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Abstract

We consider two-dimensional critical bond percolation. Conditioned on the existence
of an open circuit in an annulus, we show that the ratio of the expected size of the
shortest open circuit to the expected size of the innermost circuit tends to zero as
the side length of the annulus tends to infinity, the aspect ratio remaining fixed. The
same proof yields a similar result for the lowest open crossing of a rectangle. In this
last case, we answer a question of Kesten and Zhang by showing in addition that the
ratio of the length of the shortest crossing to the length of the lowest tends to zero in
probability. This suggests that the chemical distance in critical percolation is given by
an exponent strictly smaller than that of the lowest path.
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1 Introduction

The object of this paper is to prove a result concerning the chemical distance inside
large open clusters in critical independent bond percolation on Z2. The chemical distance
between two sets A and B is the minimum number of edges in any lattice path of open
edges joining A to B.

Distances inside the infinite cluster in supercritical percolation are known to be
comparable to the Euclidean distance on Zd, through the work of G. Grimmett and J.
Marstrand [9, Section 5 (g)]. P. Antal and A. Pisztora [2] give exponential bounds for the
probability of deviation from this linear behavior.

By contrast, little is known in the critical case. The most complete results are
available in high dimensions (d ≥ 19). Using techniques of G. Kozma and A. Nachmias
[19, 20], R. van der Hofstad and A. Sapozhnikov [12, Theorem 1.5] have shown that,
conditioned on the existence of an open path to Euclidean distance n, the chemical
distance from the origin to the boundary of a Euclidean box of side length n is at least of
order εn2 with probability at least 1− C

√
ε. The matching upper bound follows directly
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Chemical distance

from the work of Kozma and Nachmias (see also [11, Theorem 2.8] for a more general
result, which applies also to long-range percolation). These estimates presumably hold
for any dimension above the critical dimension d = 6, but the current proofs rely on
results derived from the lace expansion. To the best of our knowledge, there is currently
no rigorous work addressing the chemical distance in percolation for 2 < d < 19.

Unlike in the high dimensional case, there has been very little work on the chemical
distance in two-dimensional percolation. This is mainly because it is not clear how to
analyze it using the usual tools: gluing constructions and arm exponents. Two notable
exceptions include the work of J. van den Berg and A. Jarai [31], and G.J. Morrow and Y.
Zhang [21], both of which study asymptotics for the lowest crossing. The techniques in
our paper are most similar to the ones in these papers, and also particularly the recent
work involving arm events in self-destructive percolation by D. Kiss, I. Manolescu and
V. Sidoravicius [18]. For extensive background on relevant methods from critical and
near-critical percolation, the reader should also see Nolin’s survey [23].

As observed by Pisztora [24], the work of M. Aizenman and A. Burchard [1] implies
that distances in planar critical percolation are bounded below by a power greater than
one of the Euclidean distance, with high probability. Letting B(n) = [−n, n]2, there is an
ε > 0 such that, for any κ > 0,

P(∃ an open crossing of B(n) with cardinality ≤ n1+ε | ∃ an open crossing) ≤ Cκn−κ.
(1.1)

For definiteness, we consider horizontal crossings of B(n). Pisztora treats the “near-
critical” case, when the percolation parameter p is sufficiently close to pc = 1

2 and obtains
essentially the same result as long as n is below the correlation length for p. H. Kesten
and Y. Zhang [16] had previously outlined a proof of an estimate analogous to (1.1) for
some fixed κ, for the size of the lowest open crossing in B(n).

We know of no explicit estimate for ε in (1.1). In principle, such an estimate could
be obtained from careful examination of the proof in [1], but the resulting value would
be exceedingly small, and it is not likely to correspond to the true typical length of
crossings.

In this work we will be concerned with upper, rather than lower bounds for the
chemical distance. Conditioned on the existence of a crossing, the obvious approach is
to identify a distinguished crossing of B(n) whose size can be estimated. This provides
an upper bound for the shortest crossing.

The lowest open crossing of B(n) has a well-known characterization: an edge e ∈ B(n)

lies on the lowest open crossing if and only if it is connected to the left and right sides
of B(n) by disjoint open paths, and the dual edge e∗ is connected to the bottom side of
B(n)∗, the dual to B(n). (For precise definitions, see Section 2.) G. J. Morrow and Zhang
have used this fact to show that if L̃n is the size of the lowest open crossing of B(n),
then for each positive integer k,

C1,kn
2k(π3(n))k ≤ EL̃kn ≤ C2,kn

2k(π3(n))k, (1.2)

with π3(n) denoting the “three-arm” probability (see (2.1)). On the triangular lattice,
the existence and asymptotic value of the three-arm exponent are known [29], and (1.2)
becomes

EL̃kn = n4k/3+o(1).

It is natural to ask whether this is also the correct order of magnitude for the shortest
crossing of B(n). This question was asked by Kesten and Zhang in [16]:

Question 1.1 (H. Kesten and Y. Zhang, 1992). Let Hn be the event that there is an open
horizontal crossing of [−n, n]2. Let S̃n be the number of edges in the crossing of [−n, n]2
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of minimal length. Is it the case that

S̃n/L̃n → 0, (1.3)

in probability, conditionally on Hn? From [16, p. 603]: “It is not clear that S̃n/L̃n → 0

in probability.” In this paper, we give a positive answer to this question. (See Corollary
2.5.)

We present our result on the chemical distance in terms of circuits in annuli. The
same proof, with minor modifications, applies to the case of horizontal crossings. Let
A(n) = B(3n) \B(n). By Russo-Seymour-Welsh (RSW) [27, 30] estimates, the probability
that there is an open circuit around B(n) in A(n) is bounded below by a positive number
independent of n. Conditioned on the existence of such a circuit, one defines the
innermost open circuit γn as the circuit with minimal interior surrounding B(n) inside
A(n). As in the case of the lowest path, one can show that if Ln is the size of γn, then for
some C > 0

(1/C)n2π3(n) ≤ ELn ≤ Cn2π3(n).

Let Sn be the number of edges on the shortest open circuit around B(n) in A(n) (defined
to be zero when there is no circuit). Our main result, Theorem 2.2, is the following: as
n→∞,

ESn
n2π3(n)

→ 0. (1.4)

This shows that in an averaged sense, Sn is much shorter than the typical size of Ln.
The formulation (1.4) in terms of circuits in annuli serves as an illustration of the fractal
nature of percolation clusters. If macroscopic open paths were smooth, in the sense that
they had no small-scale features, one would not expect the shortest circuit to be much
shorter than the innermost, since the latter encloses a smaller area.

Remark 1.2. Between the original submission and final acceptance, we obtained results
stronger than that in (1.4). First, in the arXiv note [6], we refined the strategy introduced
in this paper to give the bound ESn

n2π3(n) ≤
1

(logn)c for any c < 1/4. Further improvements
are in preparation.

1.1 Conjectures in the literature

Here we make a few brief remarks and give additional references to the literature on
the subject of the chemical distance in critical percolation.

Physicists expect that there exists an exponent dmin such that

S̃n ∼ ndmin , (1.5)

where the precise meaning of the equivalence ∼ remains to be specified. O. Schramm
included the determination of dmin in a list of open problems on conformally invariant
scaling limits [28], noting that the question does not “seem accessible to SLE methods.”
Even the existence claim has so far not been substantiated.

Following Schramm and Kesten-Zhang, we have formulated the problem in terms
of crossings of large boxes. More generally, dmin is predicted to govern the chemical
distance between any two points inside the same critical percolation cluster in the sense
that if x, y ∈ Z2 are connected by an open path and ‖x− y‖1 = n, then

distchemical(x, y) ∼ ndmin . (1.6)

It follows from the results of Aizenman and Burchard that if x and y are at Euclidean
distance of order n, then with high probability, the chemical distance between x and
y is greater than nη for η > 1. One might expect, based on (1.2), that the average
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point-to-point chemical distance can be bounded by n2π3(n), but this bound does not
follow directly from the method of Morrow and Zhang. Our main result and numerical
simulations suggest that a sharp upper bound would involve a quantity smaller than
n2π3(n) by a power of n.

Simulations have yielded the approximation dmin ≈ 1.130 . . . [8, 10, 32]. In contrast
to other critical exponents, there is no agreement on an exact value for dmin, and several
proposed values seem inconsistent with each other, and with numerical results. See the
introduction and bibliography in [25] for a more extensive review of these questions. In
that article, the authors use the formula of V. Beffara [3] for the dimension of SLE curves

dSLE(κ) = min
(

1 +
κ

8
, 2
)

along with a conjectured value for dmin to compare, based on simulations, the behavior
of SLE(κ) with the shortest path accross a domain.

1.2 Outline of the proof

The obvious strategy is to use the following well-known fact: given any circuit L in
A(n), the event that the innermost circuit γn in A(n) (around 0) coincides with L depends
only on the edges in A(n) which also lie in the interior and on γn. One would then try to
condition on the value of the innermost circuit and use RSW constructions along with
independence of the region outside, to construct a large number of short paths off of L.
Unfortunately, this strategy does not work. The innermost circuit with high probability
has many very irregular sections, so that it is not possible to make useful constructions
with probability bounds that are independent of L.

A main contribution of this paper is to replace this approach, which attempts to use
independence of the region outside the innermost circuit, with one where we instead
condition on the event that an edge far from the boundary belongs to the innermost
circuit, and show that with high conditional probability, there is a short path around this
edge. In other words, fixing any edge e which is far from the boundary, if e ∈ γn, we try
to find in several concentric annuli around e a “detour”: an open arc lying outside γn,
but with its endpoints on γn. Given such an arc, we can form a new open circuit in A(n)

by replacing a portion of γn by the detouring open arc. Provided the resulting curve still
surrounds B(n), we obtain a candidate for a circuit which could be shorter than γn.

Given ε > 0 fixed but small, the strategy is then to show that not only are there
many detours around edges on γn, but they can be chosen so that their length is less
than ε times the length of the portion of γn they detour. If most of γn can be covered
by such short detours in this manner, we can build an open circuit σn consisting of
sections of the innermost circuit, with many detours attached, and one might hope that
#σn ≤ (ε+ o(1))#γn with high probability.

In trying to implement this strategy, we are faced with a number of problems:

1. We are forced to construct detours locally (that is, around edges e that are condi-
tioned to be in γn), and not globally. Therefore, multiple detours around different
edges might intersect. A systematic method is needed to keep track of how much
of γn we have replaced by detours.

2. We lack prior knowledge about the size of open paths in the critical cluster. It is
thus not obvious that one of the many detours around each edge will have length
smaller than ε times that of the detoured path.

3. The orientation and rough geometry of γn could make it difficult to carry out the
percolation estimates required to construct detours. Because we do not condition
on the value L of γn at any point, the global structure of γn does not appear in
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the detour construction. An essential point of our construction is that given the
occurrence of our “detour” events, the local structure of the innermost circuit is
controlled.

We address the first point by considering “shielded” detours: short detours which are
also covered by a closed dual arc; see Definition 3.2. Two shielded detours are either
equal or disjoint, and this allows us to estimate the total contribution of the detours to
the circuit σn.

To address the second point, we must show that very short shielded detour paths
exist with positive probability in every annulus. The only tool that we have to upper
bound the length of paths is the result of Morrow and Zhang, which gives asymptotics
for the length of the lowest crossing (innermost circuit). We use the fact that the fractal
structure of this innermost circuit of an annulus implies that it can be made much smaller
than its expected size, by forcing it to lie in a very thin region. This observation, applied
to outermost partial circuits within shields, allows us to construct short detours as in
Definition 3.2, by constraining them to be in thin annuli. As an illustration of this idea,
we give the following proposition:

Proposition 1.3. Let L̃n be the length of the lowest horizontal crossing in [−n, n]2. For
any ε > 0, there is C(ε) > 0 such that

P(L̃n < εEL̃n | there is an open crossing of [−n, n]2) ≥ C(ε), (1.7)

for all n large enough.

Sketch of proof. We only provide an outline of the proof here. For a more detailed
argument, see the proof of Lemma 5.8. The size of the lowest open crossing of [−n, n]×
[−n,−(1− α)n] is of order αn2π3(αn). Using quasimultiplicativity [23, Proposition 12.2],
and the fact that the three arm-exponent is < 1, this is smaller than α1−ηn2π3(n) for
some η < 1. Choosing α small enough, the result follows.

To show that most of γn can be covered by short detours, we show in Section 6 (see
equation (6.1)), that the probability of e having no shielded detour around it is small,
conditioned on e lying on γn:

lim sup
n→∞

P(no detour around e | e ∈ γn) = 0, (1.8)

for edges e away from the boundary of A(n) and ε > 0 arbitrary.
We then estimate Sn by considering separately the contributions to #σn of the union

Π of all the short detours, and the edges on γn \ Π̂, where Π̂ is the union of the “detoured”
portions of the innermost circuit:

ESn ≤ E#Π + E#(γn \ Π̂)

≤ εE#γn + E#{e ∈ γn : there is no detour around e}

≤ εE#γn +
∑
e

P(no detour around e | e ∈ γn)P(e ∈ γn).

Using (1.8), this gives
ESn ≤ (ε+ o(1)) ·E#γn. (1.9)

The proof of Corollary 2.3 (see Section 2.2 for the statement) concerning the expected
size of the lowest crossing is identical to the argument for the innermost circuit. To
obtain the statement of convergence in probability in Corollary 2.5 (also stated in Section
2.2) we need an additional argument. Essentially, it remains to prove that the lowest
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crossing of [−n, n]2 cannot be smaller than o(1)EL̃n with positive probability. The basic
idea for our proof comes from Kesten’s lower bound for the number of pivotals in a box
[14, (2.46)], but the requirement to find a large (of order n2π3(n)) points rather than one
at each scale introduces substantial new technical difficulties. See Section 7.

For clarity, we have ignored the edges very close to the boundary in this rough sketch
of our proof; for such edges, no estimate like (1.8) holds.

To obtain the estimate (1.8), we define a sequence Ek(e), k ≥ 1 of events which
depend on edges inside concentric annuli around e, and whose occurrence implies the
existence of a shielded detour (in the sense of Definition 3.2) if e ∈ γn. The definition
and construction of Ek(e) are given in Section 5, where it is also proved that

P(Ek(e)) ≥ c1 (1.10)

uniformly in k ≥ k0 for some c1 > 0. A schematic representation of the event Ek(e)

appears in Figure 1; see also the accompanying description at the beginning of Section 5.
We use closed dual circuits with defects to force the lowest crossing to traverse certain
regions inside the annulus where Ek(e) is defined, regardless of the “local orientation”
of the innermost circuit outside. To connect the innermost circuit, the detour path and
its shielding closed dual path, we use five-arm points (see Section 5.2), avoiding any
conditioning on the realization of the lowest path.

To pass from (1.10) to (1.8), we show in Section 6.1 that

1. The estimate (1.10) remains true (with a different, but still n-independent constant)
when we condition on e lying in the innermost circuit. See (5.24) in Section 5 and
Proposition 6.1.

2. Although the Ek(e)’s are no longer independent under the conditional measure
P(· | e ∈ γn), the dependence is weak enough to obtain an estimate on the event
that none of the Ek’s occur; see Proposition 6.4. Here we use arm separation tools
which appeared in [7] (which we state as Lemma 6.6).

2 Notation and results

On the square lattice (Z2, E2), let P be the critical bond percolation measure∏
e∈E2

1

2
(δ0 + δ1)

on Ω = {0, 1}E2 .
A lattice path is a sequence v0, e1, v1, . . . , vN−1, eN , vN such that for all k = 1, . . . , N ,

‖vk−1 − vk‖1 = 1 and ek = {vk−1, vk}. A circuit is a path with v0 = vN . For such paths we
denote #γ = N , the number of edges in γ. If V ⊂ Z2 then we say that γ ⊂ V if vk ∈ V
for k = 0, . . . , N .

A path γ is said to be (vertex) self-avoiding if vi = vj implies i = j and a circuit is
(vertex) self-avoiding if vi = vj implies i = j whenever 0 /∈ {i, j}. Given ω ∈ Ω, we say
that γ is open in ω if ω(ek) = 1 for k = 1, . . . , N . Any self-avoiding circuit γ can be viewed
as a Jordan curve and therefore has an interior int γ and exterior ext γ (component of
the complement that is unbounded). In this way, Z2 is the disjoint union int γ ∪ ext γ ∪ γ.
We say a self-avoiding circuit surrounds a vertex v if v ∈ int γ.

The dual lattice is written ((Z2)∗, (E2)∗), where (Z2)∗ = Z2 + (1/2)(e1 + e2) with its
nearest-neighbor edges. Here, we have denoted by ei the coordinate vectors:

e1 = (1, 0), e2 = (0, 1).
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Given ω ∈ Ω, we obtain ω∗ ∈ Ω∗ = {0, 1}(E2)∗ by the relation ω∗(e∗) = ω(e), where e∗

is the dual edge that shares a midpoint with e. We blur the distinction between ω and
ω∗ and say, for example, that e∗ is open in ω. For any V ⊂ Z2 we write V ∗ ⊂ (Z2)∗ for
V + (1/2)(e1 + e2). For two subsets X and Y of the plane, we denote by dist(X,Y ) the
Euclidean distance from X to Y .

The symbols C, c will denote positive constants whose value may change between
occurrences, but is independent of any parameters. Dependence on parameters is
indicated by an argument, as in C(α), and we have numbered some recurring constants
using subscript for clarity.

2.1 Circuits in annuli

For n ≥ 1, let B(n) be the box of side-length 2n,

B(n) = {x ∈ Z2 : ‖x‖∞ ≤ n},

and A(n) the annulus
A(n) = B(3n) \B(n) .

For n ≥ 1, let ∂B(n) = {x ∈ Z2 : ‖x‖∞ = n}.
Let C(n) be the collection of all self-avoiding circuits in A(n) that surround the origin

and, given ω, let Ξ(n) = Ξ(n)(ω) be the sub-collection of C(n) of open circuits.
We will be interested in the event

Ωn = {Ξ(n) 6= ∅} ,

which we know has 0 < infnP(Ωn) ≤ supnP(Ωn) < 1 by RSW arguments [27, 30]. On
Ωn we may define γn, the innermost element of Ξ(n), as the unique γ ∈ Ξ(n) which has
int γ ⊂ int σ for all σ ∈ Ξ(n). This allows us to define the random variable

Ln = Ln(ω) =

{
#γn for ω ∈ Ωn

0 for ω /∈ Ωn
.

This is the length of the innermost open circuit.
The expected length of the innermost open circuit can be estimated using arm events.

Let A3(n) be the “three-arm” event that

1. The edge (0, e1) is connected to ∂B(n) by two open vertex disjoint paths and

2. (1/2)(e1 − e2) is connected to ∂B(n)∗ by a closed dual path.

In later sections, we use arm events centered at vertices other than the origin. We define
them now. For v ∈ Z2, A3(v, n) denotes the event that A3(n) occurs in the configuration
ω shifted by −v. For an edge e = (v1, v2) ∈ E2, A3(e, n) denotes the event that

1. e is connected to ∂B(e, n) := ∂B((v1 + v2)/2, n) by two disjoint open paths and

2. The dual edge e∗ is connected to ∂B((v1 + v2)/2, n)∗ by a closed dual path.

In item 2, we view the boundary as a subset of R2 and say that e∗ is connected to it if
there is a closed dual path from e∗ which (when viewed as a subset of R2, touches it.

Denoting
π3(n) = P(A3(n)), (2.1)

we have the following simple adaptation of the result of Morrow and Zhang:

Proposition 2.1. There exist C1, C2 > 0 such that

C1n
2π3(n) ≤ ELn ≤ C2n

2π3(n) for all n ≥ 1 . (2.2)
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The characterization of the innermost circuit (based on Morrow and Zhang) we will
use throughout the paper is as follows. An edge e ⊂ A(n) is in the innermost circuit if
and only if the following occurs: e∗ is connected to B(n)∗ by a closed dual path, and e is
in a self-avoiding open circuit surrounding B(n). One way to say this is that e has three
disjoint arms (two open and one closed), with the closed arm connected to B(n)∗ and
the open ones connecting into a circuit around B(n).

We can further define the length of the shortest open circuit. That is, set

Sn = Sn(ω) =

{
min{#γ : γ ∈ Ξ(n)} for ω ∈ Ωn

0 for ω /∈ Ωn
.

Our main result for circuits is

Theorem 2.2. As n→∞,

ESn = o(n2π3(n)) . (2.3)

2.2 The lowest crossing and the question of Kesten-Zhang

The proof of Theorem 2.2 applies equally well to the length L̃n of the lowest crossing
of B(n). Here on Hc

n, where Hn is the event that there is an open horizontal crossing of
B(n), we define L̃n = 0.

Corollary 2.3. Let S̃n be the minimal number of edges in any open horizontal crossing
of B(n) (S̃n = 0 if there is no such crossing). Then

ES̃n = o(n2π3(n)) . (2.4)

To address the question of Kesten and Zhang stated in the introduction and obtain
the result (1.4) on convergence in probability, we combine the preceding corollary with
(2.2) (the version for L̃n in place of Ln) and an auxiliary estimate for the lower tail of L̃n:

Lemma 2.4. Let L̃n be the number of edges in the lowest crossing of [−n, n]2. Then

lim
ε↓0

lim sup
n

P(0 < L̃n < εn2π3(n)) = 0. (2.5)

We give a proof sketch of (2.5) in Section 4. The full proof, which is somewhat
involved, appears in an arXiv version of the current paper. With Lemma 2.4 in hand, we
can answer the question of Kesten and Zhang.

Corollary 2.5. Conditionally on Hn, we have the convergence in probability:

S̃n/L̃n → 0 . (2.6)

The proof of Corollary 2.5 will be found in Section 4.

3 Short detours

On the event Ωn, we will find another another circuit σn ∈ Ξ(n) such that #σn =

o(#γ̂n), where γ̂n is a truncated version of the innermost circuit γn (see equation (3.3))
in a slightly thinned version of A(n). To define this annulus, we note the following:

Lemma 3.1. For some C3 > 0 and C4 ∈ (0, 1),

π3(m,n) ≥ C3(n/m)C4−1 for all 1 ≤ m ≤ n . (3.1)

Here, π3(m,n) is the probability that there are two disjoint open paths connecting B(m)

to ∂B(n) and one closed dual path connecting B(m)∗ to ∂B(n)∗.
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Proof. We use the result of Aizenman and Burchard [1].
Consider the event Λ1 that

1. there is a closed dual crossing of ([−n, n]× [−n/2,−n/4])∗, connected to the bottom
of B(n)∗ by a closed dual crossing,

2. there is a closed dual crossing of ([−n, n]× [n/4, n/2])∗,

3. there is an open left-right crossing of [−n, n]× [−n/4, n/4].

Then, by RSW, P(Λ1) ≥ c for some c > 0. Note that on Λ1, the lowest open crossing of
B(n) contains an open crossing of B(n/2).

Tile the box B(n/2) = [−n/2, n/2]2 by boxes of size (1/10)m×(1/10)m, and let L(m,n)

be the number of these boxes that intersect the lowest crossing of B(n).

EL(m,n) ≤
∑
B

P(B ∩ L̃n 6= ∅)

≤ C
( n
m

)2

π3(m,n),

where the sum is over boxes B of side-length m/10 in the tiling of B(n/2).
Critical percolation in 1

nZ
2 ∩ (B(1) = [−1, 1]2) satisfies “Hypothesis H2” in that paper.

For ` > 0 and C a curve formed by a self-avoiding concatenation of open edges in B(1),
let N(C, `) be the minimal number of sets of diameter ` required to cover C.

By [1, Theorem 1.3] and [1, Equation (1.21)], there exists C4 > 0 such that for any
ε > 0:

P 1
nZ

2∩B(1)

(
inf

diam(C)≥1/10
N(C, `) ≤ C(ε)`−1−C4

)
≤ ε, (3.2)

uniformly in n sufficiently large and ` ≥ 1/n. Choosing ` = m/n, ε sufficiently small
and letting Λ2 be the event that there is an open crossing of B(n/2) with fewer than
C(ε)n1+C4 edges, we have by (2.2) and (3.2):( n

m

)2

π3(m,n) ≥ (1/C)EL(m,n) ≥ (1/C)E[L(m,n),Λ1 ∩ Λc2] ≥ C3(ε)(n/m)1+C4 .

Now define the annulus

Â(n) = B
(
b3n− nC4/2c

)
\B

(
dn+ nC4/2e

)
and the inner portion γ̂n of the innermost open circuit, defined as the union of all edges
e ∈ γn which lie entirely inside Â(n):

γ̂n = {e ∈ γn : e ⊂ Â(n)}. (3.3)

3.1 Definition of shielded detours

In this section, we define the central objects of our construction, the shielded detour
paths π(e), e ∈ γ̂n.

Definition 3.2. Given ω ∈ Ωn, ε ∈ (0, 1), and any e ∈ γ̂n, we define the set S(e) of
ε-shielded detours around e as follows. An element of S(e) is a self-avoiding open path P
with vertex set w0, w1, . . . , wM such that the following hold:

1. for i = 1, . . . ,M − 1, wi ∈ (A(n) ∩ ext γn),

2. the edges {w0, w0 + e1}, {w0 − e1, w0}, {wM , wM + e1} and {wM − e1, wM} are in γn
and w1 = w0 + e2, wM−1 = wM + e2.

3. writing Q for the subpath of γn from w0 to wM that contains e, the circuit Q ∪ P
does not surround the origin,
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4. the points w0 + (1/2)(−e1 + e2) and wM + (1/2)(e1 + e2) are connected by a dual
closed self-avoiding path R whose first and last edges are vertical (translates of
{0, e2}) and is such that the curve formed by the union of R, the line segments from
the endpoints of R to w1 and wM−1, and P does not enclose the origin, and

5. #P ≤ ε#Q.

Now fix a deterministic ordering of all finite lattice paths and define π(e) to be the first
element of S(e) in this ordering. If the set S(e) is empty, then we set π(e) = ∅.

3.2 Properties of the detour paths

We give the properties of the collection of detours (π(e) : e ∈ γ̂n) which we use in the
next section to prove Theorem 2.2 and Corollary 2.5. The definition of π(e) (Definition
3.2) appeared in Section 3.1.

Let 0 < ε < 1. Then:

1. Each π(e) is open and for distinct e, e′ ∈ γ̂n, π(e) and π(e′) are either equal or have
no vertices in common.

2. If e ∈ γ̂n and π(e) 6= ∅, write π(e) = {w0, e0, . . . , eM−1, wM}. Then w0, wM ∈ γn but
wi ∈ (A(n) ∩ ext γn) for i = 1, . . . ,M − 1.

3. If e ∈ γ̂n then the segment π̂(e) of γn from w0 to wM containing e (that is, the
“detoured” portion of γn) is such that π̂(e) ∪ π(e) is a circuit that does not surround
the origin. Furthermore,

#π(e) ≤ ε#π̂(e) . (3.4)

4. There exists C5(ε) > 0 such that for all n ≥ C5 and e ∈ Â(n),

P(π(e) = ∅ | e ∈ γ̂n) ≤ ε2 . (3.5)

(The exponent 2 on ε on the right in (3.5) will be used in (4.4).)

We must show the above properties follow from Definition 3.2. Most of the work will
be in showing item 4, the probability estimate (3.5), which we will do in Section 6. Items
2 and 3 hold by definition. For item 1, we have

Proposition 3.3. If ω ∈ Ωn, then for distinct e, e′ ∈ γ̂n, π(e) and π(e′) are either equal or
have no vertices in common.

The proof of Proposition 3.3 will be found in Section 8.
For the rest of this section, we will identify paths with their edge sets. Given

such detour paths π(e) (which necessarily do not share edges with γn, due to (3.4))
and detoured paths π̂(e) (subpaths of γn), we construct σn as follows. First choose
a subcollection Π of {π(e) : e ∈ γ̂n} that is maximal in the following sense: for all
π(e), π(e′) ∈ Π with e 6= e′, the paths π̂(e) and π̂(e′) share no vertices and the total length
of detoured paths

∑
π∈Π #π̂ is maximal. The choice of Π can be arbitrary among all

maximal ones.
We put

Π̂ = {π̂ : π ∈ Π}.
Now define σn to be the path with edge set equal to the union of Π and those edges in
γn that are not in Π̂.

We must now show that if such a construction can be made, then lim supn
E#σn
ELn

≤ ε
(so Theorem 2.2 follows). To do this we will need two tools:

Lemma 3.4. For ω ∈ Ωn, σn is an open circuit in A(n) surrounding the origin.

and

Lemma 3.5. For ω ∈ Ωn, if e ∈ γ̂n \ Π̂ then π(e) = ∅.
The proofs of these two lemmas is detailed in Section 8.
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4 Estimate for ESn

Now we show that if paths π(e) can be defined so as to satisfy the properties in
Definition 3.2, and if we prove Lemmas 3.4 and 3.5, in conjunction with the other claimed
results from the last section, we can then conclude Theorem 2.2 and Corollary 2.3.

Let `(Π) =
∑
π∈Π #π be the total length of the detours in the collection Π. Assuming

Lemmas 3.4 and 3.5, we estimate the length of σn:

#σn = `(Π) + #(γn \ Π̂)

≤ `(Π) + #{e ∈ A(n) : e ∩ (A(n) \ Â(n)) 6= ∅}+ #(γ̂n \ Π̂)

≤ `(Π) + 30n1+C4/2 + #{e ∈ γ̂n : π(e) = ∅} .

We have:
`(Π) =

∑
π∈Π

#π ≤ ε
∑
π∈Π

#π̂ = ε# (∪π∈Ππ̂) ≤ ε#γn . (4.1)

Furthermore, due to (3.5),

E#{e ∈ γ̂n : π(e) = ∅} =
∑

e⊂Â(n)

P(π(e) = ∅ | e ∈ γ̂n)P(e ∈ γ̂n) ≤ ε2ELn . (4.2)

Therefore
ESn ≤ E#σn ≤ (ε+ ε2) ·ELn + 30n1+C4/2 .

Since ε is arbitrary and ELn ≥ C3n
1+C4 (using (2.2) and Lemma 3.1), (2.2) gives ESn =

o(n2π3(n)), finishing the proof of Theorem 2.2.
To obtain Corollary 2.5 for crossings of a box, we repeat the construction above to

obtain a crossing σ̃n and a union Π̃ of detours from the lowest crossing ln. Denoting by
P̃ the probability measure conditioned on the existence of an open crossing

P̃ = P( · | Hn),

write:

P̃(#σ̃n > 3ε1/2L̃n) ≤ P̃(`(Π̃) > ε1/2L̃n) + P̃(30n1+C4/2 > ε1/2L̃n) (4.3)

+ P̃(#{e ∈ l̂n : π(e) = ∅} > ε1/2#ln)

By an estimate analogous to (4.1), the first probability on the right is zero. We decompose
the last term further:

P̃(#{e ∈ l̂n : π(e) = ∅} > ε1/2L̃n) ≤ P̃(#{e ∈ l̂n : π(e) = ∅} > εEL̃n)

+ P̃(L̃n ≤ (ε/ε1/2)EL̃n). (4.4)

By Markov’s inequality and (4.2), the term P̃(#{e ∈ l̂n : π(e) = ∅} > εEL̃n) is bounded
by ε. (Recall that 0 < P(Hn) < 1 uniformly in n, so P̃ is uniformly absolutely continuous
with respect to P.)

It remains to estimate the second term on the right in (4.3) and the last term on the
right in (4.4). Using again that EL̃n ≥ C3n

1+C4 , we see that it will suffice to show that

lim sup
n→∞

P̃(0 < L̃n ≤ ε1/2EL̃n) ≤ λ(ε)

for λ(ε)→ 0 as ε→ 0. Recalling that P̃ is supported on the event {L̃n > 0} and P(Hn) > 0

uniformly in n, this reduces to showing

lim
ε↓0

lim sup
n→∞

P(0 < L̃n ≤ ε1/2EL̃n) = 0. (4.5)

This will be done in the Section 7.
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5 The events Ek

In this section, we define events Ek (depending on ε and η), which will be used in
the proof of the probability estimate (3.5) (see (6.2) in Section 6.1). The formal, precise
definition of Ek is quite long and complicated and given in Definition 5.10, equation
(5.22). The essential property of Ek is

Proposition 5.1. Let e be an edge of Z2 and ε > 0, and let Ek(e) = τ−eEk be the
translation of Ek by the edge e. That is, for any ω ∈ Ω,

(ωe′)e′∈E2 ∈ τ−eEk ⇐⇒ (ωe′−e)e′∈E2 ∈ Ek.

There is a constant K(ε) such that the following holds. Let

k ∈ {K(ε), . . . , b(C4/8) log nc}.

On Ek(e) ∩ {e ∈ γ̂n}, there is a ε-shielded detour π(e) ∈ S(e) around e contained in
B(3k+1) \B(3k−1). That is,

S(e) 6= ∅.

Proposition 5.1 will be proved in Section 5.6. As for the probability of occurrence of
Ek, we have the following lower bound, where A3(d) was defined in Section 2.1.

Proposition 5.2. For some K(η) > 0,

P(Ek | A3(d)) > C7 for all k ∈ {K(η), . . . , b(C4/8) log nc} and d ≥ b(C4/8) log nc (5.1)

for some uniform constant C7 independent of n. Ek will be defined as the conjunction of
a large number of crossing events (see equation (5.22)). These events will be gradually
introduced over the next few subsections. Figure 1 illustrates most of the crossing
events in Ek.

The proof of Proposition 5.2 takes up most of the remainder of Section 5, where lower
bounds for the subevents of Ek are given. The proof is completed in Section 5.5.

After we prove Propositions 5.1 and 5.2, Lemmas 3.4 and 3.5, and Proposition 3.3,
we can conclude Theorem 2.2.

5.1 Sketch of proof of Proposition 5.2

Because the proof of the above proposition requires many constructions, we now
give a sketch of the main ideas. Let η ∈ (1, 11/10) be given and k ≥ 1. The quantity
δ = η − 1 > 0 should be thought of as small. Define the annuli

Anni = Anni(η) = B(η3k+i−2) \B(3k+i−2) for i = 1, 2.

The event Ek(e) has three main features:

1. Two closed circuits (in green in Figure 1), in Ann1 and Ann2, each with two
defects, in thin concentric annuli. These serve to isolate the inside of the annulus
[−3k, 3k]2 \ [−η3k−1, η3k−1]2 from portions of the innermost circuit γ̂n which are not
involved in Ek. Their thickness is controlled by the small parameter δ � 1. If the
origin has 3 arms to a macroscopic distance, the open arms are forced to pass
through the defects.

The existence of these circuits is shown to have probability bounded below inde-
pendently of n in Section 5.2.
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2. An open half-circuit connected to the crossings of the annulus emanating from the
origin (in red in Figure 1). This will act as a detour for the portion of γ̂n inside the
larger box.

In Section 5.3, we show that, given the existence of the circuits in the previous
item, the open half-circuit contains at most ε32kπ3(3k) edges with high probability,
where ε > 0 is small.

3. Boxes containing order 32kπ3(3k) many three-arm points connected to the arms
emanating from e. (The relevant connections appear in blue in Figure 1.) On
Ek(e) ∩ {e ∈ γ̂n}, these points lie on γ̂n.

We give a lower bound of order C32kπ3(3k) for the number of three arm points on
the open arms emanating from the origin. This holds with probability bounded
below independently of n, conditionally on the events in the previous items. This is
done in Section 5.4.

Given these three features, the proof proceeds as follows. We first show existence of
circuits with defects: we show that for any given η close enough to 1, there is a constant
D1 = D1(η) such that for suitable values of k, one has

P(X1(k, η)) ≥ D1(η), (5.2)

where X1(k, η) is the event that the closed circuits with defects from feature one above
exist in the annuli Anni, and the defected edges have five arms as in Figure 1. Next, we
give an upper bound for the length of a thin detour. Namely, let X2(k, η, ε) be the event
that there is an open half-circuit connected to the defects from feature one, staying in
Ann2, and having length at most ε32kπ3(3k). We show in Section 5.3 that for any ε > 0,
there exists η(ε) close enough to 1 such that

P(X2(k, η, ε) | X1(k, η)) ≥ D2(ε) (5.3)

for suitable values of k. Last, we show existence of many edges on paths that will
function as the innermost circuit. Let X3(k, η, c) be the event that in boxes in the interior
of the annulus, there are at least c32kπ3(3k) edges with three disjoint arms: two open to
the defects and one closed dual path to the bottom of the annulus. In Section 5.4, we
prove that there exists c > 0 and a constant D3 > 0 such that for all η close to 1 and
suitable values of k,

P(X3(k, η, c) | X2(k, η(ε), ε), X1(k, η)) ≥ D3. (5.4)

The most important thing here is that c has no dependence on η or ε, essentially because
as η ↓ 1, the size of the boxes in which the three arm points lie does not decrease to 0.

To put these pieces together, we first choose c such that (5.4) holds. Next, given ε > 0,
choose η = η(cε) to guarantee (5.3) with cε in place of ε. For this value of η, one also has
(5.2). Combining the above three inequalities, and, for the purposes of this proof sketch,
putting

Ek = X1(k, η) ∩X2(k, η, ε) ∩X3(k, η, c),

one has
P(Ek) ≥ D1D2D3 (5.5)

for suitable k. On this intersection, one is guaranteed that the volume of the detour is at
most ε times the volume of the three-arm points in the boxes connected to the defects.
To finish the proof, one notes that Ek implies that there is a three-arm connection across
the annulus in which Ek occurs. Thus one uses arm separation to see that if Ek and
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Figure 1: An approximate depiction of the event Ek. Not all connections are shown.

A3(d) both occur, then one can, with uniformly positive conditional probability, route the
arms from A3(d) to the inner and outer boundaries of the annulus to connect to the arms
from Ek. Thus there is a constant D4 independent of n, η, c and k such that

(1/D4)P(Ek)P(A3(d)) ≤ P(Ek, A3(d)) ≤ D4P(Ek)P(A3(d)).

This step is standard, so we leave the details to the reader. Combining it with (5.5)
completes the proof of Proposition 5.2.

5.2 Five-arm events and shielded circuit

In this section we put in place most of the components of the construction of the
event Ek. Define the boxes

B1 = [−η3k,−3k]× [−3k

2
(η − 1),

3k

2
(η − 1)],

B2 = [−η3k−1,−3k−1]× [−3k−1

2
(η − 1),

3k−1

2
(η − 1)],

B3 = B1 + (3k(η − 1), 0), B4 = B2 + (−3k−1(η − 1), 0),
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and the “long” rectangles:

B5 = [−η3k,−3k(1 + η)

2
]× [

3k

2
(η − 1), 3kη],

B6 = [−3k(1 + η)

2
,−3k]× [

3k

2
(η − 1),

3k

2
(1 + η)],

B7 = [−η3k,−3k]× [−η3k,−3k

2
(η − 1)],

B8 = [−η3k−1,−3k−1]× [−η3k−1,−3k−1

2
(η − 1)],

B9 = [−η3k−1,−3k−1]× [
3k−1

2
(η − 1), η3k−1], B10 = [−η3k−1, η3k−1]× [3k−1, η3k−1],

B11 = [−η3k−1, η3k−1]× [−η3k−1,−3k−1], B12 = [−η3k, η3k]× [
3k

2
(1 + η), η3k],

B13 = [−3k

2
(1 + η),

3k

2
(1 + η)]× [3k,

3k

2
(1 + η)], B14 = [−η3k, η3k]× [−η3k,−3k].

The relative placement of these boxes inside S(e, η3k) is shown in Figure 2. From this
point on, we will restrict to n and k such that

n ≥ 1 and k ∈ {K(η), . . . , b(C4)/8 log nc} , (5.6)

where K(η) is chosen so that all boxes involved have lengths at least some constant, say
10. (This includes the above boxes, but also those used in Section 5.4.) If we decrease η,
then the range of valid k decreases.

The most important definition of this section is the following

Definition 5.3 (Five-arm event). M1 = M1(k) is the event: there is a five-arm point
w ∈ Z2 in the box B1. That is,

1. The edge {w + (1/2)(e2 − e1), w + (1/2)(3e2 − e1)} is closed and has a closed arm
γ1 to

I1 = [−η3k,−3k

2
(1 + η)]× {3k

2
(η − 1)},

2. {w,w + e2} has an open arm γ2 to

I2 = [−3k

2
(1 + η),−3k]× {3k

2
(η − 1)},

3. {w,w + e1} has an open arm γ3 to the right side of B1,

4. {w − (1/2)(e1 + e2), w − (1/2)(3e2 + e1)} has a closed arm γ4 to the bottom of B1,
and

5. {w − e1, w} has an open arm γ5 to the left side of B1.

The event M1 is illustrated in Figure 3.

M2 = M2(k) is the event that there is a four-arm point z in the box B2 with a two
open arms, one to each horizontal side of B2, and two closed arms to the top and bottom
of B2.

Our first claim is

Proposition 5.4. There is a constant C independent of k such that

min {P(M1),P(M2)} ≥ C
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Figure 2: The boxes B1, . . . , B14. This figure is not to scale; only the relative placement
of the boxes is illustrated. In particular, in our application, η is smaller relative to the
ratio of the sizes of the inner to outer annuli.

I1 I2

Ɣ1 Ɣ2

Ɣ3

Ɣ4

Ɣ5

Figure 3: The “five-arm” event M1(k)
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Proof. The argument is a standard application of the second moment method. The 5-arm
exponent is universal and equal to 2 [17, Lemma 5], [23, Theorem 24, 3.], so the expected
number of five arm points in B2 is bounded away from zero. By planarity, there can be at
most one five arm point with the prescribed landing sequences for the endpoints in this
region. The result follows by a gluing argument.

Let M3 = M3(k) be the event that there is a closed top-down crossing of B5, and an
open top-down crossing of B6. M4(k) is defined to be the event that there are closed
top-bottom crossings of B7, B8 and B9 and open left-right and top-down crossings of B3

and B4. By Russo-Seymour-Welsh and Harris-FKG, we have

P(M3),P(M4) ≥ C(η) > 0.

We let G1(k) be the event that

1. M1, M2, M3 and M4 occur.

2. The closed arm γ1 is connected to the crossing of B5.

3. The open arm γ2 is connected to the crossing of B6.

4. The open arm γ3 is connected to the crossings of B3.

5. The closed arm γ4 is connected to the crossing of B7.

6. The four arm-point in B2 is connected to an open crossing of B4.

Here and elsewhere in the paper, we will make extensive use of the following gener-
alized FKG inequality [15, Lemma 3] (see also [23, Lemma 13]):

Lemma 5.5 (Generalized FKG inequality). Let A and D be increasing events, and B and
E decreasing events. Assume that A, B D, E depend only on edges in the finite sets A,
B, D, and E , respectively. If

A ∩ B = A ∩ E = B ∩ D = ∅,

then
P(A ∩B | D ∩ E) ≥ P(A ∩B).

By generalized FKG and standard gluing constructions, we have, using Proposition
5.4,

P(G1) ≥ C9P(M3)P(M4),

for some constant C9 independent of η.
G2(k) is defined to be the reflection of G1 about the vertical axis through 0. For a box

Bi, i = 1, . . . , 9, we let B′i be its reflection about the e2-axis. That is, if x = (x1, x2) ∈ Z2,
then x ∈ B′i if and only if (−x1, x2) ∈ Bi. The same applies to the “landing zones” Ii. We
say that G2(k) occurs if all the conditions in the definition of G1(k) occur, replacing each
Bi, i = 1, . . . 9, and I1, I2 by B′i and I ′1, I ′2, respectively. By symmetry and independence:

P(G1(k) ∩G2(k)) ≥ C2
9P(M3(k))2(P(M4(k))2.

We let R1(k) be the event that there is a closed left-right crossing of B12; R2(k) is the
event that there is an open left-right crossing of B13; R3(k) is the event that there are
closed left-right crossings of B10, B11 and B14.

By Russo-Seymour-Welsh and generalized FKG, we have

P(G1(k) ∩G2(k) ∩R1(k) ∩R2(k) ∩R3(k))

≥ C2
9P(M3(k))2P(M4(k))2P(R1(k))P(R2(k))P(R3(k)). (5.7)
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The occurrence of the intersection

Q1 = Q1(k, η) = G1(k) ∩G2(k) ∩R1(k) ∩R2(k) ∩R3(k) (5.8)

(whose right side depends on η, although this is not visible in the notation) implies the
events:

1. There are five-arm points w and w′ in B1 and B′1, respectively.

2. There is a closed dual circuit α1 with 2 defects near w and w′ in

Ann2 = B(η3k) \B(3k).

The arc α̃1 of α1 between w and w′ is contained in

Γ(k, η) = Ann2 ∩
(
R× [−3k

2
(η − 1),∞)

)
. (5.9)

3. There is an open arc α2 contained in Γ(k, η) with endpoints at w and w′. Moreover,
α2 is contained in the interior of the dual circuit α1.

We note that there exists C10(η) > 0 depending on η such that

P(Q1(k, η)) ≥ C10 for k ≥ K(η) . (5.10)

Definition 5.6 (Outermost open path). Given the occurrence of Q1(k, η), we can define
the outermost open arc α̃2 contained inside the dual circuit α1. For this, we let α̃1 denote
the portion of α1 between w and w′ in Γ(k, η). The outermost arc α̃2 is the open arc in
Γ(k, η) with endpoints at w and w′ such that the region enclosed by the Jordan curve
α̃1 ∪ α̃2 (extended near the five-arm points to be a closed curve) is minimal.

In the above definition, we may choose α1 arbitrarily, but this choice uniquely defines
α2. We have the following

Lemma 5.7. On the event Q1(k, η), any edge e on α̃2 has 3 disjoint arms: two open and
one closed. These arms reach to distance at least 3k(η − 1)/2 from e.

Proof. If e is on α̃2, then necessarily, there is a closed path from e∗ to α̃1 contained in
the region int(α̃1 ∪ α̃2). Following this closed path until we reach the closed path α̃1, we
can extend it into a closed path of at least the required length, because the path α1 has
diameter greater than 3k. On the other hand, the path α̃2 itself has two ends, one of
which necessarily has length at least 3k/2. As for the other, it emanates from a five-arm
point, itself connected to a crossing of a box of width 3k(η − 1).

5.3 Upper bound for the volume of the thin detour

The main estimate of this section is the following:

Lemma 5.8. Let ε > 0, let Q1(k, η) be as in (5.8), and define the event and

Q2 = Q2(k, η, ε) = {#α̃2 ≤ ε32kπ3(3k)}. (5.11)

For η > 1 sufficiently close to 1, there exists C11 such that

P(Q2(k, η, ε) | Q1(k, η)) ≥ C11 > 0, (5.12)

for all n and all k ∈ {K(η), . . . , b(C4/8) log nc}.

EJP 22 (2017), paper 75.
Page 18/43

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP88
http://www.imstat.org/ejp/


Chemical distance

Proof. The key estimate we need is: for each e ⊂ Γ(k, η)

P(e ∈ α̃2 | Q1(k, η)) ≤ Cπ3(3k(η − 1)).

We rewrite the probability (using (5.7)) as

P(e ∈ α̃2, Q1(k, η))

P(Q1(k, η))

≤ 1

C2
9

P(M3(k))−2P(M4(k))−2P(R1(k))−1

× P(R2(k))−1P(R3(k))−1P(e ∈ α̃2, Q1(k, η)).

Let
B(e, 3k(η − 1)) = {v : ‖(v1 + v2)/2− v‖∞ ≤ 3k(η − 1)},

where e = {v1, v2}. Also let Aη(e) be the event that e has 3 arms to the boundary of
B(e, 3k(η − 1)), two open and one closed. Recalling the definition of Q1 (5.8), we have

P(e ∈ α̃2, Q1(k, η)) ≤ P(Aη(e),M3 ∩M ′3 ∩M4 ∩M ′4 ∩R1 ∩R2 ∩R3).

We now define crossing events in “truncated” regions, which depend on the position
of e: M̃3 is the event

1. There are vertical closed crossings of each component of

[−η3k,−3k

2
(η + 1)]× [

3k

2
(η − 1), 3k(2− η)] \B(e, 3k(η − 1)).

2. There are vertical open crossings of each component of

[−3k

2
(η + 1),−3k]× [

3k

2
(η − 1), 3k(2− η)] \B(e, 3k(η − 1)).

M̃4 is the event that there are closed top to bottom crossings of B8 and B9, open left-right
crossings of B3 and B4, and a closed vertical crossing of each component of

[−η3k,−3k]× [−3k,−3k

2
(η − 1)] \B(e, 3k(η − 1)).

M̃ ′3, M̃ ′4 are the reflections of the events M̃3 and M̃4 about the y-axis. R̃1 is the event
that there are closed left-right crossings of each component of

[−3k(2− η), 3k(2− η)]× [
3k

2
(η + 1), η3k] \B(e, 3k(η − 1)),

and similarly R̃2 is the event that there are open left-right crossings of each component
of

[−3k(2− η), 3k(2− η)]× [3k,
3k

2
(η + 1)] \B(e, 3k(η − 1)).

The definition of the events implies that the truncated regions considered are either
rectangles, or consist of the union of two disjoint rectangles which also do not abut (see
Figure 4 – this is the reason for the choice of slightly smaller rectangles with bound
3k(2− η)), which implies:

M3 ⊂ M̃3, M ′3 ⊂ M̃ ′3,
M4 ⊂ M̃4, M ′4 ⊂ M̃ ′4,
R1 ⊂ R̃1, R2 ⊂ R̃2.
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3k(η-1)

Figure 4: An illustration of the truncated regions for two possible placements of the
edge e.

Then:

P(Aη(e),M3 ∩M ′3 ∩M4 ∩M ′4 ∩R1 ∩R2 ∩R3)

≤ P(Aη(e), M̃3 ∩ M̃ ′3 ∩ M̃4 ∩ M̃ ′4 ∩ R̃1 ∩ R̃2 ∩R3)

= P(Aη(e))P(M̃2)2P(M̃3)2P(R̃1)P(R̃2)P(R3).

In the second step we have used independence. Using a gluing construction and FKG, it
is easy to “fill in” the truncated regions and show

P(M̃4) ≤ CP(M4), P(M̃3) ≤ CP(M3),

P(R̃1) ≤ CP(R1), P(R̃2) ≤ CP(R2).

The point here is that the constants represented by C do not depend on η and k. This is
due to the fact that the regions we must fill in have size of order 3k(η − 1).

Summarizing all the above, we now have

P(e ∈ α̃2 | Q1(k, η)) ≤ Cπ3(3k(η − 1)).

Summing over e in Γ(k, η), this gives

E[#α̃2 | Q1(k, η)] ≤ Cδ32kπ3(3k(η − 1)),

with δ = η − 1. The lemma now follows by Chebyshev’s inequality, and the observation
that for all 1 ≤ m ≤ n, one has π3(m,n) ≥ C3(n/m)−α for some C3 > 0 and α ∈ (0, 1) (see
Lemma 3.1). Combined with quasi-multiplicativity, it gives:

π3(3k(η − 1)) ≤ (C3(η − 1))−απ3(3k),

and

E[#α̃2 | Q1(k, η)] ≤ Cδ1−α32kπ3(3k).

Choosing δ sufficiently small completes the proof of Lemma 5.8.
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B15

B16

B17 B18

B19
B20

B23

B22

B21

Figure 5: The boxes appearing in the derivation of the lower bound for detoured
crossings. Compare to Figure 1, where some of the macroscopic connections are shown.

5.4 Lower bound for the volume of detoured crossings

We define boxes inside the annulus B(η3k) \ B(3k−1), and events on which these
boxes will be traversed by the open arms emanating from the origin, and contribute on
the order of (3k)2π3(3k) edges. The boxes are centered at the midpoints of [−3k,−η3k−1]

and [η3k−1, 3k], respectively. Let

x0(k) =

(
−3k + 3k−1η

2
, 0

)
=

(
−3k−1(3 + η)

2
, 0

)
.

The left “interior box” is

B15 = B

(
x0(k),

3k−1

4
(3− η)

)
.

Inside B15, we place a smaller box (a quarter of the size), also centered at x0(k): it is
defined by

B16 = B

(
x0(k),

3k−1

16
(3− η)

)
.

The boxes B17 and B18 have aspect ratios depending on δ = η − 1. Together with B19

and B20, they will be used to connect the 3-arm points inside B15 to an open crossing of
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Ann1(k):

B17 = [−3k,−3k−1

2
(3 + η)− 3k−1

8
(3− η)]

× [−3k

2
(η − 1),

3k

2
(η − 1)],

B18 = [−3k−1

2
(3 + η) +

3k−1

8
(3− η),−η3k−1]

× [−3k−1

2
(η − 1),

3k−1

2
(η − 1)],

B19 = [−3k−1

2
(3 + η)− 3k−1

4
(3− η),−3k−1

2
(3 + η)− 3k−1

8
(3− η)]

× [−3k−1

8
(3− η),

3k−1

8
(3− η)],

B20 = [−3k−1

2
(3 + η) +

3k−1

8
(3− η),−3k−1

2
(3 + η) +

3k−1

4
(3− η)]

× [−3k−1

8
(3− η),

3k−1

8
(3− η)].

The remaining boxes will serve to define crossing events to connect 3-arm points in
B16 to a closed crossing of Ann1(k).

B21 = [−η3k,−3k−1]× [−3k−1

4
(3− η),−3k−1

8
(3− η)],

B22 = [−3k−1

2
(3 + η)− 3k−1

16
(3− η),

3k−1

2
(3 + η) +

3k−1

16
(3− η)]

× [−3k−2(3 + η),−η3k−1],

B23 = [−3k−1

2
(3 + η)− 3k−1

16
(3− η),−3k−1

2
(3 + η) +

3k−1

16
(3− η)]

× [−3k−2(3 + η),−3k−1

8
(3− η)],

B24 = [−3k−1, 3k−1]× [−η3k,−3k−1],

B25 = B

(
x0(k),

3k−1

8
(3− η)

)
.

Let M5 = M5(k) be the event that there are open left-right crossings of B17 and B18.
M6 = M6(k) is defined as the event that there is a top-down closed dual crossing of B23,
and a left-right closed dual crossing of B21. M7 = M7(k) is the event that there are open
top-down crossings of both B19 and B20.

By Russo-Seymour-Welsh and Harris’ inequality, there are positive constants C(η)

and C such that

P(M5) ≥ C(η),

P(M6),P(M7) ≥ C.

We let R4(k) be the event that there is a left-right dual closed crossing of B22 and a
top-down dual closed crossings of B24. Again by RSW and Harris, we obtain

P(R4(k)) ≥ C > 0

for some constant C independent of k and η.
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We let
G3(k) = G3(k, η) = M5(k) ∩M6(k) ∩M7(k),

and G4(k) is the reflection of G3 about the e2-axis, as previously. The event Q3 = Q3(k, η)

is defined as
Q3(k, η) = G3(k) ∩G4(k) ∩R4(k). (5.13)

By generalized FKG and independence, we have:

P(Q3) ≥ CP(M5)2.

By generalized FKG, we have

P(Q1 ∩Q2 ∩Q3) ≥ C(η)P(Q1 ∩Q2). (5.14)

On the event
Q4 = Q4(k, η) = Q1 ∩Q2 ∩Q3, (5.15)

let W2 be the set of e ∈ B15 such that e has three disjoint arms as follows. Two of the
arms are open and connected to the open crossings of B17 and B18 whose existence
is guaranteed by the occurrence of M5, respectively. One of the arms is closed, and
connected to the closed vertical crossing of B23 in the definition of M6. We apply the
second moment method (inequality (5.18)), to the number Z2 = #W2, conditionally on
the event Q4.

If Q4 holds and e ∈ B16 has three arms inside the rectangle B17 ∪B19 ∪B25: one open
and connected to the horizontal open crossing of B17, another open arm, connected to
the horizontal open crossing of B18, and a closed arm connected to the vertical closed
dual crossing of B23, then e ∈W2. We denote the set of such edges e ∈ B16 by W ∗2 , and
let Z∗2 = #W ∗2 . We have the following:

Proposition 5.9. Let
Q5 = Q5(k, c) = {Z2 ≥ c32kπ3(3k)}. (5.16)

There are constants c, C12 > 0 such that

P(Q5 | Q4) ≥ C12. (5.17)

for all δ = η − 1, n ≥ 1 and k ∈ {K(η), . . . , b(C4/4) log nc}.
The important point here is that c does not depend on δ. As η ↓ 1 (see Lemma 5.8),

the size of the detour shrinks, whereas the lower bound in this proposition does not
change.

Proof. Recall the Paley-Zygmund inequality: if Z ≥ 0 a.s. and λ ≤ 1, then

P(Z ≥ λEZ) ≥ (1− λ)2 (EZ)2

EZ2
. (5.18)

To apply this with Z = Z∗2 and P = P(· | Q4), we give an estimate for the expectation

(1/C)32kπ3(3k) ≤ E[Z∗2 | Q4], (5.19)

and an upper bound for the second moment:

E[(Z∗2 )2 | Q4] ≤ C32·2kπ3(3k). (5.20)

For e ∈ B16, let A∗(k, e) be the event that e has three arms to the boundary of B25:
two open arms, one to each vertical side of B25, and a closed arm to the middle third
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of the bottom side of B25. By a simple gluing construction with generalized FKG and
arms-separation [23, Theorem 11], we have

P(e ∈W ∗2 | Q4) ≥ CP(A∗(k, e))

≥ CP(A3(e, 3k)),

Summing over e ∈ B16, we obtain

E[Z∗2 | Q4] ≥ C32kπ3(3k).

This gives the lower bound in (5.19).
We now estimate the second moment. A similar argument gives the upper bound for

the first moment. For simplicity of notation, let

m =
3k−1

16
(3− η).

E[(Z∗2 )2 | Q4] =
∑

e1,e2∈B16

P(e1 ∈W ∗2 , e2 ∈W ∗2 | Q4)

≤
∑

e1,e2∈B16

P (A3(e1,m), A3(e2,m)) ,

where in the second step we have used that Q4 is independent of the status of edges
inside B25.

The last double sum is decomposed following an idea of Nguyen [22]:

∑
e1

2m∑
d=1

∑
|e1−e2|∞=d

P(A3(e1,m), A3(e2,m)). (5.21)

For k ≤ l, let A3(e, k, l) be the probability that there are 3 arms from ∂B(e, k) to ∂B(e, l).
Note that

P(A3(e, k, l)) = π3(k, l),

the three-arm probability (open, open, closed) for connection across the annulus B(l) \
B(k). For convenience, if l < k, we define A3(e, k, l) to be the entire sample space; that
is, A3(k, l) always holds. Correspondingly, we let π3(k, l) = 1 in this case. Then

P(A3(e1,m), A3(e2,m)) ≤ P(A3(e1, d/2), A3(e1, 3d/2,m), A3(e2, d/2))

≤ P(A3(e1, d/2))P(A3(e1, 3d/2,m))P(A3(e2, d/2))

= π3(d/2)π3(3d/2,m)π3(d/2).

Returning to the sum, we find, for each e1, the bound

b2m/3c∑
d=1

8dπ3(d/2)π3(3d/2,m)π3(d/2) +

2m∑
d=b2m/3c+1

8dπ3(d/2)π3(d/2).

Now we use RSW theory to rescale some of these quantities by constant factors. First,
we have

π3(d/2) ≤ Cπ3(d).

If d ≥ 2m/3, we also obtain π3(d/2) ≤ Cπ3(m). By quasimultiplicativity [23, Proposition
12.2]:

π3(d/2)π3(3d/2,m) � π3(m).
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Putting all this back into the sum (5.21), we find the bound

mπ3(m)

m∑
d=1

π3(d).

This is bounded by m2π3(m)2. To see why, choose (by Lemma 3.1) β ∈ (0, 1) such that
π3(d,m) ≥ C(d/m)β , and use quasimultiplicativity:

m∑
d=1

π3(d) � π3(m)

m∑
d=1

π3(d,m)−1 ≤ Cπ3(m)mβ
m∑
d=1

d−β ≤ Cmπ3(m) .

Summing over e1, we obtain an overall bound

E[(Z∗2 )2 | Q4] ≤ Cm4(π3(m))2 ≤ C32·2k(π3(3k))2.

A similar, but simpler argument gives the estimate

E[Z∗2 | Q4] ≤ Cm2(π3(m))2 ≤ C32kπ(3k),

concluding the proof.

5.5 Definition of Ek and Proof of Proposition 5.2

We can now give the definition of the events Ek:

Definition 5.10. Let ε > 0 and η = η(ε) be such that (5.12) in Lemma 5.8 is satisfied.
Then

Ek = Ek(η, ε) = Q1 ∩Q2 ∩Q3 ∩Q5 for k ≥ K(η), (5.22)

where Q1 is defined in (5.8), Q2 in (5.11), Q3 in (5.13), Q5 appears in (5.16), and K(η)

is defined below (5.6).

Proof of Proposition 5.2. Combining (5.14), Lemma 5.8, Proposition 5.9 and inequality
(5.10), there is a constant C13(ε) such that

P(Ek) ≥ C13(ε) > 0 for k ≥ K(η) . (5.23)

To derive the lower bound

P(Ek | A3(d)) ≥ C7(ε) > 0, (5.24)

for k ≥ K(η) such that η3k ≤ d, we use a gluing construction and arms separation [23,
Theorem 11], together with the equivalence [23, Proposition 12, 2.]

P(A3(3k−1))P(A3(η3k, d)) � P(A3(d)).

Note that the definition of Ek implies A3(3k−1, η3k) and that the connections across the
annulus are easily extended.

5.6 Proof of Proposition 5.1

Proof. We will show that if the event

Ek(e) ∩ {e ∈ γ̂n}

occurs for k ∈ {K(η), . . . , b(C4/8) log nc}, then there is a “short” detour around the origin
in the sense that

S(e) 6= ∅.
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On Ek(e), there is a closed circuit C2 with two defects near the five-arm points in B1

and B′1 inside Ann2. We denote these (unique) points by x and y. Since e lies on the open,
self-avoiding, circuit γn, the latter must pass through each of the two five-arm points in
the definition of M1, resp. M ′1, exactly once. We denote the portion of γn between x and
y, and inside C2, by q. We also let

p = α̃2,

where α̃2 is from Definition 5.6.

Claim 5.11. On Ek(e) ∩ {e ∈ γ̂n}, e∗ has a closed connection to the bottom of B(e, η3k)

and to the bottom arc of the closed circuit C2 with defects in Ann2.

Proof. Recall (from (5.9)) that Γ(k, η) = Ann2∩
(
R× [− 3k

2 (η − 1),∞)
)

. The open (detour)

arc σo in Γ(k, η) between the two five-arm points and the closed arc σc through Ann2 \
Γ(k, η) form a circuit around e (we can connect them by two line segments of length
1/
√

2 to make their union a closed curve). The closed arm emanating from e∗ reaches
∂B(e, η3k), so it must intersect σc, which intersects the closed vertical crossing of B24 in
the definition of the event R4(k) ⊃ Q2. This crossing is connected to the bottom side of
B(e, η3k).

It is important to note that since the closed arm from e∗ intersects the bottom of
B(e, η3k) and e ∈ γ̂n, the bottom part of the closed circuit in Ann1 \ Γ(k, η) must be
connected to B(n). This is what forces the “orientation” of the box B(e, d) to be such
that p is indeed a detour off the innermost circuit (see Lemma 5.13 below).

Claim 5.12. The open arc p is disjoint from q except for the five-arm points x and y.

Proof. This follows from the definition of the five arm events. From this, we obtain the
existence of an open crossing α of B(e, η3k) inside

B17 ∪B15 ∪B18 ∪B(e, η3k−1) ∪B′17 ∪B′15 ∪B′18.

whose only intersection with the outermost arc p is x and y. By the previous claim,
every dual edge touching q is connected to the bottom of B(e, η3k) by a closed dual path.
This implies that q lies in the region below the Jordan curve α, which separates the box
B(η3k) into two connected components. In particular, q is disjoint from p, except at its
endpoints.

It follows that p ∪ q is a Jordan curve lying entirely inside the box B(e, η3k). This in
turn implies

Lemma 5.13. p lies outside intγn.

Proof. The dual edge {x−(1/2)(e1+e2), x−(1/2)(e1−e2)} crosses γn and so one endpoint
is in each component of the complement of γn. The top endpoint can be connected to p
and the bottom one can be connected to the bottom arc of C2, both without crossing γn.
By Claim 5.11, the bottom is in the interior of γn, so p is in the exterior of γn.

We can now prove Proposition 5.1, by setting K(ε) = K(η). Letting P = p and Q = q,
w0 = x, and wM = y, Lemma 5.13 implies that Condition 1. in Definition 3.2 is satisfied.
Condition 2. holds by the definition of the five-arm points x and y (Definition 5.3).
Condition 3. follows because P ∪Q = p ∪ q is contained in the box B(e, η3k), which does
not contain the origin. Condition 4. follows from the existence of the closed dual arc α̃1,
which is implied by the event Q1 (5.8). Condition 5. holds because of the conjunction of
Q2 (5.11) and Q5 (5.16) (choose ε · c for ε, where c is from the definition of Q5).
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6 Proof of inequality (3.5)

Our goal in this section is to derive the estimate (3.5). We recall it here:

P(S(e) = ∅ | e ∈ γ̂n) < ε2 (6.1)

for some n ≥ C5. Once we show this estimate, Lemmas 3.4 and 3.5, and Proposition 3.3,
we can conclude Theorem 2.2.

For k = K(η), ..., b(C4/8) log nc, we let Ek(e) = τ−eEk be the “detour event” inside
the annulus Ann1(e, k) = B(e, η3k) \ B(e, 3k−1). (Here η is slightly bigger than 1 and
K = K(η) is a constant depending on η and which is defined under (5.6).) It is defined
precisely in Section 5 (see Definition 5.10). The property we need here is proved in
Proposition 5.1: if Ek(e) occurs and e ∈ γ̂n, then S(e) 6= ∅. Thus,

P(S(e) = ∅ | e ∈ γ̂n) ≤ P((∪bC4/8 lognc
k=K E2k(e))c | e ∈ γ̂n). (6.2)

6.1 Conditioning on 3-arm event in a box

The next step is to replace the conditioning in (6.2) by conditioning on a “three arm”
event:

Proposition 6.1. There is a constant C such that

P(∩bC4/8 lognc
k=K E2k(e)c | e ∈ γ̂n) ≤ CP(∩bC4/8 lognc

k=K E2k(e)c | A3(e, dist(e, ∂A(n))), (6.3)

where A3(e,m) is the probability that e has three arms, two open and one closed, to
distance m from e.

We will omit some details, since most of the arguments are lengthy but standard. To
prove (6.3), we use a gluing construction that depends on the position of e inside the
annulus A(n), which we split into a number of different regions:

A(n) = A ∪B ∪ C ∪D ∪ E.

Region B is the disjoint union of four rectangles:

B = [−2n, 2n]× [
5

2
n, 3n] ∪ [−2n, 2n]× [−3n,−5

2
n]

∪ [−3n,−5

2
n]× [−2n, 2n] ∪ [

5

2
n, 3n]× [−2n, 2n].

Region A is
A = (B(3n) \B(5/2n)) \B.

Region C is given by
C = B(5n/2) \B(3n/2).

Region D is

D = [−n/2, n/2]× [n, 3n/2] ∪ [−n/2, n/2]× [−3n/2,−n]

∪ [−3n/2,−n]× [−n/2, n/2] ∪ [n, 3n/2]× [−n/2, n/2].

Finally, region E is given by

E = (B(3n/2) \B(n)) \D.

In each case, we use an adapted gluing construction to connect e to B(n) by a closed
dual path inside an open circuit around B(n). Figure 6 depicts the partitioning we will
use.
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Figure 6: The annulus A(n) is split in a number of regions.

We concentrate on the proof of (6.3) in case e ∈ A. Furthermore, we assume by
symmetry that e is in the top-right component of A. We only consider e ∈ γ̂n, so

d(e) = dist(e, ∂A(n)) ≥ nC4/2. (6.4)

Since e ∈ A, we have d(e) = dist(e, ∂B(3n)).
Denote by

L(e) ∈ {{3n} × [−3n, 3n], [−3n, 3n]× {3n}},

the side of ∂B(3n) such that d(e) = dist(e,L(e)). If there is more than one possible
choice, choose the earliest in the list above.

Let B(e) be the box of side length 2d(e) centered at e. We define

d′(e) = dist(e, ∂B(3n) \ L(e)),

and

H(e) = B

(
eL + d′(e) · e− eL

|e− eL|
, d′(e)

)
,

where eL is the projection of e onto L(e), and let K(e) be the box

K(e) = [n, 3n]× [n, 3n],

which was chosen based on the assumed placement of e.
We now have

Lemma 6.2. If e ∈ γ̂n, then the event F1(e) occurs: There are two open paths and one
closed dual path joining ∂B(e) \ ∂B(3n) to ∂H(e) \ ∂B(3n) inside H(e) \B(e), appearing
in the order

open, closed, open (6.5)

(on the boundary of H(e)). In particular, the closed path is separated from ∂B(3n) by the
two open paths.

Similarly, the event F2(e) occurs: there are two open paths and one closed dual path
from ∂H(e) \ ∂B(3n) to ∂K(e) \ ∂B(3n) inside K(e) \H(e). These paths also appear in the
order (6.5), with the closed path separated from ∂B(3n) by the open paths.
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In this lemma, we define F1(e) to be the sure event (that is, the entire sample space)
if 8d(e) > d′(e) and we define F2(e) to be the sure event if 4d′(e) > n. This is to guarantee
that later in the proof, there is enough room between the boxes B(e) and H(e) (or
between H(e) and K(e)) to do arm separation arguments.

Proof. If e ∈ γn then e belongs to an open circuit surrounding B(n) in A(n). Moreover,
e∗ is connected to ∂B(n) by a closed path contained in the interior intγn of the circuit.

Let r1 be the portion of the open circuit γ̂n obtained by traversing the circuit in one
direction from e, until first time it exits H(e). Call a(e) ∈ ∂H(e) the point of exit. Let r2

be the portion of γn obtained by traversing the circuit in the other direction, until it first
exits H(e), at a point b(e). The curve γe contained in H(e) joining a(e) to b(e) separates
H(e) into two regions, each bounded by the curve γe and a portion of ∂H(e) \ ∂B(3n).
Exactly one of these regions, R(e), say, lies inside the circuit γn, and hence contains the
portion of the closed dual path from e to ∂B(n) until it first exists H(e). Following this
path from e until this exit point, we obtain a closed dual path whose endpoint c(e) must
lie on ∂H(e), between a(e) and b(e). Traversing r1 from a(e) and r2 from b(e) toward e

until the first time they enter B(e), we obtain two points a′(e) and b′(e) on ∂B(e)\∂B(3n).
Following the closed path backwards similarly, we find a point c′(e) lying between a′(e)
and b′(e) on ∂B(e) \ ∂B(3n).

The proof for the paths in K(e) \ H(e) is similar.

Returning to the probability in (6.3), write:

P(∩bC4/8 lognc
k=K E2k(e)c | e ∈ γ̂n)

=
1

P(e ∈ γ̂n)
P(∩bC4/8 lognc

k=K E2k(e)c, e ∈ γ̂n)

≤ 1

P(e ∈ γ̂n)
P
(
∩bC4/8 lognc
k=K E2k(e)c, F1(e), F2(e), A3(e, d(e))

)
Note that the event

∩bC4/8 lognc
k=K Ec2k(e) (6.6)

depends only on edges inside B(e, nC4/4) ⊂ B(e, nC4/2), so F1(e) and F2(e) are indepen-
dent of (6.6), so we have

P(∩bC4/8 lognc
k=K E2k(e)c, F1(e), F2(e), A3(e, d(e)))

≤ P(F1(e))P(F2(e))P(∩bC4/8 lognc
k=K E2k(e)c, A3(e, d(e))).

Proposition 6.1 now follows from the next estimate:

Lemma 6.3. There is a constant C independent of n and e such that

P(e ∈ γ̂n) ≥ 1

C
P(F1(e))P(F2(e))P(A3(e, d(e))), (6.7)

Proof. We first introduce two events that will serve to complete a circuit around A(n),
once connected to the open arms coming out of e. Let C1 be the event that there are
open crossings along the long sides of the rectangles

[−3n, n]× [5n/2, 3n], [−3n,−5n/2]× [−3n, 3n],

[−3n, 3n]× [−3n,−5n/2], [5n/2, 3n]× [−3n, n].

Let C2 be the event that there are top-down and left-right closed crossings of the
rectangle:

[3n/4, n]× [n, 3n/2].
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By the Russo-Seymour-Welsh theorem, the Harris inequality and independence, there
is a positive C6 independent of n such that

P(C1),P(C2) ≥ C6. (6.8)

To connect the partial circuits C1 and C2 into a circuit containing the edge e, we use
a standard arms separation argument (see for example [15, Lemma 4], [23, Theorem
11]), which allows us to specify landing areas on ∂B(e), ∂H(e) and ∂K(e) for the arms
in events F1(e) and F2(e), while not modifying the probability of these events by more
than a constant factor. The conclusion (6.7) is then obtained using the generalized FKG
inequality.

To define the modified arm events, we need to specify regions (“landing zones”) that
will contain the endpoints. For this, we divide the left side of ∂B(e) into four vertical
segments, which we label from top to bottom: I1, I2, I3, I4 of equal length d(e)/2. The
bottom side of ∂B(e) is also divided into three horizontal segments of equal size, which
we label according to their position from left to right: I ′1,I ′2, I ′3 and I ′4. We proceed
similarly with the left side of ∂H(e), which we also divide into four parts J1, J2, J3, J4 of
equal size, labeled from top to bottom. The bottom side of ∂H(e) is also divided into four
parts of equal size: J ′1, J ′2, J ′3 and J ′4, labeled from left to right. I4 and I ′1 intersect at the
lower left corner of B(e); J4 and J ′1 intersect at the lower left corner of H(e). Note also
that

J1 ⊂ [−3n, 3n]× [5n/2, 3n]

J ′4 ⊂ [5n/2, 3n]× [−3n, 3n].

Ã3(e, d(e)) is the event that A3(e, d(e)) occurs, one of the open arms from e has its
other endpoint in I2, and the other arm has its endpoint in I ′2. The closed arm has its
endpoint in I∗4 . F̃1(e) is the event that F1(e) occurs, one of the open arms having its
endpoints in I2 and J1, respectively, and the other open arm having endpoints in I ′2 and
J ′4. Moreover, we require the closed arm to have its endpoints in I∗4 and J∗4 . F̃2(e) is
the event that F2(e) occurs, one open arm has endpoints in J1 and {n} × [5n/2, 3n], and
the other in J ′4 and [5n/2, 3n]× {n}. Finally the closed dual arm is required to have one
endpoint in J∗4 , and the other in {n} × [n, 3n/2].

On Ã3(e, d(e)) ∩ F̃1(e) ∩ F̃2(e), standard gluing techniques allow us connect each of
the open arms the definition of F̃1(e) to one end of the open arc in the event C1, and
the closed arm to the vertical crossing of [3n/4, n]× [n, 3n/2] appearing in the definition
of the event C2, and to connect the arms in each of the three events to the arms with
endpoints in the same region. Combined with the generalized FKG inequality, this gives:

P(e ∈n) ≥ C2
6CP(F̃1(e))P(F̃2(e))P(Ã3(e, d(e))), (6.9)

where C is independent of n and C6 appears in (6.8).
By arms separation, [23, Theorem 11], we have

P(Ã3(e, d(e))) ≥ CP(A3(e, d(e))). (6.10)

An argument similar to the proof of [23, Theorem 11] (see also the proof of [15,
Lemma 4]) gives the existence of a constant C independent of n, such that:

P(F̃1(e)) ≥ CP(F1(e)) (6.11)

P(F̃2(e)) ≥ CP(F2(e)). (6.12)

It is important here that the arms in the definition of F1(e) and F2(e) appear in a definite
order, as guaranteed by Lemma 6.2.
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Figure 7: A sketch of the construction inside K(e) in case e lies in the top right component
of A (see Lemma 6.2).

Combining (6.10), (6.11), (6.12) and (6.9), we obtain (6.7) in the case where e lies in
the upper right part of the region A. Similar gluing constructions also apply in the other
cases. This completes the proof of Lemma 6.3, and thus of Proposition 6.1.

6.2 Arms separation conditional on A3

By Proposition 6.1, we have, for any e ∈ Â(n):

P(S(e) = ∅ | e ∈ γ̂n) ≤ CP(∩bC4/8 lognc
k=K E2k(e)c | A3(e, d(e))), (6.13)

where d(e) is defined in (6.4) and K = K(η) is defined below (5.6). The events E2k

depend on disjoint sets of edges, and each occurs with probability bounded below
independently of k (see (5.23)), so we expect an estimate of the form (6.1).

However, we must ensure that the conditioning on the three arm event A3(e, d(e))

does not affect the probability of occurrence of the E2k’s too drastically. To state
our result, let d = 3m be a (large) integer. We will later take m = blog3 d(e)c. From
Proposition 5.2, we have:

P(E2k | A3(d)) ≥ C7 > 0 for K(η) ≤ 2k ≤ b(C4/8) log nc. (6.14)

This is the lower bound (5.24). From the definition of E2k (Definition 5.10), we also have

E2k depends only on edges in B(32k+1) \B(32k−1). (6.15)

Set mn = b(C4/8) log nc. Our goal will be to prove that

P(∩mnk=KE
c
2k | A3(N))→ 0 as n→∞ (6.16)

uniformly in N ≥ nC4/2. Given this result, we find by translation invariance

Proposition 6.4. As n→∞,

P(S(e) = ∅ | e ∈ γ̂n)→ 0

uniformly for e ∈ Â(n).
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We first state and prove the following claim, which will be used later in the proof of
Proposition 6.4:

Claim 6.5. For a sequence of integers

32K+1 < i1 < i2 < . . . < ik < . . .

let Bk be the event that there exists a closed dual circuit with exactly two defects (that
is, two edges that are open) around 0 in Ann(ik, ik+1), and let

kN = max{k : ik+1 < N}.

Furthermore, let B̂k be the event that there exists an open circuit with one defect around
0 in Ann(ik, ik+1). Given ε > 0, there is a choice of i1, i2, . . . such that ik+1 > 36ik for all
k and

P(B̂c1 ∪ (∪kNk=2B
c
k) | A3(N)) < ε (6.17)

for all N .

Proof. By quasimultiplicativity, we can choose C14 such that for all m1 < m2 < N ,

P(A3(m1))P(A3(m1,m2))P(A3(m2, N)) ≤ C14P(A3(N)).

For any sequence i1 < i2 < . . ., let

αk = P(there is an open crossing or a closed dual crossing of Ann(ik, ik+1)).

Choose the sequence (ik)k≥1 such that

∞∑
k=1

αk ≤ ε/C14.

Then, estimate

P(A3(N), B̂c1 ∪ (∪kNk=2B
c
k)) ≤ P(A3(N), B̂c1) +

kN∑
k=2

P(A3(N), Bck)

≤ P(A3(i1))P(A3(i1, i2), B̂c1)P(A3(i2, N))

+

kN∑
k=2

P(A3(ik))P(A3(ik, ik+1), Bck)P(A3(ik+1, N)). (6.18)

If A3(ik, ik+1) occurs but Bk does not occur, then there must be an open crossing
of Ann(ik, ik+1) that is disjoint from the three crossings from A3(ik, ik+1). A similar
statement holds for B̂1. Therefore, by the van den Berg-Fiebig inequality [4], (6.18) is
bounded by

kN∑
k=1

αk ·P(A3(ik))P(A3(ik, ik+1))P(A3(ik+1, N))

≤ C14P(A3(N))

kN∑
k=1

αk ≤ ε ·P(A3(N)).

Proof of Proposition 6.4. Choose i1 < i2 < · · · from the previous claim corresponding to
ε/2. For kN ≥ 3, consider the event

CN = B̂1 ∩ (∩kNk=2Bk).
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The first step is to show that there is a constant c1 > 0 such that for all N large, all k
satisfying 3 ≤ k ≤ kN − 3, E any event depending on the state of edges in B(ik), and F
any event depending on the state of edges in B(ik+4)c, then

P(F | A3(N), CN , E) ≥ c1P(F | A3(N), CN ) . (6.19)

On the event CN ∩A3(N), there is an innermost closed dual circuit with two defects
in each annulus Ann(ik, ik+1). (This circuit is also vertex self-avoiding.) For a given dual
circuit C in Ann(ik, ik+1) with edges e1, e2 on C, we let Circk(C) be the event that C is the
innermost closed dual circuit with defects ei. Generally, if A3(N) does not occur, then
the event Circk(C) means that C is closed, e1 and e2 are open, and there is no closed
circuit with two defects around 0 in Ann(ik, ik+1) entirely contained in the union of C
with its interior.

Then we can decompose

P(F,E,A3(N), CN ) =
∑
C,D

P(F,E,A3(N), Circk(C), Circk+3(D), CN ) . (6.20)

To decouple, we must introduce three events that build A3(N). Every closed dual circuit
C or D above contains two arcs between its defects. Given a deterministic ordering of
all arcs and a dual circuit C, let Ai(C) be the i-th arc of C in this ordering. For i = 1, 2,
let X−(C, i) be the event that 0 is connected to e1 and e2 by disjoint open paths in the
interior of C, and to Ai(C) by one closed dual path in the interior of C. Let Ck−N be the
event that B̂1 ∩ (∩k−1

i=2 Bi) occurs. For i, j = 1, 2, let X0(C,D, i, j) be the event that el is
connected to fl (for l = 1, 2), where the fl’s are two edges on D, by an open path in the
region between C and D (not including C) such that these paths are disjoint and Ai(C) is
connected to Aj(D) by a closed dual path in this same region. Let X+(D, j) be the event
that f1 and f2 are connected to ∂B(N) by disjoint open paths in the exterior of D and
Aj(D) is connected to ∂B(N) by a closed dual path in the exterior of D. Also let Ck+

N be
the event that ∩kNi=k+4Bi occurs.

Then (6.20) becomes by independence,∑
C,D

∑
i,j

P(F,E,X−(C, i), X0(C,D, i, j), X+(D, j), Circk(C), Circk+3(D), CN )

=
∑
C,D

∑
i,j

P(E,X−(C, i), Circk(C), Ck−N ) P(X0(C,D, i, j), Circk+3(D), Bk+1, Bk+2)

(6.21)

×P(X+(D, j), F, Ck+
N ) .

The effect of this decoupling will be to “reset” the system outside of the outer
circuit D, so that the event E no longer significantly affects the occurrence of F . In-
tuitively speaking, E could affect the system by biasing certain circuits C to appear
in Ann(ik, ik+1), and these could change the conditional probability of F . However, a
lemma from [7, Lemma 6.1] below will show that the second circuit D will mostly remove
this possible bias and allow the system to start fresh. We give here a modification of
that lemma. We omit the proof, which uses extensions of arm separation techniques
developed by Kesten and is essentially the same proof as that found in [7]:

Lemma 6.6. Consider dual circuits C in Ann(ik, ik+1), D in Ann(ik+3, ik+4), edges e1, e2

on C and f1, f2 on D respectively. For i, j = 1, 2, let P (C,D, i, j) be the probability,
conditional on the event that all edges in C \ {e1, e2} are closed and e1, e2 are open,
that (1) there are disjoint open paths from ei to fi in the region between C and D (not
including C), (2) there is a closed dual path from Ai(C) to Aj(D) in the region between
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C and D (not including C), (3) D is the innermost closed dual circuit with defects f1, f2

around 0 in Ann(ik+3, ik+4), and (4) Bik+1
∩Bik+2

occurs. We similarly define C′,D′, i′, j′,
etc. There exists a finite constant C8 (it does not depend on the particular choice of
circuits, defects, or i, i′, j, j′) such that

P (C,D, i, j)P (C′,D′, i′, j′)
P (C,D′, i, j′)P (C′,D, i′, j)

< C8 .

To apply the lemma, we rewrite the probability in (6.20), (6.21) as:

P(E,F,A3(N), CN )

=
∑
C,D

∑
i,j

P(E,X−(C, i), Circk(C), Ck−N )P (C,D, i, j)P(X+(D, j), F, Ck+
N ) .

Similarly,

P(A3(N), CN ) =
∑
C′,D′

∑
i′,j′

P(X−(C′, i′), Circk(C′), Ck−N )P (C′,D′, i′, j′)P(X+(D′, j′), Ck+
N ) .

Multiplying these and using Lemma 6.6, one obtains

P(E,F,A3(N), CN ) P(A3(N), CN )

≥
(

1

C8

)2 ∑
C,C′,D,D′

∑
i,j,i′,j′

[
P(E,X−(C, i), Circk(C), Ck−N )P (C,D′, i, j′)P(X+(D′, j′), Ck+

N )

×P(X−(C′, i′), Circk(C′), Ck−N )P (C′,D, i′, j)P(X+(D, j), F, Ck+
N )

]
=

(
1

C8

)2

P(E,A3(N), CN )P(A3(N), F, CN ).

Dividing gives
P(F | E,A3(N), CN ) ≥ (1/C8)2P(F | A3(N), CN ) .

This shows (6.19) with c1 = (1/C8)2.
To finish the proof of (6.16), we use estimate (6.19) to show that at least one E2k

occurs. The idea is to consider a maximal sub collection F1, F2, . . . of the E2k’s such
that F1 depends on the state of edges in B(i3), F2 depends on the state of edges in
B(i8) \B(i7), F3 depends on the state of edges in B(i13) \B(i12), and so on. Write rn for
the largest k such that Fk depends on edges in B(32mn+1), where mn was defined below
(6.15). Then

P (∩rnk=1F
c
k | A3(N), CN ) =

rn∏
k=1

P
(
F ck | A3(N), CN ,∩k−1

l=1 F
c
l

)
≤

rn∏
k=1

(1− c1P(Fk | A3(N), CN ))

≤ (1− c1 · an,N )rn ,

where
an,N = min

1≤k≤rn
P(Fk | A3(N), CN ).

However by the bound (6.14) and Claim 6.5, one has

P(E2k | A3(N), CN ) ≥ P(E2k | A3(N))−P(CcN | A3(N)) ≥ C7 − ε.
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So for ε < C7,

P (∩rnk=1F
c
k | A3(N), CN )→ 0 in n uniformly in N ≥ nC4/2.

Combining this with Claim 6.5, one has

P(∩mnk=KE
c
2k | A3(N)) ≤ P(∩mnk=KE

c
2k | A3(N), CN ) + P(CcN | A3(N)) < ε

for n large and uniformly in N ≥ nC4/2.

7 The lower tail of L̃n

In this section we give a proof sketch of the following result:

Lemma 7.1. Let L̃n be the number of edges in the lowest crossing of [−n, n]2. Then

lim
ε↓0

lim sup
n

P(0 < L̃n < εn2π3(n)) = 0. (7.1)

To limit the length of the current paper, we only provide a sketch of Lemma 7.1. The
full proof can be found in the online version of the paper [5].

The idea of the proof is similar to that of Kesten’s proof that at criticality, the expected
number of edges which are pivotal for a crossing event is at least order log n [14]. We
first restrict to the event that the maximum number of disjoint open left-right crossings
of the box is exactly k. Next, we condition successively on the k upper-most disjoint open
crossings. Calling Tk the k-th such crossing, we then condition on the leftmost top-down
dual closed crossing p connecting Tk to the bottom of the box (there must be such a
crossing, since there are no more disjoint left-right open crossings below Tk). Calling ek
the edge at the intersection of p and Tk, we then use independence of the edge variables
for edges in the region below and to the right of ek to build many “three-arm” edges in
this region in annuli centered at ek. The crucial point is that each such edge will have
two disjoint open arms to Tk and one closed arm to p, and will therefore be an edge on
the lowest crossing of the box. Since there is a lower bound for the probability of many
such edges existing in each annulus, we obtain that with high probability, many such
edges exist in at least one annulus, and this implies L̃n ≥ εn2π3(n) with high probability.

The main difficulty in our construction (and it is this point that makes ours more
complicated than the one in Kesten’s proof) is that we do not want only log n number of
such edges on the lowest crossing, but at least εn2π3(n). This corresponds to the fact
that in each annulus, Kesten needs only to produce one pivotal point, whereas we need
to build many. For us to do so, the region below and to the right of ek must have many
open spaces. Specifically, we must first show that with probability of order 1− oε(1), in
each large enough annulus centered at ek, we can find a box of size at least εδn, for some
c and δ > 0, which lies entirely in the region below and to the right of ek.

7.1 Sketch of the proof of Lemma 7.1

Let An = An(ε) be the event in the probability in (7.1). Let MK = MK(n) be the
event that there are at most K disjoint open crossings of the box [−n, n]2. Note that by
the BK-Reimer inequality and the RSW theorem,

P(M c
K) ≤ (1− C)K ,

uniformly in n.
We further let Dk = Mk \Mk+1 be the event that the maximal number of disjoint

crossings equals k. Then
MK = ∪Kk=1Dk,
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and the union is disjoint. The main work in deriving Lemma 7.1 is to show that for ε > 0

small,

P(An, Dk) ≤
(
C ′ log

1

ε

)k
εc
′

for all k ≥ 1, (7.2)

if n is large. Here, C ′, c′ > 0 are independent of ε, k and n. It then follows that

P(An) ≤ P(M c
K) +

(
C ′′ log

1

ε

)K
εc
′

≤ (1− C)K +

(
C ′′ log

1

ε

)K
εc
′
.

Letting K = dlog log 1
ε e, we obtain (7.1).

To derive (7.2), we condition successively on top-most paths T1, . . . , Tk. T1 is defined
as the horizontal open crossing of B(n) such that the region above T1 is minimal. T2 is
then defined as the highest crossing of the region below T1, and Ti, i = 3, . . . , k is defined
analogously.

For any k-tuple of paths t1, . . . , tk that is admissible in the sense that

P(T1 = t1, . . . , Tk = tk) > 0,

the event

{T1 = t1, . . . , Tk = tk}

is independent of the status of edges below tk (see [13, Prop. 2.3]). Moreover, the event

Dk ∩ {T1 = t1, . . . , Tk = tk}

is equal to

E(t1, . . . , tk) = {T1 = t1, . . . , Tk = tk} ∩R(tk),

where R(tk) is the event that there is a dual closed path from e∗, where e is some edge on
the path tk, to the bottom of the box [−n, n]2. Note in particular that R(tk) is independent
of the status of edges on and above tk.

On E(t1, . . . , tk), there is a unique left-most closed dual path from tk to the bottom
of [−n, n]2, and we denote it by P (tk). It is characterized by the following three-arm
condition: each dual edge on p has one closed dual arm to the path tk, a disjoint
closed dual arm to the bottom of the box, and an open arm to the left side of the box
in the region below tk. Given a closed dual path p in the region below tk, the event
E(t1, . . . , tk) ∩ {P (tk) = p} is independent of the status of edges in the region below
tk and to the right of p. Our goal will be to use this independence to connect at least√
εn2π3(n) points to Tk by two disjoint open paths and to P (Tk) by a closed dual path.

On Dk, we can uniquely define the edge ek = {xk, yk} where P (Tk) meets Tk.
Let α(Tk) and β(Tk) be the left and right endpoints, respectively, of Tk. By RSW, we

have, for some c = c(ν) > 0, n large, ε small, and all k,

P(dist(ek, α(Tk)) < 2ενn, Dk) ≤ εc

P(dist(ek, β(Tk)) < 2ενn, Dk) ≤ εc.

Also by RSW, we can arrange that Tk remains at distance 10ενn from the each of the 4
corners: for n large, ε small, and all k,

P(dist(Tk ∪ P (Tk), Corneri) < 10ενn, Dk) ≤ εc,
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t2
p

Figure 8: An illustration of the estimate for Ik with k = 2. If p and tk come too close
together at some point, a six-arm event occurs in an annulus around that point.

for i = 1, . . . , 4 and

Corner1 = (−n,−n) Corner2 = (n,−n)

Corner3 = (n, n) Corner4 = (−n, n).

On Dk, let Ik = Ik(n) be the event ek is close to the endpoints of Tk and the corners
or [−n, n]2 and that

dist(ek, α(Tk)) ≥ 2ενn, (7.3)

dist(ek, β(Tk)) ≥ 2ενn, (7.4)

dist((Tk ∪ P (Tk)), Corneri) ≥ 10ενn, i = 1, . . . , 4, (7.5)

and there is a pair u, v ∈ Z2 such that u ∈ Tk, v ∈ P (Tk),

dist(u, ek) ≥ 10ενn, dist(v, ek) ≥ 10ενn (7.6)

and
dist(u, v) < εδn. (7.7)

Using the fact that the event that two points u ∈ Tk and v ∈ P (Tk) coming too close
would generate a six-arm event (see Figure 8), and the six arm exponent is greater than
2, we show the following:

Lemma 7.2. There exist C, η′ > 0 and 0 < δ < ν < 1/2 such that for small enough ε > 0,

P(Ik) ≤
(
C log

1

ε

)k
εη
′

for all k ≥ 1

if n is large.

It follows that to estimate P(An, Dk), we can write

P(An, Dk) ≤ 10ec +

(
C log

1

ε

)k
εc + P(Dk, Ik)

+
∑

t1,...,tk,p

P(An, Dk, Ti = ti ∀i, P (Tk) = p),
(7.8)

where the sum is only over ti and p such that Ik occurs and
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1. dist((Tk ∪ P (Tk)), Corneri) > 10ενn, for all i = 1, . . . , 4 and

2. ek is at least distance 2ενn from the bottom and right sides of [−n, n]2,

where ek is the edge where p and tk meet. Condition 2 follows from an argument similar
to the one given to estimate P(Ik), involving the half-plane 3-arm argument: this is

where the term
(
C log 1

ε

)k
εc in (7.8) comes from.

Consider concentric annuli

Ann(ek, 2
l) = B(ek, 2

l) \B(ek, 2
l−1),

for l = 4+dlog2 ε
δne, . . . , dlog2 ε

νne. On {Dk, Ti = ti ∀i, P (Tk) = p}, if Ann(ek, 2
l) contains

more than εn2π3(n) points connected to tk by two disjoint open paths, and to p by a
closed dual path, then

L̃n ≥ εn2π3(n).

We claim that with probability bounded away from 0 independently of l, n, tk and p, the
number of such edges in Ann(ek, 2

l) is bounded below by

Cε2δn2π3(εδn). (7.9)

Choosing δ appropriately, this is bounded below by εn2π3(n) for ε small.
To obtain the lower bound (7.9) with uniformly positive probability, we use the second

moment method to find a large number of three arm points in a box inside the region R
below tk and to the right of p. To this effect, we need to show that it is always possible to
find such a box of side-length r at least εδn. In addition, to use RSW and connect the
three arm points to p and tk, we need the box to be at a distance from these crossings
that is roughly comparable to r, and the crossings themselves to be separated on this
scale. It turns out that a suitable box can always be found, regardless of the choice of
t1, . . . , tk, p, as long as Ik holds, and the conditions 1. and 2. are satisfied, but showing
this requires a somewhat delicate geometric argument. We refer the reader to the full
proof in [5] for details. Using this construction in the order log 1

ε annuli Ann(ek, 2
l), we

obtain the estimate

P(An, Dk, T1 = t1, . . . , Tk = tk, P (Tk) = p)

≤ (1− C)c log2
1
εP(T1 = t1, . . . , Tk = tk, P (Tk) = p),

which, together with (7.8) and Lemma 7.2 implies the desired result (7.2).

8 Lemmas of a topological nature

In this section, we complete the detour construction by providing proofs of the
proposition and lemmas assumed in Sections 3 and 3.1.

First, recall Proposition 3.3: If ω ∈ Cn, then for distinct edges e, f ∈ γn, π(e) and π(f)

are either equal or have no vertices in common.
Regarding σn, we establish the following two properties:

1. (Lemma 3.4) For ω ∈ Cn, σn is an open circuit in A(n) surrounding the origin.

2. (Lemma 3.5) For ω ∈ Cn, if e ∈ γ̂n \ Π̂ then π(e) = ∅.

8.1 Proof of Proposition 3.3

Because π(e) was defined as the first element of S(e) in a deterministic ordering, we
see that it will suffice to show: given P (e) ∈ S(e) and P (f) ∈ S(f), if

V (P (e)) ∩ V (P (f)) 6= ∅, (8.1)
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(their vertex sets intersect) then

P (e) ∈ S(f) and P (f) ∈ S(e). (8.2)

Now, suppose the intersection of π(e) and π(f) is non-empty. Then π(e) ∈ S(e) ∩ S(f), so
π(e) = π(f).

Let P (e) ∈ S(e). By extending the two open ends of the closed path in condition 4. to
meet the midpoints of the edges {w0, w0 − e1} and {wM , wM + e1}, we can form a Jordan
curve θ(e) (i.e. a continuous, self-avoiding closed curve) by traversing the closed dual
path from w0 + (1/2)(−e1 + e2) to wM + (1/2)(e1 + e2), traversing the path Q(e) (listed
as Q in the definition of S(e)), and returning to w0 + (1/2)(−e1 + e2). By the Jordan
Curve Theorem, any connected set of which does not intersect θ(e) must lie completely
on either side of θ(e).

We apply the preceding to P (e) \ {w0(e), wM (e)} and P (f) \ {w0(f), wM (f)}. By
assumption (Condition 1.) both sets lie in the exterior of γn, so neither can intersect Q(e)

or Q(f). Since they consist of open edges, they also cannot intersect either the dual
portion of θ(e) or that of θ(f). Thus, assuming (8.1), we have

Claim 8.1. Except for the endpoints w0(e), w0(f), wM (e), wM (f), the paths P (e) and
P (f), considered as the union of their edges and vertices, lie in the same connected
components of R2 \ θ(e) and R2 \ θ(f).

We now assert that this implies:

Claim 8.2. The endpoints of P (e) and P (f) coincide.

To see this, we start with the following

Claim 8.3. Any vertex of γn \Q(e) lies in the component of θ(e)c which does not contain
P (e).

Proof. The vertices w1(e) and w1(e)− e1 lie on opposite sides of θ(e), since they can be
connected by a segment which intersects the curve exactly once. The vertex w0(e)− e1

is in the same component as w1(e)− e1, so it is in the component which does not contain
P (e). However each vertex of γn\Q(e) can be connected to w0(e)−e1 by simply following
γn (without crossing θ(e)).

Claim 8.3 implies that P (f), lying as it does in the same component as P (e), must have
both of its endpoints in Q(e) (since they must be in γn). The argument is symmetric, so
that both endpoints of P (e) must lie in Q(f), so that w0(e) = w0(f) and wM (e) = wM (f).
At this point, we have established Claim 8.2.

The coincidence of the endpoints of P (e) and P (f) implies also Q(e) = Q(f), so that
P (e), together with the dual path from Condition 4. in the definition of S(e), satisfies
Conditions 1-5 defining S(f). We have proved Proposition 4.

8.2 Proof of Lemma 3.4

By Proposition 3.3, the set E(Π) is a disjoint union of paths P (e) = π(e) for a finite
collection of edges e ∈ σn. Our strategy will be to inductively replace each portion Q(e)

of γn by the detour path P (e) and show that at each stage, we still have a circuit around
the origin. In other words, enumerating the paths P1, P2, . . ., and Q1, Q2, . . ., we replace
Q1 with P1 to create γ(1)

n from the original circuit γn. Then we replace a portion of γ(1)
n

(which is Q2) with P2 to create γ(2)
n , and so on.

Note that at stage k, the path Pk+1 satisfies the definition of ε-shielded detour with

γn replaced by γ(k)
n . Indeed, since all paths Q are disjoint for paths in Π, points 2-5 are

obvious. Furthermore, assuming that Pk+1 satisfies point 1 with γn equal to γ(k−1)
n , it

must also satisfy it with γn equal to γ(k)
n . If this were not the case, then if we write σo for
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a path σ excluding its endpoints, we would have P ok+1 ⊂ extγ
(k−1)
n but P ok+1 ∩ intγ

(k)
n 6= ∅.

But P ok+1 must also contain a point of extγ
(k)
n since the paths Qi are disjoint (choose a

point near an endpoint of Qk+1), so this implies that Pk+1 must cross from the interior to
the exterior. It cannot cross γn, so it must cross one of the Pi’s for i 6= k + 1. This is a
contradiction, since the Pi’s are disjoint.

Therefore to prove Lemma 3.4, it will suffice to show the following:

Claim 8.4. Let σ be a self-avoiding circuit surrounding the origin, and let P denote
a self-avoiding path with endpoints in σ, such that P satisfies Conditions 1-5 in the
definition of π(e), with γn replaced by σ. Then

(σ \Q) ∪ P

is a circuit in A(n) surrounding the origin. Here Q is defined relative to σ and P as in
Condition 3. in the definition of π(e).

We first show:

Claim 8.5.
Qo ⊂ int(P ∪ (γn \Q)).

The connected set Qo lies either in int(P ∪ (γn \ Q)) or in ext(P ∪ (γn \ Q)). It will
suffice to exclude the latter case. For this, we will use a simple intermediate result.

Lemma 8.6 (The ABC lemma). Let A(t), B(t) and C(t), t ∈ [0, 1] be three self-avoiding,
continuous curves in R2. Denote their images by A = A([0, 1]), B = B([0, 1]), C =

C([0, 1]). Suppose
A(0) = B(0) = C(0) = a

and
A(1) = B(1) = C(1) = b

with a 6= b, and
A ∩B = A ∩ C = B ∩ C = {a, b}.

Form the three Jordan curves A ∪B, A ∪ C and B ∪ C, and suppose

C \ {a, b} ⊂ int(A ∪B).

Then
int(B ∪ C) ⊂ int(A ∪B).

Proof. Any continuous path from a point in int(B ∪ C) to infinity must cross either B or
C. If it does not cross B, it must cross C at a point in int(A ∪ B), after which it must
cross A, and the lemma follows.

Let us now return to the proof of Lemma 3.4. We assume

Qo ⊂ ext(P ∪ (γn \Q)). (8.3)

Because P does not cross γn, two possibilities arise: either

(γn \Q)o ⊂ int(P ∪Q), (8.4)

or
(γn \Q)o ⊂ ext(P ∪Q). (8.5)

In case (8.4) holds, we can apply the “ABC Lemma” 8.6 to find 0 ∈ intγn ⊂ P ∪Q, which
is not possible by Condition 3 in the definition of P .
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Now, assume (8.5) holds. P is contained the boundary of both int(P ∪ Q) and
int(P ∪ (γn \Q)). Recalling that we have also (8.3), we see that these two Jordan domains
are disjoint. Thus, every point in a sufficiently small neighborhood of a point of P o lies
in exactly one of these two domains (if it is not in P ). It follows that any curve joining
a point in P o to infinity, intersecting P o only at its starting point, must intersect either
γn \Q or Q, so

P o ⊂ intγn,

a contradiction to Condition 2. in the definition of π(e). At this point, we have established
Claim 8.5. Applying Lemma 8.6, find

0 ∈ intγn ⊂ int(P ∪ (γn \Q)),

which is Claim 8.4.

8.3 Proof of Lemma 3.5

By Proposition 3.3, the set E(Π) is a disjoint union of sets of the form π(e), where e
ranges over a finite collection S of edges in Π̂. If e ∈ γ̂n \ Π̂ and π(e) 6= ∅ then, again by
Proposition 3.3,

π(f) ∩ π(e) = ∅

for all f ∈ S. This contradicts the maximality of Π, provided we show

Claim 8.7. For all f ∈ S,
π̂(e) ∩ π̂(f) = ∅.

This is because if the intersection is non-empty, then π̂(e) and π̂(f) must share a
common segment, which forces

π(e) ∩ π(f) 6= ∅. (8.6)

Indeed, if π̂(e) and π̂(f) coincide, then the two initial and two final vertices of π(e) and
π(f) coincide by Condition 2. in the definition of S(e), and otherwise one endpoint of π̂(e)

must be equal to some non-endpoint vertex of π̂(f). By the Jordan Curve Theorem, π(e)

must then intersect π(f). Given (8.6), Proposition 3.3 now implies π(e) = π(f), which
contradicts the assumption on e.
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