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Abstract

To visualize how the randomness of a Markov process X is spreading, one can consider
subset-valued dual processes I constructed by intertwining. In the framework of one-
dimensional diffusions, we investigate the behavior of such dual processes I in the
presence of hypoellipticity for X. The Pitman type property asserting that the measure
of I is a time-changed Bessel 3 process is preserved, the effect of hypoellipticity is
only found at the level of the time change. It enables to recover the density theorem of
Hörmander in this simple degenerate setting, as well as to construct strong stationary
times by introducing different dual processes.
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1 Introduction

The technique of duality by intertwining associates to a Markov process X a dual
Markov process, which here will be taking subsets of the state space of X as values,
showing how randomness is spreading. In particular, this approach offers decompositions
of the time-marginal laws of X that are useful to deduce that they admit a density
with respect to a reference measure, at positive times. In our program to recover
Hörmander’s theorem by following this probabilistic way, we investigate here the effects
of hypoellipticity on duality, by considering the simple one-dimensional framework.

We begin by studying a toy model on R. Consider the hypoelliptic stochastic differ-
ential equation (s.d.e.) on X B pXptqqtPr0,τq, with τ P p0,`8s the potential explosion
time,

@ t P r0, τq, dXptq “
?

2Xnptq dBptq ` dt, (1.1)

where n P N B t1, 2, 3, ...u and where pBptqqtě0 is a standard Brownian motion.
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Duality and hypoellipticity

In the next section, we will check that X is hypoelliptic of order n at 0 and that τ is
a.s. infinite.

Let I stand for the set of nonempty closed intervals from r´8,`8s, which are either
included into r´8, 0q or into r0,`8s and which are different from t´8u and t`8u.
Denote S the set of singletons from I, i.e. S B ttxu : x P Ru. Consider µ` an µ´ the
speed measures associated to X on R` and p´8, 0q (whose definition will be recalled in
Sections 2 and 3, respectively). We define a Markov kernel Λ from I to R by

@ ι P I, @ A P BpRq, Λpι, Aq B

$

’

’

’

&

’

’

’

%

δxpAq , when ι is the singleton txu,

µ´pιXAq
µ´pιq

, when ι P IzS is included into r´8, 0q,

µ`pιXAq
µ`pιq

, when ι P IzS is included into r0,`8s,

(1.2)

where BpRq stands for the set of Borel subsets from R and δx for the Dirac mass at x.
We will check later on that the above expression are well-defined, as the denominators
are finite.

Our first goal is the following construction of a dual process I with respect to X, a
solution of (1.1):

Theorem 1.1. There exists a process I B pIptqqtě0 taking values in I such that

Ip0q “ tXp0qu, (1.3)

@ t ą 0, PrIptq P Ss “ 0, (1.4)

@ t ě 0, LpXptq|Ir0, tsq “ ΛpIptq, ¨q, (1.5)

where the conditional law in the l.h.s. is with respect to the trajectory Ir0, ts B pIpsqqsPr0,ts.
In particular, we have for any t ě 0, the decomposition

LpXptqq “

ż

Λpι, ¨qLpIptqqpdιq,

and the r.h.s. is absolutely continuous with respect to the Lebesgue measure for t ą 0.

As implied by (1.4), I immediately grows into a segment with non-empty interior. But
contrary to the elliptic case, where the dual process never return to S, I collapses into
the singleton t0u at τ0, the time when X hits 0 (this happens in positive time when Xp0q
is negative). The process I is continuous (for the Hausdorff topology on the compact
subsets of r´8,`8s), except at τ0, when I may be non left-continuous. Point (1.4) in
Theorem 1.1 will be deduced from the fact that the law of τ0 has no atom outside 0. Note
that without this requirement, the trivial dual process defined by Iptq B tXptqu, for all
t ě 0, would be suitable.

Remark 1.2. At first view, the discontinuity of I at τ0 may be perturbing in the above
diffusion context. But it is just a suggestion that the segment-valued process I is not
the appropriate object to look at. Indeed, it would be better to consider the probability
measure-valued Markov process pΛpIptq, ¨qqtě0, which is continuous at τ0, due to the fact
that µ´ gives an infinite weight to the left neighborhoods of 0, which implies that

lim
xÑ0´

Λpr´8, xs, ¨q “ δ0. (1.6)

Concerning probability measure-valued process, note that the deterministic flow
pLpXptqqqtě0 of time-marginal laws can also be seen as a (not very useful) dual, with
respect to the kernel Λ which to a given probability measure associates a random point
sampled according to this distribution. In some sense, we are looking for dual processes
strictly between the opposite pδXptqqtě0 and pLpXptqqqtě0.
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Duality and hypoellipticity

After τ0, the behavior of I depends on n:
‚ For n P Nzt1u, in finite time the process I hits r0,`8s and stays there afterward.
‚ For n “ 1, the process I converges to r0,`8s in large time, but never reaches it
(starting from a singleton).

This dichotomy is also valid when Xp0q is non-negative and will be reformulated in
terms of strong stationary times in the next sections.

But whatever n P N, Theorem 1.1 recovers, on this example, the density part of
Hörmander’s theorem, stating that for all t ą 0, the law of Xptq is absolutely continuous
with respect to the Lebesgue measure.

This study can be extended to any hypoelliptic diffusion on R (or on an interval of R),
but we found the circle case more instructive.

Let a and b be two smooth functions on T B R{Z, such that a is non-negative,
?
a is

smooth and vanishes at most at a finite number of points, write N for their set. Assume
that for any x P N, bpxq “ 0. Consider on C8pTq the Markov generator

L B aB2 ` bB, (1.7)

and let X B pXptqqtě0 be a corresponding diffusion process. The generator L is hypoel-
liptic and we are looking for the behavior in law of X for large times.

Let us write N B tyk : k P ZNu, where the representative points in r0, 1r satisfy
0 ď y0 ă y1 ă ¨ ¨ ¨ ă yN´1 ă 1 and where N P N (what follows is also trivially true in the
classical elliptic case where N “ 0). For k P ZN , let Ik be the projection on T of the
interval pyk, yk`1q (for l “ N ´ 1, it is the interval pyN´1, y0 ` 1q), to which is added yk if
bpykq ą 0 and yk`1 if bpyk`1q ă 0. Remark that pIkqkPZN forms a partition of T. Denote
for k P ZN , µk the speed measure associated to the restriction of L to Ik. Let I stand for
the set of non-empty closed intervals from T which are included into one of the Ik, for
k P ZN and let S B ttxu : x P Tu. Define a Markov kernel Λ from I to T by

@ ι P I, @ A P BpTq, Λpι, Aq B

$

&

%

δxpAq , when ι “ txu P S,

µkpιXAq
µkpιq

, when ι P IzS with ι Ă Ik and k P ZN .
(1.8)

In Section 4, it will be checked that the last r.h.s. is well-defined, i.e. 0 ă µkpιq ă `8

for ι P IzS with ι Ă Ik and k P ZN .
Theorem 1.1 extends to this context:

Theorem 1.3. Let X be a diffusion on the circle whose generator is the hypoelliptic
elliptic L given in (1.7). There exists a dual process I associated to X satisfying all the
statements of Theorem 1.1, where I and Λ are defined as in (1.8).

The process I collapses into a singleton when X hits N. But our definition of the dual
process I will not always be optimal, with respect to the construction of strong stationary
times. We will see that sometimes it is better to let the dual process I collapses into
a pair of points when X exits from the segments Ik which are open, for k P ZN . The
description of the evolution of the corresponding dual process is a little more involved
and left to Section 4, as well as the definition of another Markov kernel (4.9) replacing
(1.8) and Theorem 4.4, the extension of Theorem 1.3 in this situation. Nevertheless
and similarly to the toy model case, we deduce from Theorem 4.4 the density part of
Hörmander’s theorem for the one-dimensional generator (1.7).

Another interest of the dual process I, associated to the Markov kernel (1.8) and
constructed in Theorem 1.3, is to quantify the convergence to equilibrium of X, but only
when b takes different signs over N, in which case I converges a.s. for large time. When
b has a constant sign over N, the process I does not converge a.s. for large time. Indeed,
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Duality and hypoellipticity

writing I C rY, Zs, one of the two processes Y or Z ends up being Markovian, with a
behavior of the same nature as X, after the first time X goes through N. In this situation,
X admits an invariant probability measure π absolutely continuous with respect to the
Lebesgue measure. The support of π is T but its density vanishes on N. It is then natural
to consider rI the set of non-empty closed intervals from T and to define a Markov kernel
rΛ from rI to T by

@ ι P rI, @ A P BpTq, rΛpι, Aq B

$

&

%

δxpAq , when ι “ txu P S,

πpιXAq
πpιq , when ι P rIzS.

(1.9)

Theorem 1.3 is still valid when Λ is replaced by rΛ:

Theorem 1.4. Let X be a diffusion on the circle whose generator is the hypoelliptic
elliptic L given in (1.7), where b has a constant sign over N. There exists a dual process
rI B prIptqqtě0 associated to X taking values in rI and satisfying all the statements of
Theorem 1.1, with I and Λ replaced by rI and rΛ defined in (1.9).

The dual process rI converges a.s. in finite time to the whole state space T, so we
are able to construct a strong stationary time for X and to deduce the weak conver-
gence of LpXptqq toward π for large times. The dual process rI never collapses to a
singleton: in this situation the deduction of the density part of Hörmander’s theorem is
straightforward, since we have, whatever the initial condition,

Pr@ t ą 0, rIptq P rIzSs “ 1.

The plan of the paper is as follows: the next two sections are respectively devoted to
the restriction of the toy model to R` and to R´. In Section 4 we consider the circular
hypoelliptic diffusion and its dual process mentioned in Theorem 1.3. Section 5 deals
with the situation where b has a constant sign over N and in particular Theorem 1.4.
Finally Appendix A recalls and adapts some computations from [12] and [3] about the
segment-valued dual processes.

2 On R`

The situation treated here is quite similar to that from [12]. This section serves as a
reminder of some notions from the theory of duality by intertwining.

We begin by some general considerations about the diffusion X B pXptqqtPr0,τq whose
evolution is described in (1.1). The generator L associated to X is the operator acting
on C8pRq via

@ f P C8pRq, @ x P R, Lrf spxq B x2nB2fpxq ` Bfpxq.

The Itô term in (1.1) can be transformed into a Stratanovitch term (see for instance
Chapter 4 of Revuz and Yor [13]):

?
2Xnptq dBptq “

?
2Xnptq ˝ dBptq ´

1

2
d
A?

2Xnptq, B
E

“
?

2Xnptq ˝ dBptq ´ nX2n´1ptq dt,

where x¨, ¨y stands for the bracket of semi-martingales. It follows that the generator can
be rewritten under the Hörmander’s form L “ V 2

1 ` V0, where V0 and V1 are the vector
fields on R, seen as first order differential operators, whose coefficients are given by

@ x P R,

"

V0pxq B 1´ nx2n´1,

V1pxq “ xn.
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Duality and hypoellipticity

To see that L satisfies the Hörmander’s condition (cf. Hörmander [8] or the pedagogical
paper of Hairer [7]), define for all l P Z`, the set of vector fields Vl through the iteration

V0 B tV1u,

@ l P Z`, Vl`1 B Vl Y trU, V s : U P Vl and V P tV0, V1uu,

where r¨, ¨s stands for the usual Lie bracket. For any x P R, let Vlpxq B tV pxq : V P Vlu.
For any x P Rzt0u, we have V0pxq “ t0u, so that L is elliptic on Rzt0u. At 0, the first l P Z`
such that V0p0q “ t0u is l “ n, so that L is hypoelliptic of order n at 0, as announced in
the introduction.

Despite the above choice of R as state space, starting from R`, the process X lives
in R`. Indeed, to check the status of the point 0 seen from R`, let us introduce the
scale and speed functions associated to L:

@ x ą 0, σ`pxq B exp

ˆ

´

ż x

1

1

u2n
du

˙

“ expppx1´2n ´ 1q{p2n´ 1qq, (2.1)

µ`pxq B
1

x2nσ`pxq
“ v1`pxq, (2.2)

where

@ x ą 0, v`pxq B
1

σ`pxq
“ exp

ˆ
ż x

1

1

u2n
du

˙

“ exppp1´ x1´2nq{p2n´ 1qq.

The interest of these functions is that on p0,`8q, we can write

L “
1

µ`
B

ˆ

1

σ`
B

˙

. (2.3)

The corresponding scale and speed measures, also written σ` and µ`, are given by

@ z ě y ą 0, σ`pry, zsq “

ż z

y

σ`pxq dx,

µ`pry, zsq “

ż z

y

µ`pxq dx “ v`pzq ´ v`pyq.

By considering their limits as y goes to 0`, these expressions can be extended to

@ z ą 0, σ`pr0, zsq “ `8,

µ`pr0, zsq “ v`pzq.

We get that

ż 1

0

σ`pr0, xsqµ`pxqdx “ `8,

ż 1

0

µ`pr0, xsqσ`pxqdx “

ż 1

0

v`pxqσ`pxq dx “

ż 1

0

1 dx “ 1 ă `8.

Thus using Chapter 15 from Karlin and Taylor [10], it appears that 0 is an entrance
boundary for the restriction of L on R`: when Xp0q is distributed on R`, the positions
of the process X are in p0,`8q for any t P p0, τq.

The status of`8 can be investigated similarly. Since σ`pyq converges to expp´1{p2n´

1qq as y goes to `8, it appears that for any x ą 0, σ`prx,`8qq “ `8 and consequently

ż `8

1

σ`prx,`8qqµ`pxqdx “ `8.
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Duality and hypoellipticity

Furthermore, we have as x ą 0 goes to `8,

µ`prx,`8qqσ`pxq “
v`p8q ´ v`pxq

v`pxq

“

ˆ

exp

ˆ
ż `8

x

1

u2n
du

˙

´ 1

˙

„

ż `8

x

1

u2n
du

“ x1´2n{p2n´ 1q.

It follows that
ż `8

1

µ`prx,`8qqσ`pxqdx

"

“ `8 , if n “ 1,
ă `8 , if n P Nzt1u.

Thus when X starts from an initial distribution on R`, we deduce again from Chapter
15 of Karlin and Taylor [10] that `8 is a natural boundary if n “ 1 and an entrance
boundary if n P Nzt1u. In both cases, `8 cannot be reached, so that τ “ `8 a.s.

Following the approach developed in [12], we would like to construct an intertwining
dual to X. In this section, we restrict our attention to the case where X starts from R`.

Consider

I` B tpy, zq : y, z P r0,`8s, y ď zuztp`8,`8qu,

I̊` B tpy, zq P p0,`8q2 : y ă zu

(the interior of I`X R2
`) and the diagonal S` B tpy, yq : y P R`u Ă I`. As in the

introduction, the element py, zq P I` should be interpreted as the compact interval ry, zs
in R` \ t`8u and the elements of S`, as singletons. This is illustrated by the following
definition of the Markov kernel Λ` from I` to R`:

@ py, zq P I`, @ A P BpR`q, Λ`ppy, zq, Aq B

$

&

%

δypAq , if y “ z,

µ`pry,zsXAq
µ`pry,zsq

, otherwise.

Note that the above expression is well-defined, as we have

µ`pr0,`8qq “ v`p`8q ´ v`p0q “ exp

ˆ
ż `8

1

1

x2n
dx

˙

´ 0 ă `8. (2.4)

Let L` be the diffusion generator on I̊` given by

L` B pznBz ´ y
nByq

2 ` pny2n´1 ´ 1qBy ` pnz
2n´1 ´ 1qBz (2.5)

`2
ynµ`pyq ` z

nµ`pzq

µ`pry, zsq
pznBz ´ y

nByq.

Complete this definition on t0u ˆ p0,`8q by

L` B pznBzq
2 ` pnz2n´1 ´ 1qBz ` 2

z2nµ`pzq

µ`pr0, zsq
Bz, (2.6)

on p0,`8q ˆ t`8u by

L` B pynByq
2 ` pny2n´1 ´ 1qBy ´ 2

y2nµ`pyq

µ`pry,`8qq
By, (2.7)
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Duality and hypoellipticity

and on p0,`8q P I`,

L` B 0, (2.8)

namely p0,`8q (alias r0,`8s) is absorbing for L`.
More precisely, L` is defined on D`, the set of continuous and bounded functions

on I` which are smooth on each of the subsets I̊`, t0u ˆ p0,`8q and p0,`8q ˆ t`8u.
Since D` is an algebra, we define the carré du champs ΓL`

associated to L` via

@ F,G P D`, ΓL`
rF,Gs B

1

2
pL`rFGs ´ FL`rGs ´GL`rF sq. (2.9)

For instance on I̊`, we compute that

@ py, zq P I̊`, ΓL`
rF,Gspy, zq “ pznBz ´ y

nByqrF spz
nBz ´ y

nByqrGs.

It is not difficult to check that for any f P C8b pR`q, the set of bounded smooth
functions on R`, the mapping Λ`rf s is an element of D`.

The interest of Λ` and L` is the intertwining relation L`Λ` “ Λ`L, in the sense
that,

@ py, zq P I`zS`, @ f P C8b pR`q, L`rΛ`rf sspy, zq “ Λ`rLrf sspy, zq. (2.10)

This can be checked by direct computation, as in Lemma 20 from [12]. Alternatively,
as in [3], one can resort to an algebra A` of convenient observables, containing the
mappings Λ`rf s for f P C8b pR`q, see Appendix A below with p0, 1q replaced by R`.

Following the arguments leading to Proposition 4 from [12], we get that the martin-
gale problems associated to pD`,L`q are well-posed:

Theorem 2.1. For any probability distribution m0 on I`, there is a unique (in law)
continuous Markov process I B pY ptq, Zptqqtě0 whose initial distribution is m0 and whose
generator is L` in the sense of martingale problems: for any F P D`, the process
MF B pMF ptqqtě0 defined by

@ t ě 0, MF ptq B F pY ptq, Zptqq ´ F pY p0q, Zp0qq ´

ż t

0

L`rF spY psq, Zpsqq ds

is a local martingale. Furthermore the diagonal S` is an entrance boundary for I: for
any t ą 0, we have pY ptq, Zptqq R S`.

Remark 2.2. On I`zS`, the process pY ptq, Zptqqtě0 is constructed as a solution to the
s.d.e.’s associated to the generator L`, see Appendix A, with c “ 0 in (A.1). For instance
on I̊`, we have, up to the corresponding explosion time,

dY ptq “ ´
?

2Y nptqdW ptq `

ˆ

nY 2n´1ptq ´ 1´ 2
µ`ptY ptq, Zptquq

µ`prY ptq, Zptqsq

˙

Y nptq dt,

dZptq “
?

2ZnptqdW ptq `

ˆ

nZ2n´1ptq ´ 1` 2
µ`ptY ptq, Zptquq

µ`prY ptq, Zptqsq

˙

Znptq dt,

where pW ptqqtě0 is a standard Brownian motion and where

µ` B
ÿ

xPp0,`8q

xnµ`pxqδx. (2.11)

For any x0 P R`, to get the singleton px0, x0q as a starting point, an approximation by
px0, x0 ` εq, for small ε ą 0, is performed.
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Duality and hypoellipticity

Stone-Weierstrass theorem enables us to see that the algebra A` of observables
presented in Appendix A is dense in the space of continuous functions on I`zS`, endowed
with the uniform convergence on compact subsets (but this is not true on I`, since
the elementary observables vanish on S`, so that the composed observables from A`
does not separate the elements of S`). We strongly believe the martingale problems
associated to pA`,L`q are equally well-posed (cf. Section 4.4 of Ethier and Kurtz [5] for
valuable information in this direction).

As a consequence, we have the following result (this sentence is slightly misleading,
since a preliminary version of Corollary 2.3 plays an important role in the proof of
Theorem 2.1, to be able to let the process I start from the singletons from S`, see [12]),
for which we need to introduce some notations:

ς` B 2

ż `8

0

µ`pBIpsqq
2 ds (2.12)

(where µ`pBIpsqq “ pY psqq
nµ`pY psqq ` pZpsqq

nµ`pZpsqq, according to (2.11)), with the
conventions that xnµ`pxq “ 0 for x P t0,`8u, a priori ς` P p0,`8s, but we will see in
Corollary 2.3 below that ς` is finite a.s. Let the time change pθ`ptqqtPr0,ς`s be defined
by

@ t P r0, ς`q, 2

ż θ`ptq

0

µ`pBIpsqq
2 ds “ t, (2.13)

and θ`pς`q B limtÑpς`q´
θ`ptq.

We are interested in the process R` B pR`ptqqtě0 given by

@ t ě 0, R`ptq B µ`pIpθ`pt^ ς`qqq. (2.14)

Proposition 14 from [12] and its proof lead to the following result.

Corollary 2.3. The process R` is a Bessel process of dimension 3 starting from µ`pIp0qq

and stopped when it hits µ`pp0,`8qq. In particular, ς` is finite a.s. and is the hitting
time of µ`pp0,`8qq by R`. More precisely, we have (conditioning by the initial value
Ip0q for the second point):
‚ for n P Nzt1u or Ip0q of the form py0,`8q for some y0 P r0,`8q, we have θ`pς`q ă `8
and the process I hits p0,`8q in finite time (a.s.)
‚ for n “ 1 and Ip0q not of the form py0,`8q for some y0 P r0,`8q, we have θ`pς`q “ `8
and the process I does not hit p0,`8q in finite time (a.s.).

Proof. More precisely, Proposition 14 from [12] shows that r0, ς`q Q t ÞÑ R`ptq is a Bessel
process of dimension 3 (stopped if ς` ă `8). If ς` was to be infinite, we would end up
with

lim
tÑ`8

µ`pIpθ`ptqqq “ `8,

in contradiction with the fact that µ`pr0,`8qq ă `8. So ς` must be finite a.s. From
(2.12), we deduce that

lim inf
tÑ`8

µ`pBIptqq “ 0,

namely

lim sup
tÑ`8

Iptq “ p0,`8q,
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and in particular

lim inf
tÑ`8

Y ptq “ 0,

lim sup
tÑ`8

Zptq “ `8.

‚ For n P Nzt1u, since 0 and `8 are entrance boundaries for X, we know from
Theorem 1 in [12] that I hits p0,`8q in finite time, say τ. So the mapping R` Q

θ ÞÑ
şθ

0
µ`pBIpsqq

2 ds is increasing on r0, τq and constant on rτ,`8q. It follows that
limtÑpς`q´

θ`ptq “ τ.
‚ For n “ 1 and Zp0q “ `8, since `8 is not an entrance boundary, we know

from Theorem 1 in [12] that Z does not hit `8 in finite time. Thus the mapping
R` Q θ ÞÑ

şθ

0
µ`pBIpsqq

2 ds is increasing and limtÑpς`q´
θ`ptq “ `8.

When Zp0q “ `8, since 0 is an entrance boundary for X, the proof of Theorem 1 in
[12] shows that Y hits 0 in finite time. At this hitting time, I hits p0,`8q and we are in
the situation where θ`pς`q ă `8.

Corollary 2.3 can be seen as an illustration of Theorem 1 from [12] for elliptic
diffusions X defined on R (here p0,`8q), stating that the dual process hits the whole
state space in finite time for all initial distributions if and only if both boundaries are
of entrance type. But in the present context, we are not so much concerned with the
behavior in large time as with the behavior in small time and with the influence of
hypoellipticity. According to Corollary 2.3, the latter does not modify the Pitman-type
property that the process of the volumes pµ`pIptqqqtě0 of the dual process is a stopped
Bessel 3 process, up to a time change. The impact is to be found in the time change
itself:

Proposition 2.4. Fix py, zq P I` and consider the process I defined in Theorem 2.1
starting from py, zq. There are several behaviors for the time change θ` as t goes to 0`:
‚ If py, zq “ p0, 0q, we have

θ`ptq „
t

2pynµ`pyq ` znµ`pzqq2
.

‚ If py, zq “ p0, 0q, we have

θ`ptq „
1

pp2n´ 1q lnp1{tqq
1{p2n´1q

.

Thus in the latter case, the volume µ`rIs begins by evolving very slowly (since the
inverse function θ´1

` ptq is negligible with respect to t, for t Ñ 0`) and the order n of
hypoellipticity can be recovered through

n “
1

2

ˆ

1` lim
tÑ0`

lnplnp1{tqq

lnp1{θ`ptqq

˙

.

For multidimensional diffusions X, the hypoellipticity should also impact the germ of
the shape of the dual process, see [3] for a first approach to the elliptic case.

Proof of Proposition 2.4. When py, zq “ p0, 0q, we have µ`pty, zuq “ ynµ`pyq` z
nµ`pzq ą

0, so by continuity of the diffusion pIptqqtě0, we get as θ Ñ 0`,

2

ż θ

0

µ`pIpsqq
2 ds „ 2pynµ`pyq ` z

nµ`pzqq
2θ,

and this leads immediately to the first point.
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Duality and hypoellipticity

When py, zq “ p0, 0q, according to (2.6), the diffusion I is given by

@ t ě 0, Iptq “ p0, Zptqq,

where pZptqqtě0 is solution to the s.d.e.

@ t ą 0, dZptq “
?

2ZnptqdW ptq `

ˆ

nZ2n´1ptq ´ 1` 2
µ`pt0, Zptquq

µ`pr0, Zptqsq

˙

dt,

where pW ptqqtě0 is a standard Brownian motion. We compute that for all z ą 0,

µ`pt0, zuq

µ`pr0, zsq
“

µ`pzq

µ`pr0, zsq
“

z2nµ`pzq

v`pzq
“

1

σ`pzqv`pzq
“ 1,

so that the above s.d.e. is

@ t ą 0, dZptq “
?

2ZnptqdW ptq ` pnZ2n´1ptq ` 1qdt,

from which we deduce that a.s. Zptq „ t for small t ą 0.
Since for any t ą 0, we have µ`pzq “ v`pzq, (2.13) can be rewritten under the form,

ż θ`ptq

0

expp´2Z1´2npsq{p2n´ 1qq ds “
expp´2{p2n´ 1qq

2
t.

Since for any ε ą 0, we can find (a random) t ą 0 sufficiently small so that for any
s P p0, tq, p1´ εqs ď Zpsq ď p1` εqs, we are led to study the behavior for small θ ą 0 of
şθ

0
expp´αs1´2nq ds, where α ą 0 is a constant (that will take the values 2p1´ εq{p2n´ 1q

and 2p1` εq{p2n´ 1q). A usual integration by parts shows that for small θ ą 0,

ż θ

0

expp´αs1´2nq ds „ θ2n expp´αθ1´2nq,

and by consequence,

ln

˜

ż θ

0

expp´αs1´2nq ds

¸

„ ´
α

θ2n´1
.

These considerations show that for small t ą 0,

2

p2n´ 1qθ2n´1
„ lnp1{tq,

and this leads to the announced result when py, zq “ p0, 0q.

Due to (2.10), the arguments of Section 4 of [12] show that the processes X and I
can be coupled in the following way:

Theorem 2.5. Let m0 be a probability distribution on I` and consider m0 B m0Λ`.
There exists a coupling of X with initial distribution m0 and of I with initial distribution
m0 such that for any t ě 0,

LpXptq|Ir0, tsq “ Λ`pIptqq.

Furthermore, the construction of I from X is adapted, in the sense that given the
trajectory X, for any t ě 0, the conditional law of Ir0, ts depends only on Xr0, ts.
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Duality and hypoellipticity

Remark 2.6. Note that conversely, for any probability distribution m0 on R`, we can
find a law m0 on I` such that m0 “ m0Λ`. It is sufficient for instance to take m0 B
ş

δpx,xqm0pdxq, as it was done in Theorem 1.1 (at least when LpX0q is supported by R`).
But in general it is not the unique possible choice, e.g. when m0 “ Λ`ppy, zq, ¨q, for some
py, zq P I`zS`, just consider m0 “ δpy,zq.

As a classical consequence, going back to Diaconis and Fill [4] in the framework
of finite Markov chains (see also [12] for one-dimensional diffusions), we obtain the
existence of strong stationary times when n “ 1. Recall that a strong stationary time
τ for X is a finite stopping time (with respect to a possibly enlarged filtration for X)
such that τ and Xpτq are independent and such that Xpτq is distributed according to the
invariant distribution π, the probability distribution whose density is proportional to
µ` (π exists due to (2.4)).

Corollary 2.7. As in Corollary 2.3, there are two situations:
‚ for n P Nzt1u, whatever the initial distribution supported by R`, there exists a strong
stationary time for X.
‚ for n “ 1, for some initial distributions on R` (in particular for any initial Dirac
measure), a strong stationary time does not exist for X.

Proof. When n P Nzt1u, the first time I hits p0,`8q is a strong stationary time for X,
see for instance [12] for more details.

When n “ 1, since `8 is not an entrance boundary for X, the proof of Theorem 1 in
[12] shows that there is no strong stationary time τ for X, if the initial law of X is of the
form Λpr0, x0s, ¨q, for any x0 P R` (because τ would be stochastically bounded below by
the hitting time of r0,`8s by I starting from p0, x0q, which is infinite), see also Fill and
Lyzinski [6]. In particular, there is no strong stationary time for X starting with Xp0q “ 0.
Let us extend this result to all initial Dirac measure. So let x0 P R` be given and assume,
by contradiction, there is a strong stationary time for X starting from x0. Then one
would be able to construct a strong stationary time for X started from 0, by considering
the first time X hits x0 (which is a.s. finite) and by adding to it a strong stationary time
for X starting from x0. This is in contradiction with our previous observation, so there is
no strong stationary time for X starting from x0.

As at the end of the proof of Corollary 2.3, remark that if the initial distribution of
X is of the form Λ`prx0,`8s, ¨q, for some x0 P R`, then there exists a strong stationary
time for X, consider again the first time I hits p0,`8q.

Here we are more interested in the following density result, which is the easy part of
the Hörmander’s theorem and corresponds to the last statement of Theorem 1.1 when
LpX0q is supported by R`.

Corollary 2.8. Under the assumption of Theorem 2.5, write for any t ě 0, mt B LpXptqq
and mt B LpIptqq. Then we have

mt “

ż

Λ`pι, ¨qmtpdιq.

In particular, for any t ą 0, mt is absolutely continuous with respect to the Lebesgue
measure on R`.

Proof. The above equality is obtained by taking the expectation in Theorem 2.5. From
Theorem 2.1, for any t ą 0, the set of singletons S` is negligible with respect to mt.
Furthermore for any ι P I`zS`, Λpι, ¨q is absolutely continuous with respect to the
Lebesgue measure on R`. We can thus conclude to the validity of the last statement of
Corollary 2.8.
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Duality and hypoellipticity

3 On R´

The situation of R´ follows a pattern similar to the investigation of the previous
section. Putting together the results on R´ and R` will lead to Theorem 1.1.

On R´, it is then more convenient to consider

@ x ă 0, σ´pxq B exp

ˆ

´

ż x

´1

1

u2n
du

˙

“ expppx1´2n ` 1q{p2n´ 1qq, (3.1)

µ´pxq B
1

x2nσ´pxq
“ v1´pxq, (3.2)

where

@ x ă 0, v´pxq B
1

σ´pxq
“ exp

ˆ
ż x

´1

1

u2n
du

˙

“ expp´px1´2n ` 1q{p2n´ 1qq.

These modified scale and speed functions, where the base point 1 has been replaced by
´1, lead to the corresponding scale and speed measures on R´, still denoted σ´ and µ´.
We compute that

ż 0

´1

σ´prx, 0sqµ´pxqdx ă `8,

ż 0

´1

µ´prx, 0sqσ´pxqdx “ `8,

ż ´1

´8

σ´pp´8, xsqµ´pxqdx “ `8,

ż ´1

´8

µ´pp´8, xsqσ´pxqdx

"

“ `8 , if n “ 1,
ă `8 , if n P Nzt1u.

Thus when X starts from an initial distribution supported by R´, 0 is an exit boundary
(i.e. it is a.s. attained in finite time). Furthermore, depending on n “ 1 or n P Nzt1u, ´8
is an entrance or a natural boundary.

As a summary, conditioning by the initial position, we have the following a.s. behavior
for X: starting from Xp0q ă 0, the diffusion will reach 0 in finite time and instantaneously
pass to p0,`8q, where X will next live forever. Of course, when Xp0q “ 0 or Xp0q ą 0,
the first stage or the first and second stages of this description has/have to be removed.

We now come to the construction of the dual process I when the initial distribution
of X is supported by p´8, 0q.

Consider

I´ B tpy, zq : y, z P r´8, 0q, y ď zuztp´8,´8qu,

I̊´ B tpy, zq P p´8, 0q2 : y ă zu,

S´ B tpy, yq P I´ : y P p´8, 0qu.

Again, the element py, zq P I´ should be interpreted as the compact interval ry, zs in
r´8, 0q. Let Λ´ be the Markov kernel from I´ to p´8, 0q given by:

@ py, zq P I´, @ A P Bpp´8, 0qq, Λ´ppy, zq, Aq B

$

&

%

δypAq , if y “ z,

µ´pry,zsXAq
µ´pry,zsq

, otherwise.

Note that the above expression is well-defined, as we have for any x P p´8, 0q,

µ´pp´8, xqq “ v´pxq ´ v´p´8q

“

ˆ

exp

ˆ

´
x1´2n

2n´ 1

˙

´ 1

˙

exp

ˆ

´
1

2n´ 1

˙

ă `8. (3.3)
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Duality and hypoellipticity

Let L´ be the diffusion generator on I̊´ given by

L´ B pznBz ´ y
nByq

2 ` pny2n´1 ´ 1qBy ` pnz
2n´1 ´ 1qBz (3.4)

`2
ynµ´pyq ` z

nµ´pzq

µ´pry, zsq
pznBz ´ y

nByq,

and complete this definition on t´8u ˆ p´8, 0q by

L´ B pznBzq
2 ` pnz2n´1 ´ 1qBz ` 2

z2nµ´pzq

µ´pr0, zsq
Bz. (3.5)

More precisely, L´ is defined on DpL´q, the set of continuous functions on I´ which
are smooth on each of the subsets I̊´ and t´8u ˆ p´8, 0q. It is not difficult to check
that for any f P C8b pp´8, 0qq, the mapping Λ´rf s is an element of DpL´q.

As in the previous section, the interest of Λ´ and L´ is the intertwining relation
L´Λ´ “ Λ´L, in the sense that,

@ ι P I´zS´, @ f P C8b pp´8, 0qq, L´rΛ´rf sspιq “ Λ´rLrf sspιq. (3.6)

Again, this can be computed directly as in Lemma 20 of [12] or by introducing, as in [3]
(see also Appendix A), an algebra A´ Ă DpL´q and a measure µ´ B

ř

xPp´8,0q x
2nµ´pxq,

similarly to what was done in the previous section, replacing R` and µ` by p´8, 0q and
µ´.

The martingale problems associated to pDpL´q,L´q are also well-posed:

Theorem 3.1. For any probability distribution m0 on I´, there is a unique (in law)
continuous Markov process I B pY ptq, ZptqqtPr0,τIq whose initial distribution is m0 and
whose generator is L´ in the sense of martingale problems: for any F P DpL´q, the
process MF B pMF ptqqtě0 defined by

@ t P r0, τIq, MF ptq B F pY ptq, Zptqq ´ F pY p0q, Zp0qq ´

ż t

0

L´rF spY psq, Zpsqq ds

is a local martingale. The diagonal S´ is an entrance boundary for I: for any t P p0, τIq,
we have pY ptq, Zptqq R S´. Furthermore, the explosion time τI corresponds to the “hitting”
time of 0 by Z, in the sense that

lim
tÑτI´

Zptq “ 0. (3.7)

Proof. The arguments are similar to those of Proposition 4 in [12], except that in
this previous paper, the situation of an exit boundary was not considered. So let us
sketch the necessary modifications. First consider the case where m0 “ δι0 , for some
ι0 P I´. Consider ε ą 0 such that ι0 Ă r´8,´2εq. Let Lε be the generator acting like
L on p´8,´εq and such that ´ε is an reflecting boundary (i.e. a Neumann condition
is imposed at ´ε on the functions entering in the domain of Lε). Use Proposition 4 in
[12] to construct the corresponding generator Lε and an associated I´,ε-valued diffusion
Iε B pYε, Zεq, where I´,ε stands for the elements of I´ included into r´8,´εs. The
process Zε is stopped at the time τIε it hits ´ε. Up to this stopping time τIε , Iε is the
unique (in law) solution of the martingale problem associated to Lε starting from ι0.
Due to the Dirichlet condition on Zε, some functions from DpLq are missing to conclude
that pIεpt^ τIεqqtě0 is a stopped solution of the martingale problem associated to L and
starting from ι0. To go around this little difficulty, rather stop Iε when Zε hits ´2ε. When
ε ą 0 varies, all these processes are consistent, so we can apply Kolmogorov’s extension
theorem to get a process I as in the above theorem. Its uniqueness is shown similarly by
stopping. For more general initial distribution m0, just condition by Ip0q, see for instance
the book of Ethier and Kurtz [5].
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Lemma 3.2. The hitting time τI is a.s. finite.

Proof. This result would be obvious, if we already had Theorem 3.5 below at our disposal,
since it provides a coupling such that Zptq ě Xptq for all t P r0, τIq and we already know
that X hits 0 in finite time.

But the finiteness of τI can also be proven directly. According to Appendix A, Z
satisfies

@ t P r0, τIq, dZptq “
?

2ZndW ptq ` γpY ptq, Zptqqdt, (3.8)

where

@ py, zq P I´zS´, γpy, zq B nz2n´1 ´ 1` 2
ynµ´pyq ` z

nµ´pzq

µ´pry, zsq
zn.

Define

@ z P p´8, 0q, rγpzq B γp´8, zq “ nz2n´1 ´ 1` 2
z2nµ´pzq

µ´pp´8, zsq
.

Since ynzn ą 0, z2n ą 0 and µ´pry, zsq ď µ´pp´8, zsq for any y ă z P p´8, 0q, we get

@ py, zq P I´zS´, γpy, zq ě rγpzq. (3.9)

Consider the diffusion rZ B p rZptqqtPr0,rτq on p´8, 0q, where rτ is the explosion time, starting

with rZp0q “ Zp0q and solution of the s.d.e.

@ t P r0, rτq, d rZptq “
?

2 rZndW ptq ` rγp rZptqqdt.

Due to (3.9), we have

@ t P r0, τI ^ rτq, rZptq ď Zptq, (3.10)

so that τI ď rτ . To prove rigorously (3.10), one must come back to the situation of
constant diffusion coefficient, namely to consider, when n P Nzt1u,

dZ1´nptq “
?

2p1´ nqdW ptq `
`

p1´ nqZ´nptqγpY ptq, Zptqq ` npn´ 1qZn´1ptq
˘

dt,

d rZ1´nptq “
?

2p1´ nqdW ptq `
´

p1´ nq rZ´nptqrγp rZptqq ` npn´ 1q rZn´1ptq
¯

dt,

and when n “ 1,

d lnp´Zptqq “
?

2dW ptq `
`

´Z´1ptqγpY ptq, Zptqq ´ 1
˘

dt,

d lnp´ rZptqq “
?

2dW ptq `
´

´ rZ´1ptqrγp rZptqq ´ 1
¯

dt.

Classical comparison arguments (see for instance Chapter 6 of Ikeda and Watanabe [9])
are applied on these s.d.e. (be careful of the signs) to get (3.10).

To prove that τI is a.s. finite, it remains to show that rτ is a.s. finite. Since rZ is a
diffusion process, it is enough to check that 0 is an exit boundary and that ´8 is not an
exit boundary.

We compute that for any z P p´8, 0q,

z2nµ´pzq

µ´pp´8, zsq
“

1

σ´pzqpv´pzq ´ v´p0qq

“
1

1´ exppz1´2n{p2n´ 1qq
.
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The last term converges to 1 as z goes to 0´ and is equivalent to ´p2n ´ 1qz2n´1 as z
goes to ´8. Thus we get

lim
zÑ0´

rγpzq “ ´1,

and for z going to ´8

rγpzq „ p´3n` 2qz2n´1 pÑ `8q.

Via the introduction of the corresponding scale and speed functions, Chapter 15 of
Karlin and Taylor [10] implies that 0 is an exit boundary and that ´8 is an entrance
boundary.

Transform the definitions given in (2.12), (2.13) and (2.14) into

ς´ B 2

ż τI

0

µ´pBIpsqq
2 ds, (3.11)

with the convention that p´8qnµ´p´8q “ 0, a priori ς´ P p0,`8s, but we will see in
Corollary 3.3 below that ς´ is infinite a.s. Let the time change pθ´ptqqtPr0,ς´s be defined
by

@ t P r0, ς´q, 2

ż θ´ptq

0

µ´pBIpsqq
2 ds “ t, (3.12)

and θ´pς´q B limtÑpς´q´
θ´ptq.

We are interested in the process R´ B pR´ptqqtě0 given by

@ t ě 0, R´ptq B µ´pIpθ´pt^ ς´qqq. (3.13)

Corollary 3.3. We have ς´ “ `8, θ´p`8q “ τI and the process R´ is a Bessel process
of dimension 3 starting from µ´pIp0qq.

Proof. Proposition 14 from [12] shows that r0, ς´q Q t ÞÑ R´ptq is a Bessel process of
dimension 3 (stopped if ς´ ă `8). So to get that R´ is a Bessel process of dimension 3,
we must show that the event E B tς´ ă `8u has probability 0.

Define

pτ B inftt ě 0 : Zptq ě Zp0q{2u,

which is a.s. finite according to Lemma 3.2. Let us begin by checking that on E , the
trajectory pZptqqtPrpτ,τI s is Hölder of any order α P p0, 1{2q. Indeed, taking (3.8) into
account, we have for any s ă t P rpτ , τIq,

Zptq ´ Zpsq “ Mptq ´Mpsq `

ż t

s

nZ2n´1puq ´ 1` 2
µ´pIpuqq

µ´pIpuqq
Znpuq du, (3.14)

where

@ t ě 0, Mptq “
?

2

ż τI^t

0

Znpuq dW puq.

Since M B pMptqqtě0 is a continuous martingale, up to enlarging the underlying proba-
bility space, we can find a standard Brownian motion ĂW B pĂW ptqqtě0 so that

@ t ě 0, Mptq “ ĂW

ˆ

2

ż τI^t

0

Z2npuq du

˙

.
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Duality and hypoellipticity

The trajectories of ĂW are a.s. of order α (see e.g. Chapter 1 of Revuz and Yor [13]), so
the same is true for M , since the mapping R` Q t ÞÑ

şτI^t

0
Z2npuq du is Lipschitzian (these

statements hold a.s., i.e. the corresponding “constants” are random). The mapping
R` Q t ÞÑ

şτI^t

0
nZ2n´1puq ´ 1 du is also Lipschitzian, so according to (3.14), it remains

to bound the term
şt

s

µ´pIpuqq

µ´pIpuqq
Znpuq du. This is done via Cauchy-Schwartz’ inequality, for

s, t P rpτ , τI s:

ˇ

ˇ

ˇ

ˇ

ż t

s

µ´pIpuqq

µ´pIpuqq
du

ˇ

ˇ

ˇ

ˇ

ď

d

ż t

s

µ´pIpuqq
2 du

d

ż t

s

Z2npuq

µ2
´pIpuqq

du

ď max
uPrpτ,τI s

|Znpuq|

µ´pIpuqq

d

ż τI

0

µ´pIpuqq
2 du

?
t´ s.

The quantity maxuPrpτ,τI s |Z
npuq| is finite by continuity of Z and maxuPrpτ,τI s 1{µ´pIpuqq is

finite due to the fact that the Bessel process of dimension 3 R´ does not hit zero once it

has left 0 (this the reason for the introduction of pτ ). Since on E ,
b

şτI
0
µ´pIpuqq

2 du is also

finite, we deduce the trajectory pZptqqtPrpτ,τI s is Hölder of order α. In particular, there
exists a (random) constant C ą 0 such that for all

@ s P rpτ , τI s, |Zs| “ |Zs ´ ZτI | ď C |τI ´ s|
1{4

.

We deduce that on E ,

ς´ ě 2

ż τI

pτ

µ´pZpsqq
2 ds

“ 2

ż τI

pτ

v´pZpsqq
2 ds

“ 2

ż τI

pτ

expp´2pZ1´2npsq ` 1q{p2n´ 1qq ds

ě 2

ż τI

pτ

expp´2Z1´2npsq{p2n´ 1qq ds

ě 2

ż τI´pτ

0

expp2C1´2nsp1´2nq{4{p2n´ 1qq ds

“ `8,

in contradiction with the definition of E . Since all the above assertions are a.s., we get
that E is negligible.

Finally, the equality θ´p`8q “ τI is a consequence of the (strict) monotonicity of the

mapping r0, τIq Q θ ÞÑ
şθ

0
µ´pBIpsqq

2 ds.

Remark 3.4. As a consequence of Corollary 3.3, we have

lim
tÑτI´

µ´pIptqq “ `8. (3.15)

It suggests the following behavior for approximations: for ε ą 0, consider the elliptic
generator Lε B px2n`εqB2`B (not to be mistaken with the reflecting generator introduced
in the proof of Theorem 3.1). The associated speed function µε is defined by

@ x P R, µεpxq B
1

x2n ` ε
exp

ˆ

´

ż x

´1

1

u2n ` ε
du

˙

.

It is also possible to define dual processes pIεptqqtě0 with values in the set of closed
intervals in the extended line r´8,`8s (except the singletons t´8u and t`8u). Assume

EJP 22 (2017), paper 91.
Page 16/32

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP114
http://www.imstat.org/ejp/


Duality and hypoellipticity

that Iεp0q is a fixed element of I´. Then we guess that

lim
εÑ0`

µεpIεpτεqq “ `8,

where τε B inftt ą 0 : 0 P Iεptqu (or at least with τε B inftt ą 0 : η P Iεptqu, for all fixed
η ą 0).

Due to (3.6), the processes X and I can be coupled in the following way:

Theorem 3.5. Let m0 be a probability distribution on I´ and consider m0 B m0Λ´.
There exists a coupling of X with initial distribution m0 and of I with initial distribution
m0 such that for any t ě 0, we have on tτI ą tu,

LpXptq|Ir0, tsq “ Λ´pIptq, ¨q. (3.16)

Furthermore, the construction of I from X is adapted.

With the above coupling, we get that τI “ τ0, the hitting time of 0 by X seen in the
introduction:

Proposition 3.6. In addition to (3.7), we have

lim
tÑτI´

Xptq “ 0.

Proof. Since a.s., for all t P r0, τIq, we have Xptq ď Zptq, it follows that τI ď τ0. To see
the converse inequality, define for any ε ą 0,

τε B inftt ě 0 : Zptq ě ´εu.

We have

lim
εÑ0`

τε “ τ0,

thus by continuity of the the trajectories of X, a.s.

lim
εÑ0`

Xpτεq “ XpτIq.

To get XpτIq “ 0, it is sufficient to check that Xpτεq converges in probability toward 0 as
ε goes to 0`. The relation (3.16) is also true when t is replaced by a stopping time for I
(see Diaconis and Fill [4]), so we have

LpXpτεq|Ir0, τεsq “ Λ´pIpτεq, ¨q.

It follows that for any given η ą 0,

PrXpτεq P r´η, 0s|Ir0, τεsq “ Λ´pIpτεq, r´η, 0sq.

Taking expectation, we deduce that

PrXpτεq P r´η, 0ss “ ErΛ´pIpτεq, r´η, 0sqs.

Note that we have Λ´pIpτεq, r´η, 0sq ď Λ´pr´8, Zpτεqs, r´η, 0sq, so by dominated conver-
gence, (1.6) implies that

lim
εÑ0`

PrXpτεq P r´η, 0ss “ ErΛ´pIpτεq, r´η, 0sqs “ 0,

as desired.
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In general, we cannot conclude that limtÑpτ0q´
Y ptq “ 0 (convergence which should

be sufficiently slow to be compatible with (3.15)), e.g. if we started with Y p0q “ ´8, then
Y ptq “ ´8 for all t P r0, τ0q. Anyway, Proposition 3.6 enables to set pY pτ0q, Zpτ0qq B p0, 0q
while preserving the validity of (3.16). See also Remark 1.2, where Λ is just Λ´ in (1.6).

Next we extend the process I after time τ0 as in Theorem 2.1, starting from p0, 0q.
Note that the Markov kernel Λ from I´\I` to R defined in (1.2), is obtained by imposing
that Λ “ Λ´ on I´ˆBpRq and Λ “ Λ` on I`ˆBpRq. Taking into account this observation,
we can merge Theorems 2.5 and 3.5 and Corollary 2.8 into Theorem 1.1.

Remark 3.7. Corollary 2.7 is still valid, replacing R` by R. Indeed, the unique invariant
measure remains π, the probability measure defined before Corollary 2.7. The first time
I hits p0,`8q is a strong stationary time, as soon as it is finite.

To deduce the density part of Hörmander’s theorem, stating that for any t ą 0,
LpXptqq is absolutely continuous with respect to the Lebesgue measure on R, it remains
to show the next result:

Lemma 3.8. For any t ą 0, we have PrIptq “ p0, 0qs “ 0.

Proof. According to the previous considerations, we have for t ą 0, a.s.

tIptq “ p0, 0qu “ tXptq “ 0u “ tτ0 “ tu.

To prove that Prτ0 “ ts “ 0, up to conditioning with respect to Xp0q, we can assume that
Xp0q “ x0 for some x0 P R. When x0 ě 0, the previous section shows that PrXptq “ 0s “ 0

for all t ą 0. So assume that x0 ă 0 and decompose τ0 “ rτ ` pτ , with

rτ B inftt ě 0 : Xptq “ x0{2u,

pτ B inftt ě 0 : Xprτ ` tq “ 0u.

Due to the strong Markov property of X, rτ and pτ are independent. Thus to get that the
law of τ0 has no atom, it is sufficient to see that Lprτq has no atom. By contradiction,
assume there exists s ą 0 such that Prrτ “ ss ą 0. We would have PrXpsq “ x0{2s ą 0.
Couple X with I “ pY, Zq starting from px0, x0q as in Theorem 3.5. Taking into account
the equality τ0 “ τI and (3.16), we have

PrXpsq “ x0{2s “ PrXpsq “ x0{2, τ0 ą ss

“ PrXpsq “ x0{2, τI ą ss

“ ErEr1Xpsq“x0{2|Ir0, sss1τIąss

“ ErΛ´pIpsq, x0{2q1τIąss

“ 0,

because for s P p0, τIq, Λ´pIpsq, ¨q is absolutely continuous with respect to the Lebesgue
measure. This is the wanted contradiction.

4 On the circle

In the circle framework presented in the introduction, we begin by studying X and
its dual I on each of the segments Ik, with k P ZN . The global behavior of pX, Iq is
deduced by putting together the obtained informations, similarly to what was done in
the previous section.

Let I be one of the segments Ik, for k P ZN . To simplify the notation, we see I as a
subset of R and up to an affine transformation, we assume that the interior of I is p0, 1q
(where the boundaries 0 and 1, may or not be the same in T). There are four possibilities
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for the status of the boundaries of I, that we investigate below. First we recall some
classical definitions, valid in the four cases. To the restriction on I of the generator L
defined in (1.7), we associate its scale and speed functions:

@ x P p0, 1q, σpxq B exp

˜

´

ż x

1{2

bpuq

apuq
du

¸

, (4.1)

µpxq B
1

apxqσpxq
. (4.2)

The interest of these functions is that on p0, 1q, we can write

L “
1

µ
B

ˆ

1

σ
B

˙

. (4.3)

The corresponding scale and speed measures, also written σ and µ, are given by

@ z ě y P p0, 1q, σpry, zsq “

ż z

y

σpxq dx,

µpry, zsq “

ż z

y

µpxq dx.

With the notation of Chapter 15 from Karlin and Taylor [10], define

Σp0q B

ż 1{2

0

σpp0, uqqµpuqdu, Np0q B

ż 1{2

0

µpp0, uqqσpuqdu,

Σp1q B

ż 1

1{2

σppu, 1qqµpuqdu, Np1q B

ż 1

1{2

µppu, 1qqσpuqdu.

The finiteness or not of Σp0q and Np0q determine the status of the boundary 0 with
respect to the diffusion X associated to L, seen from I, and similarly for 1. To get these
status of the boundaries, as well as their orders of ellipticity, we only need the asymptotic
behavior of a and b near the boundaries. That is why we assumed

?
a to be smooth, so

that by considering expansions of
?
a near the boundaries, we can come back to the

computations made in Sections 2 and 3. Probably these computations can be extended
to more general positive exponents n, in particular with n “ 1{2 we would only need to
assume that a is smooth. We refrained from this generality, just to avoid the emergence
of singularities in the formulation of Hörmander’s condition.

Define I the set of compact subsegments included in I and S the set of singletons
from I. Consider the Markov kernel Λ from I to r0, 1s:

@ ry, zs P I, Λpry, zs, ¨q B

$

&

%

δy , if y “ z,

µpry,zsX¨q
µpry,zsq , otherwise.

‚ Case (C1): I “ r0, 1s, namely bp0q ą 0 and bp1q ă 0, by considering the behavior
of µ and σ near 0 and 1, we compute that Σp0q “ `8, Np0q ă `8, Σp1q “ `8 and
Np1q ă `8, so that 0 and 1 are entrance boundaries for X. It follows that under the
initial condition Xp0q “ x0, where x0 is fixed in r0, 1s, the process X stays forever in r0, 1s
and, more precisely, in p0, 1q for positive times. Since limxÑ0`

µpxq “ 0 “ limxÑ1´
µpxq,

the measure µ has a finite weight over I. It is also clear that µ is positive on p0, 1q. It
justifies the above definition of Λ and enables to define π as the normalization of µ into a
probability measure, which is just Λpr0, 1s, ¨q.

As in Section 2 and in [12], it is possible to construct a I-valued dual process
I B pIptqqtě0, so that Theorem 1.1 is valid. It follows that for any t ą 0, LpXptqq
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is absolutely continuous with respect to µ (or equivalently to the Lebesgue measure
restricted to r0, 1s), because S is an entrance boundary for I. More precisely, note that µ
satisfies (A.1) with c “ 0, so according to Appendix A, I can be described in the following
way. Writing I B pY,Zq B ppY ptq, Zptqqtě0, the processes Y and Z are solutions, up to
the time (finite a.s.) when either Y hits 0 or Z hits 1, of the s.d.e.
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dY ptq “

ˆ

a1pY ptqq ´ bpY ptqq ´ 2

?
apY ptqqµpY ptqq`

?
apZptqqµpZptqq

µprY ptq,Zptqsq

a

apY ptqq

˙

dt

´
a

2apY ptqq dW ptq,

dZptq “

ˆ

a1pZptqq ´ bpZptqq ` 2

?
apY ptqqµpY ptqq`

?
apZptqqµpZptqq

µprY ptq,Zptqsq

a

apZptqq

˙

dt

`
a

2apZptqq dW ptq.

(4.4)

where pW ptqqtě0 is a standard Brownian motion. Assume for instance that Y hits 0 before
Z hits 1, after the corresponding hitting time and up to the time Z hits 1, Z is solution of
the s.d.e.

dZptq “

ˆ

a1pZptqq ´ bpZptqq ` 2
µpZptqq

µpr0, Zptqsq
apZptqq

˙

dt`
a

2apZptqq dW ptq. (4.5)

Once Z hits 1, I remains at r0, 1s. Furthermore, the covering time

τ B inftt ě 0 : Iptq “ r0, 1su

is finite a.s. and is a strong stationary time for X. Recall that the separation discrepancy
between two probability measures m and π is defined in general via

spm,πq B ess inf
π

ˆ

1´
dm

dπ

˙

,

where dm{dπ is the Radon-Nikodym derivative of the absolutely continuous part of m
with respect to π. We have the following bound, due to Diaconis and Fill [4] (in the case
of finite Markov chains, but valid in general):

@ t ě 0, }LpXptqq ´ π}tv ď spLpXptqq, πq ď Prτ ě ts, (4.6)

where the norm in the l.h.s. is the total variation. In particular, Xptq converges in law
toward π for large t ě 0.

‚ Case (C2): I “ r0, 1q, namely bp0q ą 0 and bp1q ą 0, we get that Σp0q “ `8,
Np0q ă `8, Σp1q ă `8 and Np1q “ `8, so that 0 is an entrance boundary and 1 an
exit boundary for X. It follows that under the initial condition Xp0q “ x0, where x0
is fixed in r0, 1q, the process X ends up exiting r0, 1q by hitting 1 in finite time, say at
τ B inftt ě 0 : Xptq “ 1u. We have limxÑ0`

µpxq “ 0 (but limxÑ1´
µpxq “ `8), so any

compact segment included into I has a finite weight, which is positive if it is not reduced
to a singleton. Thus the Markov kernel Λ is well-defined.

As in Section 3, it is possible to construct a I-valued dual process I B prY ptq,

ZptqsqtPr0,τq, so that Theorem 3.5 is valid, see also Appendix A with c “ 0. Up to the
time τ , the processes Y and Z are solutions to (4.4) (or (4.5), after Y has hit 0, this may
happen or not before Z hits 1). We have a.s.

lim
tÑτ´

Zptq “ 1,

and the natural way to extend I after time τ is to define Ipτq “ t1u and to let I start from
there into the corresponding segment. Note that for any time t ě 0, we can write

LpXpt^ τqq “ Prτ ă tsLpXptq|τ ă tq ` Prτ ě tsδ1,
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with

LpXptq|τ ă tq “

ż

Λpι, ¨qPrIptq P dι|τ ă ts,

so that the conditional law in the l.h.s. is absolutely continuous with respect to the
Lebesgue measure for t ą 0. As in Lemma 3.8, we show that for any given t ě 0,
Prτ “ ts “ 0.

‚ Case (C3): I “ p0, 1s, namely bp0q ă 0 and bp1q ă 0, we get that Σp0q ă `8,
Np0q “ `8, Σp1q “ `8 and Np1q ă `8, so that 0 is an exit boundary and 1 an entrance
boundary for X. This situation can be described as in the above case I “ r1, 0q, by
symmetry.

‚ Case (C4): I “ p0, 1q, namely bp0q ă 0 and bp1q ą 0, we get that Σp0q ă `8,
Np0q “ `8, Σp1q ă `8 and Np1q “ `8, so that 0 and 1 are exit boundaries for X. It
follows that under the initial condition Xp0q “ x0, where x0 is fixed in p0, 1q, the process
X ends up exiting p0, 1q by hitting 0 or 1 in finite time, say τX B inftt ě 0 : Xptq P t0, 1uu.
Since µ as function is continuous and positive, any compact segment included into I has
a finite weight, which is positive if it is not reduced to a singleton. Again the Markov
kernel Λ is well-defined.

As in Section 3, it is possible to construct a I-valued dual process I B prY ptq,

ZptqsqtPr0,τIq, where τI ą 0 is the explosion time, so that Theorem 3.5 is valid, see also
Appendix A with c “ 0. Up to the time τI , the processes Y and Z are still solutions to
(4.4). A priori the explosion time τI is such that τI ď τX , but the arguments of Proposition
3.6 show that

lim
tÑτI´

Y ptq “ 0 or lim
tÑτI´

Zptq “ 1,

and τI “ τX .
When limtÑτI´ Y ptq “ 0 and limtÑτI´ Zptq ă 1, it is safe to set IpτIq “ t0u. In

this situation we have XpτIq “ 0, according to the proof of Proposition 3.6. We can
thus let pX, Iq start from p0, t0uq into the segment containing 0. Symmetrically when
limtÑτI´ Y ptq ą 0 and limtÑτI´ Zptq “ 1, we set IpτIq “ t1u and we have XpτIq “ 1, so
we can let pX, Iq start from p1, t1uq into the segment containing 1.

Consider now the case where limtÑτI´ Y ptq “ 0 and limtÑτI´ Zptq “ 1. When further-
more we have

lim
tÑτI´

ΛpIptq, ¨q “ δ0 or lim
tÑτI´

ΛpIptq, ¨q “ δ1, (4.7)

again we can respectively define IpτIq “ t0u and IpτIq “ t1u.
But what should we do when the limit of ΛpIptq, ¨q, as t goes to τI´, charges both 0

and 1, or worse, if this limit does not exist? In fact, we believe the former alternative is
always true (killing even the possibility of (4.7)):

Conjecture 4.1. In the Case (C4), we have a.s.

lim
tÑτI´

ΛpIptq, ¨q “ LpXpτIqq.

Whether this assertion is true or wrong, it is always possible to look at XpτIq, which
is either 0 or 1, and to set IpτIq “ tXpτIqu. This idea was also used in Copros [2], in the
context of denumerable Markov processes. Immediately after τI , X and I will evolve
in the segment containing tXpτIqu. This choice leads to a dual process I satisfying
Theorem 1.1.
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Remark 4.2. One does not need to wait that X pass through 0 or 1 for making an
observation of X and subsequently concentrate I to a singleton: at any stopping time
ζ for X, one can decide to change the value of I and impose that Ipζq “ tXζu. This
quantum physics sounding property does not impact condition (1.5), but of course it
may destroy condition (1.4), for instance if ζ is the minimum of a positive deterministic
time with τX . Note that the observation may also be imperfect: assume that p0, 1q is
decomposed into a measurable partition \sPSAs, where S is a denumerable index set,
and that we observe that Xpζq P As, then we can replace Ipζq by Ipζq X As. In general
we are looking for the largest dual processes, so the above observation/concentration
procedure should be avoided, see Example 4.3 below.

More precisely, let us come back to the circle setting described before Theorem
1.3. Consider the segments Ik, for k P ZN , as the vertices of an oriented graph whose
edges are as follows: there is an edge from Ik to Ik`1, if yk`1 P Ik`1 and an edge from
Ik`1 to Ik, if yk`1 P Ik. Except when the segments are all of type (C2), or all of type
(C3), following the oriented edges, one goes from segments of type (C4) or springs to
segments of type (C1) or sinks, after possibly visiting a successive sequence of segments
of type (C2), turning anti-clockwise, or a successive sequence of segments of type (C3),
turning clockwise. In particular, it appears that the number of springs is the number of
sinks. Inside each segment, the dual process is constructed according to its type. From
the above considerations, we get all the requirements on the dual process I presented in
Theorem 1.1.

Note that the segments are all of type (C2) (respectively (C3)) if and only if b is
positive (resp. negative) on N. Thus assuming the drift b does not take a fixed sign on
N, whatever the starting point, X ends up into a sink in finite time, since the exit times
from segments of type (C2), (C3) and (C4) are all a.s. finite. In this situation, for large
times, the process X converges in law, the process I converges a.s. and the limit law
of X is ErΛpIp`8q, ¨qs, where Ip`8q B limtÑ`8 Iptq (convergence taking place in finite
time). Except when there is only one sink (in which case it is possible to construct a
strong stationary time, since there is a unique invariant probability measure, namely
the normalizations of the speed measure on the sink), the limit law of X depends on its
initial condition. E.g. starting from a spring, the process X have positive probabilities
(depending on the exact initial position in the spring) to exit it from the right or from the
left and with the same probabilities, I collapse on the right or on the left boundary. After
that, I will converge toward the closest sink following the above edges. The limit law of
X is then a convex combinaison (with the previous probabilities) of the normalizations
of the corresponding speed measures.

When b has a fixed sign on N, the process I does not converge a.s. since it appears
that Iptnq “ tXptnqu for all n P N, where ptnqnPN is the unbounded increasing sequence
of times t ě 0 such that Xptq P N. More precisely, assume for instance that b is positive
on N, after the first time X hits N, according to (4.5), we have, according to Appendix A
with c “ 0,

dZptq “

ˆ

a1pZptqq ´ bpZptqq ` 2
µKptqpZptqq

µKptqpryKptq, Zptqsq
apZptqq

˙

dt`
a

2apZptqq dW ptq,

where Kptq is the unique index k P ZN such that Zptq P Ik (furthermore, we have
Y ptq “ yKptq). Thus it appears that Z becomes a Markov processes, whose behavior is
quite similar to that of X (they even coincide at each time X pass through N). The dual
process I is not very helpful to understand the convergence in law of X. Indeed, as
announced in the introduction, another dual process rI should be considered to go in this
direction. It will be done in the following section.
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Let us now present an example showing the above dual is not optimal with respect to
the construction of a strong stationary time.

Example 4.3. Consider on T B R{p2πZq, the operator L B aB2 ` bB, with

@ x P T,

"

apxq B cos2pxq,

bpxq “ sinpxq.

We have N “ 2, y0 “ π{2 and y1 “ 3π{2, so that I0 “ p´π{2, π{2q is of type (C4) and
I1 “ rπ{2, 3π{2s is of type (C1). Consider the initial condition Xp0q “ 0. Due to the
symmetry of I0 and of the coefficients a and b (anti-symmetric) with respect to 0, we
deduce from (4.4) that we have Z “ ´Y until X hits t´π{2, π{2u, say at time τ . In this
situation, it appears that

lim
tÑτ´

Λpr´Zptq, Zptqs, ¨q “
1

2

`

δ´π{2 ` δπ{2
˘

.

Thus the natural extension seems to be Ipτq B t´π{2, π{2u, instead of Ipτq B tXpτqu.
Indeed, in the former case, for t ě τ , we can construct a dual process of the form

Iptq “ r´Zptq,´π{2s \ rπ{2, Zptqs,

where Z takes values in rπ{2, πs and solves the s.d.e.

dZptq “

˜

a1pZptqq ´ bpZptqq ` 2

a

apZptqqµ1pZptqq `
a

ap´Zptqqµ1p´Zptqq

µ1pr´Zptq,´π{2s \ rπ{2, Zptqsq

a

apZptqq

¸

dt

`
a

2apZptqq dW ptq (4.8)

“

˜

a1pZptqq ´ bpZptqq ` 2

a

apZptqqµ1pZptqq

µ1prπ{2, Zptqsq

a

apZptqq

¸

dt`
a

2apZptqq dW ptq,

where µ1 is the speed measure associated to I1 and pW ptqqtě0 is a standard Brownian
motion. For the second equality, we used the symmetry of I1 and of L (with respect to
the real axis, when T is seen as the unit circle in C). When Z hits π, I hits rπ{2, 3π{2s
and the corresponding hitting time is a strong stationary time for X.

Consider now the case where we set Ipτq “ tXpτqu and assume for instance that
Xpτq “ π{2. For t ě τ , our construction for Theorem 1.3 leads to a dual of the form
Iptq “ rπ{2, Zptqs, where Z takes values in rπ{2, 3π{2s and solves the s.d.e. (4.8). The dual
process will be absorbed at I1 when Z hits 3π{2 and this provides a strong stationary
larger than the previous one, since Z must go through π before hitting 3π{2.

As just seen, starting from 0, this example can be brought back to the case of a
diffusion on a segment starting from its boundary. This situation is well-understood (see
Fill and Lyzinski [6]) and the strong stationary time constructed in the former case is in
fact sharp, namely stochastically smaller than any other strong stationary time.

For the remaining part of this section, let us assume that Conjecture 4.1 is true. To
construct a dual process J B pJptqqtě0 able to collapse on pairs of points, we modify
the definitions given in the introduction in the following way. Let I1 stand for the set
of non-empty closed intervals from T which are included into one of the Ik, for k P ZN
and I2 the set of pairs pι1, ι2q, where ι1, ι2 P I1 are disjoints. Now set I B I1 \ I2 and
S “ S1 \ S2, with S1 B ttxu : x P Tu and S2 B tpyk, ylq : k “ l P ZNu. For any α P r0, 1s,
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define a Markov kernel Λα from I to T by

@ ι P I, Λαpι, ¨q B

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

δxp¨q , when ι “ txu P S1,

αδykp¨q ` p1´ αqδylp¨q , when ι “ pyk, ylq P S2,

µkpιX¨q
µkpιq

, when ι P I1zS1 and ι Ă Ik,

αµkpι1X¨q`p1´αqµlpι2X¨q
αµkpι1q`p1´αqµlpι2q

, when ι “ pι1, ι2q P I2zS2, ι1 Ă Ik
and ι2 Ă Il.

(4.9)

Then Theorem 1.3 can be extended into:

Theorem 4.4. There exists a process J B pJptqqtě0 taking values in I, whose construc-
tion is adapted with respect to X, such that

Jp0q “ tXp0qu,

@ t ą 0, PrJptq P Ss “ 0,

@ t ě 0, LpXptq|Jr0, tsq “ ΛαpIp0qqpJptq, ¨q,

where αpIp0qq P r0, 1s only depends on Ip0q (or equivalently on Xp0q). In particular, when
LpXp0qq “ δx0 for some x0 P T, we have for any t ě 0, the decomposition

LpXptqq “

ż

Λαptx0uqpι, ¨qLpJptqqpdιq.

Proof. When Xp0q does not belong to a spring, the dual process J is the same as I in
Theorem 1.3 and the introduction of I2 and S2 are not necessary. When Xp0q “ x0
belongs to a spring, say Ik, let τ its exit time from Ik and αptx0uq B Px0rXpτq P Ik´1s.
Before τ , J is constructed as I in Theorem 1.3, but at τ , we impose Jpτq B ptyku, tyk`1uq.
Conjecture 4.1 enables us to see that

LpXpτq|Jr0, τ sq “ ΛαpIp0qqpJpτq, ¨q,

from which we can keep up constructing J after the time τ , by setting

@ t P r0, rτq, Jpτ ` tq B pI1ptq, I2ptqq,

rτ B inftt ě 0 : I1ptq X I2ptq “ Hu,

where I1 and I2 are the same as in Theorem 1.3, starting with I1p0q “ tyku and I2p0q “
tyk`1u, and directed by the same Brownian motion pW ptqqtě0 in (4.4) and (4.5). When
rτ ă `8 (as in Example 4.3, where it corresponds to the time Z hits π), we set Jprτ ` tq B
I1prτq Y I2prτq for all t ě 0.

As in Remark 1.2, the probability measure-valued Markov process pΛαptx0uqpJptq, ¨q is
continuous and seems the right object to consider as a dual.

The main advantage of Theorem 4.4 over Theorem 1.3, i.e. of the Markov kernel given
in (4.9) over the Markov kernel (1.8), is that it enables to extend the construction of
strong time stationary times τ, in the sense that the position Xτ is distributed according
to an invariant probability measure (maybe non longer the unique invariant probability
measure as before). This is possible when Xp0q starts from a fixed position x0 P T and
when b does not take a fixed sign on N. Indeed, in this case the dual process ends up
being absorbed in a state Jp8q depending only on x0, which is either a closed segment
from tIk : k P ZNu or a disjoint union of two such segments. Since Λαptx0uqpJp8q, ¨q is
an invariant probability measure for X depending only on x0, classical arguments from
Diaconis and Fill [4] then show that the absorbing time for J is a strong stationary time.
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5 The turning diffusion

Here we consider more precisely the circle situation where b has a fixed sign on N ,
to show Theorem 1.4 and to deduce the convergence of X in law for large time.

Up to conjugacy with respect to T Q x ÞÑ ´x P T, it is sufficient to study the case
where b ą 0 on N . We begin by investigating the invariant measure for the generator L
given in (1.7). For k P ZN , recall that µk is the speed measure of the restriction of L on
Ik. It is defined up to a positive factor by

@ x P Ik, µkpxq B
1

apxq
exp

˜

ż

rzk,xs

bpuq

apuq
du

¸

,

where zk is a chosen point belonging to Ik and where a segment ru, vs Ă T will always be
understood as the path going from u to v anti-clockwise. For any family of non-negative
numbers ppkqkPZN , the measure µ B

ř

kPZN
pkµk satisfies µrLrf ss “ 0 for any smooth f

with compact support in TzN. But this is not sufficient for µ to be a invariant measure.
Furthermore we are here looking for an invariant probability measure and it can be
easily check that µpTq “ `8, except in the trivial case where all the pk, for k P ZN ,
are equal to zero. In fact, for fixed k P ZN , the restriction of L to smooth functions
with compact support in Ik is symmetric in L2pµkq but the problem at hand is really non
reversible since the diffusion X has a strong tendency to turn anti-clockwise around T.
Lemma A.1 in Appendix A suggests to rather look for the solutions ηk of the equation
given on the interior of Ik by

paηkq
1 “ bηk ´ ck,

where ck is a constant. When a did not vanish on tyk, yk`1u, it is not difficult to check
that the general solution of this equation is, for any x P I̊k,

ηkpxq “
1

apxq

˜

pk

ż

ryk,xs

exp

˜

ż

ru,xs

b

a
pvq dv

¸

du` qk

ż

rx,yk`1s

exp

˜

´

ż

rx,vs

b

a
pvq dv

¸¸

,

where pk and qk are two constants such that pk ` qk “ ck. If we want this expression to
converge when a does vanish on tyk, yk`1u and b is positive on tyk, yk`1u, we must take
pk “ 0. It leads us to consider

@ x P I̊k, ηkpxq “

ż

rx,yk`1s

exp

˜

´

ż

rx,vs

b

a
pvq dv

¸

.

We compute that

lim
xÑyk`

ηkpxq “ 0 “ lim
xÑyk`1´

ηkpxq,

so define ηkpykq B 0 C ηkpyk`1q. Since we have paηkq1 “ bηk ´ 1, we deduce from the
decomposition (A.12) with c “ 1 that for any f P C8pryk, yk`1sq, we have

ηkrLrf ss “ raηkf
1s
yk`1
yk ´ rf s

yk`1
yk

“ ´pfpyk`1q ´ fpykqq.

Define the function η on T by imposing that η coincide with ηk on Ik for all k P ZN . Also
denote η the measure admitting η as density with respect to the Lebesgue measure
and remark that this density is continuous (and vanish on N ), so that ηpTq ă `8.
Furthermore we have for any f P C8pTq,

ηrLrf ss “ ´
ÿ

kPZN

fpyk`1q ´ fpykq “ 0,
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namely η is invariant for L. The probability π appearing in (1.9) is just the normalization
of η into a probability measure.

Let us now describe the evolution of the dual process rI B prY , rZq. Assume that
Xp0q “ x0 P Ik “ ryk, yk`1q, for some k P ZN . Following (A.2) and (A.6), we begin by
defining prY ptq, rZptqqtPr0,τ1q as the solution of the s.d.e.

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

limtÑ0`
rY ptq “ x0,

limtÑ0`
rZptq “ x0,

drY ptq “

´

a1prY ptqq ´ bprY ptqq ` 2

ηp rY ptqq

¯

dt´

b

2aprY ptqq dW ptq

´2

?
ap rY ptqqηp rY ptqq`

?
ap rZptqqηp rZptqq

ηpr rY ptq, rZptqsq

b

aprY ptqqdt,

d rZptq “

´

a1p rZptqq ´ bp rZptqq ` 2

ηp rZptqq

¯

dt`

b

2ap rZptqq dW ptq

`2

?
ap rY ptqqηp rY ptqq`

?
ap rZptqqηp rZptqq

ηpr rY ptq, rZptqsq

b

ap rZptqq,

for t P p0, τ1q, where τ1 is the first time either rY hits yk or rZ hits yk`1.
First, assume that rY pτ1q “ yk. We extend the process prY , rZq after time τ1 by letting

rY ptq “ yk, for all t ě τ1, and by solving for rZ the s.d.e., for t P rτ1, τ2q,

d rZptq “

˜

a1p rZptqq ´ bp rZptqq `
2

ηp rZptqq
` 2

ηp rZptqq

ηpryk, rZptqsq
ap rZptqq

¸

dt

`

b

2ap rZptqq dW ptq, (5.1)

where τ2 is the first time after τ1 that rZ hits yk`1. This time is a.s. finite, because yk`1 is
an exit boundary for rZ (as well as for X) on ryk, yk`1q. Next for t P rτ2, τ3q, we ask that rZ

solves again the s.d.e. (5.1), where τ3 is the first time after τ2 that rZ hits yk`2. This time
is a.s. finite, because yk`2 is an exit boundary for rZ on ryk`1, yk`2q. We keep solving this
equation until rZ ends up hitting yk, say at time τ, which is also a.s. finite. After τ, we
take rI to be equal to T.

Since the generator of rI B prY , rZq is intertwined with L through rΛ, we construct a
coupling of rI with the diffusion X, associated with the generator L, so that

rIp0q “ tXp0qu,

@ t ě 0, LpXptq|rIr0, tsq “ rΛprIptq, ¨q.

Then we get that τ is a strong stationary time for X.
It follows that X converges toward π in separation and in total variation in large time,

due to the general bounds (4.6). As pointed out by the referee, since by compactness the
above hitting times can be bounded uniformly with respect to the starting point, these
convergences are uniform with respect to the starting point, implying an exponential
convergence.

A About segment-valued dual processes

Putting together considerations from [12] and [3], we present here some computa-
tions that were used throughout the paper.

On p0, 1q, consider a generator L B aB2 ` bB, where a ą 0 and b are smooth functions
on p0, 1q. Let η ą 0 be a smooth function on p0, 1q satisfying

paηq1 “ bη ´ c, (A.1)
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where c is a constant. Then the measure (still denoted η) admitting η with respect to the
Lebesgue measure λ on p0, 1q is invariant for L in the following sense:

Lemma A.1. For any f P C8c p0, 1q, the space of smooth functions with compact support
inside p0, 1q, we have ηrLrf ss “ 0. Furthermore, η is reversible with respect to L, in the
sense that for all f, g P C8c p0, 1q, ηrgLrf ss “ ηrfLrgss, if and only if c “ 0.

Proof. These results are immediate consequences of the following integration by parts:
for all f, g P C8c p0, 1q,

ηrgLrf ss “

ż 1

0

aηgf2 ` bηgf 1 dλ

“

ż 1

0

´paηgq1f 1 ` bηgf 1 dλ

“

ż 1

0

´paηq1gf 1 ´ aηg1f 1 ` bηgf 1 dλ

“ ´

ż 1

0

ag1f 1 dη ` c

ż

gf 1 dλ.

When g “ 1 (the mapping always taking the value 1, here on p0, 1q), the r.h.s. is equal to

c

ż 1

0

f 1 dλ “ 0,

showing the first assertion of the above lemma. Concerning the second one, the re-
versibility is equivalent to

@ f, g P C8c p0, 1q, c

ż

gf 1 dλ “ c

ż

fg1 dλ.

By another integration by parts, the r.h.s. is equal to ´c
ş

gf 1 dλ, so we must have
c
ş

gf 1 dλ “ 0, fo all f, g P C8c p0, 1q and this is true if and only if c “ 0.

Let be given y0 ă z0 P p0, 1q and β a smooth function on p0, 1q that will be specified
later, in (A.6). Consider a solution pY, Zq B pY ptq, ZptqqtPr0,τq of the s.d.e.

$
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Y p0q “ y0,

Zp0q “ z0,

dY ptq “

ˆ

a1pY ptqq ´ βpY ptqq ´ 2

?
apY ptqqηpY ptqq`

?
apZptqqηpZptqq

ηprY ptq,Zptqsq

a

apY ptqq

˙

dt

´
a

2apY ptqq dW ptq,

dZptq “

ˆ

a1pZptqq ´ βpZptqq ` 2

?
apY ptqqηpY ptqq`

?
apZptqqηpZptqq

ηprY ptq,Zptqsq

a

apZptqq

˙

dt

`
a

2apZptqq dW ptq,

(A.2)

where the explosion time τ is such that either limtÑτ´
Zptq´Y ptq “ 0, or limtÑτ´

Y ptq “ 0

or limtÑτ´
Zptq “ 1. Denote 4 B tpy, zq : 0 ă y ă z ă 1u. For any f P C8c p0, 1q, define

the elementary observable

@ py, zq P 4, Ff py, zq B

ż z

y

fpxq ηpdxq. (A.3)

It will be also convenient to consider for py, zq P 4,

Gf py, zq B fpzq
a

apzqηpzq ` fpyq
a

apyqηpyq,

Hpy, zq B
G1py, zq

F1py, zq
.
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We compute that for any f P C8c p0, 1q and py, zq P 4,

ByFf py, zq “ ´fpyqηpyq,

BzFf py, zq “ fpzqηpzq,

B2yFf py, zq “ ´pfηq1pyq,

B2zFf py, zq “ pfηq1pzq,

BzByFf py, zq “ 0.

It follows from Itô’s formula that

dFf pY ptq, Zptqq

“ BzFf pY ptq, ZptqqdZptq ` ByFf pY ptq, ZptqqdY ptq `
1

2
B2zFf pY ptq, Zptqqd xZy ptq

`
1

2
B2yFf pY ptq, Zptqqd xY y ptq ` BzByFf pY ptq, Zptqqd xY,Zy ptq

“ BzFf pY ptq, ZptqqdZptq ` ByFf pY ptq, ZptqqdY ptq ` B
2
zFf pY ptq, ZptqqapZptqqdt

`B2yFf pY ptq, ZptqqapY ptqqdt

“ pfηqpZptqqdZptq ´ pfηqpY ptqqdY ptq ` pfηq1pZptqqapZptqqdt´ pfηq1pY ptqqapY ptqqdt

“ dMf ptq `ApY ptq, Zptqqdt, (A.4)

where Mf B pMf
t qtPr0,τq is the local martingale defined by

@ t P r0, τq, Mf ptq B

ż t

0

pfηqpZpsqq
a

2apZpsqq ` pfηqpY psqq
a

2apY psqq dW psq

“
?

2

ż t

0

Gf pY psq, Zpsqq dW psq, (A.5)

and where

Apy, zq

B pfηqpzq
´

a1pzq ´ βpzq ` 2Hpy, zq
a

apzq
¯

´ pfηqpyq
´

a1pyq ´ βpyq ´ 2Hpy, zq
a

apyq
¯

`pfηq1pzqapzq ´ pfηq1pyqapyq

“ pfaηq1pzq ´ pfaηq1pyq ´ pβfηqpzq ` pβfηqpyq ` 2Hpy, zqGf py, zq

“ pf 1aηqpzq ´ pf 1aηqpyq ` pfppaηq1 ´ βηqqpzq ´ pfppaηq1 ´ βηqqpyq ` 2Hpy, zqGf py, zq.

The first term of the r.h.s. can be transformed into

pf 1aηqpzq ´ pf 1aηqpyq “

ż

ry,zs

pf 1aηq1pxq dx

“

ż

ry,zs

paηqpxqf2pxq ` paηq1f 1pxq dx

“

ż

ry,zs

paηqpxqf2pxq ` pbηqpxqf 1pxq dx´

ż

ry,zs

cf 1pxq dx

“

ż

ry,zs

Lrf spxq ηpdxq ´ cpfpzq ´ fpyqq

“ FLrfspy, zq ´ cpfpzq ´ fpyqq,

where we took into account (A.1). We deduce that

Apy, zq “ FLrfspy, zq ` pfppaηq
1 ´ βη ´ cqqpzq ´ pfppaηq1 ´ βη ´ cqqpyq ` 2Hpy, zqGf py, zq

“ FLrfspy, zq ` pfppb´ βqη ´ 2cqqpzq ´ pfppb´ βqη ´ 2cqqpyq ` 2Hpy, zqGf py, zq.
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It leads us to consider

β B b´ 2
c

η
, (A.6)

so that

Apy, zq “ FLrfspy, zq ` 2Hpy, zqGf py, zq. (A.7)

Remark A.2. Let us make the link with the formulation adopted in [3] in the context
of Riemannian geometry in dimension strictly larger than 1. Endow p0, 1q with the
Riemannian metric given by 1{a (so that the norm of the usual unit vector 1 above
x P p0, 1q is 1{

a

apxq, or equivalently, ˘
a

apxq are the unit vectors above x in the new
Riemannian metric). Let d be the corresponding distance and for any A Ă p0, 1q and
ε ą 0, let Aε B tx P p0, 1q : dpx,Aq ď εu, the ε-enlargement of A. Then we have for any
f P C8c p0, 1q and py, zq P 4,

Bε

ż

ry,zsε

f dη

ˇ

ˇ

ˇ

ˇ

ˇ

ε“0

“ Gf py, zq

“

ż

Bry,zs

f dη, (A.8)

where η is the (non-σ-finite) measure given by

η B
ÿ

xPp0,`8q

a

apxqηpxqδx (A.9)

(η will only serve to measure the boundaries Bry, zs “ ty, zu of segments ry, zs, with
py, zq P 4, we used the symbol

ş

in (A.8) instead of a sum over the two elements of Bry, zs
to adopt the same notation as in higher dimensional Riemannian geometry). It appears
that

B2ε

ż

ry,zsε

f dη

ˇ

ˇ

ˇ

ˇ

ˇ

ε“0

“

ż

Bry,zs

x∇f, νy ` x∇U, νy dη, (A.10)

where x¨, ¨y and ∇ are relative to the considered Riemannian metric and where ν is the
“unit exterior normal vector” on Bry, zs. The function U B lnpdη{dγq is the logarithm
of the Radon-Nikodym density of η with respect to the Riemannian measure γ, which
admits itself the density 1{

?
a with respect to the usual Lebesgue measure. Thus we

have dη{dγ “ η, where by a traditional abuse of notation, we also interpret η as the
function

?
aη. In the usual definitions in higher dimensional Riemannian geometry

(see e.g. Proposition 1.2.1 of Mantegazza [11]), the r.h.s. of (A.10) should contain a
supplementary term

ş

fρ dη where ρ would be the “mean” curvature on the boundary
Bry, zs with respect to the unit exterior normal vectors. Thus we recover that in dimension
1, the mean curvature of a boundary of dimension 0 vanishes: ρ ” 0. To see the coherence
of (A.2) with the formulation of [3] in the context of diffusions in Riemannian manifolds
of dimension larger or equal to 2, we should check that

a1 ´ β “ ´x∇U ´ bH, νy ν ´ ρν, (A.11)

where bH is such that the Helmoltz-Hodge decomposition b “ ∇U ` bH holds (note the
change of sign with respect to (A.11)), i.e.

bH “ b´∇U
“ b´ aU 1

“ b´ a
p
?
aηq1
?
aη

“ b´ a
η1

η
´
a1

2
.
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It follows that the r.h.s. of (A.11) is equal to

´x∇U ´ bH, νy ν “ bH ´∇U
“ 2bH ´ b

“ b´ 2a
η1

η
´ a1

“ b´ 2

ˆ

paηq1

η
´ a1

˙

´ a1

“ a1 ´ β,

as wanted, where we used (A.1) and (A.6).
Remark that in general the Helmoltz-Hodge decomposition b “ ∇U ` bH is different

from the decomposition b “ paηq1{η ` c{η, which enables to write

L “
1

η
BpaηBq `

c

η
B, (A.12)

where 1
ηBpaηBq is symmetric in L2pµq and c

ηB is skew-symmetric in L2pµq.

Let pD,Lq be the generator L of pY, Zq in the sense of (local) martingale problems.
It follows from (A.4) and (A.7) that L acts on the elementary observable Ff , with f P

C8c p0, 1q, by

LrFf spy, zq “ FLrfspy, zq ` 2Hpy, zqGf py, zq.

Furthermore, the carré du champs ΓL associated to L is such that the bracket of the
martingale Mf defined in (A.5) satisfies

@ t P r0, τq,
@

Mf
D

t
“ 2

ż t

0

ΓLrf, f spY psq, Zpsqq ds.

It follows by polarization that all f, g P C8c p0, 1q,

@ py, zq P 4, ΓLrFf , Fgspy, zq “ Gf py, zqGgpy, zq.

Since pY, Zq is a diffusion (namely a Markov process with continuous trajectories),
the generator L and the carré du champs ΓL extend in the following way (see e.g.
the book of Bakry, Gentil and Ledoux [1]). Consider the algebra A consisting of the
composed observables of the form F B fpFf1 , ..., Ffnq, where n P Z`, f1, ..., fn P C8c p0, 1q
and f : RÑ R is a C8 mapping, with R an open subset of Rn containing the image of 4
by pFf1 , ..., Ffnq. Then A is included into D and since L is a differential operator of order
2 without terms of order 0, we have for any F B fpFf1 , ..., Ffnq and G B gpFg1 , ..., Fgmq

belonging to A,

LrFs “
ÿ

jPJnK

BjfpFf1 , ..., FfnqLrFfj s `
ÿ

k,lPJnK

Bk, lfpFf1 , ..., FfnqΓLrFfk , Ffls,

ΓLrF,Gs “
ÿ

lPJnK, kPJmK

BlfpFf1 , ..., FfnqBkgpFg1 , ..., FgmqΓLrFfl , Fgk s

(where JnK B t1, 2, ..., nu).

Define a Markov kernel Λ from 4 to p0, 1q by

@ py, zq P 4, @ A P Bp0, 1q, Λpry, zs, Aq B
ηpry, zs XAq

ηpry, zsq
.
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Note that for any f P C8c p0, 1q, we have Λrf s “ Ff {F1, so Λrf s P A and the above formulas
lead without difficulty to the intertwining relation

@ py, zq P 4, @ f P C8b p0, 1q, LrΛrf sspy, zq “ ΛrLrf sspy, zq. (A.13)

Furthermore, by considering observables of the form fpF1q, where f P C8pRq, it
appears that pηprY ptq, ZptqsqqtPr0,τq is a (possibly stopped) time-changed Bessel process
of dimension 3. This property enables us to let the process pY,Zq start from the singleton
py0, y0q, by passing to the limit as z0 goes to y0` and to see that the set of the singletons
is an entering boundary for pY,Zq, see Section 2 from [12]. Under the assumption that
LpY0, Z0qΛ “ LpX0q, proceeding as in Section 4 from [12], we construct a coupling of
the diffusion X associated to the generator L with the process pY,Zq, so that

@ T ě 0, LpXt|pYt, ZtqtPr0,T sq “ ΛppYT , ZT q, ¨q. (A.14)

Alternatively, conditioning furthermore by the initial condition X0, we can also couple X
and pY,Zq so that Y0 “ X0 “ Y0, in addition to (A.14).

When ηpr0, xsq ă `8 for (one or all) x P p0, 1q, in the above considerations Y can be
fixed equal to 0 (and symmetrically, Z can be fixed equal to 1, when ηprx, 1sq ă `8 for
x P p0, 1q). In particular, we can impose this restriction once Y has hit 0 (or Z has hit 1).
Then the natural extensions of the previous results hold.
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