥ 1 and
any t ∈ R+. Then there exist constants C1 > 0, C2 > 0 such that for any t ∈ [0, 1] and
x ∈ C with D(x) ≤ ψ(|x(0)|)/(4Cψ) we have

Px(D(Xt) ≥ ψ(|X(t)|)) ≤ C1e
C1|x(0)|2β+C1D(x)2β−C2ψ(|x(0)|)2 . (4.14)

Proof. First, let us note that for any t ∈ [0, 1] we have |X(t)| ≥ |X(0)| −D(Xt). Hence

ψ(|X(t)|) ≥ ψ(|X(0)|)− ψ(D(Xt)).

Therefore, using the condition ψ(s) ≤ Cψ(s + 1), s ∈ R+, we derive for any t ∈ [0, 1],
x ∈ C with D(x) ≤ ψ(|x(0)|)/(4Cψ)

Px
(
D(Xt) ≥ ψ(|X(t)|)

)
≤Px

(
(Cψ + 1)D(Xt) + Cψ ≥ ψ(|X(0)|)

)
≤Px

(
D(Xt) ≥

ψ(|X(0)|)
2Cψ

− 1
)

≤Px
(
D(X1) ≥ ψ(|X(0)|)

4Cψ
− 1
)
,

where in the last inequality we used the assumption D(x) ≤ ψ(|x(0)|)/(4Cψ) and the
estimate D(Xt) ≤ D(X1)+D(x). Now the application of estimate (4.10) yields (4.14).

4.2. Proof of Theorem 2.1

To prove Theorem 2.1 we use the following Lyapunov function:

V (x) := exp
{
λ|x(0)|+

(
D(x)− γ|x(0)|β

)
+

}
, x ∈ C, (4.15)

where the parameters λ > 0, γ > 0 are to be set later. To avoid technicalities we assume
that the function κ from Assumption A2 is increasing and concave. Clearly, this is not a
restriction at all: if Assumption A2 is satisfied, then there exists an increasing concave
function κ̃ such that A2 is also satisfied with κ̃ in place of κ. It follows that there exists a
constant Cκ ≥ 1 such that κ(t) ≤ Cκ(t+ 1) for any t ≥ 0.

First, let us prove that V is a Lyapunov function on the set where D(x) is relatively
big compared with |x(0)|. The heuristics here is as follows. As we explained in the
introduction, it is not typical for the process X to have a large diameter. Thus, D(Xt)

will decrease with high probability. This will also cause the decrease of the Lyapunov
function V . Formally we have the following lemma.

Lemma 4.6. Suppose that Assumptions A1 and A2 hold. Let V be the Lyapunov function
defined in (4.15). Then for any λ > 0, γ > 0, ε ∈ (0, 1) there exist L > 0 and B > 0 such
that

ExV (X1) ≤ εV (x), (4.16)

for any x ∈ C such that D(x) ≥ L and D(x) ≥ B|x(0)|β .
Further, for any λ > 0, γ > 0, L > 0, R > 0 we have

sup
x∈C,|x(0)|≤R
D(x)≤L

ExV (X1) <∞. (4.17)

Proof. Fix λ > 0, γ > 0. Then for any x ∈ C we have

ExV (X1) ≤ Ex exp{λ|X(1)|+D(X1)}
≤ Ex exp{λ(|X(0)|+D(X1)) +D(X1)}

= eλ|x(0)|Exe
(λ+1)D(X1), (4.18)

which immediately yields (4.17).
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To establish (4.16), we apply estimate (4.8) to (4.18). We get

ExV (X1) ≤ exp
{
λ|x(0)|+ C(λ+ 1)(|x(0)|β +D(x)β + λ+ 2)}

≤ V (x) exp
{
−D(x) + C1|x(0)|β + C2D(x)β + C3

}
, (4.19)

where C1 := γ + C(λ + 1), C2 := C(λ + 1), and C3 := C(λ + 1)(λ + 2). Now take large
enough L0 = L0(λ) such that C2z

β + C3 ≤ z/3 whenever z ≥ L0. Put B := 3C1. Then it
follows from (4.19) that for any x ∈ C with D(x) ≥ L0 and D(x) ≥ B|x(0)|β we get

ExV (X1) ≤ V (x)e−D(x)/3 ≤ V (x)e−L0/3,

which implies (4.16).

The case when the initial diameter is “small” is much more complicated and more
precise estimates are needed. In this case D(Xt) stays at the same level, and the
decrease of the Lyapunov function V happens due to the decrease of |X(t)|. To formalize
these ideas we will use the following version of the Gronwall inequality.

Lemma 4.7. Let T > 0, θ > 0, r ≥ 0. Let f : [0, T ] → R be a continuous function
satisfying for any 0 ≤ s ≤ u ≤ T the following inequality:

f(u) ≤ f(s)−
∫ u

s

(θf(t)− r)dt.

Then for any t ∈ [0, T ]

f(t) ≤ e−θtf(0) + r/θ. (4.20)

Proof. Consider the function g(t) := e−θt(f(0)−r/θ)+r/θ, 0 ≤ t ≤ T . Clearly, g(0) = f(0)

and for any 0 ≤ s ≤ u ≤ T we have

g(u) = g(s)−
∫ u

s

(θg(t)− r)dt.

Hence by [11, Proposition 9.2], we have f(t) ≤ g(t) for any t ∈ [0, T ]. This implies
(4.20).

For B > 0, N > 0 define

CB,N := {x ∈ C : D(x) ≤ B|x(0)|β and |x(0)| ≥ N}. (4.21)

We start treating this case with the following key lemma.

Lemma 4.8. Suppose that the assumptions of Lemma 4.6 hold. Then there exist ν > 0,
ρ ∈ (0, 1), such that for every B > 0 there exists N > 0 such that

Exe
ν|X(1)| ≤ eν|x(0)|(1− ρ)

for all x ∈ CB,N .

Proof. Recall the definition of constant M from condition (2.3). With such M in hand, let
λ ∈ (0, 1), let ϕ : Rd → R+ be a smooth function such that ϕ(y) := exp(λ|y|) for |y| ≥M .
We want to apply a version of Gronwall’s lemma to the function u 7→ Exϕ(X(u)).

First of all, we observe that this function is finite. Indeed, thanks to (4.8), we have
for any x ∈ C, 0 ≤ u ≤ 1

Exϕ(X(u)) ≤ C + Exe
|X(u)| ≤ C + e|x(0)|Exe

D(X1)| <∞.
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We make use of assumption A2 and apply Ito’s lemma. We have for |y| ≥M

∂ϕ(y)

∂yi
= λeλ|y||y|−1yi;

∂2ϕ(y)

∂yi∂yj
= λ2eλ|y||y|−2yiyj − λeλ|y||y|−3yiyj , i 6= j;

∂2ϕ(y)

∂y2
i

= λ2eλ|y||y|−2y2
i − λeλ|y||y|−3y2

i + λeλ|y||y|−1.

Thus, we derive for any x ∈ C, 0 ≤ s ≤ u ≤ 1

Exϕ(X(u)) ≤Exϕ(X(s))− σλ
∫ u

s

Ex
(
1{D(Xt)≤κ(|X(t)|),|X(t)|>M} ϕ(X(t))

)
dt

+ Cλ

∫ u

s

Ex
(
1{D(Xt)>κ(|X(t)|),|X(t)|>M}

(
1 + ‖Xt‖β

)
eλ|X(t)|) dt

+ Cλ2

∫ u

s

Exe
λ|X(t)| dt

+ Cλ

∫ u

s

Ex 1{|X(t)|>M} e
λ|X(t)||X(t)|−1 dt+ C(u− s) + Ex(M(u)−M(s))

=:Exϕ(X(s))− σλI1 + CλI2 + Cλ2I3

+ CλI4 + C(u− s) + Ex(M(u)−M(s)), (4.22)

where we denoted

M(u) :=

∫ u

0

∑
i,j

∂ϕ

∂yi
(X(t))gij(Xt)dW

j(t).

We use the boundedness of g, the definition of ϕ, and estimate (4.8) to derive

Ex〈M〉u ≤ C + C

∫ u

0

Exe
2|X(t)| dt ≤ C + Ce2|x(0)|Exe

2D(X1) <∞.

Thus (M(t))t≥0 is a martingale and

Ex(M(u)−M(s)) = 0. (4.23)

To estimate I1 we assume that |x(0)| ≥ M0 := M + κ(M) in which case |X(t)| < M ,
t ∈ [0, 1] implies D(Xt) ≥ |X(t)− x(0)| > κ(M) ≥ κ(|X(t)|). Therefore,

Ex
(
1{D(Xt)≤κ(|X(t)|),|X(t)|≥M} ϕ(X(t))

)
= Ex

(
1{D(Xt)≤κ(|X(t)|)} ϕ(X(t))

)
= Exϕ(X(t))− Ex

(
1{D(Xt)>κ(|X(t)|)} ϕ(X(t))

)
≥ Exϕ(X(t))−

(
Px
(
D(Xt) > κ(|X(t)|)

))1/2(
Ex[ϕ(X(t))2]

)1/2
. (4.24)

We continue this calculation in the following way. Recall that κ(z)/zβ → +∞ as z → +∞.
Therefore for any B > 0 there exists N = N(B) > 0 such that

CB,N ⊂ {x ∈ C : D(x) ≤ κ(|x(0)|)
4Cκ

},

where Cκ was defined in the beginning of Section 4.2. Hence Lemma 4.5 implies that
there exist constants C1, C2 such that for any B > 0 there exists N = N(B) > 0 such
that for any t ∈ [0, 1]

Px(D(Xt) > κ(|X(t)|)) ≤ C1e
−C2κ(|x(0)|)2 , x ∈ CB,N . (4.25)
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Invariant measures for SFDEs

By Lemma 4.4, for any x ∈ C, t ∈ [0, 1] we have

Exϕ(X(t))2 ≤ C + Exe
2λ|X(t)|

≤ C + e2λ|x(0)|Exe
2D(X1)

≤ C + e2λ|x(0)|eC(|x(0)|β+|D(x)|β+1).

Using again the fact that κ(z)/zβ → +∞ and combining the above estimate with (4.24)
and (4.25), we see that there exist constants C3 > 0, C4 > 0 such that for any B > 0

there exists N1 = N1(B) > 0 such that

I1 ≥
∫ u

s

Exϕ(X(t)) dt− C3e
λ|x(0)|e−C4κ(|x(0)|)2(u− s), x ∈ CB,N1

. (4.26)

Next, we estimate the integrand in I2. We estimate this term applying Hölder’s
inequality to the three factors. The first and third factors are estimated as above.
Further, for any x ∈ C, t ∈ [0, 1]

Ex(1 + ‖Xt‖β)3 ≤ Ex(1 + |x(0)|β +D(x)β +D(X1)β)3

≤ C
(
1 + |x(0)|3β +D(x)3β + Ex[D(X1)3β ]

)
≤ C

(
1 + |x(0)|3β +D(x)3β + eC(|x(0)|β+|D(x)|β+1)

)
,

where in the last inequality we used Lemma 4.4. Thus, there exist constants C5 > 0,
C6 > 0 such that for any B > 0 there exists N2 = N2(B) > 0 such that

I2 ≤ C5e
λ|x(0)|e−C6κ(|x(0)|)2(u− s), x ∈ CB,N2

. (4.27)

For M̃ > M , x ∈ C we estimate the integrand in I4 as follows.

Ex
(
1{|X(t)|>M |} exp{λ|X(t)|}|X(t)|−1

)
≤ M̃−1Exϕ(X(t)) +

1

M
eλM̃ . (4.28)

Combining (4.23), (4.26), (4.27) and (4.28) with (4.22), we see that there exist constants
C7 > 0, C8 > 0 such that for any B > 0 there exists N3 = N3(B) > 0 such that for
x ∈ CB,N3

Exϕ(X(u)) ≤Exϕ(X(s))− (σλ− Cλ2 − CλM̃−1)

∫ u

s

Exϕ(X(t)) dt

+ C7(eλ|x(0)|e−C8κ(|x(0)|)2 + eλM̃ )(u− s).

Now, we choose M̃ large enough and λ > 0 small enough so that

θ := σλ− Cλ2 − CλM̃−1 > 0.

Clearly θ is independent of B and N3. Recall also that we have checked in the beginning
of the proof that Exϕ(X(u)) <∞ for any u ∈ [0, 1]. Thus, by Lemma 4.7 (a version of the
Gronwall inequality) we get

Exe
λ|X(1)| ≤ Exϕ(X(1)) + eλM ≤ eλ|x(0)|e−θ + eλ|x(0)|ζ(|x(0)|), x ∈ CB,N3 ,

where the function ζ(z) is independent of B and N3, and tends to 0 as z → ∞. This
implies the statement of the lemma.

Now we are able to establish a crucial Lyapunov inequality. Recall the definition of
CB,N in (4.21).

Lemma 4.9. Suppose that Assumptions A1 and A2 hold. Then there exist λ > 0, γ > 0,
c1 ∈ (0, 1), c2 > 0 such that the function V defined in (4.15) satisfies the following
inequality:

ExV (X1) ≤ (1− c1)V (x) + c2, x ∈ C. (4.29)
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Proof. First we note that for any λ > 0, γ > 0, x ∈ C we have

ExV (X1) ≤
(
Exe

2λ|X(1)|)1/2(Exe2(D(X1)−γ|X(1)|β)+
)1/2

. (4.30)

We take ν > 0 and ρ ∈ (0, 1) as in Lemma 4.8 and put λ := ν/2. Then, thanks to
Lemma 4.8, for any B > 0 there exists N = N(B) > 0 such that for any x ∈ CB,N we have

(Exe
2λ|X(1)|)1/2 ≤ eλ|x(0)|(1− ρ)1/2 ≤ V (x)(1− ρ/2). (4.31)

Thus, it remains to show that on CB,N the second factor in the right–hand side of (4.30)
is smaller than (1 + ρ/2). Without loss of generality we assume that N(B) is large
enough so that BNβ ≤ N (otherwise we can take larger N(B)). Using the inequality
|X(1)| ≥ |x(0)| −D(X1), we deduce for any x ∈ CB,N

Exe
2(D(X1)−γ|X(1)|β)+ ≤1 + Exe

2(D(X1)−γ|X(1)|β)

≤1 + e−2γ|x(0)|β Exe
2(D(X1)+γD(X1)β)

≤1 + e−2(γ|x(0)|β−Cγ)Exe
4D(X1),

where we have also used the fact that for some Cγ > 0 we have γzβ ≤ z + Cγ for all
z ≥ 0. We continue this estimate, using Lemma 4.4. Recall that on CB,N we also have
D(x) ≤ |x(0)|, thanks to our additional assumption on N(B). Therefore we derive for any
x ∈ CB,N

Exe
2(D(X1)−γ|X(1)|β)+ ≤ 1 + exp

{
− |x(0)|β(2γ − C) + C + 2Cγ

}
(4.32)

and the constant C depends neither on γ nor on B. Thus, taking γ = γ(C) large enough,
and combining (4.30), (4.31) and (4.32), we see that for any B > 0 there exists a constant
N1(B) such that on CB,N1

we have

ExV (X1) ≤ V (x)(1− ρ/4), x ∈ CB,N1
. (4.33)

Now with such λ and γ in hand we apply Lemma 4.6 with ε = 1− ρ/4. We get that there
exist B = B(λ, γ) > 0, L = L(λ, γ) > 0 such that

ExV (X1) ≤ V (x)(1− ρ/4), D(x) ≥ (L ∨B|x(0)|β).

Together with (4.33) this bound implies that for some N2 = N2(λ, γ), L1 = L1(λ, γ) we
have

ExV (X1) ≤ V (x)(1− ρ/4), |x(0)| ≥ N2 or D(x) ≥ L1.

Finally, if |x(0)| ≤ N2 and D(x) ≤ L1, then by (4.17)

sup
|x(0)|≤N2

D(x)≤L1

ExV (X1) <∞.

This completes the proof of the lemma.

Based on the previous lemmas, we can now complete the proof of Theorem 2.1.

Proof of Theorem 2.1. It follows from Lemma 4.9 that condition (4.4) holds with the func-
tion Ψ(z) := c1z, z ∈ R+, where the constant c1 is defined in (4.29). Hence Theorem 2.1
follows immediately from Propositions 4.2 and 4.3.

4.3. Proof of Theorem 2.2

Now we move on to the subgeometric case. We fix till the end of this section the
constants α, σ, M and the function κ from Assumption A3. As above without loss of
generality, we assume that κ is an increasing concave function.
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We work with a Lyapunov function

V (x) := exp
(
λ1|x(0)|α + λ2

(
D(x)2 − ψ(|x(0)|)

)
+

)
, (4.34)

where λ1 > 0, λ2 > 0, and ψ : R+ → R+ is an increasing continuous concave function. We
will specify λ1, λ2, and the function ψ later. As before, we consider two cases: the “small”
diameter case (where we gain from the decrease of the first factor in the Lyapunov
function) and the “large” diameter case (where we gain from the decrease of the second
factor in the Lyapunov function).

We start with the second case. Recall the definition of λ0 from Lemma 4.4.

Lemma 4.10. Suppose that Assumptions A1 and A3 hold. Let V be the Lyapunov
function defined in (4.34). For any λ1 > 0, λ2 ∈ (0, λ0/2] there exists R = R(λ1, λ2) such
that for any x ∈ C with D(x) > (R+ ψ(|x(0)|))1/2 we have

ExV (X1) ≤ V (x)/2. (4.35)

Further, for any λ1 > 0, λ2 ∈ (0, λ0/2], N > 0 we have

sup
x∈C, |x(0)|≤N

ExV (X1) <∞ (4.36)

Proof. For any x ∈ C we derive

ExV (X1) =Ex exp
(
λ1|X(1)|α + λ2

(
D(X1)2 − ψ(|X(1)|)

)
+

)
≤eλ1|x(0)|α(Exe2λ1(D(X1)+1)

)1/2(
Exe

2λ2D(X1)2
)1/2

≤CeC(λ1+λ2
1)eλ1|x(0)|α (4.37)

where in the second inequality we applied Lemma 4.4 and used the fact that 2λ2 ≤ λ0.
This immediately implies (4.36). To establish (4.35) we deduce from (4.37) that

ExV (X1) ≤ V (x)e−λ2(D(x)2−ψ(|x(0)|))+CeC(λ1+λ2
1), x ∈ C.

Now we find large R = R(λ1, λ2) such that

e−λ2RCeC(λ1+λ2
1) < 1/2.

By above, if D(x) > (R+ ψ(|x(0)|))1/2, then ExV (X1) ≤ V (x)/2.

Now we move on to the “small” diameter case. Recall the definition of the constant
Cκ from the beginning of Section 4.2.

Lemma 4.11. Suppose that the assumptions of Lemma 4.10 hold. Then there exist ν > 0,
N0 > 0, ρ1 > 0, ρ2 > 0 such that for any x ∈ C with |x(0)| ≥ N0, D(x) ≤ κ(|x(0)|)/(4Cκ)

we have
Exe

ν|X(1)|α ≤ eν|x(0)|α(1− ρ1|x(0)|2α−2) + ρ2. (4.38)

Proof. Recall the definition of M from condition (2.4). Let λ ∈ (0, 1). Similar to the proof
of Lemma 4.8, we introduce a smooth function ϕ : Rd → R+ such that for |y| ≥ M we
have ϕ(y) = exp(λ|y|α) and for |y| ≤M we have ϕ(y) ∈ [0, eλM ]. Arguing as in the proof
of Lemma 4.8 and applying Ito’s formula, we have for any x ∈ C

Exϕ(X(1)) ≤ϕ(x) + αλ

∫ 1

0

Ex 1(|X(s)| ≥M)eλ|X(s)|α |X(s)|α−2〈X(s), f(Xs)〉 ds

+
1

2
λα

∫ 1

0

Ex 1(|X(s)| ≥M)eλ|X(s)|α |X(s)|α−2(C1λα|X(s)|α + C1)ds+ C1

≤ϕ(x) + αλ(I1 + I2) + C1.
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Suppose further that D(x) ≤ κ(|x(0)|)/(4Cκ). First we bound I1. Using assumption (2.4),
we derive

I1 ≤− σ
∫ 1

0

Ex 1(|X(s)| ≥M)eλ|X(s)|α |X(s)|2α−2 ds

+ C2

∫ 1

0

Ex 1(D(Xs) > κ(|X(s)|), |X(s)| ≥M)eλ|X(s)|α |X(s)|α−1 ds+ C3.

It follows from the Cauchy–Schwarz inequality that for any s ∈ [0, 1]

Ex 1(D(Xs) > κ(|X(s)|), |X(s)| ≥M)eλ|X(s)|α |X(s)|α−1

≤Mα−1
(
Px(D(Xs) > κ(|X(s)|))

)1/2(
Ex exp(2λ|X(s)|α)

)1/2

≤ C4M
α−1e−C5κ(|x(0)|)2eλ|x(0)|αeC6(1+λ+λ2),

where in the last inequality we use the bound |X(s)|α ≤ |x(0)|α+D(X1)+1, and estimates
(4.8) and (4.14).

To bound I2 we take a large M̃ > M to get

I2 ≤
∫ 1

0

Ex 1(X(s) ≥ M̃)eλ|X(s)|α |X(s)|2α−2(C1λα+ C1M̃
−α)ds+ C7e

M̃ .

Note that the constants C1, C2, ... C7 above do not depend on λ ∈ [0, 1] or M̃ .
Combining all the previous estimates, we deduce

Exϕ(X(1)) ≤ϕ(x)− θ
∫ 1

0

Ex 1(|X(s)| ≥M)ϕ(X(s))|X(s)|2α−2 ds+ C8e
M̃

+ C9e
−C5κ(|x(0)|)2eλ|x(0)|α . (4.39)

where θ := αλ(σ − C1λα− C1M̃
−α).

Recall that C1 does not depend on M̃ and λ. Thus, we take λ to be small enough and
M̃ to be large enough so that θ > 0.

Suppose additionally that |x(0)| ≥ 1. We derive for s ∈ [0, 1]

Ex
[
1(|X(s)| ≥M)ϕ(X(s))|X(s)|2α−2

]
≥Ex

[
1(|X(s)| ≥M)ϕ(X(s))(1 + |X(s)|)2α−2

]
≥Ex

[
eλ|X(s)|α(1 + |X(s)|)2α−2

]
− C10

≥eλ|x(0)|α |x(0)|2α−2Ex
[
e−D(X1)−1(1 + |x(0)|−1 +D(X1)|x(0)|−1)2α−2

]
− C10

≥eλ|x(0)|α |x(0)|2α−2Ex
[
e−D(X1)−1(2 +D(X1))2α−2

]
− C10. (4.40)

We continue the calculations using Jensen’s inequality and estimate (4.8) with β = 0. We
get

Ex
[
e−D(X1)−1(2 +D(X1))2α−2

]
≥
(
Ex
[
eD(X1)+1(2 +D(X1))2−2α

])−1

≥ C11 > 0.

Combining this estimate with (4.40) and (4.39), we get

Exe
λ|X(1)|α ≤ eλ|x(0)|α − C12e

λ|x(0)|α |x(0)|2α−2 + C9e
λ|x(0)|αe−C5κ(|x(0)|)2 + C13. (4.41)

Recall our assumption on growth of κ: κ2(z)/ log(z) → ∞ as z → ∞. Thus, if N0 is
large enough, and |x(0)| > N0, then inequality (4.38) with ν = λ follows directly from
(4.41).

Now we are ready to give the proof of Theorem 2.2. Recall the definitions of N0, ν
from Lemma 4.11. The next lemma is crucial.
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Lemma 4.12. Suppose that the assumptions of Lemma 4.10 hold. Then there exist
λ1 > 0, λ2 > 0, c1 > 0, c2 > 0, N > 0 and a function ψ such that

ExV (X1) ≤ V (x)(1− c1|x(0)|2α−2) + c2, x ∈ C, |x(0)| ≥ N. (4.42)

Proof. First we fix the function ψ such that ψ(t)/ log(t) → ∞ and κ(t)2/ψ(t) → ∞ as
t → ∞. Such ψ exists due to our assumptions on the growth of κ. Take Cψ such that
ψ(t) ≤ t+ Cψ, t ≥ 0.

We begin in the same way as in Lemma 4.10. We derive for any x ∈ C

ExV (X1) =Ex exp
(
λ1|X(1)|α + λ2

(
D(X1)2 − ψ(|X(1)|)

)
+

)
≤
(
Exe

2λ1|X(1)|α)1/2(Exe2λ2(D(X1)2−ψ(|X(1)|))+
)1/2

. (4.43)

First we deal with the second factor in the right-hand side of (4.43). We have

Exe
2λ2(D(X1)2−ψ(|X(1)|))+ ≤1 + Exe

2λ2(D(X1)2−ψ(|X(1)|))

≤1 + e−2λ2ψ(|x(0)|)Exe
2λ2[D(X1)2+ψ(D(X1))]

≤1 + e−2λ2(ψ(|x(0)|)−Cψ−1)Exe
4λ2D(X1)2 . (4.44)

We choose λ2 := λ0/4. Then (4.44) and (4.9) imply

Exe
2λ2(D(X1)2−ψ(|X(1)|))+ ≤ 1 + Ce−2λ2ψ(|x(0)|), x ∈ C. (4.45)

The first factor in the right–hand side of inequality (4.43) has been already estimated in
Lemma 4.11. We put λ1 := ν/2. If |x(0)| ≥ N0 and D(x) ≤ κ(|x(0)|)/(4Cκ), then (4.38),
(4.43), (4.45) imply for such x

ExV (X1) ≤ eλ1|x(0)|α(1− C1|x(0)|2α−2 + C2e
−2λ2ψ(|x(0)|)) + C3.

Since ψ(z)/ log(z) → ∞ as z → ∞, we get for large enough N1 and all x ∈ C with
|x(0)| ≥ N1 and D(x) ≤ κ(|x(0)|)/(4Cκ)

ExV (X1) ≤ eλ1|x(0)|α(1− C4|x(0)|2α−2) + C5 ≤ V (x)(1− C4|x(0)|2α−2) + C5. (4.46)

Now let us consider the second case: D(x) ≥ κ(|x(0)|)/(4Cκ). We choose R as in
Lemma 4.10. Due to our assumptions on the growth of ψ, for large enough N2 and any
z > N2 we have κ(z)/(4Cκ) ≥ (R+ ψ(z))1/2. Thus, by Lemma 4.10 we have for all x ∈ C
with |x(0)| ≥ N2 and D(x) ≥ κ(|x(0)|)/(4Cκ)

ExV (X1) ≤ V (x)/2.

This together with (4.46) proves the lemma.

Proof of Theorem 2.2. Let V be a Lyapunov function defined in (4.34) with the parame-
ters specified in Lemma 4.12. Let Ψ: R+ → R+ be a differentiable concave increasing
function such that

Ψ(z) =
z

(log z)(2−2α)/α

for large enough z (more precisely, for z ≥N , where N>0 is the same as in Lemma 4.12).
It follows from (4.42) that for x ∈ C with |x(0)| ≥ N

ExV (X1) ≤ V (x)− C1V (x)(log V (x))(2α−2)/α + C2.

This together with (4.36) implies that for any x ∈ C

ExV (X1) ≤ V (x)− C1Ψ(V (x)) + C3.

Thus, condition (4.4) holds with the function Ψ defined above. Therefore Theorem 2.2
follows now from Propositions 4.2 and 4.3.
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