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Abstract

Liouville Quantum Field Theory (LQFT) can be seen as a probabilistic theory of 2d
Riemannian metrics eφ(z)|dz|2, conjecturally describing scaling limits of discrete 2d-
random surfaces. The law of the random field φ in LQFT depends on weights α ∈ R
that in classical Riemannian geometry parametrize power law singularities in the
metric. A rigorous construction of LQFT has been carried out in [3] in the case when
the weights are below the so called Seiberg bound: α < Q where Q parametrizes
the random surface model in question. These correspond to studying uniformized
surfaces with conical singularities in the classical geometrical setup. An interesting
limiting case in classical geometry are the cusp singularities. In the random setup
this corresponds to the case when the Seiberg bound is saturated. In this paper, we
construct LQFT in the case when the Seiberg bound is saturated which can be seen as
the probabilistic version of Riemann surfaces with cusp singularities. The construction
involves methods from Gaussian Multiplicative Chaos theory at criticality.
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1 Introduction

Two dimensional statistical physics provides a large class of models of discrete
random surfaces (random maps) which are expected to have interesting continuous
surfaces as scaling limits. In physics the study of these objects goes under the name
“2d gravity” and was pioneered by Polyakov [12] and developed in [10]. That approach
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LQFT at the Seiberg bound

seeks a description of the geometry of the two dimensional manifold Σ in terms of a
probability law in a suitable space of Riemannian metrics defined on Σ. Physics dictates
that the law be invariant under the action of the group of diffeomorphisms acting on
Σ. In two dimensions the space of smooth metrics modulo diffeomorphisms is rather
simple: its elements are (equivalence classes of) eσg where σ : Σ→ R and g belongs to a
finite dimensional (moduli) space of metrics. Thus, we are basically seeking a law for a
random field σ on Σ. The proposal of [10] is that this law is given by

µL(dg, dX) = e−SL(X,g)µ0(dg, dX) (1.1)

where µ0 is a “uniform measure” on some space of maps X : Σ→ R and moduli g and
SL is the Liouville action functional

SL(X, g) :=
1

4π

∫
Σ

(
|∇gX|2 +QRgX + 4πµeγX

)
dvg. (1.2)

Here we have written σ = γX where γ ∈ (0, 2) is a parameter determined by the random
surface model and

Q =
2

γ
+
γ

2
. (1.3)

Furthermore we denoted by ∇g, Rg and vg respectively the gradient, Ricci scalar
curvature and volume measure in the metric g. Finally the parameter µ > 0 is called “
cosmological constant”. In [3] we gave a rigorous definition of the measure (1.1) for the
case Σ = S2 which we recall in Section 2.

The action functional (1.2) has a very natural geometric interpretation in terms of
the classical uniformisation theory of Riemann surfaces that goes back to Picard and
Poincaré. The Euler-Lagrange equation for the extrema of SL is given by

− 2∆gX +QRg + 4πµγeγX = 0 (1.4)

where ∆g is the Laplace-Beltrami operator in the metric g. If we replace Q by its
“classical value” Qcl = 2

γ and use the relation Reϕg = e−ϕ(Rg − ∆gϕ) this equation
becomes the Liouville equation

ReγXg = −2πµγ2 (1.5)

stating that the metric eγXg has constant negative curvature. Such metrics are in
correspondence to complex structures on the surface Σ through the uniformizing map
ψ : Σ → H: pullback under ψ of the Poincaré metric on H has constant negative
curvature. Thus LQFT can be seen as a probabilistic extension of this classical theory.

This correspondence works only if the genus of Σ is at least two. On the sphere S2

there are no smooth metrics of constant negative curvature since by the Gauss-Bonnet
theorem the total curvature is positive. Indeed, the action functional SL (1.2) is not
bounded from below as can be seen by taking X = c, a constant. Then by Gauss-Bonnet
theorem

∫
Rgdvg = 8π and we have

SL(g, c) = 2Qc+ 4πµeγc (1.6)

which is not bounded below as c → −∞. This divergence is also present in the LQFT:
the measure (1.1) is not finite and can not be normalized to a probability law [3].

In classical geometry it is known how to obtain a metric with constant negative
curvature almost everywhere on the sphere. The idea is to introduce points that are
sources of curvature in the Liouville equation. To do this pick n points z1, . . . , zn and
weights α1, . . . αn and consider the equation:

−2∆gX +QclRg + 4πµγeγX = 4π
∑
i

αiδzi (1.7)
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LQFT at the Seiberg bound

This equation is formally the Euler-Lagrange equation of the action functional

SL,cl(X, g)−
∑
i

αiX(zi). (1.8)

For a rigorous treatment one needs to regularize and renormalize this functional, see
[15]. Then one finds that the minimizers give rise to the metric eγX(z)g(z) which has
singularities at the points zi. For αi < Qcl i.e. for γαi < 2 this singularity is conical:

eγX(z)g(z) ∼ |z − zi|−γαi (1.9)

and for αi = Qcl the singularity is a cusp

eγX(z)g(z) ∼ (|z − zi| ln |z − zi|)−2 (1.10)

(see Appendix A for a brief introduction to these concepts). For αi > 2/γ solutions do
not exist for integrability reasons. Furthermore for topological reasons (Gauss-Bonnet
theorem) one needs also

∑
i αi > 2Qcl which implies that one needs to introduce at

least three singularities on the sphere to have constant negative curvature in their
complement.

The probabilistic theory has a complete parallel with the classical one with the
important difference being that the parameter Qcl = 2/γ is replaced by the quantum
value (1.3). Then it was shown in [3] that the measure (1.1) with the action (1.8) (suitably
renormalized) has finite mass provided

∑
i αi > 2Q and the mass is nonzero if and only if

αi < Q. This measure can be viewed as a probabilistic theory of metrics with “quantum”
conical singularities on the sphere.

In this paper we will extend this theory to the case of “quantum” cusp singularities
αi = Q thus completing the parallel with classical geometry in the setup of random
surfaces. This extension requires an extra renormalization of the measure compared
to the αi < Q case. It boils down to an analysis of the Gaussian multiplicative chaos
measure in a background measure with density blowing up as |z − zi|−γQ. This in turn
leads to an analysis reminiscent to the analysis of the Critical gaussian multiplicative
chaos [6, 7].

We conclude this introduction by mentioning that LQFT is interesting per se as it is
the first full probabilistic construction of an interacting Conformal Field Theory (CFT for
short) and therefore a natural playground to check the whole formalism of CFTs initiated
in the celebrated paper [2]. The modification of the action functional (1.8) can be viewed
as a correlation function of n random fields:∫ ∏

i

eαiX(zi)dµL (1.11)

These correlation functions of LQFT play a prominent role in understanding models of
statistical physics models on random planar maps. As an example, the reader can find
in appendix A.1 a conjecture on the relationship of these correlation functions of LQFT
to random planar maps, in particular a conjecture describing the scaling limit of the
correlation functions of the spin field of the Ising model on random planar maps. The
case we treat in this paper, i.e. Q-insertions, is especially important for understanding
how to embed conformally onto the sphere random planar maps with spherical topology
weighted by a c = 1 conformal field theory (like the Gaussian Free Field). Indeed, in
the case c = 1, one can formulate the conjecture developed in [3, subsection 5.3] with
γ = 2 and Q = 2: the vertex operators with γ = 2 in [3, conjecture 2] are precisely the
quantum cusps constructed here. Finally we mention that Riemann surfaces with cusp
singularities naturally appear when studying the boundary of the moduli space of higher
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LQFT at the Seiberg bound

genus surfaces. Hence the study of Q-insertions plays a prominent role in establishing
convergence of the partition function of 2d-string theory where integrals over the moduli
space arise (see [8]).

2 Background and main results

This section contains first a brief summary of the construction and properties of the
LQFT carried out in [3] followed by a presentation of our main results and a sketch of
proof.

2.1 GFF and multiplicative chaos

We will view the sphere S2 as the Riemann sphere Ĉ = C∪ {∞}. It can be covered by
two copies of C with coordinates z and z−1. The constant curvature metric is the round
metric, ĝ(z)|dz|2 with

ĝ(z) = 4(1 + z̄z)−2.

The area is
∫
C
ĝ(z)dz = 4π and the scalar curvature Rg := −4g−1∂z̄∂z ln g is constant for

the round metric: Rĝ = 2. Smooth conformal metrics on Ĉ are given by g = eϕĝ where
ϕ(z) and ϕ(1/z) are smooth and bounded. For such metrics the Gauss-Bonnet theorem
holds: ∫

Rg dvg = 8π.

Given a conformal metric on Ĉ we can define the Sobolev space H1(Ĉ, g) with the norm

‖f‖2g :=

∫
(|∂zf |2 + g(z)|f |2)dz.

These norms are equivalent for all continuous conformal metrics and we denote the
space simply by H1(Ĉ). Finally we define H−1(Ĉ) as the dual space and denote the dual
pairing by 〈X, f〉.

The LQFT measure will be defined as a measure on H−1(Ĉ). It will be constructed
using the Gaussian Free Field (GFF) on Ĉ. As is well known the GFF in such a setup is
only defined modulo a constant. For LQFT it is important to include this constant as an
integration variable. In general the GFF is a Gaussian random field whose covariance is
the Green function of the Laplace operator. In our setup the Laplace operator is given
by ∆g = 4g(z)−1∂z̄∂z. Some care is needed here since ∆g is not invertible. Indeed, −∆g

is a non-negative self-adjoint operator on L2(Ĉ, g) (whose inner product we denote by
(f, h)g =

∫
f̄hgdz). It has a point spectrum consisting of eigenvalues λn and orthonormal

eigenvectors en which we take so that λn > 0 except for λ0 = 0 with e0 = 1/‖1‖g. We
define the GFF Xg as the random distribution

Xg(z) =
√

2π
∑
n>0

xn√
λn
en(z) (2.1)

where xn are i.i.d. N(0, 1). In case of the round metric, we will need later the explicit
formula

E[Xĝ(z)Xĝ(z
′)] = Gĝ(z, z

′) = ln
1

|z − z′|
− 1

4
(ln ĝ(z) + ln ĝ(z′)) + ln 2− 1

2
. (2.2)

The random field Xg determines probability measure Pg on H−1(Ĉ) (supported in the
set {u ∈ H−1(Ĉ) : 〈u, 1〉 = 0}). The measure (1.1) is intended to contain also the constant
fields X = c that are absent from the GFF Xg. Therefore we define the measure µGFF
on H−1(Ĉ) by
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∫
F (X)µGFF (dX) =

∫
R

EF (Xg + c)dc (2.3)

Note that µGFF is not a probability measure:
∫
µGFF (dX) =∞.

To define the measure (1.1) the exponential eγX needs definition as the GFF Xg is
not defined pointwise. To do this regularize Xg by the circle average regularization

Xg,ε(x) =
1

2π

∫ 2π

0

Xg(x+ εeiθ) dθ (2.4)

and define the random measure

Mγ,ε(dz) := ε
γ2

2 eγ(Xg,ε(z)+Q/2 ln g(z)) dz. (2.5)

For γ ∈ [0, 2), we have the convergence in probability

Mγ = lim
ε→0

Mγ,ε (2.6)

in the sense of weak convergence of measures. This limiting measure is non trivial and
is an instance of Gaussian multiplicative chaos [9, 13] of the field Xĝ. In particular for
the round metric

Mγ = e
γ2

2 (ln 2− 1
2 ) lim
ε→0

eγXĝ,ε−
γ2

2 E[X2
ĝ,ε] dvĝ. (2.7)

and the total mass Mγ(Ĉ) almost surely finite.

2.2 LQFT measure and correlations functions

We may now give the precise definition of the LQFT measure in (1.1). With no loss
we work with the round metric ĝ from now on. Then

1

4π

∫
QRĝX dvĝ =

1

4π

∫
QRĝ(c+Xĝ) dvĝ = 2Qc

where we used the Gauss-Bonnet theorem and (Xg, 1)g = 0. Since Ĉ has no moduli the
LQFT measure µL will be a measure only on the conformal factor X. We define

µL(dX) = e−2Qce−µe
γcMγ(Ĉ)µGFF (dX) (2.8)

i.e. concretely∫
F (X)µL(dX) =

∫
e−2QcE[F (c+Xĝ)e

−µeγcMγ(Ĉ)]dc := 〈F 〉L. (2.9)

The rigorous definition of the correlation functions (1.11) proceeds also through
regularization. We consider the regularized fields (called vertex operators in the physics
literarture)

Vα,ε(z) = ε
α2

2 eα(c+Xĝ,ε(z)+Q/2 ln ĝ(z)) (2.10)

In [3] it was shown that the limit of their correlation functions

lim
ε→0
〈
∏
i

Vαi,ε(zi)〉L := 〈
∏
i

Vαi(zi)〉L (2.11)

exist if and only if
∑
i αi > 2Q and the limit is non zero if and only if αi < Q for all i.

These conditions are called called the Seiberg bounds [14].
Briefly, the reason of these inequalities is as follows. One can absorb the vertex

operators in (2.11) by an application of the Cameron-Martin transform i.e. by a shift of
the Gaussian field Xĝ → Xĝ +H with

H(z) =
∑
i

αiGĝ(z, zi). (2.12)
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This leads to

〈
∏
i

Vαi(zi)〉L = K(z)

∫
R

e(
∑
i αi−2Q)cE

[
e−µe

γc
∫
eγHdMγ

]
dc (2.13)

with K(z) an explicit function of the points (zi)i and of their weights (αi)i. The first
inequality

∑
i αi > 2Q is needed for the convergence of the c-integral as c→ −∞. Note

the analogy with the classical result (1.6). For the second inequality αi < Q we note that
due to the logarithmic singularity of the Green function Gĝ the integrand eγH(z) blows
up as |z − zi|−αiγ when z → zi. By analyzing the modulus of continuity of the Gaussian
multiplicative chaos measure it was shown in [3] that

∫
eγHdMγ is a.s. finite if and only

if αi < Q. It was further proved in [3] that, provided that the Seiberg bounds hold, the
probability measures on H−1(Ĉ)

Pα,z,ε := 〈
∏
i

Vαi,ε(zi)〉−1
∏
i

Vαi,ε(zi)µL(ĝ, dX) (2.14)

converge to a probability measure Pα,z as ε→ 0.
The Riemann sphere Ĉ has a nontrivial automorphism group SL(2,C) which acts as

Möbius transformations ψ(z) = az+b
cz+d . By a simple change of variables the classical action

functional with Q = Qcl = 2/γ) satisfies

SL(X ◦ ψ−1, ĝ) = SL(X +
Q

2
ϕ, ĝ)

where ϕ = |ψ′|2ĝ◦ψ/ĝ. This Möbius covariance is inherited by the Liouville QFT measure:
one has ∫

F (X ◦ ψ)dµL =

∫
F (X −Q ln |ψ′|)dµL

for F ∈ L1(µL). One can view this non-compact symmetry group of the measure µL as
another indication of the fact that it is not normalizable.

The Seiberg bounds
∑
i αi > 2Q and αi < Q lead to the conclusion that to have

a nontrivial correlation function of vertex operators one needs at least three of them.
This is in complete analogy with classical geometry as discussed in the Introduction.
Note that fixing three points on the sphere removes also the SL2(2,C) symmetry. In
this light it comes as no surprise that the Liouville 2-point correlation functions are not
defined: fixing two points on the sphere leaves us the non compact symmetry group
of dilations. In [5] two-point quantum spheres are constructed in a quotient space of
random measures modulo rotations and dilations. The approach is complementary to
ours as it is concerned with a different object, see however [1] for a precise link between
the two approaches.

2.3 Main results

Now we describe our main results, which extend the analysis of [3] to the case of
vertex operators eQX with weight Q giving rise to quantum cusps. In fact, from now
on, we will use a slightly different regularization for the correlation functions than in
(2.11). Namely, we will regularize simultaneously the vertex operators (2.10) and the
measure µL defined by (2.9). Furthermore we will define our objects in the case of a
general metric g conformally equivalent to the round metric. So we set

Πα,z,ε :=

∫ ∏
i

Vαi,ε(zi)µ
ε
L(g, dX) (2.15)
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where the vertex operators Vαi,ε(zi) are defined by (2.10) (with g in place of ĝ) and the
measure µεL(g, ·) is defined by

µεL(g, dX) := e−
Q
4π

∫
QRg(c+Xg) dvg−µeγcMγ(Dε)µGFF (dX) (2.16)

where Dε is the complement of the union of the ε radius balls centered at those i with
αi = Q. In the same spirit as (2.14), we further consider the probability measures

Pα,z,ε := Π−1
α,z,ε

∏
i

Vαi,ε(zi)µ
ε
L(g, dX). (2.17)

As explained above, it was proved in [3] that Πα,z = limε→0 Πα,z,ε = 0 when one of the
αi is greater or equal to Q. However, an extra renormalization term suffices to obtain a
nontrivial limit:

Theorem 2.1. Let
∑
i αi > 2Q and αi ≤ Q with exactly k of the αi equal to Q. Then the

limit
lim
ε→0

(− ln ε)
k
2 Πα,z,ε := Πα,z (2.18)

exists and is strictly positive. Moreover, the limit

lim
ε→0

Pα,z,ε := Pα,z (2.19)

exists in the sense of weak convergence of measures on H−1(Ĉ).

This theorem means that the vertex operator eQX needs an additional factor (− ln ε)
1
2

for its normalization in addition to the ε
α2

2 used for α < Q. An important ingredient in
the proof of convergence (2.18) is to show that the limit agrees (up to a multiplicative
constant) with the one constructed with the derivative vertex operator

ṼQ,ε(z) = − d

dα
Vα,ε(z)|α=Q

= −(Q ln ε+ c+Xg,ε +
Q

2
ln g)VQ,ε(z). (2.20)

Let Π̃α,z,ε be the correlation function where for αi = Q we use ṼQ,ε(z) instead of VQ,ε(z).
Then

Theorem 2.2.
lim
ε→0

Π̃α,z,ε = (
π

2
)
k
2 Πα,z. (2.21)

The convergence (2.19) extends to functions of the chaos measure. Let Eα,z,ε denote
expectation with respect to Pα,z,ε and let F = F (X, ν) be a bounded continuous function
on H−1(Ĉ) ×M(Ĉ) where M(Ĉ) denotes the set of Borel measures on Ĉ. Define the
Liouville measure

Z := eγcMγ (2.22)

and the Liouville field
φ := c+Xg +

Q

2
ln g. (2.23)

Then

Theorem 2.3. With the assumptions of Theorem 2.1, Eα,z,εF (φ,Z) converges as ε→ 0

to a limit Eα,zF (φ,Z) which is conformally covariant, namely

Eα,zF (φ,Z) = Eα,ψ(z)F (φ ◦ ψ +Q ln |ψ′|, Z ◦ ψ)

for all conformal automorphisms ψ of the sphere, and independent of g in the conformal
equivalence class [g]. Moreover, the law of Z(Ĉ) under Pα,z is given by the Gamma
distribution

Eα,zF (Z(Ĉ)) =
µ
σ
γ

Γ(σγ )

∫ ∞
0

F (y)y
σ
γ−1e−µy dy, σ :=

∑
i

αi − 2Q (2.24)
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and the law of the random measure Z(·)/A conditioned on Z(Ĉ) = A does not depend on
A.

Remark 2.4. The correlation functions Πα,z have the same properties as in the αi < Q

case proven in [3]: conformal covariance, Weyl covariance and KPZ scaling. Since
the statements are identical we refer the reader to [3] recalling here only the KPZ
formula for the µ-dependence:

Πα,z = µ
2Q−

∑
i αi

γ Πα,z|µ=1.

Remark 2.5. With some extra work it should be possible to prove that the measures
Pα,z with αi < Q for all i = 1, . . . n converge as αi ↑ Q, i = 1, . . . k to the Pα,z constructed
in this paper by proving that

lim
αi↑Q

k∏
i=1

(Q− αi)−1Πα,z (2.25)

has a limit. We leave that question as an open problem.

Remark 2.6. It is natural to ask about the convergence of the quantum laws Pα,z to the
classical solutions of the Liouville equation i.e. the semiclassical limit γ → 0. For this,
let us take, for i = 1, . . . , k αi = Q and for i > k

αi =
χi
γ

with χi < 2 and µ = µ0

γ2 for some constant µ0 > 0. Then we conjecture that the law
of γX under Pα,z converges towards the minimizer of equation (1.7) which has cusp
singularities at zi, i ≤ k and conical ones at the remaining zi. The case of conical
singularities was treated in [11] in the setup where Ĉ is replaced by the unit disc.

2.4 Strategy of proof

We will now sketch the main ideas of the proof. We have to control the correlation
function (2.15) as ε→ 0 when at least one αi = Q. We may assume g is the round metric
ĝ.

First of all, notice that the condition for the convergence of the c-integral remains
the same, namely

∑
i αi > 2Q. Second, as explained above a Cameron-Martin transform

reduces the analysis of (2.15) to the quantity

Πα,z,ε = Kε(z)

∫
R

e(
∑
i αi−2Q)cE

[
e−µe

γc
∫
Dε

eγHεdMγ

]
dc (2.26)

with
Hε(z) =

∑
i

αiGg,ε(z, zi). (2.27)

where Gg,ε is a regularization of the covariance of the GFF and Kε(z) converges as ε→ 0

to K(z) of (2.13). Locally around zi,

eγHε(z) � 1

(|z − zi| ∨ ε)γαi
.

The crucial point is thus to determine whether this singularity is integrable in the limit
ε→ 0 with respect to the measure Mγ(dz). Multifractal analysis of the chaos measure
shows that this is the case if and only if αi < Q [3]. Let us see this in more detail to
understand how to proceed when αi = Q. Since the problem is local consider the integral
for α ≤ Q
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Iα,z,ε =

∫
R

e(
∑
i αi−2Q)cE

[
e−µe

γc
∫
Cε

1
|z|γα dMγ

]
dc. (2.28)

where Cε stands for the annulus {z ∈ C; ε ≤ |z| ≤ 1}. We use a well known decomposition
of the GFF to a “radial” and “angular” part to write the Chaos measure. The radial part
of the GFF, defined by

Xĝ,r :=
1

2π

∫
Xĝ(re

iθ)dθ

is a Brownian motion in time t = ln r−1 starting at time zero from Xĝ,1, up to an
independent Gaussian random variable of O(1) variance. Changing to polar coordinated,
this leads to the following expression for the chaos integral∫

Cε

1

|x|γα
Mγ(dx) =

∫ − ln ε

0

∫ 2π

0

eγBt−γ(Q−α)t µY (dt, dθ)

where µY (dt, dθ) is a chaos measure encoding the angular contribution of the angular
part of the GFF and independent of the process Bt (see Lemma 4.3). The measure µY
requires some care but in order to understand the behavior as ε → 0 it suffices here
to consider a simplified problem where we replace it by the Lebesgue measure dt and
consider the behaviour of

Iε :=

∫
R

e(
∑
i αi−2Q)cE

[
e−µe

γc
∫− ln ε
0

eγBt−γ(Q−α)t dt
]
dc. (2.29)

as ε→ 0. Clearly, when α < Q, the drift term in the Brownian motion takes it all making
the integral in the exponential converges, hence Iε has a non trivial limit. When α = Q,
the drift term vanishes so that the integral

∫ − ln ε

0
eγBt dt diverges to +∞ and Iε goes to

0 as ε → 0. The main idea is that the leading asymptotics for this integral will come
from the Brownian paths such that

∫∞
0
eγBu du <∞, which is an event of probability 0

for the Brownian motion. Hence a proper renormalization of this integral will require a
conditioning on the event {

∫∞
0
eγBu du <∞}, which is the same as conditioning on those

paths such that {supu≥0Bu <∞}. Having this picture in mind, it is natural to partition
the probability space with the sets

A(n, ε) = { sup
u≤− ln ε

Bu ∈]n− 1, n]}

for n ≥ 1. We can then expand Iε =
∑
n≥1 I

n
ε with

Inε :=

∫
R

e(
∑
i αi−2Q)cE

[
1A(n,ε)e

−µeγc
∫− ln ε
0

eγBu du
]
dc.

On A(n, ε), the integral
∫ − ln ε

0
eγBu du ∼ eγn and we get

Inε ∼ P(A(n, ε))

∫
R

e(
∑
i αi−2Q)c−µeγ(c+n)

dc ≤ CP(A(n, ε))e−(
∑
i αi−2Q)n.

An elementary estimate on Brownian motion gives P(A(n, ε)) ≤
√

2/π n
(− ln ε)1/2

so that

the series
∑
n(− ln ε)1/2Inε is dominated by an absolutely convergent series, uniformly

with respect to ε ∈]0, 1]. We can thus invert the limits and get

lim
ε→0

(− ln ε)1/2Iε = lim
n→∞

lim
ε→0

Jnε (2.30)

with

Jnε := (− ln ε)1/2

∫
R

e(
∑
i αi−2Q)cE

[
1B(n,ε)e

−µeγc
∫− ln ε
0

eγBu du
]
dc

where we defined
B(n, ε) = ∪nk=1A(k, ε) = { sup

u≤− ln ε
Bu ∈]0, n]}.
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To determine the limit in the right-hand side of (2.30), the first step is to show that
one can find a family hε such that hε →∞, hε/(− ln ε)→ 0 and

lim
ε→0

Jnε = lim
ε→0

(− ln ε)1/2

∫
R

e(
∑
i αi−2Q)cE

[
1B(n,ε)e

−µeγc
∫ hε
0

eγBu du
]
dc. (2.31)

The reason why one can find such a family hε is that conditioning the Brownian motion
on not exceeding n will force it on going to −∞ with a speed making the integral∫∞

0
eγBu du finite. To compute the integral in the right-hand side in (2.31), we use the

Markov property of the Brownian motion. Let Ft be the sigma algebra generated by the
Brownian motion up to time t. Then this integral can be estimated by

(− ln ε)1/2

∫
R

e(
∑
i αi−2Q)cE

[
1B(n,hε)E[1B(n,ε)|Fhε ]e−µe

γc
∫ hε
0

eγBu du
]
dc.

Once again, a standard computation related to the supremum of the Brownian motion
shows that

E[1B(n,ε)|Fhε ] ∼
√

2/π
n− bhε

(− ln ε− hε)1/2
.

Plugging this relation into the expression of Jnε , we deduce that

lim
ε→0

Jnε = lim
ε→0

√
2/π

∫
R

e(
∑
i αi−2Q)cE

[
(n−Bhε)1B(n,hε)e

−µeγc
∫ hε
0

eγBu du
]
dc.

It turns out that, under the probability measure dP̃ = 1
n (n−Bhε)1B(n,hε) (with expectation

Ẽ), the process βt = n − Bt is a 3d-Bessel process. Rewriting the above integral, we
obtain

lim
ε→0

Jnε = lim
ε→0

√
2/π n

∫
R

e(
∑
i αi−2Q)cẼ

[
e−µe

γ(c+n)
∫ hε
0

e−γβu du
]
dc

=
√

2/π n

∫
R

e(
∑
i αi−2Q)cẼ

[
e−µe

γ(c+n)
∫ hε
0

e−γβu du
]
dc.

As a Bessel process βt goes to∞ as t→∞ roughly at speed
√
t, the integral

∫ hε
0
e−γβu du

converges P̃-almost surely towards
∫∞

0
e−γβu du. This explains the convergence of

(− ln ε)1/2Iε towards a non trivial limit as ε→ 0. The main lines of our proof follows the
thread of this heuristic.

3 Partition of the probability space

The singularity at the Q-insertions will be studied by partitioning the probability
space according to the maximum of the circle average fields around them. As we will see
this is a local operation and it will suffice to consider the case with only one Q-insertion,
say α1 = Q, αi < Q, i > 1. We may also assume that the Q-insertion is located at
z1 = 0 and, for notational convenience, we further assume that the other zi are in the
complement of the disc B(0, 1). Also, we will work from now on with the round metric ĝ;
the general case g = eφĝ is treated as in [3].

Recalling the definitions (2.16) and (2.15) we need to study

Πα,z,ε(F ) =

∫
R

eσcE
[
F (c+Xĝ)

∏
i

Vzi,αi,ε(zi)e
−µeγcMγ(Dε)

]
dc (3.1)

where we use throughout the paper the notation

σ :=
∑
i

αi − 2Q (3.2)
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as in (2.24) and Dε := C \B(z1, ε). We have then

Ez,α,εF = Πα,z,ε(F )/Πα,z,ε(1). (3.3)

It will be convenient to replace the GFF Xĝ with the GFF X0 with vanishing mean on the
circle

X0 := Xĝ −mC(Xĝ), with mC(Xĝ) :=
1

2π

∫ 2π

0

Xĝ(e
iθ) dθ,

which is more adapted to the local analysis around 0, as its covariance kernel

G0(x, y) = ln
1

|x− y|
+ ln |x|1{|x|≥1} + ln |y|1{|y|≥1}, (3.4)

is of exact log type in the ball B(0, 1), hence facilitates the analysis around 0. The
replacement can be performed by making the change of variables c→ c−mC(Xĝ) in the
expression (3.1) to get

Πα,z,ε(F ) =

∫
R

eσcE
[
e−σmC(Xĝ)F (c+X0)

∏
i

Vzi,αi,ε(zi)e
−µeγcM0

γ(Dε)
]
dc (3.5)

where

M0
γ (dz) := lim

ε→0
ε
γ2

2 eγ(X0,ε(z)+
Q
2 ln ĝ(z)) dz = eγX0(z)− γ

2

2 E[X2
0 (z)](|z| ∨ 1)γ

2

ĝ(z)
γQ
2 dz,

and the vertex operators Vzi,αi,ε(zi) are defined as in (2.10) with Xĝ replaced by X0. The
Cameron-Martin argument then gives Πα,z,ε(F ) = Kε(z)Aε(F ) with

Aε(F ) =

∫
R

eσcE
[
F (c+X0 +H0

ε )e−µe
γc

∫
Dε

eγH
0
ε dM0

γ

]
dc. (3.6)

where

H0
ε (z) =

∑
i

αi

∫ 2π

0

G0(zi+εeiθ, z)
dθ

2π
−σ( 1

2 ln(1+ |z|2)− ln |z|1{|z|≥1})+σ 1
2 (ln 2−1) (3.7)

and Kε(z) (the variance of the Cameron-Martin transform) converges to some explicit
K as ε → 0; we do not write the explicit expression for K as we do not need it in the
following. The sum over i comes from the shift of the vertex operators Vzi,αi,ε(zi) in (3.5)
and the remaining part from the shift induced by e−σmC .

Similarly for the derivative vertex operator (2.20) we get

Π̃α,z,ε(F ) = −Kε(z)

∫
R

eσcE
[
F (c+X0 +H0

ε )(Q ln ε+ H̃0
ε + c+X0,ε(z1)

+
Q

2
ln ĝ(z1))e−µe

γc
∫
Dε

eγH
0
ε dM0

γ

]
dc. (3.8)

where

H̃0
ε =

∑
i

αi

∫ 2π

0

∫ 2π

0

G0(z1 + εeiθ2 , zi + εeiθ2)
dθ1
2π

dθ2
2π
. (3.9)

Using (3.4) we see that the Q ln ε singularity in (3.8) is cancelled by the one in the
i = 1 term in (3.9) so that Q ln ε + H̃ε + Q

2 ln g(z1) is bounded uniformly in ε. Since

Πz,α,ε(F )→ 0 as ε→ 0 ([3]) we conclude that the limit, if it exits, of Π̃z,α,ε(F ) equals the
limit of Kε(z)Ãε(F ) where

Ãε(F ) =

∫
R

eσcE
[
F (c+X0,ε +H0

ε )(−c−X0,ε(z1))e−µe
γc

∫
Dε

eγH
0
ε dM0

γ

]
dc. (3.10)

Hence Theorems 2.1 and 2.2 follow if we prove
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Proposition 3.1. Let F be bounded and continuous on H−1(Ĉ). Then the following
limits

A(F ) = lim
ε→0

(− ln ε)
1
2Aε(F ) =

√
2/π lim

ε→0
Ãε(F ) (3.11)

exist and A(1) > 0.

Now we partition the probability space according to the values of the maximum of
the mapping u 7→ X0,u(z1) over u ∈ [ε, 1]. So we set

Mn,ε =
{

max
u∈[ε,1]

X0,u(z1) ∈ [n− 1, n]
}
, n ≥ 1, (3.12)

M0,ε =
{

max
u∈[ε,1]

X0,u(z1) ≤ 0
}
., (3.13)

and we expand the integral Aε(F ) along the partition made up of these sets (Mn,ε)n:

Aε(F ) =
∑
n≥0

∫
R

eσcE
[
1Mn,εF (c+X0 +H0

ε )e−µe
γc

∫
Dε

eγH
0
ε dM0

γ

]
dc :=

∑
n≥0

Aε(F, n). (3.14)

For Ãε(F ) we write

Ãε(F ) =
∑
n≥0

(Ãε(F, n) +Bε(F, n))

with

Ãε(F, n) =

∫
R

eσcE
[
1Mn,ε

(
n−X0,ε(z1)

)
F (c+X0 +H0

ε )e−µe
γc

∫
Dε

eγH
0
ε dM0

γ

]
dc (3.15)

and

Bε(F, n) = −
∫
R

eσcE
[
1Mn,ε(n+ c)F (c+X0 +H0

ε )e−µe
γc

∫
Dε

eγH
0
ε dM0

γ

]
dc. (3.16)

Note that Ãε(F, n) ≥ 0 for F ≥ 0. We prove

Lemma 3.2. Let F be bounded and continuous on H−1(Ĉ). Then for all n ≥ 0 the limits

A(F, n) = lim
ε→0

(− ln ε)
1
2Aε(F, n) =

√
2/π lim

ε→0
Ãε(F, n). (3.17)

exist and A(1, n) > 0. Moreover∑
n≥0

sup
ε∈]0,1]

(− ln ε)
1
2Aε(1, n) <∞ (3.18)

∑
n≥0

sup
ε∈]0,1]

Ãε(1, n) <∞ (3.19)

∑
n≥0

Bε(F, n)→ 0, as ε→ 0. (3.20)

Proposition 3.1 then follows from Lemma 3.2 since limε→0Aε(F, ε) =
∑
A(F, n) follows

from (3.17) and (3.18) by the dominated convergence theorem, similarly for Ã. The
remaining part of this paper is devoted to proving this lemma.

4 Decomposition of the GFF and chaos measure

We denote by Fδ (δ > 0) the sigma-algebra generated by the field X0 “away from the
disc B(0, δ)”, namely

Fδ = σ{X0(f); supp f ∈ B(0, δ)c}. (4.1)

F∞ stands for the sigma algebra generated by
⋃
δ>0 Fδ.

First we collect a few old and classical observations (see [3, 5, 13] for more on this)
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Lemma 4.1. For all δ > 0, the process

t 7→ X0,δe−t(0)−X0,δ(0)

evolves as a Brownian motion independent of the sigma algebra Fδ.
The following decomposition of the field X0 will be useful for the analysis (this

observation was already made in [5])

Lemma 4.2. The field X0 may be decomposed (recall that the fields we consider are
understood in terms of distributions in the sense of Schwartz)

X0(z) = X0,|z|(0) + Y (z) (4.2)

where the process r ∈ R∗+ 7→ X0,r(0) is independent of the field Y (z). The latter has the
following covariance

E[Y (z)Y (z′)] = ln
|z| ∨ |z′|
|z − z′|

Proof. From (3.4) we get using rotational invariance E[X0(z)X0,|z′|(0)] =

E[X0,|z|(0)X0,|z′|(0)], which in turn leads to independence:

EX0(z)X0(z′) = EX0,|z|(0)X0,|z′|(0) + EY (z)Y (z′).

Furthermore we calculate

E[Y (z)Y (z′)] = G0(z, z′)− 1

4π2

∫ 2π

0

∫ 2π

0

G0(|z|eiu, |z′|′eiv)dudv.

The claim follows from 1
4π2

∫ 2π

0

∫ 2π

0
G0(|z|eiu, |z′|′eiv)dudv = ln 1

|z|∨|z′| + ln |z|1{|z|≥1} +

ln |z′|1{|z′|≥1}.

Now, we get the decomposition

M0
γ (dz) = ĝ(z)

γQ
2 |z|

γ2

2 eγX0,|z|(0)M0
γ (dz, Y )

where Mγ(dz, Y ) is the multiplicative chaos measure of the field Y with respect to the
Lebesgue measure λ (i.e. EMγ(dz, Y ) = λ(dz)).

We will now make change of variables z = e−s+iθ, s ∈ R+, θ ∈ [0, 2π) and let µY (ds, dθ)

be the multiplicative chaos measure of the field Y (e−s+iθ) with respect to the measure
dsdθ. We will denote by xs the process

s ∈ R+ → xs := X0,e−s(0).

We have arrived at the following useful decomposition of the chaos measure around
z1 = 0:

Lemma 4.3. On the ball B(0, 1) we have the following decomposition of the measure
Mγ : ∫

A

1

|x|γQ
M0
γ (dx) =

∫ ∞
0

∫ 2π

0

1A(e−seiθ)eγxs ĝ(e−s)
γQ
2 µY (ds, dθ)

for all A ⊂ B(0, 1) where µY (ds, dθ) is a measure independent of the whole process
(xs)s≥0. Furthermore, for all q ∈]−∞; 4

γ2 [, we have

sup
a>0

E
[( ∫ a+1

a

∫ 2π

0

eγ(xs−xa)µY (ds, dθ)
)q]

< +∞. (4.3)

EJP 22 (2017), paper 93.
Page 13/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP113
http://www.imstat.org/ejp/


LQFT at the Seiberg bound

Proof. We have for 0 ≤ q < 4
γ2

E
[( ∫ a+1

a

∫ 2π

0

eγ(xs−xa)µY (ds, dθ)
)q]

≤ (2π)qE
[
eqγ supσ∈[0,1](xa+σ−xa)

]
E
[
µY ([a, a+ 1]× [0, 2π])q

]
= (2π)qE

[
eqγ supσ∈[0,1](xa+σ−xa)

]
E
[
µY ([0, 1]× [0, 2π])q

]
,

by stationarity of (s, θ) ∈ R∗+ × [0, 2π] 7→ Y (e−seiθ). By Lemma 4.1 the first exponent is
Brownian motion and hence the expectation is bounded uniformly in a. From Gaussian
multiplicative chaos theory [13, Theorem 2.11], we have finiteness of the quantity

E
[
µY ([0, 1]× [0, 2π])q

]
<∞, hence we get (4.3). For q < 0, this is the same argument by

replacing supσ∈[0,1](xa+σ−xa) by minσ∈[0,1](xa+σ−xa) and using [13, Theorem 2.12].

It will be useful in the proofs to introduce for all a ≥ 1 the stopping times Ta defined
by

Ta = inf{s; xs ≥ a− 1}, (4.4)

and we denote by GTa the associated filtration. We have the following analog of (4.3)
with stopping times

Lemma 4.4. For all q ≤ 0, n ≥ 1,

E
[( ∫ Tn

Tn−1

∫ 2π

0

eγ(xs−xTn−1
)µY (ds, dθ)

)q]
<∞. (4.5)

Proof. Using the independence of the processes xr and Y , Lemma 4.1 and stationarity
of Y (s, θ) in s we see that (4.5) is equivalent to proving

E
[( ∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

<∞. (4.6)

where β is a Brownian motion independent of Y and τ = inf{s;βs ≥ 1}. We have (recall
that q ≤ 0)

E
[( ∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]
≤ E

[
1τ≤1

(∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

+ E
[( ∫ 1

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

The second term is bounded by Lemma 4.3. The first one equals∑
k≥1

E
[
11/2k+1<τ≤1/2k

(∫ τ

0

∫ 2π

0

eγβsµY (ds, dθ)
)q]

≤
∑
k≥1

E
[
11/2k+1<τ≤1/2k

(∫ 1/2k+1

0

∫ 2π

0

eγβrµY (dr, dθ)
)q]

≤
∑
k≥1

P(1/2k+1 < τ ≤ 1/2k)1/2E
[( ∫ 1/2k+1

0

∫ 2π

0

eγβrµY (dr, dθ)
)2q]1/2

≤
∑
k≥1

P(1/2k+1 < τ ≤ 1/2k)1/2E
[
e2qγ sup

σ∈[0,2−k−1]
β(σ)

] 1
2

E
[
µY ([0, 2−k−1]× [0, 2π])2q

] 1
2

≤ C
∑
n≥1

e−c2
n

E
[
µY ([0, 2−k−1]× [0, 2π])2q

] 1
2

.
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≤ C
∑
n≥1

e−c2
n

E
[
µY ([0, 2−k−1]× [0, 2−k−1])2q

] 1
2

.

One can find some constant C > 0 such that the covariance E[Y (e−seiθ)Y (e−s
′
eiθ
′
)] is

bounded by ln 1
|seiθ−s′eiθ′ | + C hence by Kahane’s convexity inequality [13, Theorem 2.1]

one gets the existence of some constant C > 0 such that

E
[
µY ([0, 2−n−1]× [0, 2−n−1])q

]
≤ C 1

2nξ(−q)
,

with ξ(−q) = −(2 + γ2

2 )q−γ2 q
2

2 . Hence
∑
n≥1 e

−c2nE
[
µY ([0, 2−n−1]× [0, 2−n−1])2q]

1
2 <∞,

which concludes the proof.

Now let us consider the martingale (fnε )ε∈]0,1] defined by

fnε = 1{
minu∈[ε,1] n−xln 1

u
≥0
}(n− xln 1

ε
). (4.7)

The martingale property of (fnε )ε∈]0,1] is classical: it results from Lemma 4.1 as well as
the optional stopping theorem. We can define for each ε ∈]0, 1] a probability measure on
Fε by

Θn
ε =

1

E[fnε ]
fnε dP,

where one has the following bound E[fnε ] = E[fn1 ] ≤ n+C for some constant C. Because
of Lemma 4.1 and the martingale property of the family (fnε )ε∈]0,1], it is plain to check
that these probability measures are compatible in the sense that, for ε′ < ε

Θn
ε′ |Fε = Θn

ε . (4.8)

By Caratheodory’s extension theorem we can find a probability measure Θn on F∞ such
that for all ε ∈]0, 1]

Θn|Fε = Θn
ε . (4.9)

We denote by EΘn the corresponding expectation.
Recall the following explicit law of the Brownian motion conditioned to stay positive

Lemma 4.5. Under the probability measure Θn, the process

t 7→ n− xt

evolves as a 3d-Bessel process starting from n − x0 where x0 is distributed like X0,1

(under P) conditioned to be less or equal to n.

We will sometimes use the following classical representation: under Θn, the process
t 7→ n− xt is distributed like |n− x0 +Bt| where Bt is a standard 3d Brownian motion
starting from 0 (here, we identify n− x0 with (n− x0)(1, 0, 0)).

5 Construction of the derivative Q-vertex

In this section, we prove the claims in Lemma 3.2 concerning Ãε. We register here a
simple Lemma on Brownian motion that is used repeatedly and whose proof is elementary
and left to the reader:

Lemma 5.1. Let B be a standard real valued Brownian motion. We have for β > 0

P(sup
u≤t

Bu ≤ β) =

√
2

π

∫ β√
t

0

e−
u2

2 du ≤
√

2

π

β√
t
.
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5.0.1 Proof of (3.20)

From (3.16) we get

|Bε(F, n)| ≤C
∫
R

eσcE
[
1Mn,ε

|n+ c|e−µe
γc

∫
Dε

eγH
0
ε dM0

γ

]
dc. (5.1)

Recall that |zi| > 1 for i ≥ 2. Then, recalling (3.7) and (3.4) we get for ε ≤ |z| ≤ 1

eγH
0
ε (z) ≥ C|z|−γQ. (5.2)

By Lemma 4.3, we get

|Bε(F, n)| ≤C
∫
R

eσcE
[
1Mn,ε

|n+ c|e−Cµe
γc

∫ ln 1
ε

0 eγxr µY (dr)
]
dc, (5.3)

where µY (dr) is the measure defined by µY (dr) =
∫ 2π

0
µY (dr, dθ).

Below, we want to show that the integral in the exponential term above carries a big
amount of mass, and we will look for this mass at some place where the process r 7→ xr
takes on values close to its maximum, which is between n− 1 and n on the set Mn,ε. To
locate this place, we use the stopping times Tn−1 and Tn defined by (4.4) which are finite
and belong to [0, ln 1

ε ] on Mn,ε. We deduce

|Bε(F, n)| ≤C
∫
R

eσcE
[
1Mn,ε

|n+ c|e−µe
γcCeγ(n−1)In

]
dc

where we have set

In =

∫ Tn

Tn−1

eγ(xr−xTn−1
) µY (dr). (5.4)

By making the change of variables y = eγ(c+n)In, we get

Bε(F, n) ≤Ce−nσ
∫ ∞

0

y
σ
γ−1(1 + | ln y|)e−µCe

−γy dyE
[
1Mn,ε

(1 + | ln In|)I
−σγ
n

]
.

Then we bound

E
[
1Mn,ε

(1 + | ln In|)I
−σγ
n

]
≤ P(Mn,ε)

1/2E
[
1Mn,ε

(1 + | ln In|)2I
− 2σ
γ

n

] 1
2

.

Hence, by Lemma 4.4 we conclude

B(F ; ε, n) ≤Ce−nσP(Mn,ε)
1/2.

The claim (3.20) then follows by the dominated convergence theorem since for each
fixed n, the probability P(Mn,ε) goes to 0 as ε goes to 0 (see Lemma 5.1).

5.0.2 Proof of (3.19)

Proceeding as in the proof of (3.20) we get

Ãε(1, n) ≤ Ce−nσE
[
1Mn,ε

(n− xln 1
ε
)I
−σγ
n

]
,

where In is as in (5.4). Now, we have

E[1Mn,ε(n− xln 1
ε
)|FTn ∨ σ(Y )] = E[1min

s∈[0,ln 1
ε
]
(n−xs)≥0(n− xln 1

ε
)|FTn ∨ σ(Y )]1Tn≤ln 1

ε

= 1mins∈[0,Tn](n−xs)≥0(n− xTn)1Tn≤ln 1
ε

= 1mins∈[0,Tn](n−xs)≥01Tn≤ln 1
ε

so that
Ãε(1, n) ≤ Ce−nσE I−

σ
γ

n ≤ Ce−nσ.
from which the estimate (3.19) follows.
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5.0.3 Proof of the first part of (3.17), i.e. the existence of limε→0 Ãε(F, n)

Now, we need to establish the existence and non triviality of the limit of Ãε(F, n), i.e.
one part of (3.17). Since H0

ε converges in H−1(Ĉ) towards H0, it suffices to study the
convergence and non triviality of the limit for F = 1 and fixed n. We claim that this
will result from the convergence in probability of the quantity

∫
Dε
eγH

0
ε dM0

γ under the
probability measure Θn towards a non trivial limit. To see this, make the change of
variables y = eγc

∫
Dε
eγH

0
ε dM0

γ to get∫
eσcE

[
1Mn,ε

(n− xln 1
ε
)e−µe

γc
∫
Dε

eγH
0
ε dM0

γ

]
dc

=γ−1E[fn1 ]

∫ ∞
0

y
σ
γ−1e−µy dy × EΘn

[
1Mn,ε

(∫
Dε

eγH
0
ε dM0

γ

)−σγ ]
.

Under the probability measure Θn the process t 7→ (n− xt) is a 3d Bessel process hence
mins∈[0,ln 1

ε ](n − xs) converges almost surely to a finite random variable as ε goes to 0

and therefore 1Mn,ε
converges to 1maxs∈[0,∞](xs)∈[n−1,n].

Take any non empty closed ball B of R2 containing no insertions zi. Then supεH
0
ε is

bounded in B and thus (∫
Dε

eγH
0
ε dM0

γ

)−σγ ≤ CM0
γ (B)−

σ
γ .

Let δ > 0 be such that B ⊂ B(0, δ)c. Then

EΘn
[
M0
γ (B)−

σ
γ

]
≤ C(n+ 1)−1E[fnδM

0
γ (B)−

σ
γ ] ≤ C(n+ 1)−1E[(fnδ )2]

1
2E
[
Mγ(B)−

2σ
γ ]

1
2 .

Because GMC admits moments of negative order [13, theorem 2.12], the last expectation
is finite. Hence the dominated convergence theorem entails that to prove our claim it is
enough to establish the convergence in probability of the quantity

∫
Dε
eγH

0
ε dM0

γ under

the probability measure Θn towards a non trivial limit. Because M0
γ is a positive measure

and because of the bound (5.2), this is clearly equivalent to the finiteness under Θn of
the quantity

∫
R2 e

γH0

dM0
γ . Outside of the ball B(0, 1), the finiteness results from the

fact that
∫
D1
eγH

0

dM0
γ < ∞ under P (see see [3, proof of Th. 3.2]), and the absolute

continuity of Θn with respect to P when restricted to F1. The main point is thus to
analyze the integrability inside the ball B(0, 1). It is clearly enough to show∫

B(0,1)

1

|x|γQ
dM0

γ <∞, a.s. under Θn. (5.5)

This follows from the following Lemma 5.2:

Lemma 5.2. The measure M0
γ satisfies

EΘn
[ ∫

B(0,1)

1

|x|γQ
M0
γ (dx)

]
<∞. (5.6)

Proof. Under the measure Θn, the process t 7→ n − xt is distributed like |n − x0 + Bt|
where Bt is a standard 3 dimensional Brownian motion (here, we identify n − x0 with
(n− x0)(1, 0, 0)). We suppose the Brownian motion lives on the same probability space.
Then, if N denotes a standard 3d Gaussian variable (under some expectation we will
also denote E), we have
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EΘn
[ ∫

B(0,1)

1

|x|γQ
M0
γ (dx)

]
≤ CEΘn

[ ∫ ∞
0

∫ 2π

0

eγxr µY (dr, dθ)
]

= CeγnEΘn
[ ∫ ∞

0

∫ 2π

0

e−γ|n−x0+Br| µY (dr, dθ)
]

= CeγnEΘn
[ ∫ ∞

0

e−γ|n−x0+Br| dr
]

≤ Ce2γnE [eγ|x0|]EΘn
[ ∫ ∞

0

e−γ|Br| dr
]

= Ce2γnE
[ ∫ ∞

0

e−γ
√
r|N | dr

]
,

= Ce2γn(

∫ ∞
0

e−γ
√
r dr)E

[ 1

|N |2
]
<∞.

6 Renormalization of the Q-vertex operators

6.1 Proof of (3.18)

Using (5.2) and proceeding as for (5.3) we get

Aε(1, n) ≤C
∫
R

eσcE
[
1Mn,ε

exp
(
− µeγcC

∫ ln 1
ε

0

eγxr µY (dr)
)]
dc

The stopping time Tn = inf{s; xs ≥ n − 1} is finite and belongs to [0, ln 1
ε ] on Mn,ε. We

deduce that

Aε(1, n) ≤C
∫
R

eσcE
[
1Mn,ε∩{Tn<ln 1

ε−1} exp
(
− µeγcCeγ(n−1)I(Tn)

)]
dc (6.1)

+ C

∫
R

eσcE
[
1Mn,ε∩{Tn≥ln 1

ε−1} exp
(
− µeγcCeγxln 1

ε
−1I(ln

1

ε
− 1)

)]
dc

=: aε(n) + bε(n) (6.2)

where we have set

I(z) =

∫ z+1

z

eγ(xr−xz) µY (dr).

We will show that there exists a constant C > 0 such that for all n

(ln
1

ε
)

1
2 aε(n), (ln

1

ε
)

1
2 bε(n) ≤ Cne−σn, (6.3)

which is enough to complete the proof of (3.18).
We begin with aε(n). By making the change of variables y = eγ(c+n)I(Tn), we get

aε(n) ≤C e−nσ
∫ ∞

0

y
σ
γ−1e−µCe

−γy dyE
[
1Mn,ε∩{Tn<ln 1

ε−1}I(Tn)−
σ
γ

]
.

It suffices to estimate the last expectation. Obviously, we have

E
[
1Mn,ε∩{Tn<ln 1

ε−1}I(Tn)−
σ
γ

]
(6.4)

≤E
[
1{minu∈[0,Tn] n−xu≥0}1{min

u∈[Tn+1,ln 1
ε
]
(n−xTn+1)−(xu−xTn+1)≥0}

1{Tn+1<ln 1
ε }

I(Tn)
σ
γ

]
.

By conditioning on the the sigma algebraHTn generated by {xr, r ≤ Tn}, {xr−xTn+1, r ≥
Tn + 1} and {xTn+1 − n}, we see that we have to estimate the quantity

E[I(a)−
σ
γ |xa+1 − xa].

We claim
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Lemma 6.1. There exists a constant C (independent of any relevant quantity) such that
for all a > 0

E[I(a)−
σ
γ |xa+1 − xa] ≤ C

(
e−σ(xa+1−xa) + 1

)
.

The proof of this lemma is given just below. Admitting it for a while and given the
fact that the random variable xTn+1 − n is a standard Gaussian random variable, the
conditioning on HTn of the expectation (6.4) thus gives

E
[
1Mn,ε∩{Tn<ln 1

ε−1}
1

I(Tn)
σ
γ

]
≤C

∫
R

E
[
1{minu∈[0,Tn] n−xu≥0}1{min

u∈[Tn+1,ln 1
ε
]
−y−(xu−xTn+1)≥0}

](
e−σ(y+1) + 1

)
e−y

2/2 dy.

To estimate the expectation in the integral, use the strong Markov property of the
Brownian motion to write

E
[
1{minu∈[0,Tn] n−xu≥0}1{min

u∈[Tn+1,ln 1
ε
]
−y−(xu−xTn+1)≥0}

]
=E
[
1{minu∈[0,Tn] n−xu≥0}1{min

u∈[Tn,ln 1
ε
−1]
−y−(xu−xTn )≥0}

]
≤E
[
1{min

u∈[0,ln 1
ε
−1]

n+max(0,−y)−xu≥0}

]
≤ (

2

π
)

1
2
n+ max(0,−y)

(ln 1
ε − 1)

1
2

,

where in the last inequality we have used Lemma 5.1. We deduce

E
[
1Mn,ε∩{Tn<ln 1

ε−1}
1

I(Tn)
σ
γ

]
≤ C(ln

1

ε
)−

1
2 ne−nσ.

All in all, we have obtained

sup
ε∈]0,1]

(ln
1

ε
)

1
2 aε(n) ≤ Cne−nσ,

which proves the claim. The same argument holds for bε(n).

Proof of Lemma 6.1. Notice that the joint law of
(

(xr − xa)r∈[a,a+1], xa+1 − xa
)

is that of(
(Bu −Ba)u∈[a,a+1], Ba+1 −Ba) where B is a standard Brownian motion starting from 0

(independent of Y ). Hence the law of I(a) conditionally on xa+1 − xa = x is given by∫ 1

0

eγBridge0,xr µY (dr)

where (Bridge0,x
r )r≤1 is a Brownian bridge between 0 et x with lifetime 1. Hence it has

the law of r 7→ Br − rB1 + ux. By convexity of the mapping x 7→ x−q for q > 0 and the
fact that the covariance kernel of the Brownian Bridge and the Brownian motion are
comparable up to fixed constant, we can apply Kahane’s inequality [9] to get that

E[I(a)−
σ
γ |xa+1 − xa = x] ≤ CE

[( ∫ a+1

a

eγ(Br−Ba)+(r−a)x µY (dr)
)−σγ ]

.

From Lemma 4.3 and the fact that e(r−a)x ≥ ex ∧ 1 for r ∈ [a, a+ 1], this quantity is less
than

E[I(a)−
σ
γ |xa+1 − xa = x] ≤ C

(
e−σx ∨ 1

)
.

This proves the claim.
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6.2 Proof of (3.17)

First notice that

N∑
n=0

Aε(1, n) =

∫
R

eσcE
[
1BN,ε exp

(
− µeγc

∫
Dε

eγH
0
ε dM0

γ

)]
dc

where
BN,ε = { min

u∈[ε,1]
N − xu ≥ 0}.

Let us denote by Zε the measure eγH
0
ε dM0

γ and define

sε := (ln
1

ε
)

1
6 , hε := e−sε .

Now we prove the upper bound. We have

N∑
n=0

Aε(1, n) ≤
∫
R

eσcE
[
1BN,ε exp

(
− µeγcZε(Dhε)

)]
dc

=

∫
R

eσcE
[
E
[
1BN,ε |Fsε

]
exp

(
− µeγcZε(Dhε)

)]
dc.

Using the standard estimate E
[
1BN,ε |Fsε

]
≤
√

2/π
N−xsε√
ln 1

ε−sε
(see Lemma 5.1) we deduce

lim sup
ε→0

N∑
n=0

(ln
1

ε
)

1
2Aε(1, n) ≤

√
2/π

N∑
n=0

Ã(1, n).

which completes the upper bound.
Let us now investigate the lower bound. We denote by C(ε) the annulus {x : ε ≤ |x| ≤

hε} and by Iε the set
Iε = { min

u∈[sε,− ln ε]
(N − xu) ≥ sθε}

where θ ∈]0, 1/2[. We have

N∑
n=0

Aε(1, n) ≥
∫
R

eσcE
[
1BN,ε1Iε exp

(
− µeγcZε(Dhε)− µeγcZε(C(ε)

)]
dc.

Using e−u ≥ 1− u 1
2 , we deduce

N∑
n=0

Aε(1, n) ≥
∫
R

eσcE
[
1BN,ε1Iεe

−µeγcZε(Dhε )
(

1− µ 1
2 e

1
2 γcZε(C(ε))

1
2

)]
dc

=

∫
R

eσcE
[
1BN,εe

−µeγcZε(Dhε )
]
dc−

∫
R

eσcE
[
1BN,ε1Icε e

−µeγcZε(Dhε )
]
dc

− µ 1
2

∫
R

ec
(

1
2 γ+σ

)
E
[
1BN,ε1Iεe

−µeγcZε(Dhε )Zε(C(ε))
1
2

]
dc

=:B1(N, ε)−B2(N, ε)−B3(N, ε). (6.5)

We now estimate the above three terms.
We start with B1(N, ε). We have

E
[
1BN,ε |Fhε

]
=1BN,hε (

2

π
)

1
2

∫ N−xsε√
ln 1
ε −sε

0

e−
u2

2 du
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≥1BN,hε1{N−xsε≤(ln 1
ε−sε)

1
4 }

(
2

π
)

1
2

∫ N−xsε√
ln 1
ε −sε

0

e−
u2

2 du

≥1BN,hε
N − xsε√
ln 1

ε − sε
1
{N−xsε≤(ln 1

ε−sε)
1
4 }

(
2

π
)

1
2 e−

1
2 (ln 1

ε−sε)
− 1

2

.

Plugging this relation into B1(N, ε) we deduce

B1(N, ε)

≥ (
2

π
)

1
2 e−

1
2 (ln 1

ε−sε)
− 1

2

(ln
1

ε
− sε)−

1
2
( ∫

R

eσcE
[
1BN,ε(N − xsε) exp

(
− µeγcZε(Dhε)

)]
dc

−
∫
R

eσcE
[
1
{N−xsε>(ln 1

ε−sε)
1
4 }
1BN,hε (N − xsε)e

−µeγcZε(Dhε )
]
dc

=: ∆1(ε) + ∆2(ε).

It is clear that

lim
ε→0

(ln
1

ε
)

1
2 ∆1(ε) = lim

ε→0

N∑
n=0

Ãε(1, n) =

N∑
n=0

Ã(1, n).

It remains to treat ∆2(ε). By making the change of variables y = eγcZε(Dhε), we get

(ln
1

ε
)

1
2 ∆2(ε) ≤ CEΘN

[
1
{N−xsε>(ln 1

ε−sε)
1
4 }
Zε(Dhε)

−σγ
]
.

Now we will use the fact that under ΘN the event in the above expectation is very
unlikely. Using the elementary inequality ab ≤ a2/2 + b2/2 we get

EΘN
[
1
{N−xsε>(ln 1

ε−sε)
1
4 }
Zε(Dhε)

−σγ
]

≤(ln
1

ε
)κEΘN

[
1
{N−xsε>(ln 1

ε−sε)
1
4 }

]
+ (ln

1

ε
)−κEΘN

[
Zε(D1)−2σγ

]
.

Using the fact that a Gaussian Multiplicative Chaos has negative moments of all orders on
all open balls, the expectation in the second term in the above expression is easily seen
to be bounded uniformly in ε. Hence, the second term tends to 0 as ε→ 0. Concerning
the first term, recall Lemma 4.5 and the estimate, for a 3d-Bessel process βt and u > x

Px(βt > u) = P
x/t

1
2

(β1 > u/t
1
2 ) ≤ C t

1
2

u− x
∧ 1.

Therefore

ΘN
(
N − xsε > (ln

1

ε
− sε)

1
4

)
≤CE[

s
1/2
ε

| ln 1
ε − sε − x0|

∧ 1]

≤2CE[
s

1/2
ε

| ln 1
ε − sε − x0|

] + P(x0 >
1

2
(ln

1

ε
− sε)

1
4 )

≤2C ln(
1

ε
)−

1
6 + C(ln

1

ε
)

1
4 e−

1
2 (ln 1

ε )
1
2

.

Hence, choosing κ < 1/6 leads to limε→0(ln 1
ε )

1
2 ∆2(ε) = 0. Thus

lim inf
ε→0

(ln
1

ε
)

1
2B1(N, ε) ≥

N∑
n=0

Ã(1, n). (6.6)

Now we treat B3(N, ε). To this purpose, we use first the change of variables y =

eγcZε(Dhε) to get

EJP 22 (2017), paper 93.
Page 21/26

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP113
http://www.imstat.org/ejp/


LQFT at the Seiberg bound

B3(N, ε) ≤CE[1BN,ε1IεZε(Dhε)
−

1
2 γ+σ

γ Zε(C(ε))
1
2 ]

=CE
[
1BN,ε1IεE[Zε(Dhε)

−
1
2 γ+σ

γ Zε(C(ε))
1
2 |(xs)s<∞]

]
≤CE

[
1BN,ε1IεE[Zε(Dhε)

− γ+2σ
γ |(xs)s<∞]

1
2E[Zε(C(ε))|(xs)s<∞]

1
2

]
=CE

[
1BN,ε1IεE[Zε(Dhε)

− γ+2σ
γ |(xs)s<∞]

1
2
( ∫ ln 1

ε

sε

eγxu du
) 1

2

]
≤CE[Zε(Dhε)

− γ+2σ
γ ]

1
2E
[
1BN,ε1Iε

∫ ln 1
ε

sε

eγxu du
] 1

2

=CE
[
1BN,ε1Iε

∫ ln 1
ε

sε

eγxu du
] 1

2

On the set Iε, we have the estimate∫ ln 1
ε

sε

eγxu du ≤ C ln
1

ε
e−γs

θ
ε = C ln

1

ε
e−γ(ln 1

ε )θ/6

which implies
lim
ε→0

(ln
1

ε
)

1
2B3(N, ε) = 0. (6.7)

Finally we focus on B2(N, ε). We first make the change of variables y = eγcZε(Dhε) to
get

B2(N, ε) ≤C E
[
1BN,ε1IcεZε(D1)−

σ
γ

]
(6.8)

We claim

Lemma 6.2. Let B be a standard Brownian motion and β > x > 0 and θ ∈]0, 1/2[. Then,
for some constant C > 0 (independent of everything)

Pε(x) :=Px

(
min

u∈[sε,− ln ε]
β −Bu < sθε , min

u∈[0,− ln ε]
β −Bu ≥ 0

)
≤(β − x)(ln

1

ε
)−1/2sθ−1/2

ε .

Conditioning (6.8) on the sigma algebra generated by {Xĝ,u(0);u > 1}, we can use
Lemma 6.2 to get

(ln
1

ε
)

1
2B2(N, ε) ≤Csθ−1/2

ε E
[
(N −Xĝ,1(0))+Zε(D1)−

σ
γ

]
(6.9)

The last expectation is clearly finite and bounded independently of ε so that

lim
ε→0

(ln
1

ε
)

1
2B2(N, ε) = 0. (6.10)

and, gathering (6.5)+(6.6)+(6.7)+(6.10), the proof of (3.18) and hence Lemma 3.2 is
complete.

Proof of Lemma 6.2. We condition first on the filtration Fsε generated by the Brownian
motion up to time sε. From Lemma 5.1, we obtain

P
[

min
u∈[sε,− ln ε]

β −Bu < (sε)
θ, min
u∈[sε,− ln ε]

β −Bu ≥ 0|Fsε
]

≤
√

2

π

∫ (β−Bsε )+
(ln 1

ε
−sε)1/2

(β−Bsε−(sε)θ)+

(ln 1
ε
−sε)1/2

e−
u2

2 du
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≤1{β−Bsε∈[0,(sε)θ]}

√
2

π

(β −Bsε)+

(ln 1
ε − sε)1/2

+ 1{β−Bsε>(sε)θ}
(sε)

θ

(ln 1
ε − sε)1/2

.

Integrating, we get that

Pε(x) ≤
√

2

π
(ln

1

ε
− sε)−1/2E

[
1{minu∈[0,sε] β−Bu≥0}(β −Bsε)1{β−Bsε∈[0,(sε)θ]}

]
+

(sε)
θ

(ln 1
ε − sε)1/2

E
[
1{minu∈[0,sε] β−Bu≥0}

]
.

The second expectation is estimated with Lemma 5.1. Concerning the first one, we
use the fact under the probability measure 1

β−x1{minu∈[0,sε] β−Bu≥0}(β −Bsε), the process
(β − Bu)u≤sε is a 3d-Bessel process, call it Besst. Hence, using the Markov inequality,

the scale invariance of a Bessel process and the fact that the mapping x 7→ Ex
[

1
Bess1

]
is

decreasing, we deduce

Pε(x) ≤
√

2

π
(ln

1

ε
− sε)−1/2(β − x)Eβ−x

[
1{Besssε≤(sε)θ}

]
+

√
2

π

(sε)
θ−1/2

(ln 1
ε − sε)1/2

(β − x)

≤
√

2

π
(ln

1

ε
− sε)−1/2(β − x)(sε)

θ−1/2E0
[ 1

Bess1

]
+

√
2

π

(sε)
θ−1/2

(ln 1
ε − sε)1/2

(β − x).

A Riemann surfaces with conical singularities and cusps

A metric g on a Riemann surface M has a conical singularity of order α (α real
number > −1) at a point x ∈M if in some neighbourhood of x

g = eu|dz|2

where z is a local complex coordinate defined in the neighbourhood of x with u−2α ln |z−
z(x)| continuous in the neighbourhood of x.

Recall that an Euclidean cone of angle θ is

Cθ =
{

(r, t); r ≥ 0, t ∈ R/θZ
}

(0,t)∼(0,t′)

equipped with the metric ds2 = dr2 +r2 dt2 and that C equipped with the metric |z|2β |dz|2
is isometric to Cθ where θ = 2π(β+1). Therefore, if a surface has at some point a conical
singularity of order β, then this surface admits at this point a “tangent cone” of angle
θ = 2π(β + 1).

The boundary case of conical singularities is the case α = −1 and this is the threshold
at which the singularity ceases to be integrable, in which case the singularity becomes a
cusp and has a somewhat different structure. More precisely, a metric g on a Riemann
surface M has a cusp singularity at a point x ∈M if in some neighbourhood of x

g = eu|dz|2

where z is a local complex coordinate defined in the neighbourhood of x and u(z) +

2 ln |z − z(x)| = o(ln |z − z(x)|) (with the Landau notation) in the neighbourhood of x.
The prototype of cusp model is

C =
{

(r, t); r > 0, t ∈ R/Z
}

equipped with the hyperbolic metric ds2 = r−2(dr2 + dt2) and the punctured disk

equipped with the metric |dz|2
|z|2(ln |z|)2 is isometric to C.
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θ

Glue

Figure 1: Cone with angle θ. Glue isometrically the two boundary segments of the left-
hand side figure to get the cone of the right-hand side figure. Such a cone is isometric to
the complex plane equipped with the metric ds2 = |z|2− θ

π dzdz̄.

A.1 Conjecture on the Ising model on random triangulations

By a triangulation of the unit sphere we mean a finite connected graph T s.t. there
is an embedding of T to S2 s.t. each connected component of S2 \ T (a face) has a
boundary consisting of 3 edges (we denote the embedding of T by T again). We identify
two triangulations if there is an orientation preserving homeomorphism of S2 mapping
the one to the other. A marked triangulation is a triangulation together with a choice
of 3 vertices v1, v2, v3. We denote by T the set of marked triangulations and by |T | the
number of faces in T .

We will consider a two-parameter family of probability measures Pµ0,γ on T defined
by

Pµ0,β(T ) =
1

Zµ0,β
e−µ0|T |Z(T, β) (A.1)

where Zµ0,β is a normalization constant and Z(T, β) is the partition function of the Ising
model on T at inverse temperature β

Z(T, β) =
∑

σ∈{−1,1}#V (T )

e
β
2

∑
i∼j σiσj .,

where V (T ) stands for the set of vertices of T and i ∼ j means that the vertices i, j are
neighbors. These Boltzmann weights depend on some parameter denoted β, which we
now tune to its critical point β = βc = ln 2. It is known that

ZN (βc) :=
∑

T∈T :|T |=N

Z(T, βc) = N−1/6eµ̄N (1 + o(1)) (A.2)

so that Pµ0,βc is defined for µ0 > µ̄ and limµ0↓µ̄ Zµ0,βc =∞. Hence as µ0 → µ the measure
samples large triangulations.

For each T we may associate a conformal structure on S2 as follows. Assign to each
face f a copy ∆f of an equilateral triangle ∆ of unit area and let MT = t∆f/ ∼ be
the disjoint union of the ∆f where we identify the common edges. MT is a topological
manifold homeomorphic to S2. We can even equip it with a complex structure with the
help of the following atlas. It contains the interiors of ∆f , mapped by identity to ∆, the
interiors of ∆f ∪∆f ′ where f and f ′ share an edge, mapped by identity to two copies
of ∆ next to each other in C and neighbourhoods of each vertex v ∈M mapped to C as
follows. List faces sharing v in consecutive order f0, . . . , fn−1 and parametrize ∆fj ∩ U
by zj = re2πiθ with θj ∈ [6j/n, 6(j + 1)/n]. Then z → zn/6 provides a complex coordinate
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for a neigborhood of v. This atlas makes MT a complex manifold homemorphic to S2.
Picking three points z1, z2, z3 ∈ C, there is a unique conformal map ψT : MT → Ĉ s.t.
ψ(vi) = zi.

Let λT be the area measure on MT i.e. λT is Lebesque measure in the local coordi-
nates on ∆f . Let νT be its image under ψT . In the standard coordinate of Ĉ it is given by
νT = gT (z)dz where the density gT is singular at the images of the vertices with n 6= 6.

Consider now a scaling limit as follows. Recalling that as µ0 ↓ µ̄ the typical size of
triangulations, we quantify the gap between µ0, µ̄ by setting (for a > 0 and fixed µ > 0)

µ0 = µ̄+ a2µ. (A.3)

Now we define observables of the spin field. Let Dε(x) be the disk with center x and
radius ε in C. For a triangulation T ∈ T (uniformized by ψT onto the sphere) together
with a spin configuration σ on T we define the total magnetic field inside the disc Dε(x)

by
Φ

(ε)
T,σ(x) = ε−2a5/3

∑
v∈T

1Dε(x)(ψ(v))σ(v).

Let (xi)4≤i≤n be some arbitrary points on C.

Conjecture A.1. Under the relation (A.3), the following convergence holds (for some
irrelevant constant C, which may depend on n)

lim
ε→0

lim
a→0

a4/3Eµ0,βc

[ n∏
i=4

Φ
(ε)
T,σ(xi)

]
νµ̄ = C〈θ(x4) . . . θ(xn)〉ĝ ×Πα,z

where Πα,z is the correlation function of the Liouville QFT studied in this paper with
cosmological constant µ, parameters γ =

√
3, Q = 7

2
√

3
and n vertex operators at the

locations (xi)i=1,...,n with respective weights αi = γ for i = 1, 2, 3 and αi = 5
6γ for i > 3.

Here 〈θ(x4) . . . θ(xn)〉ĝ stands for the correlation functions of the spin field in the critical
Ising model (standard, i.e. not coupled to gravity) on the sphere.
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