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Abstract

We study the asymptotic behaviour of random walks in i.i.d. non-elliptic random en-
vironments on Zd. Standard conditions for ballisticity and the central limit theorem
require ellipticity, and are typically non-local. We use oriented percolation and mar-
tingale arguments to find non-trivial local conditions for ballisticity and an annealed
invariance principle in the non-elliptic setting. The use of percolation allows certain
non-elliptic models to be treated even though ballisticity has not been proved for
elliptic perturbations of these models.
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1 Introduction

A central topic in modern probability and statistical physics is the study of ran-
dom walks in random media. Among the most important classes of such models is
the so-called random walk in i.i.d. random environment on Zd. While these mod-
els have been studied for decades (see e.g. [25, 10]), there are a number of funda-
mental problems that remain open in dimensions d ≥ 2. These problems include
providing verifiable conditions under which the random walk is ballistic (and/or has
Brownian motion as its scaling limit). Existing results have largely been restricted
to situations where the random environment is elliptic, i.e. where steps to all nearest
neighbours are possible (see e.g. [5] and the references therein). In other contexts
(such as random walk on percolation clusters) where ellipticity may or may not be
assumed, a common assumption for establishing asymptotic behaviour of the walk is
a property called reversibility (see e.g. [4, 2] and the references therein). Except in
special cases, random walks in i.i.d. random environments (including ours) are not
reversible.
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Ballisticity for non-elliptic RWRE

Figure 1: A finite region of the random environment in Example 1.1 for p = .6.

We will study random walks in i.i.d. random environments (RWRE) that are non-
elliptic, such as in the following example.

Example 1.1 (2-dimensional orthant model). At each site x ∈ Z2 independently toss a
(possibly biased) coin. If the toss results in heads (probability p), insert one directed
edge pointing up ↑ (to x + (0, 1)) and one pointing right → (to x + (0, 1)). Otherwise
(probability 1− p) insert directed edges pointing down ↓ and left← (see Figure 1). Now
start a random walk at the origin o that evolves by choosing uniformly from available
arrows at its current location.

Standard techniques used to establish ballistic behaviour in elliptic environments
(see e.g. [25]) do not apply to this model (as it is not elliptic!). It is proved in [14] that the
random walk in Example 1.1 has an asymptotic velocity v[p] that is monotone in p, and
that v[ 12 ] = 0 by symmetry. It is also established that the walk is transient in direction↗
when p > p ↑←↖c (where p ↑←↖c is the critical probability for oriented site percolation on the
triangular lattice), using the fact that for such p, almost surely the origin is connected to
only finitely many sites in direction↙. These results do not establish ballisticity (i.e. that
v[p] is non-zero) for any non-trivial value of p.

When applied to Example 1.1, our main results (Theorem 1.4, and Propositions 1.6
and 1.7) imply that v[p] · (1, 1) > 0 for p > p ↑←↖c , where p ↑←↖c ≈ 0.5956 [7, 12]1, and by
symmetry that v[p] · (1, 1) < 0 for p < 1− p ↑←↖c . Moreover in this regime the random walk
obeys an invariance principle with deterministic variance.

We could perturb Example 1.1 by adding back transitions in the missing directions,
with some small positive probability, thereby making the model elliptic. In Section 6 we
will examine what the best existing local conditions for ballisticity imply in this case.
It turns out that there is no p ∈ (0, 1) such that these conditions apply for arbitrarily
small perturbations. Our percolation-based arguments therefore give a simple proof of
ballisticity in cases where this is as yet unknown for small elliptic perturbations of the
model.

1The best rigorous bounds that we are aware of are that .5730 < p ↑←↖c < 0.7491 [15, 1]
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Ballisticity for non-elliptic RWRE

1.1 The model and main results

For fixed d ≥ 2, let E = {±ei : i = 1, . . . , d} be the set of unit vectors in Zd, and let
E+ = {+ei : i = 1, . . . , d} denote the standard basis vectors. We use a graphical shorthand
for subsets of E , so that (for example) →↑ = E+. Let P denote the set of probability
measures on E , and let µ be a probability measure on P. If γ ∈ P we will abuse notation
and write µ(γ) for µ({γ}). Let Ω = PZd be equipped with the product measure ν = µ⊗Z

d

(and the corresponding product σ-algebra). An environment ω = (ωx)x∈Zd is an element
of Ω. We write ωx(e) for ωx({e}). Note that (ωx)x∈Zd are i.i.d. with law µ under ν. An
environment is 2-valued if µ is supported on exactly 2 points (such as in Example 1.1). In
this case we take the convention that µ is supported on {γ(1), γ(2)} with p = µ(γ(1)).

The random walk in environment ω is a time-homogeneous (but not necessarily
irreducible) Markov chain with transition probabilities from x to x+ e defined by

pω(x, x+ e) = ωx(e).

Given an environment ω, we let Pω denote the (quenched) law of this random walk Xn,
starting at the origin. Let P denote the law of the annealed/averaged random walk,
i.e. P (·, ?) :=

∫
?
Pω(·)ν(dω).

For γ ∈ P, let S(γ) = {e ∈ E : γ(e) > 0} ⊂ E denote the support of γ. For A ⊂ E
we will write µ(A) to mean µ({γ ∈ E : S(γ) = A}), i.e. the µ-measure of the set of
probabilities on E whose support is A. For each environment ω we let Gx(ω) = S(ωx) and
associate a directed graph G(ω) with vertex set Zd and edge set e(G) given by

(x, x+ u) ∈ e(G) ⇐⇒ u ∈ Gx.

Note that under ν, the (Gx)x∈Zd are i.i.d. subsets of E . The directed graph G(ω) is
the entire graph Zd (with directed edges), precisely when the environment is elliptic,
i.e. ωx(u) > 0 for each u ∈ E , x ∈ Zd (i.e. µ(E) = 1, using our other notation). Much of the
current literature on random walk in random media assumes either (uniform) ellipticity
or reversibility, neither of which hold for Example 1.1.

On the other hand, given a directed graph G = (Gx)x∈Zd (with vertex set Zd, and such
that Gx 6= ∅ for each x), we can define a uniform random environment ω = (ωx(Gx))x∈Zd

on G. Let |A| denote the cardinality of A, and set

ωx(e) =

{
|Gx|−1, if e ∈ Gx
0, otherwise.

The corresponding RWRE then moves by choosing uniformly from available steps at its
current location. This natural class of RWRE will henceforth be referred to as uniform
RWRE. In particular, the 2-dimensional-orthant model (Example 1.1) is the uniform RWRE
on the random directed graph which has Gx = →↑ with probability p, and Gx =←↓ with
probability 1− p.

For any n, we call a sequence (y0, . . . , yn) with each yi ∈ Zd a G-path if (yi, yi+1) ∈ e(G)

for each i = 0, 1, . . . , n− 1. For any site x ∈ Zd, we let its forward cluster Cx be the set of
sites y ∈ Zd such that there exists an n and a G-path (y0, . . . , yn) such that y0 = x and
yn = y.

We say that V is an orthogonal set if u · v = 0 for every distinct pair u, v ∈ V . Instead
of ellipticity, we will assume the following properties:

Condition 1.2. There exists an orthogonal set V ⊂ E such that µ(S ∩ V 6= ∅) = 1.

Condition 1.3. There exists an orthogonal set V ′ ⊂ E with |V ′| = d such that µ(e ∈ S) >

0 for every e ∈ V ′.
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Ballisticity for non-elliptic RWRE

Condition 1.2 requires that there is a set of orthogonal directions such that from
any site the walker is able to follow at least one of these directions. This assumption is
precisely that required to ensure that the random walker never gets stuck in a finite set
(see [14, Theorem 1.2]). In the presence of Condition 1.2, Condition 1.3 is equivalent to
saying that the walk is truly d-dimensional. Note that Example 1.1 satisfies Condition
1.2 with V = {−e1, e2} = ←↑ or equivalently with V = {e1,−e2} = →↓ . It clearly also
satisfies Condition 1.3 (with d = 2).

The RWRE literature contains a number of abstract conditions that imply ballisticity,
which we discuss in Section 6. These can be difficult to verify directly in concrete
examples. We turn first to our version of such an abstract condition. Following that we
will turn to local conditions, that may be directly verified, and which imply the abstract
one.

Fix d ≥ 2 and let o denote the origin in Zd. Let ` ∈ Rd \ {o}. If V ′ is as in Condition
1.3, set `V ′ =

∑
e∈V ′ e. For κ > 0, we consider the cone

Kκ,` = {u ∈ Rd : u · ` ≥ κ‖u‖}.

Let Rn = |{x : Xm = x for some m ≤ n}| denote the range of the walker up to time n.
Recall that Cx denotes the set of vertices reachable from x by following arrows in G.
Our first main result states that, if the forward cluster Co of the origin is contained in a
cone (whose apex is far from o with only low probability), and the range of the walker is
not too small, then the walk is ballistic and satisfies an annealed/averaged invariance
principle.

Theorem 1.4. Let d ≥ 2 and assume Conditions 1.2 and 1.3. Let α, β, κ > 0 and take
` ∈ Rd \ {o}. Assume the following conditions:

(a) There exist C1, γ1 > 0 such that
ν(Co ⊂ −n`+Kκ,`) ≥ 1− C1e

−γ1nβ for all n ∈ N;

(b) For every C > 0, there exist C2, γ2 > 0 such that
P (Rn ≤ Cnα) ≤ C2e

−γ2nβ , for all n ∈ N.

Then there exist v ∈ Rd \ {o} such that P (n−1Xn → v) = 1. Moreover v · ` > 0. There
also exists a non-negative definite matrix Σ ∈ Rd×d such that(Xbntc − vnt√

n

)
t≥0
⇒ (Bt)t≥0, as n→∞,

under the annealed/averaged measure P , where Bt is a d-dimensional Brownian motion
with covariance matrix Σ, and⇒ denotes weak convergence. Σ is degenerate⇔ µ(S ⊂
V ′) = 1, in which case it is non-degenerate on the subspace ⊥ `V ′ .

For `′ ∈ Rd \ {o} set X ′n = Xn · `′ and call this the transverse walk. In many settings
we will be able to conclude that the range of the walker satisfies condition (b) of the
theorem by proving that it holds for the range of such a transverse walk. For Example
1.1, if we take ` = (1, 1) and `′ = (1,−1) then the transverse walk is a simple symmetric
random walk on Z, so (b) holds (for α < 1/2). We will show that for p > p ↑←↖c ≈ 0.5956,
(a) also holds (see Lemma 5.3). Our results leave unresolved the question of whether
Example 1.1 is ballistic when 1

2 < p ≤ p ↑←↖c , and even whether the speed in direction (1, 1)

is strictly monotone for p > p ↑←↖c . We conjecture that it is strictly monotone in p ∈ [0, 1]

(see Figure 2). When p = 1
2 , we conjecture that infinitely many sites are visited infinitely

often by the walk.
Note that Theorem 1.4(a) is not sufficient to conclude ballisticity in general, as per

the following example.
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Figure 2: Estimates of v[p] · (1, 1) as a function of p for the 2-dimensional orthant model
(Example 1.1) based on 1000 simulations of 1000 step walks for each p.

Example 1.5. Choose µ(γ(e1) = 1) = p and for each i ∈ N,

µ
(
γ(−e1) = 1− 2−i, γ(e2) = γ(−e2) = 2−(i+1)

)
=

c

i2
,

where
∑
i∈N ci

−2 = 1−p. Then the expected time (under the annealed/averaged measure)
that the walk spends oscillating between (0, 0) and (1, 0) before moving to another site is
infinite for all p < 1. For all p sufficiently large Theorem 1.4(a) holds, and the walker is
transient in direction e1, but the speed is zero for all p < 1.

Proposition 1.6. Assume Conditions 1.2 and 1.3.

For each d ≥ 2 there is a pd ∈ (1/2, 1) such that if µ(S ⊂ E+) > pd then the condition
of Theorem 1.4(a) is satisfied. If d = 2 then this holds with pd = p ↑←↖c .

Define `+ =
∑
e∈E+ e = (1, . . . , 1). The condition in Proposition 1.6 is a local condition

saying that with high probability the only transitions allowed by the local environment
lie in a cone pointing in direction `+. This condition is similar in spirit to the “forbidden
direction” condition of [18] and [19]. They assume a direction that is forbidden with
probability 1 (together with a so-called non-nestling assumption that makes ballisticity
immediate) and then prove an invariance principle. One might describe our assumptions
on the environment as having a direction that is rarely allowed rather than forbidden.

The hypothesis of Proposition 1.6 is not equivalent to Theorem 1.4(a). For example,
the uniform (→l) example (i.e. µ(γ(e1) = 1) = p and µ(γ(e2) = 1/2 = γ(−e2)) = 1 − p)
satisfies Theorem 1.4(a) for every p > 0. Note that in this example −e1 is a forbidden
direction. Similarly, if µ(γ(e1) = 1) = p1 and ν(γ(−e1) = 1

2 = γ(e2)) = p2 and µ(γ(e2) =

1/2 = γ(−e2)) = 1 − p1 − p2 then Theorem 1.4(a) will hold as long as p2 is very small
relative to p1, even if p1 itself is small.

Let F ′k = σ(X ′0, . . . , X
′
k). The following give verifiable conditions under which the

condition of Theorem 1.4(b) holds.

Proposition 1.7. Assume Conditions 1.2 and 1.3.

(a) If for some `′ 6= o the transverse walk X ′k is a submartingale (with bounded step
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size) under P such that for some η, η′ > 0,

P (|X ′k+1 −X ′k| > η|F ′k) > η′,

then the condition of Theorem 1.4(b) is satisfied.

(b) If d ≥ 2 and µ is 2-valued then the condition of Theorem 1.4(b) is satisfied.

Both Proposition 1.7(a) and (b) imply that the walk is (in the terminology of [22])
either marginal-nestling or non-nestling. Proposition 1.7(a) requires a projection of the
walk to be a submartingale that can always move with probability bounded away from
zero. In Proposition 3(b), the convex hull of the support of the law of the local drift is a
straight line segment between the two local drifts u(1) and u(2). Therefore the walk is
marginal-nestling if some u(i) = o or u(1) = −cu(2) for some c > 0 (as in Example 1.1) and
otherwise non-nestling.

The condition of Proposition 1.7(a) does not hold for the following marginal-nestling
2-valued example.

Example 1.8. For the uniform RWRE (→ l← ), the only projection that gives a sub-
martingale is the projection in the direction ±e2. However this martingale does not move
at→ sites, so it does not satisfy Proposition 1.7(a).

Nevertheless, according to Proposition 1.7(b), Theorem 1.4(b) holds for Example 1.8.
Therefore the walk of Example 1.8 will be ballistic in direction → as soon as p > p ↑←↖c .
We believe that in this example, our arguments prove ballisticity for a wider range of
p, namely p > p

↑
↓
↖
↙←
c , where the latter is defined in [13] (see the discussion preceding

Theorem 3.13 of that paper). But we have not verified all the details.
As in Example 1.8, the following is an immediate corollary of the above propositions

and Theorem 1.4.

Corollary 1.9. Let d ≥ 2, and assume Conditions 1.2 and 1.3.
If µ is 2-valued and µ(S ⊂ E+) > pd then the model is ballistic in the direction `+ and

satisfies the invariance principle of Theorem 1.4.

We suspect that one can replace µ being 2-valued with µ having finite support in
Corollary 1.9. Note that Example 1.5 does not have finite support.

The remainder of this paper is organised as follows. In Section 2 we recall some
facts about directional transience, regeneration and ballisticity. In Section 3 we prove
Theorem 1.4. In Section 4 we prove Proposition 1.7. In Section 5 we prove Proposition
1.6 by examining percolation-type properties (the structure of forward clusters for
certain degenerate random environments).

Finally in Section 6 we discuss other ballisticity conditions, and compare our results
with those of the elliptic theory. In particular, we will find that in Example 1.1, having
strong barriers←↓ is an insurmountable obstacle to obtaining a positive speed in direc-
tion ` = (1, 1) using one of the standard ballisticity conditions. One way of interpreting
our results in the context of Example 1.1 is that we can overcome the presence of strong
barriers←↓ by strengthening the forward push and including sufficiently many sites →↑
that do not permit backwards motion.

2 Regeneration and ballisticity

In non-elliptic environments (such as that of Example 1.1) some sites may be un-
reachable by the walk. Moreover, if Condition 1.2 does not hold then the range R of the
random walk is finite.

Fix ` ∈ Rd \ {o}. Let A`+ and A`− denote the events that Xn · `→∞ and Xn · `→ −∞
respectively. The following is proved in [14, Theorems 1.2–1.5], in most cases by adapting
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the methods of Kalikow [16], Sznitman and Zerner [21], Zerner [27, 28] and Zerner and
Merkl [29] to the non-elliptic setting.

Theorem 2.1 ([14, Theorems 1.2–1.5]). For i.i.d. RWRE the following hold (for every
` ∈ Rd \ {o}):

(a) P (|R| =∞) ∈ {0, 1}, with P (|R| =∞) = 1 if and only if Condition 1.2 holds.

(b) P (A`+ ∪A`−) ∈ {0, 1}.
(c) There exist deterministic v+(`), v−(`) such that

lim
n→∞

Xn · `
n

= v+(`)1A`+ + v−(`)1A`− , P − a.s.

(d) When d = 2, P (A`+) ∈ {0, 1} (hence a deterministic velocity vector v always exists
in 2-dimensions).

(e) Assume that µ is 2-valued, and supported on {γ(1), γ(2)}, with p = µ(γ(1)). Assume
that the velocity v = v[p] exists for each p. Then each coordinate of v[p] is monotone
in p.

Note that since P (A) = Eν [Pω(A)] and 0 ≤ Pω(A) ≤ 1, P (A) = 1 if and only if
Pω(A) = 1 for ν-almost every ω. Similarly P (A) = 0 if and only if Pω(A) = 0 for ν-almost
every ω.

Theorem 2.1(c) relies on a regeneration structure that is present on the event of
directional transience. This is well known in the uniformly elliptic setting, but perhaps
less so in the non-elliptic setting. For the purposes of this paper, fix ` ∈ Rd \ {o} and
assume almost sure transience in direction `, i.e. that

P (A`+) = 1. (2.1)

For the remainder of this section, we assume Conditions 1.2 and 1.3. The regeneration
structure is then as follows (see the proof of Theorem 1.4 of [14]). Note that the version
below makes a slight correction to how the structure was in [14] (namely we require
K ≥ 1, and a typo there had a DK instead of TK). For consistency with earlier treatments
we include a parameter a > 0 in the construction. In fact, the choice of a will not affect
our arguments, so the reader may safely take a = 1.

Let T0 = M0 = 0 and D0 = inf{n > 0 : Xn · ` < 0}. Let T1 = inf{n : Xn · ` ≥ a}.
For k ≥ 1 and Tk < ∞ let Dk = inf{n > Tk : Xn · ` < XTk · `}. If Dk < ∞ then
we let Mk = sup{Xn · ` : n ≤ Dk} and Tk+1 = inf{n > Dk : Xn · ` ≥ Mk + a}. Set
∆k+1 = Mk+1 −Mk. Let K = inf{k ≥ 1 : Dk = ∞}. Then (2.1) implies that K < ∞ a.s.,
and indeed, P (Dk = ∞|Tk < ∞) is some fixed value q > 0, so K ≥ 1 is geometrically
distributed;

P (K > k) = (1− q)k, for k ≥ 1.

Thus we may define T1 = TK . This T1 acts as a regeneration time, as the process
X̂n = XT1+n −XT1 and the environment ω̂x = ωx+XT1 (for x · ` ≥ 0) are independent of
the environment and walk observed up to time T1. This allows one to construct additional
regeneration times T1 < T2 < . . . such that the X(Tk+n)∧Tk+1

− XTk are i.i.d. (over k)
segments of path. Then the above discussion says that {(XTk+1

−XTk , Tk+1 − Tk)}k∈N
are i.i.d. copies of (XT2 −XT1 , T2 − T1). As a consequence (see e.g. the proof of Theorem
1.4 of [14]),

v · ` =
E[(XT2 −XT1) · `]

E[T2 − T1]
=
E[XT1 · ` | D0 =∞]

E[T1 | D0 =∞]
.

Since for a unit vector ` we have that T1 ≥ 1 and 0 < XT1 · ` < T1 (by definition of Ti)
we immediately have the following well-known ballisticity criterion.
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Lemma 2.2. Assume (2.1) as well as Conditions 1.2 and 1.3. If E[T1 | D0 = ∞] < ∞
then v · ` > 0.

The corresponding criterion for an invariance principle is the following, which follows
using methods of [22] and [20].

Lemma 2.3. Assume (2.1) as well as Conditions 1.2 and 1.3. Assume also that E[T 2
1 |

D0 =∞] <∞. Then there exists a non-negative definite matrix Σ (and v ∈ Rd \ {o}) such
that under the annealed/averaged measure P ,(Xbntc − vnt√

n

)
t≥0
⇒ (Zt)t≥0, as n→∞,

where Zt is a d-dimensional Brownian motion with covariance matrix Σ, and⇒ denotes
weak convergence. Σ is degenerate⇔ µ(S ⊂ V ′) = 1 with V ′ as in Condition 1.3. In this
case, Σ is non-degenerate on the subspace ⊥ to `V ′ .

Proof. Note that once (2.1) is assumed, ellipticity is not needed in order to obtain the
regeneration structure, so most arguments of [22] apply in our setting, giving the claimed
weak convergence. Where [22] does use ellipticity in an essential way is in proving
non-degeneracy of the covariance matrix. This was addressed by Lemma 2.1 of [20],
under quite general conditions (e.g. they do not assume nearest-neighbour transitions).
In particular, their argument applies in our setting.

They show that the uTΣu = 0 precisely when u is orthogonal to the span of {e− e′ :

µ(e ∈ S) > 0, µ(e′ ∈ S) > 0}. We assume Conditions 1.2 and 1.3, in which case, if
µ(S ⊂ V ′) = 1 then the span is easily seen to be the subspace ⊥ to `V ′ . If µ(S ⊂ V ′) < 1

then there is an e with µ(e ∈ S) > 0 and µ(−e ∈ S) > 0. In that case it is easy to see that
the span is Rd, so Σ is non-degenerate. �

Note that the invariance principle stated above is an annealed one. There is also
a quenched invariance principle available, due to Rassoul-Agha and Seppäläinen [20].
Their paper is one of the few general results in this field that make no ellipticity assump-
tions. Their principle assumption is simply that the regeneration time has moments
of all orders, something that will hold in our setting by estimate (3.1) below. Their
result gives that under our hypotheses, a quenched invariance principle holds with the
same centering and covariance as above, provided µ(|S| = 1) < 1. (Note that Condition
1.3 already implies another of their hypotheses, namely ruling out the possibility of a
1-dimensional walk.)

Note also that if µ(|S| = 1) = 1, then the quenched law of Xn concentrates on a single
site. [18] treats more general walks of this type, and finds the quenched invariance
principle that applies in those cases.

3 Proof of Theorem 1.4

Fix d, α, β, κ, ` as in the theorem. Without loss of generality we may assume that
‖`‖ = 1. By hypothesis (a), we may apply [14, Theorem 2.7] to conclude (2.1), ie. that
P (A`+) = 1. Therefore the regeneration structure exists as described above.

Since q = P (D0 = ∞) > 0 we can define P0(·) to be the conditional probability
measure P (· | D0 =∞). We set T = T1 = TK . Note that XT · ` ∈ (MK−1,MK−1 + a+ 1].

To prove Theorem 1.4 note that by Lemmas 2.2 and 2.3 it suffices to find C, γ, δ > 0

such that
P0(T > n) ≤ Ce−γn

δ

, for every n. (3.1)

Note that, at the cost of adjusting constants, condition (a) of Theorem 1.4 for n ∈ N is
equivalent to the same condition for n ∈ [0,∞). We therefore assume the latter.
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Let α′ = α/d. Choose α1, α2, α3 such that 0 < α3 < α2 < α1 + α2 < α′, and let Fn be
the event that Co ⊂ −nα3`+Kκ,`. Then

P0(T > n) ≤ P0(F cn) + P0(Fn, T > n,MK−1 ≤ nα
′
) + P0(Fn,MK−1 > nα

′
). (3.2)

Note that P0(A) ≤ q−1P (A) for any A, so hypothesis (a) of the Theorem shows that there
exist C1, γ1 > 0 such that

P0(F cn) ≤ q−1P (F cn) ≤ C1e
−γ1nβα3

. (3.3)

To bound the second term on the RHS of (3.2), note that the diameter of {x ∈
−nα3`+Kκ,` : x · ` ≤ nα

′} is at most C ′3n
α′ for some C ′3. Therefore if Fn occurs, T > n,

and MK−1 ≤ nα
′

then maxk≤nXk · ` ≤ nα
′

+ a and Rn ≤ C3n
α. Hypothesis (b) of the

theorem then implies that there exist C2, γ2 > 0 such that

P0(Fn, T > n,MK−1 ≤ nα
′
) ≤ q−1P (Fn, T > n,MK−1 ≤ nα

′
)

≤ C2e
−γ2nβ . (3.4)

For the third term on the RHS of (3.2), observe that if K ≤ nα1 and ∆k ≤ nα2 for
each k < K then MK−1 =

∑K−1
k=0 ∆k ≤ nα1 · nα2 < nα

′
. Therefore this term is bounded

above by
P0(K > nα1) + P0(Fn, ∃k < K ≤ nα1 with ∆k > nα2).

Since K is geometrically distributed under P , the first term satisfies

P0(K > nα1) ≤ q−1(1− q)bn
α1c. (3.5)

It therefore remains to bound the quantity

q−1P (Fn, ∃k < K ≤ nα1 with ∆k > nα2).

By adjusting constants if necessary, it suffices to bound this quantity for n such that
nα2 ≥ 2(a+ 1).

Observe that (because ‖`‖ = 1), if ∆k > nα2 then there is at least one j < Dk such
that

Mk−1 + nα2 < Xj · ` ≤Mk−1 + nα2 + 1.

Moreover XDk · ` < XTk · ` ≤Mk−1 + a+ 1, so in fact for n such that nα2 ≥ 2(a+ 1),

Xj · ` > XDk · `+ nα2 − a− 1 > XDk · `+
1

2
nα2 .

For such n, on the event {∃k < K ≤ nα1 with ∆k > nα2}, if k1 < nα1 is the first
k such that ∆k > nα2 , and j1 is the corresponding j then x ≡ Xj1 ∈ Co satisfies
Cx 6⊂ x− 1

2n
α2`+Kκ,` and

0 ≤ x · ` ≤(k1 − 1)nα2 + nα2 + 1 = k1n
α2 + 1 ≤ nα1nα2 + 1 ≤ 2nα

′
.

On the event Fn, there are at most C4(nα
′
)d = C4n

α points x satisfying x ∈ Co and
0 ≤ x · ` ≤ 2nα

′
, which we collect as subsets of a (non-random) set J . Therefore by

hypothesis (a) and translation invariance,

P (Fn, ∃k < K ≤ nα1 with ∆k > nα2) ≤ P
( ⋃
x∈J
{Cx 6⊂ x−

1

2
nα2`+Kκ,`}

)
≤
∑
x∈J

P

(
Cx 6⊂ x−

1

2
nα2`+Kκ,`

)
≤ C1C4n

αe−γ1n
βα2/2β . (3.6)

Every one of the bounds (3.3),(3.4),(3.5),(3.6) can be rewritten as Ce−γn
δ

for some single
choice of δ and γ, so combining them establishes the desired bound (3.1). �
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4 Proof of Proposition 1.7

The following Lemma, when applied to the transverse walk X ′ proves Proposition
1.7(a).

Lemma 4.1. Let Mk be a submartingale with respect to a filtration Fk. Assume that
M0 = 0, δ ≤ E[(Mk+1−Mk)2 | Fk] for some δ > 0, and |Mk+1−Mk| ≤ m for some m <∞.
Then there exist C,m0, γ > 0, depending only on δ and m, such that

P
(

max
k≤n
|Mk| ≤ y

)
≤ Ce−γn/y

2

for every n ≥ 1 and y ≥ m0.

To see that this implies Proposition 1.7(a), we assume, without loss of generality, that
‖`′‖ = 1. As the walk X is a nearest neighbour walk, we may apply Lemma 4.1 to the
submartingale X ′k to see that there exist C ′, γ′ > 0 such that for every n ∈ N,

P
(

max
k≤n
|X ′k| ≤ y

)
≤ C ′e−γ

′n/y2 . (4.1)

Letting 0 < α < 1
2 and y = Cnα, then (4.1) implies that for every n ∈ N

P
(

max
k≤n
|X ′k| ≤ Cnα

)
≤ C ′e−

γ′

C2 n
1−2α

. (4.2)

If Rn ≤ Cnα then (X ′k)k≤n takes at most Cnα values. Since ‖`′‖ = 1, each step of X ′k
has magnitude ≤ 1, and so maxk≤n |X ′k| ≤ Cnα. Therefore (4.2) establishes Proposition

1.7(a) with β ∈ (0, 1− 2α], C2 = C ′ and γ2 = γ′

C2 .

Proof of Lemma 4.1. Our proof is motivated by the quasi-stationary distribution for
Brownian motion on an interval. Consider g(u) = cos(π4 + u). Then g′′ + g = 0, g ≤ 1, and
|g′′′| ≤ 1. Fix 1

2 < a < π
4 . We can choose ε > 0 so that for u ∈ [−a, a] we have g′(u) ≤ 0

and 0 < ε ≤ g(u). Let ∆ = Mk+1 −Mk and γ = δ
16 . By Taylor’s theorem, provided that

|Mk

2y | ≤ a we have

E

[
g
(Mk+1

2y

)∣∣∣Fk] ≤E [g(Mk

2y

)
+

∆

2y
g′
(Mk

2y

)
+

∆2

8y2
g′′
(Mk

2y

)
+

m3

48y3

∣∣∣Fk]
=g
(Mk

2y

)
− g
(Mk

2y

)
E

[
∆2

8y2
|Fk
]

+
m3

48y3

+ g′
(Mk

2y

)
E

[
∆

2y
|Fk
]
. (4.3)

Since M is a submartingale we have E[∆|Fk] > 0. Now using the facts that y > 0,
|Mk

2y | ≤ a and g′ < 0 on [−a, a] we can bound the final term (4.3) above by 0 to get

E

[
g
(Mk+1

2y

)∣∣∣Fk] ≤ g(Mk

2y

)(
1−

E
[
∆2|Fk

]
8y2

)
+

m3

48εy3
ε

≤
(

1− δ

8y2
+

m3

48εy3

)
g
(Mk

2y

)
, (4.4)

where we have used the fact that g(Mk/(2y)) ≥ ε when |Mk

2y | ≤ a.

Choose y0 > 0 such that m3

48εy0
< δ

16 and 1
2 + m

2y0
≤ a. Let y ≥ y0. Then (4.4) is

bounded above by (1− δ
16y2 )g(Mk

2y ) ≤ e−γ/y2g(Mk

2y ), so eγk/y
2

g(Mk

2y ) is a supermartingale

(while |Mk

2y | ≤ a). Let T = inf{n : |Mn| > y}. Since |M(T−1)∧n| ≤ y it follows that

|MT∧n| ≤ y +m, so |MT∧n
2y | ≤

1
2 + m

2y ≤ a by choice of y.
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Now observe that

P
(

max
k≤n
|Mk| ≤ y

)
= P (T > n) ≤ P (T ∧ n ≥ n)

≤ e−γn/y
2

E
[
eγ(T∧n)/y

2]
≤ ε−1e−γn/y

2

E

[
eγ(T∧n)/y

2

g
(MT∧n

2y

)]
≤ ε−1e−γn/y

2

E [g(0)] =
1√
2ε
e−γn/y

2

,

where we have used optional sampling to obtain the last inequality. �

Remark: For a related estimate see [17, Proposition 4.1].

For 2-valued models in which the local environments are γ(1) or γ(2), it is useful to
consider the local biases u(i) =

∑d
i=1(γ(i)(ei) − γ(i)(−ei))ei. Consider, for example, a

2-valued model in 2 dimensions with S(γ(1)) = e1 and S(γ(2)) = {−e1, e2,−e2} (i.e. the
induced random graph is the same as in Example 1.8). If u(2)

2 6= 0 then we can find a
direction ` in which both environments induce a drift. If (as in Example 1.8) u(2)

2 = 0

then Xn · e2 is a martingale that does not move when Xn is at a γ(1) environment.
This martingale therefore does not satisfy the conditions of Lemma 4.1. Nevertheless
Corollary 1.9 shows that it is still ballistic when p = µ(γ(1)) is large enough.

The following result gives various cases in which Lemma 4.1 applies directly to
2-valued models.

Lemma 4.2. Let µ(γ(1)) = p = 1− µ(γ(2)) ∈ (0, 1) be a 2-valued model satisfying Condi-
tions 1.2 (for a set V ) and 1.3 with d ≥ 2.

(I) If u(1) 6= o and u(2) 6= o and u(2) 6= −cu(1) for any c > 0 then there exists `′ 6= o such
that ui · `′ > 0 for i = 1, 2. For this `′, Lemma 4.1 applies to the transverse walk X ′k.

(II) If u(2) = −cu(1) for some c > 0, and if u(1) ⊥ `′ for some `′ =
∑
e∈V xee with all

xe 6= 0, then Lemma 4.1 applies to X ′k.

(III) If u(2) = o then Lemma 4.1 applies to X ′k, for one of `′ = ±
∑
e∈V e.

Proof. (I) If u(1) 6= o and u(2) 6= o then the {` : u(i) · ` > 0} are half spaces, which must
intersect unless one is the negative of the other. The latter possibility is ruled out, since
it would imply that u(2) = −cu(1) for some c > 0. Therefore we can find an `′ in the
intersection. It follows that X ′k is a submartingale. Because u(i) · `′ 6= 0 for each i, there
is a positive probability of movement in either environment.

(II) u(2) · `′ = 0 = u(1) · `′ so X ′k is a martingale. By Condition 1.2, it is possible to take
a step of size at least mine∈V |xe| in either environment.

(III) Either `′ =
∑
e∈V e or `′ = −

∑
e∈V e will have u(1) · `′ ≥ 0, so that X ′k is a

submartingale. Again, there is a positive probability of movement in either environment
by Condition 1.2. �

For any 2-valued model µ(γ(1)) = p = 1 − µ(γ(2)) ∈ (0, 1), let N (i)
n = #{0 ≤ m < n :

ωXm = γ(i)} and note that N (1)
n +N (2)

n = n. Let us write Nn for N (1)
n .

Proof of Proposition 1.7(b). If either u(1) or u(2) equals o, or if u(2) 6= −cu(1) for any c > 0,
then the claim holds by Lemmas 4.1 and 4.2.

So assume that u(2) = −cu(1) 6= o, for some c > 0. Write u = (u1, . . . , ud) for u(1).
Without loss of generality there exists k ≤ d such that ei · u > 0 for i = 1, . . . , k, and
ei · u = 0 for each i = k + 1, . . . , d.

If k > 1 then the vector `′ = (−(u2 + · · ·+ ud), u1, u1, . . . , u1) ⊥ u, and by Lemma 4.2
the transverse walk X ′ for this `′ is a martingale to which Lemma 4.1 applies.
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Therefore we will assume for the rest of the proof that k = 1, so u(1) = u1e1 and
u(2) = −cu1e1. For each i ≥ 2, condition 1.3 implies that either γ(1)(ei) = γ(1)(−ei) > 0 or
γ(2)(ei) = γ(2)(−ei) > 0 (or both). If γ(1)(ei1) = γ(1)(−ei1) > 0 and γ(2)(ei2) = γ(2)(−ei2) > 0

for some i1, i2 ≥ 2 (possibly equal), then let `′ = ei1 +ei2 . We see that the transverse walk
X ′ for this `′ is a martingale, and Lemma 4.1 applies since X ′ has a positive probability
of moving in either environment.

It remains to handle the case that one of the γ(i) (which we will take to be γ(1)) is
supported on ±e1. In this case by Condition 1.3, γ(2)(ei) = γ(2)(−ei) > 0 for each i ≥ 2

(i.e. we have basically reduced the problem to something like Example 1.8).
Let δ > 0, and let Bn = {n−1Nn ≤ 1− δ}. Then on Bn we have at least δn departures

from γ(2) sites by time n. Let `′ = (0, 1, 1, . . . , 1) and let X ′k = Xk · `′ be the transverse
walk. Let X̃n be X ′k time changed by N (2)

n , i.e. so that time only advances at γ(2) sites. It
is a martingale and Lemma 4.1 applies to X̃n, so there is a C ′ with

P
(

max
k≤n
|X ′k| ≤ y,Bn

)
≤ P

(
max
k≤δn

|X̃k| ≤ y
)
≤ C ′e−γδn/y

2

.

As in (4.2) this implies that

P (Rn < Cnα, Bn) ≤ C ′e−
γδ

C2 n
1−2α

. (4.5)

We therefore take α < 1
2 and β = 1− 2α.

Now let Ξk = ±1 according to whether the kth departure from a γ(1) site is ±e1.
In other words, the Ξk are independent, with P (Ξk = 1) = γ(1)(e1) and P (Ξk = −1) =

γ(1)(−e1), so E[Ξk] = u1. Let Yn =
∑n
k=1 Ξi. Choose δ < u1

4 . On Bcn there are then at most
u1n
4 departures from γ(2) sites by time n. So if YNn >

u1n
2 , it follows that X1 · e1 > u1n

4 and
hence Rn >

u1n
4 . Since α < 1

2 for each C we have Cnα < u1n
4 for all n ≥ nC . Therefore,

for such n,

P (Rn < Cnα, Bcn) ≤ P (YNn <
u1n

2
, Bcn) ≤

n∑
k=(1−δ)n

P (Yk <
u1n

2
).

By Cramér’s theorem (see e.g. [8]), there exist c, c′ such that this is ≤ nc′e−cn. Since
β < 1 we may combine this estimate with (4.5) to obtain the bound of Theorem 1.4(b),
for large n. Raising these constants we obtain the bound for all n. �

5 Proof of Proposition 1.6

Consider a model with 2-valued support of the form µ(E+) = p (i.e. µ(γ : S(γ) = E+) =

p) and µ(E) = 1− p. Recall that `+ =
∑
e∈E+ e = (1, . . . , 1) and

pc(d) = inf
{
p > 0 :∃κ > 0 such that

ν
(
∪∞n=1 {Co(p) ⊂ −n`+ +Kκ,`+}

)
= 1
}
.

In other words, for p > pc(d) the forward cluster of such a model is contained in a cone.
It is an immediate consequence of [15, Theorem 1.6] that pc(d) > .5730 for all d ≥ 2.
Since E+ ⊂ E , under the natural coupling of environments for all p (i.e. Gx = E+ if and
only if Ux ≤ p, where Ux ∼ U [0, 1] are independent) Co(p) is monotone decreasing in
p > pc(d). We conclude the following.

Lemma 5.1. Suppose that µ(E+) = p, µ(E) = 1 − p. Then for all p > pc(d) there exist
κ = κ(p, d) > 0 such that

ν
(
∪∞n=1 {Co(p) ⊂ −n`+ +Kκ,`+}

)
= 1, (5.1)
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moreover κ(p, d) is non-decreasing in p for each d. For p < pc(d), (5.1) fails for every
κ > 0.

Although we believe that Theorem 1.4(a) does hold in this setting as soon as p > pc(d),
Lemma 5.1 is not sufficient to establish that result as it does not give tail probabilities.
Let σd be the connective constant for self-avoiding walks on the cubic lattice Zd, defined
as limN→∞ c

1/N
N , where cN is the number of self-avoiding walks of length N . Let pd =

1 − σ−2d . The following result (based on [13, Theorem 4.2] and proved below) verifies
that pc(d) ≤ pd < 1 for each d, and gives bounds for the relevant tail probabilities when
p > pd.

Lemma 5.2. Let d ≥ 2. Consider an i.i.d. RWRE in which µ(γ : S(γ) ⊂ E+) > pd. Then ∃
constants C, κ, γ > 0 such that ν(Co ⊂ −n`+ +Kκ,`+) ≥ 1− Ce−γn for every n.

With additional conditions on µ, the constant pd in the above result may be improved
slightly (see [13], as well as for a table of values for σd). When d = 2, duality with an
oriented percolation model (whose critical percolation probability is p ↑←↖c ≈ .5956) allow
us to prove the following.

Lemma 5.3. Fix d = 2. Then pc(2) = p ↑←↖c . Moreover, if µ(γ : S(γ) ⊂ E+) > pc(2) there
exist constants C, κ, γ > 0 such that

ν(Co ⊂ −n`+ +Kκ,`+) ≥ 1− Ce−γn.

Clearly Lemmas 5.2 and 5.3 imply Proposition 1.6. Therefore to prove the proposition
it is sufficient to prove each of the lemmas.

The proof of Lemma 5.2 is a relatively straightforward adaptation of the proof of [13,
(4.1)].

Proof of Lemma 5.2. Set p = µ(Go ⊂ E+). Assume that p > 1− σ−2d , in other words, that√
1− p < 1

σd
. We may therefore find a θ < 1

2 and a µ > σd such that (1− p)θ < 1
µ . Now

choose κ < 1− 2θ. If cN denotes the total number of N -step self avoiding walks from o

then we may, by definition of σd, find a constant C such that cN ≤ CµN for every N .
Set Γ = (−n`+ +Kκ,`+)c. Fix, for the moment, a lattice point y ∈ Γ and self-avoiding

path (w0, . . . , wN ) from o = w0 to y = wN . Clearly N ≥ n (since κ < 1) Suppose that at
most a fraction θ of the steps of the path are from E−. Then y · `+ ≥ N(1 − θ) −Nθ =

N(1− 2θ) > κN . We also have κ < 1 <
√
d, so

(y + n`+) · `+ ≥ κN + nd ≥ κ‖y‖+ κn
√
d = κ‖y‖+ κ‖n`+‖ ≥ κ‖y + n`+‖.

In other words, y ∈ −n`+ + Kκ,`+ = Γc, which is impossible. Therefore, at least Nθ of
the steps belong to E−, so the probability that this particular path is actually a G-path is
at most (1− p)Nθ.

If Co intersects Γ then there is a self-avoiding G-path from o to some point in Γ. By
the above estimate,

ν(Co intersects Γ) ≤
∞∑
N=n

cN (1− p)Nθ ≤
∞∑
N=n

C
(
µ(1− p)θ

)N
= C ′e−γn

where e−γ = µ(1− p)θ. �

For the comparable result (in dimension d = 2) our arguments rely on estimates
for oriented percolation as in [11] (see Lemmas 5.4 and 5.5 below). Recall that p ↑←↖c
denotes the critical percolation parameter for oriented site percolation on the triangular
lattice. It is shown in [15, Prop. 3.1] that Co has a lower boundary if and only if p > p ↑←↖c .
Moreover by [15, Theorem 1.5(III)], if p > p ↑←↖c then this boundary almost surely has an
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asymptotic slope of ρp < −1 in the northwest direction and 1/ρp > −1 in the southeast
direction, so #{x ∈ Co : x · `+ < 0} is almost surely finite. Label any vertex y as
open if Gy ⊂ →↑ . An open path is a sequence of open vertices yi such that each
yi+1 − yi ∈ ↑←↖ = {−e1, e2, e2 − e1}. The idea is that an infinite oriented open path in both
directions in the triangular lattice (generated by (↔, l,↖↘) lines) that passes below o,
also passes below Co.

Proof of Lemma 5.3. Let p = µ(Go ⊂ →↑ ) > p ↑←↖c and choose θ such that ρp < θ < −1.
Let L and L′ be the lines with slope θ and 1/θ through (−1,−1). Let Γ denote the set of
x lying above both L and L′.

Choose ε so that 0 < ε < 1
θ − θ. Let A and A′ be the line segments {(0, z) : z ∈

[ 1θ − 1− ε, 1θ − 1]} and {(z, 0) : z ∈ [ 1θ − 1− ε, 1θ − 1]}. Therefore A lies below L′ and above
L, while A′ lies below L and above L′.

By Lemma 5.5 below we may discard an event of probability at most Ce−γn and
obtain an infinite open path from some site in nA that lies above nL. By symmetry, we
may discard a further event of probability at most Ce−γn and obtain an infinite open path
terminating at some site in nA′ that lies above nL′. By construction, these paths must
cross somewhere in (−∞, 0] × (−∞, 0], so following first one and then the other gives
us an open path that is infinite in both directions. It lies above both nL and nL′, and
separates these lines from o. As remarked above, this implies that Co ⊂ nΓ = −n`++Kκ,`+
for a suitable choice of κ. �

In the remainder of this section, we specialize to d = 2, and will consider various
estimates for oriented site percolation on the triangular lattice Z(2). We realize the latter
using the vertices of Z2 connected by horizontal and vertical bonds, as well as by bonds
of slope −1. Given p, let sites in Z(2) be open with probability p, independently of each
other. As above, we call a sequence (. . . , y−1, y0, y1, . . . ) – finite or infinite – an open
path if each yi is an open site, and each yi+1 − yi ∈ ↑←↖ = {−e1, e2, e2 − e1}. For any site
x ∈ Z(2), let its forward cluster Cx be the set of sites y ∈ Z(2) for which there is an open
path starting at x and ending at y. Let C∞x be the set of y ∈ Cx such that |Cy| =∞. For
A ⊂ Z(2), set CA = ∪x∈ACx and C∞A = ∪x∈AC∞x . In other words, each site in C∞A can be
reached from A by an open path, and is then left via an infinite open path.

For Y = {(0, z) ∈ Z(2) : z ≤ 0} set ūn = max{y : (−n, y) ∈ CY }. Also let τo = sup{y−x :

(x, y) ∈ Co}, which measures the furthest diagonal line reached by the forward cluster
of the origin. More generally, if A ⊂ Z(2), let τA = sup{y − x : (x, y) ∈ CA}. Note that for
A finite, |CA| =∞⇔ τA =∞. If we wish to measure diagonal displacement relative to a
point z = (x0, y0) other than o, we will use τzA = τA − (y0 − x0).

Let p ↑←↖c denote the critical probability for oriented site percolation on the triangular
lattice. The following bounds are known:

0.5730 ≤ p ↑←↖c ≤ 0.7491;

the former is Theorem 1.5 of [15], while the latter follows from the square lattice bound
≤ p→↑c ≤ 0.7491 of Balister et al [1], since p ↑←↖c ≤ p→↑c .

Fix p > p ↑←↖c . Proposition 4.1 of [15] (reformulating results in [11]) states that there
exists a ρp < −1 such that on the event {|Co| =∞}, the set Co has an upper boundary
with asymptotic slope ρp and a lower boundary with asymptotic slope 1/ρp.

Lemma 5.4. Let p > p ↑←↖c and choose θ1 with ρp < θ1 < −1. Then

(a) ∃ a constant γ1 > 0 such that P (ūn ≤ −nθ1) ≤ e−γ1n, ∀n;

(b) ∃ constants C2, γ2 > 0 such that P (n ≤ τo <∞) ≤ C2e
−γ2n, ∀n;

(c) ∃ a constant γ3 > 0 such that P (τA <∞) ≤ e−γ3|A|, ∀A ⊂ Y .
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Proof. These are all taken from [11]. The lattice used there is different from ours, but it
can be verified that the arguments all apply equally well in our setting. See also Section
4 of [15] where a similar translation is carried out. In particular, (a) is formula (11.1) of
[11], (b) is formula (12.1), and (c) is formula (10.5). �

We will follow the convention that constants C and γ may change from line to line. If
specific values are to be tracked, we will index them (as in the above result).

For θ1 as above, choose ε > 0, and θ with θ1 < θ < −1. Set An,ε = {(n, y) ∈ Z(2) : 0 ≤
y ≤ εn}. Let L be the line through o with slope θ, and let Ln be the line through (n, 0)

with slope θ1. We are interested in the event

An,ε,θ = {∃ infinite open path, starting in An,ε and lying above L}.

Lemma 5.5. Let p > p ↑←↖c . Choose θ1 and θ with ρp < θ1 < θ < −1, and choose ε > 0.
There are constants C > 0 and γ > 0 such that P (An,ε,θ) ≥ 1− Ce−γn for every n.

Proof. We will temporarily fix k ≥ 0, and will estimate the probability that there exists a
point (−k, z) ∈ C∞An,ε that lies above L. Constants below are as taken from Lemma 5.4

Discarding an event of probability at most e−γ3εn, there is an infinite open path σ1,
starting from some point x1 of An,ε. Let y1 = (−k, z1) be the first site on σ1 whose first
coordinate equals −k. Discarding a further event, of probability at most e−γ1(k+n) there
is a also an open path σ2 from some site x2 = (n, z2) with z2 ≤ 0, to a point y2 = (−k, z′2)

lying above Ln. Let k3 be the first integer exceeding −θk, and let x3 = (z3, k3) be the
first site on σ2 whose second coordinate exceeds −θk. If Cx3

is infinite, we claim that
there will be a point y = (−k, z) ∈ C∞An,ε .

To see this, we know there is an infinite open path σ3 starting at x3. Let y3 be the
first site on σ3 whose first coordinate equals −k. By construction, y3 lies above L. If y1
lies above L then take y = y1 ∈ C∞An,ε . If y1 lies below L then σ1 crosses σ2 before the
latter reaches x3. By following σ1 from x1 till it crosses σ2, then σ2 to x3, and then σ3,
we see that we can take y = y3 ∈ C∞An,ε . Either way, we have found our y.

Note that the lines of slope 1 through x3 and y2 are well separated. The closest
they can be is when x3 = (−k, k3) and y2 = (−k,−θ1(n + k)), so we always have τx3

x3
≥

−θn+ k(θ− θ1)− 1. In particular, if Cx3
is finite, then −θn+ k(θ− θ1)− 1 ≤ τx3

x3
<∞. But

there are at most n+ k possible values for x3. Taking a union over these values shows
that

1− P (∃ a point y = (−k, z) ∈ C∞An,ε that lies above L)

≤ e−γ3εn + e−γ1(k+n) + C2(n+ k)e−γ2(−θn+k(θ−θ1)−1).

In fact, the first excluded event is common to all k, so summing over k we get that

1− P (∩k≥0{∃ a point (−k, z) ∈ C∞An,ε that lies above L})

≤ e−γ3εn +

∞∑
k=0

[e−γ1(k+n) + C2(n+ k)e−γ2(−θn+k(θ−θ1)−1)]

≤ e−γ3εn + C[e−γ1n + neγ2θn] ≤ Ce−γn

for some C, provided we choose γ < min(γ1,−γ2θ, γ3ε). Under the above event, there
are open paths from a single x1 ∈ An,ε to each such (−k, z), so we can take the maximum
over all these paths and obtain a single infinite path from x1 that lies completely above
L. In other words, 1− P (An,ε,θ) ≤ Ce−γn, as required. �
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6 Ballisticity in the elliptic case

For i.i.d. uniformly elliptic walks, there are a number of abstract conditions that
imply ballisticity, starting with Kalikow’s condition [16]. The proof of ballisticity in that
context is due to Sznitman and Zerner [21]. In [23], Sznitman introduces a condition
weaker than Kalikow’s, but which also implies ballisticity. He called this condition (T),
and it is defined using exponential moments of the walk up to the regeneration time T .
Our condition (3.1) is therefore very similar in character.

In [24] he formulated weaker conditions (T′) and (T)γ that do not require knowledge of
T , but instead are based on the distributions of the walk prior to exiting from arbitrarily
large slabs. (Strictly speaking, [24] uses this notation for different but equivalent
conditions, but subsequent usage has been as stated here.) [24] shows that ballisticity
holds under (T′), and as well that (T′) is equivalent to what is there called an “effective
condition”. In other words, a condition that can be verified by finding a large but finite
box on which it holds.

Drewitz and Ramírez showed in [9] that when d ≥ 4, (T′) is equivalent to (T)γ for
each 0 < γ < 1. In [3], Berger, Drewitz and Ramírez extended this equivalence to d ≥ 2

and showed that these conditions are in turn equivalent to a polynomial decay condition
(P)M which is also effective.

All these results assume uniform ellipticity. This is relaxed in [6] and then further
in [5], where ballisticity is shown under (P)M, for elliptic (but not uniformly elliptic)
walks. In those results, all directions have nonzero probability of being chosen, but
certain directions are allowed to have probabilities that decay to zero in a controlled
way.

Since our walks are nearest-neighbour, the bound (3.1) implies that

E0[eC supk≤T ‖Xk‖
η

] ≤ E0[eCT
η

] <∞, for 0 < η < δ. (6.1)

Note that (by Corollary 1.5 of [24]) in the presence of uniform ellipticity, (6.1) implies
what current usage labels (T)η, and therefore also (T′) (by the results of [9] and [3]
mentioned above). The conclusions of Lemmas 5.2 or 5.3 directly imply (T′) in our highly
non-elliptic setting.

None of the above ballisticity conditions is strictly local, in the sense that it is
formulated solely in terms of the law µ of the environment at a single site. In contrast,
our Propositions 1.6 and 1.7 together do provide such local conditions. Our main
contribution is in fact to obtain estimates for the regeneration time based on local
conditions, and then give an elementary proof of ballisticity.

In the uniformly elliptic case, the best known local condition is the following from
[16]

ε̂` > 0 where ε̂` = inf
f∈F

Eµ

[ ∑
e∈E γ(e)`·e∑
e∈E γ(e)f(e)

]
Eµ

[
1∑

e∈E γ(e)f(e)

] . (6.2)

Here F denotes the set of nonzero functions on E with values in [0, 1]. In the presence
of uniform ellipticity this implies Kalikow’s condition and hence ballisticity. (Note that
[24] differentiates between (6.2) and Kalikow’s condition by calling the former Kalikow’s
criterion. An example is given there in which the latter fails but (T′) holds.)

We wish to compare (6.2) with our conditions, and understand what it tells us about
Example 1.1. Note that ε̂` is a lower bound for a quantity ε` that arises in Kalikow’s
condition, which in turn is a lower bound for v · `, so (6.2) implies v · ` > 0. Since the
above results depend on uniform ellipticity, which fails for Example 1.1, we work with
the following uniformly elliptic version instead:
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Example 6.1 (modified 2-d orthant model). µε,δ is 2-valued, with µ(γ(1)) = p and µ(γ(2)) =

1 − p; γ(1)(e1) = γ(1)(e2) = 1−ε
2 and γ(1)(−e1) = γ(1)(−e2) = ε

2 ; γ(2)(e1) = γ(2)(e2) = δ
2 and

γ(2)(−e1) = γ(2)(−e2) = 1−δ
2 .

In other words, we add back the missing directions to S(γ(1)) and S(γ(2)), with
probabilities ε and δ respectively. Let ` = e1 + e2. We will examine the range of p for
which (6.2) holds while letting ε ↓ 0 or δ ↓ 0.

By symmetry (i.e. γ(i)(e1) = γ(i)(e2), γ(i)(−e1) = γ(i)(−e2)), we may assume that
f(e1) = f(e2) = a and f(−e1) = f(−e2) = b. So (a, b) ∈ F = [0, 1]2 \ {(0, 0)}. We get that

ε̂` = inf
(a,b)∈F

p(1− 2ε)[δa+ (1− δ)b]− (1− p)(1− 2δ)[(1− ε)a+ εb]

p[δa+ (1− δ)b] + (1− p)[(1− ε)a+ εb]
.

This fraction has the form Aa+Bb
Ca+Db , and an elementary calculation shows that AD −BC =

−2p(1 − p)(1 − ε − δ)2 ≤ 0. From this it follows that the fraction is ↓ in a and ↑ in b, so
the infimum occurs at (1, 0), giving

ε̂` =
(p(1− 2ε)δ − (1− p)(1− 2δ)(1− ε))

(pδ + (1− p)(1− ε))
.

Restricting attention to the case ε < 1
2 and δ < 1

2 , (6.2) becomes that

p

1− p
>

(1− 2δ)(1− ε)
(1− 2ε)δ

.

In other words, sending ε ↓ 0 is inconsequential for (6.2); it only expands the range of p
for which (6.2) implies ballisticity in direction ` = (1, 1). But when δ ↓ 0, the condition
becomes increasingly restrictive; for there to be any ε ∈ (0, 12 ) for which (6.2) holds, we
require p > 1− δ

1−δ . The right hand side approaches 1 as δ ↓ 0.
We can interpret this observation as saying that the absence of arrows →↑ in envi-

ronment γ(2) creates an insurmountable obstacle for obtaining ballisticity in direction
` = (1, 1) via condition (6.2). The barriers←↓ are too strong for (6.2) to handle. One way
of interpreting our main result is that we can overcome the presence of strong barriers
←↓ by strengthening the forward push, i.e. including sufficiently many sites →↑ that do
not permit backwards motion.
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