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Abstract

Liouville Quantum Field Theory (LQFT) can be seen as a probabilistic theory of 2d
Riemannian metrics e®(*) |dz|?, conjecturally describing scaling limits of discrete 2d-
random surfaces. The law of the random field ¢ in LQFT depends on weights a € R
that in classical Riemannian geometry parametrize power law singularities in the
metric. A rigorous construction of LQFT has been carried out in [3] in the case when
the weights are below the so called Seiberg bound: a < Q where () parametrizes
the random surface model in question. These correspond to studying uniformized
surfaces with conical singularities in the classical geometrical setup. An interesting
limiting case in classical geometry are the cusp singularities. In the random setup
this corresponds to the case when the Seiberg bound is saturated. In this paper, we
construct LQFT in the case when the Seiberg bound is saturated which can be seen as
the probabilistic version of Riemann surfaces with cusp singularities. The construction
involves methods from Gaussian Multiplicative Chaos theory at criticality.
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1 Introduction

Two dimensional statistical physics provides a large class of models of discrete
random surfaces (random maps) which are expected to have interesting continuous
surfaces as scaling limits. In physics the study of these objects goes under the name
“2d gravity” and was pioneered by Polyakov [12] and developed in [10]. That approach
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LQFT at the Seiberg bound

seeks a description of the geometry of the two dimensional manifold ¥ in terms of a
probability law in a suitable space of Riemannian metrics defined on X. Physics dictates
that the law be invariant under the action of the group of diffeomorphisms acting on
Y.. In two dimensions the space of smooth metrics modulo diffeomorphisms is rather
simple: its elements are (equivalence classes of) e’ g where ¢ : ¥ — R and g belongs to a
finite dimensional (moduli) space of metrics. Thus, we are basically seeking a law for a
random field o on . The proposal of [10] is that this law is given by

pr(dg,dX) = e~ 559 0 (dg, dX) (1.1)

where p is a “uniform measure” on some space of maps X : ¥ — R and moduli g and
S, is the Liouville action functional

1

SL(ng) = E

/ (VX |? + QRy X + drpe?™) dv,. (1.2)
by
Here we have written o = X where v € (0, 2) is a parameter determined by the random

surface model and

+7 (1.3)

2
Q= ST
Furthermore we denoted by V,, R, and v, respectively the gradient, Ricci scalar
curvature and volume measure in the metric g. Finally the parameter i > 0 is called “
cosmological constant”. In [3] we gave a rigorous definition of the measure (1.1) for the
case ¥ = 52 which we recall in Section 2.
The action functional (1.2) has a very natural geometric interpretation in terms of
the classical uniformisation theory of Riemann surfaces that goes back to Picard and
Poincaré. The Euler-Lagrange equation for the extrema of Sy, is given by

—2A,X + QR, + Ampye?™ =0 (1.4)

where A, is the Laplace-Beltrami operator in the metric g. If we replace @ by its
“classical value” Qq = % and use the relation Re.y = e ¥(Ry, — Ayyp) this equation
becomes the Liouville equation

Rex, = —2mpy? (1.5)

stating that the metric ¢€?X¢ has constant negative curvature. Such metrics are in
correspondence to complex structures on the surface ¥ through the uniformizing map
¥ : X — H: pullback under ¢ of the Poincaré metric on H has constant negative
curvature. Thus LQFT can be seen as a probabilistic extension of this classical theory.

This correspondence works only if the genus of ¥ is at least two. On the sphere S2
there are no smooth metrics of constant negative curvature since by the Gauss-Bonnet
theorem the total curvature is positive. Indeed, the action functional Sy (1.2) is not
bounded from below as can be seen by taking X = ¢, a constant. Then by Gauss-Bonnet
theorem [ R,dv, = 87 and we have

Sr(g,¢) = 2Qc + dmpe™® (1.6)

which is not bounded below as ¢ — —oo. This divergence is also present in the LQFT:
the measure (1.1) is not finite and can not be normalized to a probability law [3].

In classical geometry it is known how to obtain a metric with constant negative
curvature almost everywhere on the sphere. The idea is to introduce points that are
sources of curvature in the Liouville equation. To do this pick n points z1,..., 2z, and
weights a4, ... a, and consider the equation:

—28,X + Qu Ry + dmpye’™ =47 Y " 0l (1.7)
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This equation is formally the Euler-Lagrange equation of the action functional

Sra(X,g) = > aiX(z). (1.8)

For a rigorous treatment one needs to regularize and renormalize this functional, see
[15]. Then one finds that the minimizers give rise to the metric X () g(z) which has
singularities at the points z;. For o; < Q. i.e. for ya; < 2 this singularity is conical:

eWX(Z)g(z) ~ |z — 2T (1.9)
and for a; = Q. the singularity is a cusp
X g(2) ~ (|2 — zi| In|z — 2z]) 2 (1.10)

(see Appendix A for a brief introduction to these concepts). For «; > 2/ solutions do
not exist for integrability reasons. Furthermore for topological reasons (Gauss-Bonnet
theorem) one needs also ZZ a; > 2Q. which implies that one needs to introduce at
least three singularities on the sphere to have constant negative curvature in their
complement.

The probabilistic theory has a complete parallel with the classical one with the
important difference being that the parameter )., = 2/~ is replaced by the quantum
value (1.3). Then it was shown in [3] that the measure (1.1) with the action (1.8) (suitably
renormalized) has finite mass provided ), o; > 2() and the mass is nonzero if and only if
«; < (. This measure can be viewed as a probabilistic theory of metrics with “quantum”
conical singularities on the sphere.

In this paper we will extend this theory to the case of “quantum” cusp singularities
a; = @ thus completing the parallel with classical geometry in the setup of random
surfaces. This extension requires an extra renormalization of the measure compared
to the a; < @ case. It boils down to an analysis of the Gaussian multiplicative chaos
measure in a background measure with density blowing up as |z — z;/~?%. This in turn
leads to an analysis reminiscent to the analysis of the Critical gaussian multiplicative
chaos [6, 7].

We conclude this introduction by mentioning that LQFT is interesting per se as it is
the first full probabilistic construction of an interacting Conformal Field Theory (CFT for
short) and therefore a natural playground to check the whole formalism of CFTs initiated
in the celebrated paper [2]. The modification of the action functional (1.8) can be viewed
as a correlation function of n random fields:

/He%X(zﬂduL (1.11)

These correlation functions of LQFT play a prominent role in understanding models of
statistical physics models on random planar maps. As an example, the reader can find
in appendix A.1 a conjecture on the relationship of these correlation functions of LQFT
to random planar maps, in particular a conjecture describing the scaling limit of the
correlation functions of the spin field of the Ising model on random planar maps. The
case we treat in this paper, i.e. Q-insertions, is especially important for understanding
how to embed conformally onto the sphere random planar maps with spherical topology
weighted by a ¢ = 1 conformal field theory (like the Gaussian Free Field). Indeed, in
the case ¢ = 1, one can formulate the conjecture developed in [3, subsection 5.3] with
v =2 and @ = 2: the vertex operators with v = 2 in [3, conjecture 2] are precisely the
quantum cusps constructed here. Finally we mention that Riemann surfaces with cusp
singularities naturally appear when studying the boundary of the moduli space of higher
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genus surfaces. Hence the study of )-insertions plays a prominent role in establishing
convergence of the partition function of 2d-string theory where integrals over the moduli
space arise (see [8]).

2 Background and main results

This section contains first a brief summary of the construction and properties of the
LQFT carried out in [3] followed by a presentation of our main results and a sketch of
proof.

2.1 GFF and multiplicative chaos

We will view the sphere S? as the Riemann sphere C=cCcu {o0}. It can be covered by
two copies of C with coordinates z and z~!. The constant curvature metric is the round
metric, §(z)|dz|? with

G(z) = 4(1 + 22) 72

The area is fc G(z)dz = 47 and the scalar curvature R, := —4¢~'9;0, In g is constant for
the round metric: R; = 2. Smooth conformal metrics on (C are given by g = e¥§ where
©(z) and (1/z) are smooth and bounded. For such metrics the Gauss-Bonnet theorem
holds:

/Rg dvg = 8.

Given a conformal metric on € we can define the Sobolev space H'(C, g) with the norm

112 = / (10112 + 9(2)|f2)d=.

These norms are equivalent for all continuous conformal metrics and we denote the
space simply by H 1((IA]) Finally we define H *1(@) as the dual space and denote the dual
pairing by (X, f).

The LQFT measure will be defined as a measure on H ! (@) It will be constructed
using the Gaussian Free Field (GFF) on C. As is well known the GFF in such a setup is
only defined modulo a constant. For LQFT it is important to include this constant as an
integration variable. In general the GFF is a Gaussian random field whose covariance is
the Green function of the Laplace operator. In our setup the Laplace operator is given
by A, = 49(2)~10:0,. Some care is needed here since A, is not invertible. Indeed, —A,
is a non-negative self-adjoint operator on L2(@, g) (whose inner product we denote by
(f,h)g=[ fhgdz). It has a point spectrum consisting of eigenvalues \,, and orthonormal
eigenvectors e,, which we take so that A,, > 0 except for \g = 0 with ey = 1/||1]|;. We
define the GFF X, as the random distribution

Xy(z)=v2r Y %en(z) 2.1)

n>0 n

where z,, are i.i.d. N(0,1). In case of the round metric, we will need later the explicit
formula

1 1
|z =2 4

E[X;(2)X5(2")] = Gy(2,2") = In (Ing(z) +Ing(z') +In2 — 5. (2.2)
The random field X, determines probability measure P, on H _1(@) (supported in the
set {u € H*(C) : (u,1) = 0}). The measure (1.1) is intended to contain also the constant

fields X = c that are absent from the GFF X,. Therefore we define the measure pgrr
on H~1(C) by
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/F(X)[LGFF(dX) :AEF(X9+C)dC (2.3)

Note that g rp is not a probability measure: [ pugpr(dX) = oo.
To define the measure (1.1) the exponential ¢”* needs definition as the GFF Xg4is
not defined pointwise. To do this regularize X, by the circle average regularization

1 27 )
Xogelw) = o i X, (x + ee') db (2.4)
and define the random measure
M, (dz) = % o (Xo(2)4Q/2ng(2) g, (2.5)

For v € [0,2), we have the convergence in probability
M, = lgr(l) M, . (2.6)

in the sense of weak convergence of measures. This limiting measure is non trivial and
is an instance of Gaussian multiplicative chaos [9, 13] of the field X;. In particular for
the round metric

M, = ¢ (n2=8) Jipy 7 X5, =7 BIXG ] dvs. (2.7)
e—0

and the total mass MW(@) almost surely finite.

2.2 LQFT measure and correlations functions

We may now give the precise definition of the LQFT measure in (1.1). With no loss
we work with the round metric § from now on. Then

1 1
E/QRQX dVg = E /QRQ(C+X§) dVg = QQC

where we used the Gauss-Bonnet theorem and (X, 1), = 0. Since C has no moduli the
LQFT measure puy will be a measure only on the conformal factor X. We define

pr(dX) = e 2@ re My (O) oo (dX) (2.8)

i.e. concretely
/F(X)ML(dX) = /e—2Q0E[F(c+Xg)e—W“M%@)]dc = (F)p. (2.9)

The rigorous definition of the correlation functions (1.11) proceeds also through
regularization. We consider the regularized fields (called vertex operators in the physics
literarture)

Vio(2) = €% e+ X5, (2)+Q/204(2) (2.10)
In [3] it was shown that the limit of their correlation functions
tim ([T Ve (20 o= ([ Va2 (2.11)

exist if and only if ) . o; > 2Q and the limit is non zero if and only if a; < @ for all i.
These conditions are called called the Seiberg bounds [14].

Briefly, the reason of these inequalities is as follows. One can absorb the vertex
operators in (2.11) by an application of the Cameron-Martin transform i.e. by a shift of
the Gaussian field X; — X, + H with

H(z) =Y G4z, 2). (2.12)
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This leads to

(J] Vo (zi))1 = K(z)/ e(Xieim2Q)ey | gmne | e”Hde}dc (2.13)
i R

with K(z) an explicit function of the points (z;); and of their weights («;);. The first
inequality ) |, a; > 2@ is needed for the convergence of the c-integral as ¢ — —oo. Note
the analogy with the classical result (1.6). For the second inequality «; < @@ we note that
due to the logarithmic singularity of the Green function G, the integrand e"H(2) blows
up as |z — z;|7*”Y when z — z;. By analyzing the modulus of continuity of the Gaussian
multiplicative chaos measure it was shown in [3] that [ e?#dM, is a.s. finite if and only
if a; < Q. It was further proved in [3] that, provided that the Seiberg bounds hold, the
probability measures on H~!(C)

Poze = ([ [ Ve (20)) 7 [ Verwre (i) 11 (8, dX) (2.14)

converge to a probability measure P, , as ¢ — 0.

The Riemann sphere C has a nontrivial automorphism group SL(2, C) which acts as
Mobius transformations ¢ (z) = ?jj:g By a simple change of variables the classical action
functional with @ = Q. = 2/~) satisfies

Sp(X 0w ,9) = Su(X + 20.0)
where ¢ = [)'|2go1)/§. This Mobius covariance is inherited by the Liouville QFT measure:
one has

[P owdus = [ FOC- Qi hau

for F' € L'(uy). One can view this non-compact symmetry group of the measure iz, as
another indication of the fact that it is not normalizable.

The Seiberg bounds ), a; > 2Q and «o; < @ lead to the conclusion that to have
a nontrivial correlation function of vertex operators one needs at least three of them.
This is in complete analogy with classical geometry as discussed in the Introduction.
Note that fixing three points on the sphere removes also the SL.(2,C) symmetry. In
this light it comes as no surprise that the Liouville 2-point correlation functions are not
defined: fixing two points on the sphere leaves us the non compact symmetry group
of dilations. In [5] two-point quantum spheres are constructed in a quotient space of
random measures modulo rotations and dilations. The approach is complementary to
ours as it is concerned with a different object, see however [1] for a precise link between
the two approaches.

2.3 Main results

Now we describe our main results, which extend the analysis of [3] to the case of
vertex operators e?X with weight ) giving rise to quantum cusps. In fact, from now
on, we will use a slightly different regularization for the correlation functions than in
(2.11). Namely, we will regularize simultaneously the vertex operators (2.10) and the
measure uy, defined by (2.9). Furthermore we will define our objects in the case of a
general metric g conformally equivalent to the round metric. So we set

Momi= [ ] Vouleo) i (9,) (2.15)
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where the vertex operators V,, (z;) are defined by (2.10) (with g in place of §) and the
measure 5 (g, -) is defined by

15, (g, dX) = e % | @Ra(e+Xg) dvo—pe My (Do) o (IX) (2.16)

where D, is the complement of the union of the ¢ radius balls centered at those ¢ with
a; = Q. In the same spirit as (2.14), we further consider the probability measures

IPO‘7Z;€: azeHVa € ZZ)ML(g7dX) (217)
i
As explained above, it was proved in [3] that 11, , = lim._, Il , . = O when one of the
«; is greater or equal to Q. However, an extra renormalization term suffices to obtain a
nontrivial limit:

Theorem 2.1. Let ) . o; > 2Q and o; < ) with exactly k of the o; equal to (). Then the
limit
hm(—lne)ﬂ_[aze =1lsz (2.18)

e—0

exists and is strictly positive. Moreover, the limit

IimPy,c:=Pqy, (2.19)
e—0 ° ’

exists in the sense of weak convergence of measures on H ‘1(@).

This theorem means that the vertex operator ¢?* needs an additional factor (—In e)%
for its normalization in addition to the eaTz used for a < (). An important ingredient in
the proof of convergence (2.18) is to show that the limit agrees (up to a multiplicative
constant) with the one constructed with the derivative vertex operator

- d
Vo,e(2) = —ﬁva_,e(z)‘a:q) =—(Qhhe+c+X,.+~ lng)VQ (2). (2.20)

Let I, ,. be the correlation function where for o; = Q we use Vg () instead of Vg (z).
Then

Theorem 2.2.
)2 14 g (2.21)

e—0

The convergence (2.19) extends to functions of the chaos measure. Let E, , . denote

expectation with respect to P, ;. and let F' = F(X,v) be a bounded continuous function

on H'(C€) x M(C) where M(C) denotes the set of Borel measures on C. Define the
Liouville measure

Z:=¢e"M, (2.22)

and the Liouville field
¢:=c+X,+ ZIng. (2.23)
Then

Theorem 2.3. With the assumptions of Theorem 2.1, E,, , .F(¢, Z) converges as ¢ — 0
to a limit E, ,F (¢, Z) which is conformally covariant, namely

Eo 2 F (6, Z) = Eay@F(d o+ QY] Z o y))

for all conformal automorphisms 1 of the sphere, and independent of g in the conformal
equivalence class [g]. Moreover, the law of Z(C) under P, , is given by the Gamma
distribution

4\:1

E. . F(Z(

q

/ Flyy e ™dy, o:=) a;—2Q (2.24)

;
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and the law of the random measure Z(-)/A conditioned on Z(C) = A does not depend on
A.

Remark 2.4. The correlation functions 11, , have the same properties as in the a; < Q
case proven in [3]: conformal covariance, Weyl covariance and KPZ scaling. Since
the statements are identical we refer the reader to [3] recalling here only the KPZ
formula for the p-dependence:

203 ; o
Yy

Ha,z =W Ha,z|u:1~

Remark 2.5. With some extra work it should be possible to prove that the measures
P, ,witho; < Qforalli=1,...n convergeasa; 1 @, i =1,...k to the P, , constructed
in this paper by proving that

k

lim — ;) M, , 2.25
MQi:l(Q ) , ( )

has a limit. We leave that question as an open problem.

Remark 2.6. It is natural to ask about the convergence of the quantum laws PP, . to the
classical solutions of the Liouville equation i.e. the semiclassical limit v — 0. For this,
let us take, fori=1,...,ka; = @Q and fori > k

oy = —
~y
with x; < 2 and p = 5—3 for some constant ;9 > 0. Then we conjecture that the law
of vX under P, . converges towards the minimizer of equation (1.7) which has cusp
singularities at z;, ¢+ < k and conical ones at the remaining z;. The case of conical
singularities was treated in [11] in the setup where Cis replaced by the unit disc.

2.4 Strategy of proof

We will now sketch the main ideas of the proof. We have to control the correlation
function (2.15) as ¢ — 0 when at least one o; = ). We may assume g is the round metric

g.

First of all, notice that the condition for the convergence of the c-integral remains
the same, namely ). «; > 2Q). Second, as explained above a Cameron-Martin transform
reduces the analysis of (2.15) to the quantity

Ha,z,e = Ke(z)/

o(C:ai—2Q)c [eﬂw"c Ip, e de} de (2.26)
R

with
H(z) = ZaiGg’E(z,zi). (2.27)

where G, . is a regularization of the covariance of the GFF and K (z) converges as € — 0
to K (z) of (2.13). Locally around z;,

1

e"/He(z) = .
(|2 — 2| V€)ren

The crucial point is thus to determine whether this singularity is integrable in the limit
€ — 0 with respect to the measure M, (dz). Multifractal analysis of the chaos measure
shows that this is the case if and only if a; < @ [3]. Let us see this in more detail to
understand how to proceed when «; = Q. Since the problem is local consider the integral
fora <@
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Toge :/e@i“i*Q@CE[e*chcs v My | g (2.28)
R

where C. stands for the annulus {z € C;e < |z| < 1}. We use a well known decomposition
of the GFF to a “radial” and “angular” part to write the Chaos measure. The radial part
of the GFF, defined by

1 .
Xy = Py /Xg(rele)dﬁ

is a Brownian motion in time ¢ = Inr~! starting at time zero from Xg1, up to an
independent Gaussian random variable of O(1) variance. Changing to polar coordinated,
this leads to the following expression for the chaos integral

1 —1Ine 27
/ WM,Y(dl‘): / / eYBe=7(Q=)t o (dt, d)
C. 0 0

where uy (dt,df) is a chaos measure encoding the angular contribution of the angular
part of the GFF and independent of the process B; (see Lemma 4.3). The measure uy
requires some care but in order to understand the behavior as ¢ — 0 it suffices here
to consider a simplified problem where we replace it by the Lebesgue measure dt and
consider the behaviour of

I. ::/6(21.aifzcz)cE{e—ue”“fJ“”e”Bf‘"‘Q‘”)"dt de. (2.29)
R

as € — 0. Clearly, when a < @, the drift term in the Brownian motion takes it all making
the integral in the exponential converges, hence I, has a non trivial limit. When a = Q),
the drift term vanishes so that the integral fo_ e vBy gt diverges to +oo and I, goes to
0 as € — 0. The main idea is that the leading asymptotics for this integral will come
from the Brownian paths such that fooo eYBv du < 0o, which is an event of probability 0
for the Brownian motion. Hence a proper renormalization of this integral will require a
conditioning on the event { fooo e7"Bu du < oo}, which is the same as conditioning on those
paths such that {sup,,~, B. < oo}. Having this picture in mind, it is natural to partition
the probability space with the sets
A(n,e) ={ sup B, €]n—1,n]}

u<—1Ine
for n > 1. We can then expand /. =}, -, I with
I:L = / 6(21 a172Q)cE ]-A(n e)efue"{c f07 Ine eV Bu du:| dc,
_ k :
On A(n,€), the integral [~ € evBu dy ~ e and we get
I ~ P(A(n, 6))/ (i aim2Q)e—pe? ) g, < CP(A(n, e))e_(z'i @i =2Q)n
R
An elementary estimate on Brownian motion gives P(A(n,¢)) < / Q/WW so that
the series 3 (—Ine¢)'/2I" is dominated by an absolutely convergent series, uniformly
with respect to € €]0, 1]. We can thus invert the limits and get

lim(—1Ine)'/21, = lim lim J" (2.30)
e—0

n—o00 e—0
with

€

Jn — (7 In 6)1/2/ 6(Ziai72Q)cE 13(7%6)6,“676 f07 Ine vBu gq, de
R

where we defined
B(n,e) =Up_1A(k,e) ={ sup B, €]0,n]}.

u<—Ine
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To determine the limit in the right-hand side of (2.30), the first step is to show that
one can find a family A, such that A, — oo, h./(—Ine) — 0 and

lim J"* = lim(—lne)l/Q/ e@iai—2Q>0E[1B(n_€)e—HE“foh‘ " du| g (2.31)
e—0 e—0 R ’

The reason why one can find such a family A, is that conditioning the Brownian motion
on not exceeding n will force it on going to —oo with a speed making the integral
fooo e7Bu dy finite. To compute the integral in the right-hand side in (2.31), we use the
Markov property of the Brownian motion. Let F; be the sigma algebra generated by the
Brownian motion up to time ¢. Then this integral can be estimated by

(_ In 6)1/2 / G(Zi O”_2Q)CE [1B(n,hg)E[1B(m€) |-7:hi]e_“e% fO’Le 7 Bu du} dc.
R

Once again, a standard computation related to the supremum of the Brownian motion

shows that
n — bhe

(—Ilne—h)l/2

Plugging this relation into the expression of J*, we deduce that

E[lB(n,e)|F}L€] ~ 2/71-

: no_ 1 (>, ai—2Q)c [ _ —pee [e e7Bu du:|
EE%JS gg% \/Q/W/]Re E|(n — Bn)1Bmn,n)e 0 de.

It turns out that, under the probability measure dP = %(n—Bhﬁ )1B(n,n.) (With expectation
I£), the process 3; = n — B, is a 3d-Bessel process. Rewriting the above integral, we
obtain

lim J* = lim \/2/7n / e i m2Q)efy [e*ﬂ”“”’ Jge e du] de
e—0 © e—0 R

L Rt P e
R

As a Bessel process j3; goes to co as t — oo roughly at speed /%, the integral fohe e~ 7Pu du,
converges P-almost surely towards fooo e~ 7P« du. This explains the convergence of
(—Ine€)/?1, towards a non trivial limit as € — 0. The main lines of our proof follows the

thread of this heuristic.

3 Partition of the probability space

The singularity at the @-insertions will be studied by partitioning the probability
space according to the maximum of the circle average fields around them. As we will see
this is a local operation and it will suffice to consider the case with only one @-insertion,
say a1 = Q, o; < @, i > 1. We may also assume that the Q-insertion is located at
z1 = 0 and, for notational convenience, we further assume that the other z; are in the
complement of the disc B(0,1). Also, we will work from now on with the round metric g;
the general case g = e?§ is treated as in [3].

Recalling the definitions (2.16) and (2.15) we need to study

Mo z,c(F) = / GUCE[F (c+ Xo) [ Verae (zi)e " M (P | de (3.1)
R i

where we use throughout the paper the notation

o= 0 -2Q (3.2)
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asin (2.24) and D, := C\ B(z1,€). We have then
Ez,oz,eF = Ha,z,e(F)/Ha,z,e(l)' (33)

It will be convenient to replace the GFF X; with the GFF X with vanishing mean on the

circle
1 27

Xo = Xy —me(Xy), with me(Xy): X;(e) o,

= % ;
which is more adapted to the local analysis around 0, as its covariance kernel

1
Go(z,y) =In ot In |2[1(z1>1y + In Jy[Lgy 13, (3.4)
is of exact log type in the ball B(0, 1), hence facilitates the analysis around 0. The
replacement can be performed by making the change of variables ¢ — ¢ — m¢(Xj) in the
expression (3.1) to get

Mo e (F) = / "B e~ F(c+ Xo) [ Vassase(zide M@ de - 3.5)
R i
where
’YZ Q A “{2 o'l
MO(d2) 1= lim ¢ 10T T gy = X0 FEXEE (2] v 1)73(2) F d,

and the vertex operators V, ., (z;) are defined as in (2.10) with X replaced by X,. The
Cameron-Martin argument then gives I, , . (F) = K.(z)A.(F) with

ve ~vH?
AE(F):/e"C]E[F(chXOJrHS)e_“e Jpe e dMy ] g (3.6)
R

where

27

HY(2) = Z a; Go(zi +ee®?, z)g —o(3In(1+4|2)*) —In|2|1{.>13) +os(In2—1) (3.7)

p 0
and K(z) (the variance of the Cameron-Martin transform) converges to some explicit
K as ¢ — 0; we do not write the explicit expression for K as we do not need it in the
following. The sum over i comes from the shift of the vertex operators V,, ., (z;) in (3.5)
and the remaining part from the shift induced by e=7"*¢.
Similarly for the derivative vertex operator (2.20) we get

Moz (F) = fKE(z)/ EUCE[F(0+ Xo + HS)(ane + I:IS +c+ Xoe(1)

R
e ~H?
+ L0 g(z))e " oo dMS] de. (3.8)
where ) 9
oY = Z ai/o ; Go(z1 + €™, z; + eew2)%%. (3.9)

Using (3.4) we see that the @) Ine singularity in (3.8) is cancelled by the one in the
i = 1 term in (3.9) so that Qlne + H, + $Ing(z;) is bounded uniformly in e. Since
I, oc(F) — 0 as e — 0 ([3]) we conclude that the limit, if it exits, of ﬁz’a,E(F) equals the
limit of K. (z)A.(F) where

A(F) = / " [F(c ¥ Xoe + HO)(—c — Xoo(z1))e " o dMﬂ de.  (3.10)
R

Hence Theorems 2.1 and 2.2 follow if we prove
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Proposition 3.1. Let I' be bounded and continuous on Hil(@). Then the following
limits 3
A(F) =lim(—Ine)T A (F) = /2/7 lim A, (F) (3.11)
€E—

e—0
exist and A(1) > 0.

Now we partition the probability space according to the values of the maximum of
the mapping u — Xo ,(21) over u € [e, 1]. So we set

M, . :{ m[ayi] Xou(z1) € [n— l,n]}, n>1, (3.12)
u€j|e,

My, ={ max Xo.u(z1) <0}, (3.13)
ue|e,

and we expand the integral A.(F') along the partition made up of these sets (M,, ¢)n:
g g ,
ye ¥ 9 y
AG(F) _ Z/ EUCE|:1MH,€F(C+X0 + Hg)efll«e fDE eH d]\/['(y)i| dc = ZAe(F7 n) (3.14)
n>0’ R n>0

For A.(F) we write
Ad(F) = (A(F,n) + B.(F,n))

n>0

o 0
A (F,n) = / e”cE[an,e (n = Xo,e(21)) Fc+ Xo + HY)e™#¢" In, e dMﬂ de  (3.15)
R

ye ~H? )
Be(F,n) = —/ e°° E[IMM(TL + ) F(c+ Xo + HY)e " Ip ™ dMﬂ de.  (3.16)
R

Note that A.(F,n) > 0 for F' > 0. We prove
Lemma 3.2. Let F be bounded and continuous on H~'(C). Then for all n > 0 the limits

A(F,n) = lim(~In OYA(F,n) = \/2/x lim A, (F,n). (3.17)

€

exist and A(1,n) > 0. Moreover

sup (—lne)%AE(l,n) < 00 (3.18)
n>0 €€]0,1]
sup A.(1,n) < oo (3.19)
n>0 €€]0,1]
> B(F,n) =0, ase—0. (3.20)
n>0

Proposition 3.1 then follows from Lemma 3.2 since lim._,q A.(F,¢) = >_ A(F,n) follows
from (3.17) and (3.18) by the dominated convergence theorem, similarly for A. The
remaining part of this paper is devoted to proving this lemma.

4 Decomposition of the GFF and chaos measure
We denote by F5 (6 > 0) the sigma-algebra generated by the field X, “away from the
disc B(0,6)”, namely
Fs = o{Xo(f);supp f € B(0,6)°}. 4.1)
Fo stands for the sigma algebra generated by [ J;. o Fs.
First we collect a few old and classical observations (see [3, 5, 13] for more on this)
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Lemma 4.1. For all § > 0, the process
t = Xo 5e-1(0) — Xo,5(0)

evolves as a Brownian motion independent of the sigma algebra F;.

The following decomposition of the field Xy will be useful for the analysis (this
observation was already made in [5])

Lemma 4.2. The field Xy may be decomposed (recall that the fields we consider are
understood in terms of distributions in the sense of Schwartz)

Xo(z) = Xo,12/(0) + Y (2) (4.2)

where the process r € R% — Xy ,(0) is independent of the field Y (z). The latter has the

following covariance
|2V I2|
|z — 2|

E[Y (2)Y ()] = In
Proof. From (3.4) we get using rotational invariance I[E[Xy(2)Xy.(0)] =
E[X0,)2(0)Xo,j-+(0)], which in turn leads to independence:
EXo(2)Xo(2") = EXo,|2(0)Xo,1(0) + EY (2)Y ().

Furthermore we calculate

27

1 21 ) )
E[Y (2)Y (2")] = Go(z,2') — —/ Go(|z]e™, |2'|'e"”)dudv.
471—2 0 0
The claim follows from 15 f GO (|z]e™, || ™) dudv = IHW + In 2|11y +
1n|z |1{‘21‘21}. O

Now, we get the decomposition
~ 1Q, 22
MY(dz) = §(z) = |2|= 1 Xo0.121(0) MY(dz,Y)

where M, (dz,Y") is the multiplicative chaos measure of the field Y with respect to the
Lebesgue measure A (i.e. E M, (dz,Y) = A(dz)).

We will now make change of variables z = e=%%, s € R, 0 € [0,27) and let uy (ds, df)
be the multiplicative chaos measure of the field Y (e~*+%) with respect to the measure
dsdf. We will denote by x; the process

S € ]R,+ — Tg 1= XO,e_S(O)'

We have arrived at the following useful decomposition of the chaos measure around
zZ1 = 0:

Lemma 4.3. On the ball B(0,1) we have the following decomposition of the measure

M, :
1 > 2 ; 1Q
/ *@MW”):/ / 1a(e™*¢®)e ™ g(e™) S uy (ds, db)
A lz|Y o Jo

for all A C B(0,1) where uy(ds,df) is a measure independent of the whole process
(xs)s>0. Furthermore, for all ¢ €] — oo; %[ we have

supIE[(/aJr1 /027T eV(m‘*—x“’)uy(ds,dQ))q} < +o0. (4.3)

a>0
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Proof. We have for 0 < ¢ < ,;%

E[(/GH /27r e'y(zs—ma)'uy(ds, d9)>q]
a 0

< (27)7E {eq'y Supoe[o,l](xa,+07930):| E[MY([C% a+1] x [0, 271-])(1}
- (27-(-)Q]E|:e‘Z'YsuPa€[O,1](xa+d_xa):|E[uy([o’ 1] x [()72”])«1}7
by stationarity of (s,0) € R% x [0,27] — Y (e *¢'). By Lemma 4.1 the first exponent is

Brownian motion and hence the expectation is bounded uniformly in a. From Gaussian
multiplicative chaos theory [13, Theorem 2.11], we have finiteness of the quantity

]E[py([o, 1] x [0, ZW])Q} < 00, hence we get (4.3). For ¢ < 0, this is the same argument by

replacing sup,c(o,1)(Za+o — Ta) by minge(o,1)(¥a+o — 24) and using [13, Theorem 2.12]. O

It will be useful in the proofs to introduce for all a > 1 the stopping times T, defined
by
T, = inf{s; s > a — 1}, (4.4)

and we denote by Gr, the associated filtration. We have the following analog of (4.3)
with stopping times

Lemma 4.4. Forall¢g <0,n > 1,

E[(/Tjnl /027T @ meTa) 1y (ds, dG))q} < 00. (4.5)

Proof. Using the independence of the processes x,- and Y, Lemma 4.1 and stationarity
of Y(s,0) in s we see that (4.5) is equivalent to proving

E{(/OT /027r e“’ﬁ”‘uy(ds,de))q} < 0. (4.6)

where ( is a Brownian motion independent of Y and 7 = inf{s; 8, > 1}. We have (recall

that ¢ < 0)
27 27
// e”Bsuy ds dG)) S T<1// e”ﬁsuy ds dG))]
2
+1E / / e”ﬁsuy(ds,dﬁ))]
o Jo

The second term is bounded by Lemma 4.3. The first one equals

T 2m q
ZE[11/2k+1<7S1/2k(/ / e’Y'BS‘UJY(dS,dG)> i|
0 0

E>1
1/2k+t on

< ZE[11/2k+1<T<1/2k / / 'Pr py (dr, d9)> }

E>1

1/2Ftt Lor 21/2

<Y P2 <7 <172 2E|( / / ey (dr, o)) |

E>1

1 1

S Z]P(1/2k+l <T é 1/2k)1/2]E |:€2q’YSUPUE[0,2—k—1] B(o’):| 2E|:Iuy([0’27k71] % [0’27T])2qi| 2

k>1

<cy e’anE[uy([Oﬂ’k’l] X [o,zw])ﬂ

n>1

[T
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N

<O e B [ (0.2747) x 0,275 1))

n>1

One can find some constant C' > 0 such that the covariance E[Y (e~ 5¢/)Y (e~ /)] is
bounded by In m + C hence by Kahane's convexity inequality [13, Theorem 2.1]

one gets the existence of some constant C' > 0 such that

1
—n—1 —n—17\¢q
B[y (0,277 x 0,27 7)7] < Oy,
2 2 n 1
with §(—¢) = —(2+ % )g—~*%. Hence ) ., e™ E[uy([o, 27771 % [0,27771)29) 7 < o0,
which concludes the proof. O

Now let us consider the martingale (f").jo,1] defined by

= -0 (n—x, %). (4.7)

{ minue[ewl] n—x, %7
The martingale property of (f!").cjo,1] is classical: it results from Lemma 4.1 as well as
the optional stopping theorem. We can define for each ¢ €]0, 1] a probability measure on
Fe by
1
O = —— fdP,
E[f]
where one has the following bound E[f!"] = E[f]'] < n + C for some constant C. Because
of Lemma 4.1 and the martingale property of the family (f").cjo,1}, it is plain to check

€
that these probability measures are compatible in the sense that, for ¢ < ¢

o |F, = or. (4.8)

By Caratheodory’s extension theorem we can find a probability measure ©™ on F,, such
that for all € €]0, 1]
en

F =" (4.9)
We denote by IE®” the corresponding expectation.
Recall the following explicit law of the Brownian motion conditioned to stay positive

Lemma 4.5. Under the probability measure ©", the process
t—n—uax;
evolves as a 3d-Bessel process starting from n — xo where z is distributed like X

(under P) conditioned to be less or equal to n.

We will sometimes use the following classical representation: under ©", the process
t — n — z; is distributed like |n — z¢ + B;| where B; is a standard 3d Brownian motion
starting from 0 (here, we identify n — z¢ with (n — z¢)(1,0,0)).

5 Construction of the derivative Q-vertex

In this section, we prove the claims in Lemma 3.2 concerning A.. We register here a
simple Lemma on Brownian motion that is used repeatedly and whose proof is elementary
and left to the reader:

Lemma 5.1. Let B be a standard real valued Brownian motion. We have for > 0

B
2 (Vi 2

IP(supBugﬂ):\/f/fe*;dug \/75

u<t ™ Jo T/t
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5.0.1 Proof of (3.20)
From (3.16) we get
|B(F,n)| éc/ ¢”“E [1M1M|n + e Ip e dMﬂ de. (5.1)
R
Recall that |z;| > 1 for i > 2. Then, recalling (3.7) and (3.4) we get fore < |z] < 1
eTHIZ) > Oz 9. (5.2)
By Lemma 4.3, we get

1
—Cpe™® fo" € €T py (dr) d

| Be(F,n)| SC/ eUCE[lMM n+cle c, (5.3)
R

where uy (dr) is the measure defined by uy (dr) = fo% wy (dr,d0).

Below, we want to show that the integral in the exponential term above carries a big
amount of mass, and we will look for this mass at some place where the process r — x,.
takes on values close to its maximum, which is between n — 1 and n on the set M, .. To
locate this place, we use the stopping times 7;,_; and 7;, defined by (4.4) which are finite

and belong to [0,In ] on M,, .. We deduce

|BE(1.7‘7 n)l SC/ BJCE{an,E n+c|e_“€wucev("71)1n} de
R

where we have set -
I, = / @0 1) s (dr). (5.4)

Tn—l
By making the change of variables y = (¢t [, we get

Belfom) =Ce / yF 7 1+ g O dy B 1y, (14 [ In L)L |-
0

Then we bound

[SE

_o __ 20
E[le(l | In L) } < IP(M,L7€)1/2E[1M (1+ |InL,])21n }

Hence, by Lemma 4.4 we conclude
B(F;e,n) <Ce " P(M,)"/>.

The claim (3.20) then follows by the dominated convergence theorem since for each
fixed n, the probability P(M,, .) goes to 0 as € goes to 0 (see Lemma 5.1). O

5.0.2 Proof of (3.19)
Proceeding as in the proof of (3.20) we get

AE(Ln) < Ce ™ E|1y, . (n— %)I;%}
where I, is as in (5.4). Now, we have

]E[]'Mn,e (n —Zp 1 )|}—Tn \ J(Y)] = IE>[1min 1](n—ms)20(n —Zp L )|-7:Tn \ J(Y)}lTngln%

e s€[0,In & ©
= Linin, o) (n—2)>0( — @1, )1, <1 2
= Lmin (0,7, (n—2) 2017, <in 1
so that .
A(1,n) <Ce™™EIL, " <Ce ™.

from which the estimate (3.19) follows.
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5.0.3 Proof of the first part of (3.17), i.e. the existence of lim,_,q AE(F, n)

Now, we need to establish the existence and non triviality of the limit of AE(R n), i.e.
one part of (3.17). Since H? converges in H~!(C) towards H?, it suffices to study the
convergence and non triviality of the limit for F' = 1 and fixed n. We claim that this
will result from the convergence in probability of the quantity | D. eVH! dMS under the
probability measure ©™ towards a non trivial limit. To see this, make the change of
variables y = ¢7° [}, eVHe dM? to get

_ ~ye 'yHg 1\/[0

Bl [y ey < [, (e an?) ).
0 D,

Under the probability measure ©" the process ¢t — (n — ;) is a 3d Bessel process hence
min,epo 1, 17(n — 25) converges almost surely to a finite random variable as € goes to 0
and therefore 1,; _ converges to 1,,.«

n,e

sef0,00] (z5)€[N—1,n]"
Take any non empty closed ball B of R? containing no insertions z;. Then sup, H? is
bounded in B and thus

(/D Ve dMS)iz < CMY(B)~%.

e

Let 0 > 0 be such that B C B(0,6)¢. Then
B [MY(B) 3] < O+ 1) BLRFMY(B)™5] < Cln 1) B3] HB [ M, (B) %1%,

Because GMC admits moments of negative order [13, theorem 2.12], the last expectation
is finite. Hence the dominated convergence theorem entails that to prove our claim it is
enough to establish the convergence in probability of the quantity f D. eVH! dMS under
the probability measure ©" towards a non trivial limit. Because MEY’ is a positive measure
and because of the bound (5.2), this is clearly equivalent to the finiteness under O™ of
the quantity f]R2 erH’ dMS . Outside of the ball B(0,1), the finiteness results from the
fact that fDl eV H’ dMg < oo under P (see see [3, proof of Th. 3.2]), and the absolute
continuity of ©™ with respect to P when restricted to ;. The main point is thus to
analyze the integrability inside the ball B(0,1). It is clearly enough to show

1
/ —— dM? < 0, a.s. under O". (5.5)
B 2@ 7

This follows from the following Lemma 5.2: O

Lemma 5.2. The measure M,? satisfies

n 1
e 0
E [/3(0,1) |z My (dz)| < co. (5.6)

Proof. Under the measure ©", the process t — n — x; is distributed like |n — 2 + Bi|
where B, is a standard 3 dimensional Brownian motion (here, we identify n — x¢ with
(n —x0)(1,0,0)). We suppose the Brownian motion lives on the same probability space.
Then, if N denotes a standard 3d Gaussian variable (under some expectation we will
also denote IE), we have
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n 1 N 00 o
Ee 7M0 < E@ / / -
{/B(o,l) |z|< W(dx)} <C [ o Jo e’ py (dr, d@)}
oo 27
= C’e’YnE@" |:/ / 677|n710+Br‘ HY(dT, de)i|
0 0
= Ce"YTL]E@n |:/ e—'y‘n—xo+BT| d’l":|
0

< CeE [e'y““"]Een {/00 e VIBr dr}
0

= C’eQWIE[/Oo e~ VTN alr}7
0

= C’ezw(/oo e IV dr)E[ ] < 00. O
0

L
IN|?
6 Renormalization of the ()-vertex operators

6.1 Proof of (3.18)
Using (5.2) and proceeding as for (5.3) we get

Ac(1,n) SC/Re"CE[an_ﬁ exp ( — pe’C /Olnl ever uy(dr))] de

The stopping time T}, = inf{s; 5 > n — 1} is finite and belongs to [0,In 1] on M, .. We
deduce that

A(1,n) <C / e B Ly, nr,an -1y exp (= pe C " VIT,)) | de (6.1)
R ’ €

+ C/RBUCEPMM{THEIH%_I} exp (= 20 1 (1n 1)) de
=t ac(n) + be(n) (6.2)
where we have set 1
I(2) = / Y@= iy (dr).
We will show that there exists a constzant C > 0 such that for all n
(In$)%ac(n), (In1)%be(n) < Cne™", (6.3)

which is enough to complete the proof of (3.18).
We begin with a.(n). By making the change of variables y = ¢7(“*™) [(T,,), we get

ae(n) §Ceim/ yr eV dyE {an en{Tn<1nl—1}I(Tn)_%]'
) , 1

It suffices to estimate the last expectation. Obviously, we have

E[an,en{Tndn5—1}I(Tn)_ﬂ (6.4)

<rh 1 L7, +1<m 1y
= {minuepo,m,) n=zu 20} Hmin, o g 4, 1y (=27, 41) = (@u =21, 41) 20} I(T, )g
€ n

By conditioning on the the sigma algebra H, generated by {z,,r < T,}, {x, —x7, 41,7 >
T, + 1} and {x1, 11 — n}, we see that we have to estimate the quantity

E[I(a)” 7 |€as1 — Ta)-

We claim
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Lemma 6.1. There exists a constant C (independent of any relevant quantity) such that
foralla >0
E[I(a)” 7 |Zas1 — 4] < C(e_"(““_“) +1).

The proof of this lemma is given just below. Admitting it for a while and given the
fact that the random variable z7, 1 — n is a standard Gaussian random variable, the
conditioning on H7, of the expectation (6.4) thus gives

1
E[an,Em{Tndn 11y (T, )%
—o(y+1 —y?/2
S(:(/]R]E|:1{rninue[0,T"] n_zuzo}l{n]inue[T,'L+1=1n%] _y_(ﬁu—-"anﬁ-l)ZO}} (6 ('U ) + 1)6 Y / dy

To estimate the expectation in the integral, use the strong Markov property of the
Brownian motion to write

E {1{minue[o,T,ﬂ] n—w,>0} 1{minue[Tn+1,ln 1 7y7(mu*$Tn+l)20}i|

= |:1{minu€[0,Tn] n—x,>0} 1{minue[T".ln %71] —y—(Tu—2T, )20}:|
3 1+ max(0, —y)

<E |:1{min 1
(Ini-1)2

2
n+max(0,—y)—x,, 20}} < (?)

1 b
u€el0,ln L -1

where in the last inequality we have used Lemma 5.1. We deduce

1 — 5 —no
E[lwln,sn{Tn,<111 %—1}W] < C(ln %) Yne .

All in all, we have obtained

sup (In %)%ae(n) < Cne ",
€€]0,1]

which proves the claim. The same argument holds for b.(n). O

Proof of Lemma 6.1. Notice that the joint law of ((JZT — Za)refa,at1]s Tatl — xa) is that of

((Bu — Ba)ucla,a+1]s Bat+1 — Ba) where B is a standard Brownian motion starting from 0
(independent of Y). Hence the law of I(a) conditionally on z,4; — x, = x is given by

1
/ e'yBridge?,’z Ly (dT)
0

where (Bridge?”),<; is a Brownian bridge between 0 et 2 with lifetime 1. Hence it has
the law of r — B, — rBy + ux. By convexity of the mapping x +— 277 for ¢ > 0 and the
fact that the covariance kernel of the Brownian Bridge and the Brownian motion are
comparable up to fixed constant, we can apply Kahane’s inequality [9] to get that

E[I(a)_% |Tar1 — 24 = 2] < CK K /a+1 & (Br—Ba)+(r—a)z ,uy(dr)> —%} '

From Lemma 4.3 and the fact that e("=®% > ¢ A 1 forr € [a, a + 1], this quantity is less
than
E[I(a)” ¥ |Tat1 — o = 2] < C(e77" V 1).

This proves the claim. O
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6.2 Proof of (3.17)

First notice that

ni_o/le(l,n) :/ReUCE[lgN,G eXp(_ue’Yc/D o VH? dMS)} de

€

where
Bye={ min N —z, > 0}.
’ u€le,1]

Let us denote by Z. the measure ¢"? c dMS and define
1
Se: (111 )6, he:=e %

Now we prove the upper bound. We have

N

> Ad1,n) g/

n=0 R

:/]ReUCIE[IE (15| Fe.] exp ( - ,ueWCZE(Dhé)ﬂ de.

e’ |:]‘BN,5 exp ( - ue'YCZG(DhE))} de

Using the standard estimate E[1, |F, | < /2/7— 2 - (see Lemma 5.1) we deduce

/11

N
lim su lnlé (1,n) <+/2/m A(1,n).
Hoano ) )‘an:o( )

which completes the upper bound.
Let us now investigate the lower bound. We denote by C(¢) the annulus {z : ¢ < |z] <
h¢} and by I. the set
I.={ min (N —z,)>s"}
UE[se,— In¢]
where 6 €]0,1/2[. We have

N

> amz [

e’“E {131\1,5116 exp ( — pe’°Z(Dy,.) — ueWCZE(C(e))} dc.
n=0 R

Usinge™ >1— u%, we deduce

N
ZAG(Ln) Z/ 6“E[lBNﬁlee*”e%Z((DhE)(1 _ M%Q%’YCZG(O(E))%)} de
n=0 R

/ e"C]E[lBNgef’waE(D"f)] dcf/ e”CE[IBN.JI:G*“&WZE(D“)} de
R ' R T
_ Iu%/ ec(%wra) E[]_BN’E1[€€7N67CZ6(D}“)Z5(C( ))%} de
R
=:B1(N,€) — Bo(N,€) — Bs(N,e). (6.5)

We now estimate the above three terms.
We start with By (V, e). We have

N u2
E[1p,.|Fn.] leN’he(z)% NCY =g,
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N—-zs,
2.1 [ /ml_s _u2
>1p,,.1 1.(5)? e T du
he "{N—z, <(Int-s)a} 7 0
_1
>]-B N Ls, 1 . (2)%67%(1n%*85) 2
BN T = o {N—w. S(nt-s)i} T

Plugging this relation into By (V, ¢) we deduce
Bl (N, 6)

(ln% - 86)7%(/]Re“CIE{1BN,G(N — x5 ) exp ( - ,ue”cZe(DhE))} de

B /]ReUCE[l{mese>(ln %756)%}1BN,FL6 (N - xse>6_HeWZ“(Dhﬁ)} de
=: A(€) + Az(e).

It is clear that

e—0

. N N
lim (In £)2 A (e) = lim > A(1,n)=> A(1,n).
n=0

It remains to treat As(e). By making the change of variables y = ¢7°Z.(D},.), we get

- 4

(In 1) Ay(e) < CEO" [1 Z.(Dy.) ]

{N—-z,.>(In %—se)zlf}
Now we will use the fact that under ©V the event in the above expectation is very
unlikely. Using the elementary inequality ab < a?/2 + b*/2 we get

ES” [1

{N—z;.>(In %756)%}Z€(Dh6) “’:|

<(n1)yE®" 1 | + )y =Ee [z (D)%)

{N—zs.>(In +—s.) 0 }
Using the fact that a Gaussian Multiplicative Chaos has negative moments of all orders on
all open balls, the expectation in the second term in the above expression is easily seen
to be bounded uniformly in e. Hence, the second term tends to 0 as ¢ — 0. Concerning
the first term, recall Lemma 4.5 and the estimate, for a 3d-Bessel process 3; and u > x

1

1 t2

Therefore
) /2
@N(N—ws > (ml—se)z) <CE| ‘ A1)
¢ € [In+ — s — x|
32/2 1 1
<2CE[ ] +P(zo > 5(In 5)7T)

1
<2CIn(L)~t 4+ O Lyte 2D,
Hence, choosing « < 1/6 leads to lim._,o(In %)%AQ(E) — 0. Thus

N
o 1,4 ~
llgglf(ln =)?B1(N,¢€) > E_OA(l,n). (6.6)

Now we treat B3(IV,¢). To this purpose, we use first the change of variables y =
e7°Z.(Dy,) to get
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Sv+o

Bs(N,€) <CE[1p, 1, Z.(Dn.)" 7 Z(C(e))*]

Fy+o

—CE[1py 11, BlZ(Dy,) " 7 Z(C(e))

N

|(x5)5<00]}
E[Z.(C(0)|(x)s<oc]? |

In % 1
(/ e du) 7]

€

y+20

<CE [1BN,E lleE[Zé(Dhg)_ v |(x8)8<00]

N

Y+20

~CE |1y, 1L E[Z(Dp,) 5 |(2.)s<oc]

N

In < 1
<CE[Z(Dy,) "5 ¥ B[15,,1,, / e du]

€

In = 1
=CE |:1BN,5116 / evru du} :

€

On the set I, we have the estimate

In £
1 ys? 1 1)0/6
/ e’ du<Clnz-e ™ =Cln_e v(in )
S

€

which implies
hm(ln )2 B;(N,e) = 0. (6.7)

e—0

Finally we focus on By (N, €). We first make the change of variables y = e7°Z.(D},.) to
get

Ba(N,€) gCIE[lBN,elnge(Dl)’% (6.8)

We claim

Lemma 6.2. Let B be a standard Brownian motion and 3 > z > 0 and 6 €]0,1/2[. Then,
for some constant C > 0 (independent of everything)

P(e):=P,( min B-B,<s!, min B-B,>0)
UE[se,— In€] uw€[0,— In¢€]

<(8 - z)(In %)_1/232_1/2.

Conditioning (6.8) on the sigma algebra generated by {X;,(0);u > 1}, we can use
Lemma 6.2 to get

(In )% By(N,e) <Cs? V2 B|(N — X@,l(O))+ZS(D1)’ﬂ (6.9)

The last expectation is clearly finite and bounded independently of € so that

lgl%(ln ) Bsy(N,e) = 0. (6.10)
and, gathering (6.5)+(6.6)+(6.7)+(6.10), the proof of (3.18) and hence Lemma 3.2 is
complete. O

Proof of Lemma 6.2. We condition first on the filtration F;_ generated by the Brownian
motion up to time s.. From Lemma 5.1, we obtain

]P[ min B — B, < (s.), min B—BMZOU:SE]

u€[se,— In¢€] UE[se,— In €]
(B—Bs.) 4
(n L —sH)1/2 _ﬁ
© 2 du
(8- Bsg—@é)@u
(1n:—<F)1/2
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2 (B—Bs.)+ (so)°
Sl{ﬂ—BSeE[O,(se)f’]}\/;(ln T g1z T B 60 T - i
Integrating, we get that

2 1 _
P.(x) <4/ =(In i Se) 1/2E[1{minue[o,sd 5-B,>0} (B — Bse)l{/ﬁstee[Oy(se)@]}}

™
(se)
WE |:1{minu€[0‘s€] ﬁfBuZO}:| .

The second expectation is estimated with Lemma 5.1. Concerning the first one, we
use the fact under the probability measure ﬁ—iml{minue[o‘%] 3—B,>0} (B — Bs,), the process
(8 — Bu)u<s, is a 3d-Bessel process, call it Bess;. Hence, using the Markov inequality,

the scale invariance of a Bessel process and the fact that the mapping x — IE* {Belssl} is

decreasing, we deduce

2 1 B . 9 . 0—1/2
P(z) S\/;(ln P se) 28— 2)E” {I{Bessseg(sﬁ)e}} + \/;(lrfz)—se)l/?(ﬂ — )

2 1 _ B 1 2 )f-1/2
< ;(lng — S¢) I/Q(ﬂ — x)(.se)O I/QEO[BGS;J P (lrfsi)— Se)l/2 (B—x). O

A Riemann surfaces with conical singularities and cusps

A metric g on a Riemann surface M has a conical singularity of order a (« real
number > —1) at a point x € M if in some neighbourhood of x

g =e"|dz|

where z is a local complex coordinate defined in the neighbourhood of z with u—2«a/1n |z —
z(x)| continuous in the neighbourhood of z.

Recall that an Euclidean cone of angle 6 is

Co={(r,t);r>0,t e R/GZ}(O,t)N(O,t’)

equipped with the metric ds? = dr?+r2 dt? and that C equipped with the metric |z|2#|dz|?
is isometric to Cy where 6 = 27 (3 + 1). Therefore, if a surface has at some point a conical
singularity of order 3, then this surface admits at this point a “tangent cone” of angle
0=2n(f+1).

The boundary case of conical singularities is the case « = —1 and this is the threshold
at which the singularity ceases to be integrable, in which case the singularity becomes a
cusp and has a somewhat different structure. More precisely, a metric g on a Riemann
surface M has a cusp singularity at a point x € M if in some neighbourhood of z

g =c"ldz[”

where z is a local complex coordinate defined in the neighbourhood of z and u(z) +
2In|z — z(z)| = o(In|z — z(x)|) (with the Landau notation) in the neighbourhood of z.
The prototype of cusp model is

C={(rt);r>0,t e R/Z}

equipped with the hyperbolic metric ds?> = r~2(dr? + dt?) and the punctured disk

|dz|

equipped with the metric m is isometric to C. O
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7
:__?‘ Glue

Figure 1: Cone with angle 6. Glue isometrically the two boundary segments of the left-
hand side figure to get the cone of the right-hand side figure. Such a cone is isometric to
the complex plane equipped with the metric ds? = |z|2~* dzdz.

A.1 Conjecture on the Ising model on random triangulations

By a triangulation of the unit sphere we mean a finite connected graph 7' s.t. there
is an embedding of T to S? s.t. each connected component of S? \ T (a face) has a
boundary consisting of 3 edges (we denote the embedding of 7" by T again). We identify
two triangulations if there is an orientation preserving homeomorphism of S? mapping
the one to the other. A marked triangulation is a triangulation together with a choice
of 3 vertices v1, v2, v3. We denote by T the set of marked triangulations and by |7'| the
number of faces in T'.

We will consider a two-parameter family of probability measures P, , on 7 defined
by

1
P,5(T) = ie‘”U'T'Z(T, B) (A1)
MO,

where Z,,, s is a normalization constant and Z(T, ) is the partition function of the Ising
model on T at inverse temperature 3

TP = Y eEEen

ce{—1,1}#V(T)

where V(T') stands for the set of vertices of T and ¢ ~ j means that the vertices i, j are
neighbors. These Boltzmann weights depend on some parameter denoted 3, which we
now tune to its critical point # = 5. = In 2. It is known that

ZnBe) = >, Z(T,B.) = N~V (14 0(1)) (A.2)
TET:|T|=N

so that P, 5. is defined for o > i and lim,,  ; Z,,,,5. = oco. Hence as pp — p the measure
samples large triangulations.

For each T we may associate a conformal structure on S? as follows. Assign to each
face f a copy Ay of an equilateral triangle A of unit area and let My = UA;/ ~ be
the disjoint union of the Ay where we identify the common edges. My is a topological
manifold homeomorphic to §2. We can even equip it with a complex structure with the
help of the following atlas. It contains the interiors of Af, mapped by identity to A, the
interiors of Ay U Ay where f and f’ share an edge, mapped by identity to two copies
of A next to each other in C and neighbourhoods of each vertex v € M mapped to C as
follows. List faces sharing v in consecutive order fy,..., f,—1 and parametrize Ay, N U
by z; = re?™% with 6, € [6j/n,6(j + 1)/n]. Then z — 2™/¢ provides a complex coordinate
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for a neigborhood of v. This atlas makes My a complex manifold homemorphic to S2.
Picking three points 21, 20, z3 € C, there is a unique conformal map ¥ : My — C s.t.
Y(v;) = 2.

Let A7 be the area measure on My i.e. Ay is Lebesque measure in the local coordi-
nates on A;. Let v be its image under 7. In the standard coordinate of Citis given by
vr = gr(z)dz where the density gr is singular at the images of the vertices with n # 6.

Consider now a scaling limit as follows. Recalling that as po | iz the typical size of
triangulations, we quantify the gap between pyg, i1 by setting (for @ > 0 and fixed p > 0)

o = fi + a’p. (A.3)

Now we define observables of the spin field. Let D.(z) be the disk with center = and
radius € in C. For a triangulation 7" € 7 (uniformized by {1 onto the sphere) together
with a spin configuration ¢ on 7' we define the total magnetic field inside the disc D, (x)
by
O (2) = € 2a%* 3" 1p, (1) (1 (0))o(v).
veT
Let (z;)4<i<n be some arbitrary points on C.

Conjecture A.1. Under the relation (A.3), the following convergence holds (for some
irrelevant constant C, which may depend on n)

n

lim lim a®/%E,, 5, [H q>g§{,<xi>} Vg = ClO(xs) .. .0(20))5 X Ty

e—+0a—0
=4

where 11, , is the correlation function of the Liouville QFT studied in this paper with

cosmological constant j, parameters v = /3, Q = 2—\7/5 and n vertex operators at the

locations (z;);=1,...n With respective weights a; =y fori=1,2,3 and o;; = %7 fori > 3.
Here (f(x4) ...0(xy)); stands for the correlation functions of the spin field in the critical
Ising model (standard, i.e. not coupled to gravity) on the sphere.
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