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Abstract

We introduce a new, weak Cramér condition on the characteristic function of a random
vector which does not only hold for all continuous distributions but also for discrete
(non-lattice) ones in a generic sense. We then prove that the normalized sum of
independent random vectors satisfying this new condition automatically verifies some
small ball estimates and admits a valid Edgeworth expansion for the Kolmogorov
metric. The latter results therefore extend the well known theory of Edgeworth
expansion under the standard Cramér condition, to distributions that are purely
discrete.
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1 Introduction

If Xi are i.i.d. real random variables, centered with unit variance, Central Limit
Theorem ensures that, if Sn := X1 + . . .+Xn, then

lim
n→+∞

∣∣∣∣P( Sn√n ≤ x
)
− Φ(x)

∣∣∣∣ = 0,

where Φ denotes the cumulative distribution function of the standard Gaussian variable.
Under a third moment hypothesis, Berry–Esseen bounds [Ber41] then allow to control
the speed of convergence, i.e. there exists a positive constant C such that, for all x ∈ R∣∣∣∣P( Sn√n ≤ x

)
− Φ(x)

∣∣∣∣ ≤ C√
n
,

and is very natural to ask if an higher order asymptotic expansion of the distribution
function can be made explicit. The first rigorous treatment of asymptotic expansions of
distribution functions of normalised sums of i.i.d real valued random variables was given
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A weak Cramér condition and applications

by Cramér [Cra28] after some formal expansions were proposed by Chebyshev [Tch90]
and Edgeworth [Edg06]. Namely, if the entries Xi admit a finite moment of order q ≥ 3

and satisfy the so-called Cramér condition, there exists explicit polynomials P1, . . . , Pq−1

whose coefficients depend on the cumulants of Xi such that, if D denotes the derivation
operator, we have∣∣∣∣∣

∣∣∣∣∣P
(
Sn√
n
≤ x

)
− Φ(x)−

q−1∑
k=1

n−k/2Pk(−D)(Φ(x))

∣∣∣∣∣
∣∣∣∣∣
∞

= O(n−q/2). (1.1)

Equivalently, if Qn denotes the law of Sn/
√
n, there exists an explicit measure Q̃n,q

admitting a density with respect to the Lebesgue measure such that∣∣∣∣∣∣Qn (1(−∞,x]

)
− Q̃n,q

(
1(−∞,x]

)∣∣∣∣∣∣
∞

= O(n−q/2). (1.2)

The above mentionned Cramér condition under which such expansions are valid
involves the common characteristic function of the entries, namely if φ(t) := E[eitX1 ], it
requires that lim supt→+∞ |φ(t)| < 1. Thanks to Riemann-Lebesgue lemma, this condition
is automatically satisfied if the entries Xi admit a density with respect to the Lebesgue
measure. On the contrary, Cramér condition always fails to hold when the entries are
purely discrete, see Section 2 below. Besides, expansion (1.1) is not valid for general
entries, and in particular in the simple case of a sum of independent symmetric Bernoulli
variables. Precisely, for purely discrete lattice-valued random variables, extra terms of
all orders must be added in the Edgeworth expansion to take account of errors in ap-
proximating to discrete distributions by smooth distributions. A comprehensive account
of Edgeworth expansions for sums of independent lattice-valued random variables can
be found for instance in Chapter 5 of [BR86].

After the pionneering work of Cramér, great efforts have been made to extend the
above Edgeworth type expansions to various settings, and the litterature on the subject
is overwhelming, see, e.g., the bibliographical notes of [Pet75, BR86, Hal92] and the
references therein. Without pretending to exhaustivity, let us mention a few. Extensions
to the case of multidimensional, or Banach-valued random variables can be found in
[Göt81, Göt89]. Asymptotic expansions for independent, non identically distributed
random variables is treated in [BR86, p. 216], other kind of dependence are considered
for instance in [GH83, Lah93]. Egdeworth expansions have also been performed for
other metrics than Kolmogorov’s one, namely for the Fisher or relative entropy metric
[BCG13], or for metrics of the type

sup
f∈A

∣∣∣Qn (f)− Q̃n,q (f)
∣∣∣ , (1.3)

where f belongs to a suitable class of functions, for example a class of regular functions,
see [Hip77, GH78, Sun11] or [Rot05, CD14] via Stein’s method, the class of indicators of
convex sets [Ben04], and more recently the class of continuous functions associated to
the total variation distance [BC16]. Let us emphasize the fact that if the functions of the
class A are smooth enough, roughly speaking as smooth as the order of the expansion,
the term (1.3) is a O(n−q/2), provided the entries have enough moments and regardless
of the Cramér condition. However, in the case of more singular metrics such as the
Kolmogorov one, and as noticed in [Hal92, p. 81], “Cramér’s continuity condition is
central to much of the theory, even in the relatively simple case of sums of independent
random variables”. In particular, to our knowledge, in the non-lattice case, expansions
of type (1.1) are only known under the Cramér condition, and to quote [GvZ06], “little
seems to be known about Edgeworth expansions for sums of variables with discrete but
non-lattice distribution”.
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In this paper, we introduce a new, weak Cramér condition on the characteristic
function of a random vector which englobes the classical Cramér condition but is also
satisfied by discrete, non-lattice distributions, in a generic sense, see Definition 2.1 and
Proposition 2.4 below. Under this weakened assumption, we then establish in Theorem
4.3 and Corollary 4.4, the validity of the Edgeworth expansion in the Kolmogorov metric.
In other words, we establish that expansion (1.1) holds under our weak Cramér condition.
As a result, and contrarily to the lattice case where additionnal terms are needed, we
obtain that for generic non-lattice discrete distributions, the Edgeworth expansion has
the same form as in the case of continuous entries.

The plan of the paper is the following. In the next section, we introduce the weak
Cramér condition. We exhibit simple examples of variables satisfying this condition and
show that, in some sense, it is generic for discrete, non-lattice random variables. In
Section 3, as a first example of application, we then explicit some small ball estimate for
the normalized sum of random vectors satisfying the weak Cramer condition. Finally, in
Section 4, we extend the validity of the Edgeworth expansion for functionnals of such
sums. In order to facilitate the reading of the paper, the proofs of the results stated in
Sections 3 and 4 are postponed in the last Section 5.

2 Weakening the Cramér condition

All the random variables appearing in the sequel are supposed to be defined on an
abstract probability space (Ω,F ,P) and E denotes the associated expectation. A generic
element of the set Ω will be denoted by ω. The notation || · || refers to the standard
Euclidean norm. Let us first recall that a random vector with values in Rd is said to
satisfy the (classical) Cramér condition if its characteristic function φX(t) := E[eit·X ] is
such that

lim sup
||t||→∞

|φX(t)| < 1. (2.1)

For instance, any distribution having a continuous component satisfies the Cramér
condition in virtue of Riemann-Lebesgue Lemma. There exists also purely singular
distributions that satisfy the classical Cramér condition (2.1). For example, if 0 < θ < 1/2

is not the inverse of a Pisot number, then Salem proved in Theorem 2 p. 40 of [Sal63]
that if (εk)k≥0 is sequence of i.i.d. random variables such that P(εk = 0) = P(εk = 1) = 1

2

and if X :=
∑+∞
k=0 θ

kεk, then the law of X is both singular with respect to the Lebesgue
measure on [0, 1] and its Fourier transform is such that lim|t|→∞ |φX(t)| = 0. On the other
hand, it can be shown that for any purely discrete real random variable X, one has
lim sup|t|→∞ |φX(t)| = 1, see, e.g., [BR86, p. 207].

In this section, we introduce a new, weak Cramér type condition that quantifies the
fact that the characteristic function of a random vector is bounded away from one at
infinity. As we shall see below, contrarily to the above classical condition, this weaker
condition is satisfied by both continuous and discrete (but non-lattice) distributions. In
fact, we shall even prove in the next Proposition 2.4 that this weak Cramér condition is
“generically” satisfied among discrete distributions.

Definition 2.1. A random vector X with values in Rd and with characteristic function
φX , is said to satisfy the following weak Cramér condition with exponent b > 0 if there
exists constants C > 0 and R > 0 such that for all ‖t‖ > R

|φX(t)| ≤ 1− C

‖t‖b
. (2.2)

For later convenience, the class of probability measures on IRd satisfying this property
will be denoted by C(d, b).
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The above definition naturally extends to sequences of random vectors.

Definition 2.2. A sequence of random vectors (Xi,n)1≤i≤n with values in Rd and with
characteristic function φXi,n is said to satisfy the following mean weak Cramér condition
with exponent b > 0, if there exists constants C > 0 and R > 0 such that for ‖t‖ > R and
for n large enough

1

n

n∑
i=1

|φXi,n(t)| ≤ 1− C

‖t‖b
. (2.3)

Again, for later convenience, the class of sequences of random vectors with values in IRd

satisfying this property will be denoted by C(d, b).
Obvioulsy, the classical Cramér condition implies the weak one for any positive value

of the parameter b. Roughly speaking, the classical Cramér condition might be thought
as the limiting case when b→ 0 of the conditions C(d, b). However the major difference
between the classical condition (2.1) and the weak one (2.2), or its average version (2.3),
is that the class C(d, b) contains discrete distributions whereas, as already noticed just
above, probability measures satisfying the classic Cramér condition cannot be discrete.

Remark 2.3. The weak Cramér condition can be tensorized in the following way. If
X1 and X2 are two independent random vectors in the class C(d1, b1) and C(d2, b2)

respectively, then the random vector (X1, X2) belongs to the class C(d1 + d2,max(b1, b2)).
Indeed, if for ||t1|| and ||t2|| large enough we have

|φX1(t1)| ≤ 1− C1

||t1||b1
, |φX2(t2)| ≤ 1− C2

||t2||b2
,

then for some positive constants C and C ′ and for ||(t1, t2)|| large enough, we have

|φ(X1,X2)(t1, t2)| = |φX1
(t1)| × |φX2

(t2)| ≤ 1− C

||(t1, t2)||b1∨b2∞
≤ 1− C ′

||(t1, t2)||b1∨b2
.

The next proposition illustrates the fact that the condition defining the class C(1, b) is
actually generically satisfied by discrete real random variables. It also emphasizes the
relation between the exponent b and the number of atoms of the considered distribution.
Roughly speaking, the more atoms the distribution has, the smaller the exponent b can be
chosen. Equivalently, the more atoms the distribution has, the better is the quantitative
bound on the distance between its characteristic function and one.

Proposition 2.4. Let us fix an integer p ≥ 3. To any vector u = (ui)1≤i≤p ∈ Rp, we
associate the setMp(u) of measures of the configuration space having the ui’s as atoms,
namely

Mp(u) :=

{
p∑
i=1

ciδui , (ci)1≤i≤p ∈ (0,+∞)p,

p∑
i=1

ci = 1

}
.

Then, if λp denote the Lebesgue measure on Rp, for all b > 1
p−2 we have

λp ({u ∈ Rp,Mp(u) 6⊂ C(1, 2b)}) = 0.

Remark 2.5. The above Proposition 2.4 naturally extends to the multi-dimensional case,
i.e. to the case where ui ∈ Rd, for 1 ≤ i ≤ p. For the sake of simplicity, we restrict
ourselves to the scalar case.

Remark 2.6. Let us insist on the genericity of the weak Cramér condition for non-lattice,
discrete random variables. Consider a cloud of data D = {xi, 1 ≤ i ≤ n} ⊂ R, which
is composed of n ≥ 3 independent realizations of a continuous real random variable X.
Suppose now that, as in a bootstrap procedure, one generates a new random variable X∗
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by resampling among the initial data (xi)1≤i≤n. The new variable X∗ takes values in the
finite set D, thus does not satisfies the classical Cramér condition. However, Proposition
2.4 ensures X∗ satisfies the weak Cramér condition.

The aim of next proposition is to give more concrete examples of random variables
satisfying the weak Cramér condition (2.2).

Proposition 2.7. Let p ≥ 3 be an integer and u1, . . . , up be algebraic numbers which are
rationally independent. Let c1, . . . , cp be p positive numbers such that

∑p
i=1 ci = 1. Then,

for any b > 1
p−2 , we have

p∑
i=1

ciδui ∈ C(1, 2b).

Below are two explicit examples of such distributions.

Example 2.8. For instance, let N be a random variable following a Poisson distribution
of parameter λ > 0. Then √

N ∈
⋂
b>0

C(1, b).

Indeed, among the atoms of
√
N are the numbers

√
p for any primer number p. It

is well-known that these numbers are linearly independent over the field Q and the
conclusion follows from the infinity of prime numbers and Proposition 2.7.

Example 2.9. Let p ≥ 5 be a prime number and set θ = 2π
p . Then,

1

p− 1

p−1∑
i=1

δcos(iθ) ∈ C(1, 2b), for all b >
1

p− 3
.

Indeed, the reals numbers (cos(iθ))1≤i≤p−1 are irrational, algebraic and linearly indepen-
dent over the field Q.

In the next Sections 3 and 4, we shall give examples of application of the weak
Cramér condition, in establishing that the normalized sum of independent variables
satisfying this condition automatically satisfies a sharp small ball estimate and also
admits a natural Edgeworth expansion. Before that, we conclude this section by noticing
that if a sequence of random vectors satisfies the mean weak Cramér condition (2.3),
then it automatically satisfies a local (classical) Cramér condition. To state this result
properly, we need to introduce a notation, namely, to any sequence (Xi,n)1≤i≤n and to
any ` > 0, we associate the average `th moment ρ`(n) = ρ`(n)((Xi,n)) defined as

ρ`(n) :=
1

n

n∑
i=1

E
[
||Xi,n||`

]
. (2.4)

The local Cramér bound announced above is the following.

Proposition 2.10. Let (Xi,n)1≤i≤n be a sequence of independent random vectors with
values in Rd, belonging to the class C(d, b) and such that supn≥1 ρ1(n) < +∞. Then, for
all 0 < r < R, the following local Cramér bound holds

lim sup
n→+∞

sup
r≤||u||≤R

1

n

n∑
i=1

∣∣φXi,n(u)
∣∣ < 1.

Proof. Let us argue by contradiction and fix 0 < r < R. If

lim sup
n→+∞

sup
r≤||u||≤R

1

n

n∑
i=1

∣∣φXi,n(u)
∣∣ = 1,
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there exists an increasing subsequence (n(k))k≥0 of integers such that

lim
k→+∞

sup
r≤||u||≤R

1

n(k)

n(k)∑
i=1

∣∣φXi,n(k)
(u)
∣∣ = 1.

Since the characteristic functions are continuous, for a fixed integer k, the above
supremum is achieved at a point uk in the compact set C[r,R] := {u ∈ Rd, r ≤ ||u|| ≤ R}.
Up to the extraction of another subsequence, we can thus suppose that the sequence
(uk)k≥1 converges to a point u∗ ∈ C[r,R]. We have then∣∣∣∣∣∣ 1

n(k)

n(k)∑
i=1

(∣∣φXi,n(k)
(uk)

∣∣− ∣∣φXi,n(k)
(u∗)

∣∣)∣∣∣∣∣∣ ≤ 1

n(k)

n(k)∑
i=1

∣∣φXi,n(k)
(uk)− φXi,n(k)

(u∗)
∣∣

≤ |uk − u∗|ρ1(n(k)).

Since ρ1(n) is bounded, we have thus

lim
k→+∞

1

n(k)

n(k)∑
i=1

∣∣φXi,n(k)
(uk)

∣∣ = lim
k→+∞

1

n(k)

n(k)∑
i=1

∣∣φXi,n(k)
(u∗)

∣∣ = 1,

from which, we deduce by Cauchy–Schwarz inequality that

lim
k→+∞

1

n(k)

n(k)∑
i=1

∣∣φXi,n(k)
(u∗)

∣∣2 = 1. (2.5)

Let us now observe that u 7→ |φXi,n(k)
(u)|2 can be interpreted as the Fourier transform of

the symmetrized version of Xi,n(k). Namely if X ′i,n(k) is an independent copy of Xi,n(k)

and if we set Zi,n(k) := Xi,n(k) −X ′i,n(k), we have for all u ∈ Rd∣∣φXi,n(k)
(u)
∣∣2 = E[eiu·Xi,n(k) ]E[e−iu·X

′
i,n(k) ] = E[eiu·(Xi,n(k)−X′i,n(k))] = φZi,n(k)

(u).

Moreover, the Cesaro average of the φZi,n(k)
for 1 ≤ i ≤ n(k) can also be interpreted as

the Fourier transform: it is the Fourier transform of φZN(k),n(k)
where N(k) is a random

variable whose law is uniform in {1, . . . , n(k)}, and which is independent of all the Xi,n(k)

and X ′i,n(k) i.e. for all u ∈ Rd

1

n(k)

n(k)∑
i=1

∣∣φXi,n(k)
(u)
∣∣2 = φZN(k),n(k)

(u). (2.6)

By assumption supn≥1 ρ1(n) < +∞, hence the sequence (ZN(k),n(k))k≥1 is bounded in
L1(Ω,F ,P), so up to another extraction of a subsequence, we can suppose that it
converges in distribution to a random variable with values in Rd, say W . In other words,
if φW denotes the characteristic function of W , for all u ∈ Rd, we have

lim
k→+∞

φZN(k),n(k)
(u) = φW (u). (2.7)

Now, from Equations (2.5), (2.6) and (2.7), we get that there exists u∗ ∈ C[r,R] such that

φW (u∗) = E[eiu
∗·W ] = 1. (2.8)

This implies that P(W ∈ 2πZ) = 1 and thus φW (nu∗) = 1 for all n ∈ N. But this is in
contradiction with the fact that the initial sequence Xi,n satisfy the mean weak Cramér
condition. Indeed, for a fixed n, taking u = nu∗ in Equation (2.6), we always have
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φZN(k),n(k)
(nu∗) =

1

n(k)

n(k)∑
i=1

∣∣φXi,n(k)
(nu∗)

∣∣2 ≤ 1

n(k)

n(k)∑
i=1

∣∣φXi,n(k)
(nu∗)

∣∣ . (2.9)

If the sequence Xi,n satisfies the weak mean Cramér condition, for n sufficiently large
but finite, and for k large enough, the right-hand side of Equation (2.9) is bounded by

1

n(k)

n(k)∑
i=1

∣∣φXi,n(k)
(nu∗)

∣∣ ≤ 1− C

nb||u∗||b
≤ 1− C

nbRb
,

By Equation (2.7), the left-hand side of Equation (2.9) converges to φW (nu∗) = 1 as k
goes to infinity, hence the contradiction.

3 Small ball estimates

Despite the richness of the class of random variables or vectors satisfying the weak
Cramér condition, the latter is flexible enough to prove some fairly general results
that are classical for continuous random variables but difficult to obtain as soon as the
underlying variables have a discrete component. To illustrate this, we will establish in
this section a small ball estimate for the normalized sum of independant random vectors
belonging to the class C(d, β).

Theorem 3.1. Let us consider a sequence of independent, centered random vectors
(Xi,n)1≤i≤n with values in Rd such that

1. there exists ρ < +∞, such that ρ3(n) ≤ ρ for all n ≥ 1,

2. there exists c1 > 0 such that for n large enough

c1 IdRd ≤
1

n

n∑
i=1

cov(Xi,n),

where A ≤ B means here that the matrix B −A is positive semi-definite,

3. the sequence (Xi,n)i≥1 belongs to the class C(d, b).

Then there exists a constant Γ > 0 such that, for all 0 < γ < 1
b + 1

2 and for n large enough,
we have the small ball estimate

P

(
1√
n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi,n

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

nγ

)
≤ Γ

ndγ
. (3.1)

The proof of Theorem 3.1 is given in Section 5.2 below. It is inspired by Halasz
method which allows to relate the small ball probability to the local and asymptotic
behavior of the Fourier transform of the normalized sum of the Xi,n. On the one hand,
the local behavior in the neighbourhood of zero of this Fourier transform is controlled
thanks to the two first hypotheses of the mean third moment and the mean covariance.
On the other hand, the mean weak Cramér condition then allows to control the behavior
at infinity of the Fourier transform. The behavior of the Fourier transform outside the
neightbourhood of zero and infinity is finally controlled thanks to the local Cramér bound
establish in Proposition 2.10.

Remark 3.2. Naturally, the small ball estimate of Theorem 3.1 is easy to obtain if the Xi

are continuous random variables with uniformly bounded densities. But this estimate is
not trivial for discrete variables or even in the case of continuous random variables with
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non bounded densities. For example, in dimension d = 1, for general random variables,
as soon as γ > 1/2, it is sharper than Berry-Esseen bounds which are of the type∣∣∣∣∣P

(
1√
n

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ 1

nγ

)
− const

nγ

∣∣∣∣∣ ≤ O
(

1√
n

)
.

Remark 3.3. Let us also note that the estimate of Theorem 3.1 is hopeless in the case
where the random variables Xi are lattice, which is a case where the weak mean Cramér
condition clearly does not hold. For example, if the law of Xi is uniform on {−1,+1}, we
have for γ > 1/2, and for n even

P

(
1√
n

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≤ 1

nγ

)
= P

(
n∑
i=1

Xi = 0

)
∼ 1√

πn
.

To conclude this section, let us illustrate Theorem 3.1 by expliciting a small ball
estimate for a random sum of cosine, the random coefficients being discrete, Bernoulli
type, random variables.

Example 3.4. Let us consider a sequence (εk)k≥1 of independent and identically dis-
tributed random variables such that P(εk = 1) = P(εk = −1) = 1/2. Fix a prime number
p ≥ 5 and consider the sum

Sn :=

n∑
k=1

cos

(
2kπ

p

)
εk.

The variables Xk := cos(2kπ/p)εk are independent, centered and they satisfy conditions
1 and 2 of Theorem 3.1. For all k ≥ 1, the Fourier transform of Xk is given by

φXk(t) = cos

(
cos

(
2kπ

p

)
t

)
.

It is periodic, taking value one at zero, and thus does not satisfies the weak Cramér
condition (2.2) nor its average version (2.3). Therefore, we can not apply Theorem 3.1
directly. Nevertheless, we can always write

Sn =

bn/pc−1∑
k=0

Yk +Rn, where Yk :=

p(k+1)∑
`=pk+1

cos

(
2`π

p

)
ε`,

and where Rn := Sn − Spbn/pc is such that |Rn| ≤ p uniformly in n. The new variables
Yk are still independent, centered and they satisfy conditions 1 and 2 of Theorem 3.1.
But as already noticed in Example 2.9 above, along a period, the atoms cos(2`π/p) are
linearly independent over Q so that the variables Yk now do satisfy the weak Cramér
condition as well as its average version. In conclusion, despite the fact that the entries
are discrete Bernoulli type random variables, Theorem 3.1 applies and the random sum
of cosines Sn satisfies the small ball estimate (3.1).

4 Edgeworth expansion

Let us now consider another type of result which is usually stated under a classical
Cramér condition, and which we will show to hold true under the weak mean Cramér
condition introduced in Section 2, namely the Edgeworth expansion for a sum indepen-
dent random vectors. Edgeworth expansion is well known as a means for obtaining
approximate tail probabilities of a random variable starting from information on the
moments or cumulants of the latter.
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In order to state the expansion result for the sum of independent vectors, we need to
introduce a certain number of notations, which we adopt from the standard reference
[BR86]. The cumulative distribution of the standard Gaussian variable will be denoted
by Φ. We consider a sequence (Xi)i≥1 of independent and centered random vectors with
values in Rd, with positive definite covariance matrices and finite absolute s-th moments
for some integer s ≥ 3. We denote by Vn the mean covariance matrix and Bn a root of its
inverse, namely

Vn :=
1

n

n∑
k=1

cov(Xk), B2
n := V −1

n ,

and we denote by Qn the law of the normalized sum

Qn
law
:=

1√
n
Bn(X1 + · · ·+Xn).

The average ν-th cumulant of the sequence BnXj will be denoted by χ̄ν,n. Following

Equation (7.2) p. 51 of [BR86], we consider the formal polynomials P̃r(z, {χ̄ν,n}) associ-
ated to these average cumulants as well as the signed measures Pr(−Φ, {χ̄ν,n}) defined

by Equation (7.11) p. 54. We then denote by Q̃n the approximated law of Qn associated
to the Edgeworth expansion, namely

Q̃n=

s−2∑
r=0

n−
r
2Pr(−Φ : {χ̄ν,n}).

Note that the measure Q̃n is no more a probability measure, still it admits a density
with respect to the standard Gaussian measure ρ(x) on Rd. Namely there exists explicit
polynomials Pl,n, whose coefficients depend on the average cumulants, such that

dQ̃n(x) =

(
1 +

s−2∑
l=1

n−
l
2Pl,n(x)

)
ρ(x)dx. (4.1)

For a measurable function f , and for s > 0, we define

Ms(f) := sup
x∈IRd

|f(x)|
1 + ‖x‖s

∈ [0,+∞].

Finally, for ε > 0, we consider the modulus of continuity and its Gaussian average

ωf (x : ε) := sup
y∈B(x,ε)

f(y)− inf
y∈B(x,ε)

f(y), ω̄f (ε : Φ) :=

∫
ωf (x : ε)dΦ(x).

Having introduced the above notations, we can now formulate the expansion result for
independent random vectors, under the classical Cramér condition, as it is stated in
Theorem 20.6 of [BR86].

Theorem 4.1. Let (Xn)n≥1 be a sequence of independent random vectors taking values
in IRd, having zero means and such that

1. the smallest eigenvalue λn of Vn is bounded away from zero uniformly in n,

2. there exists an integer s ≥ 3 and a constant ρ < +∞ such that ρs(n) ≤ ρ uniformly

in n and for all ε > 0 we have limn→∞
1
n

∑n
j=1 IE

(
1{‖Xj‖>ε

√
n}‖Xj‖s

)
= 0,

3. uniformly in n large enough, φXn satisfies the classical Cramér condition i.e.

∀R > 0, lim sup
n→∞

sup
‖t‖>R

|φXn(t)| < 1.
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Then, for every real Borel function f on IRd satisfying Ms′(f) <∞ for some 0 ≤ s′ ≤ s,∣∣∣∣∫ fdQn −
∫
fdQ̃n

∣∣∣∣ ≤Ms′(f)δ1(n) + c(s, d, ρ)ω̄f (2e−Dn : Φ), (4.2)

where δ1(n) = o(n−
s−2
2 ) does not depend on f , and where the positive constants D and

c(s, d, ρ) are explicit.

Remark 4.2. Under this general formulation, the proof of Theorem 4.1 in [BR86] is quite
long and delicate. It is technically based on a truncation and centering argument and
thus simplifies greatly if the random variables Xi are bounded. The Cramér condition 3.
of the above statement concerning the characteristic functions φXn appears at a unique
critical point in the proof which is explicitly pointed out by the authors, namely the
control of the integral term I1 of Equation (20.36) p. 211. The rest of the proof only uses
the independence and moment hypotheses.

It turns out that the above classical Cramér condition in Theorem 4.1 is not a
necessary condition to get a valid Edgeworth expansion. The control of the integral term
I1 mentionned in the above Remark 4.2 can in fact be achieved under the weak mean
Cramér condition (2.3) introduced in Section 2. The proof of Theorem 20.6 of [BR86]
can indeed be adapted to prove the following result.

Theorem 4.3. Let (Xi,n)1≤i≤n be a sequence of independent random vectors taking
values in IRd, having zero means and such that

1. the smallest eigenvalue λn of Vn = n−1
∑n
i=1 cov(Xi,n) is bounded away from zero

uniformly in n,

2. there exists an integer s ≥ 3 and a constant ρ < +∞ such that ρs(n) ≤ ρ uniformly

in n and for all ε > 0 we have limn→∞
1
n

∑n
j=1 IE

(
1{‖Xj‖>ε

√
n}‖Xj‖s

)
= 0,

3. the sequence (Xi,n)1≤i≤n belongs to the class C(d, b) where b is such that

s− 3

2
<

1

b
. (4.3)

Then, for every real Borel function f on IRd satisfying Ms′(f) <∞ for some 0 ≤ s′ ≤ s,
and for every sequence of positive real numbers εn converging to zero and such that

εn = o
(
n−

s−2
2

)
and lim

n→+∞
log
(
εnn

s−2
2

)
/ log(n) = 0, we have∣∣∣∣∫ fdQn −

∫
fdQ̃n

∣∣∣∣ ≤Ms′(f)δ1(n) + c(s, d, ρ)ω̄f (εn : Φ), (4.4)

where δ1(n) = o(n−
s−2
2 ) does not depend on f and c(s, d, ρ) is an explicit positive constant.

In particular, if there is a constant C such that ω̄f (ε : Φ) ≤ Cε for small enough ε, we
have ∣∣∣∣∫ fdQn −

∫
fdQ̃n

∣∣∣∣ = o
(
n−

s−2
2

)
. (4.5)

The proof of Theorem 4.3 is given in Section 5.3 below. As proved in Corollary 20.15
of [BR86, p. 215], taking f as the indicator of a convex set yields

Corollary 4.4. Under the assumptions of Theorem 4.3, we have

sup
Cconvex

∣∣∣Qn(C)− Q̃n(C)
∣∣∣ = o

(
n−

s−2
2

)
.

Remark 4.5. Note that the last Theorem 4.3 is stated for triangular arrays (Xi,n)1≤i≤n
whereas the above Theorem 4.1 i.e. the original Theorem 20.6 of [BR86] only involves
random vectors (Xn). Nevertheless, a careful reading of the original proof of Bhat-
tacharya and Rao actually shows that it extends verbatim to this setting.
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Remark 4.6. As noticed in the introduction, we emphasize the fact that, under the weak
Cramér condition, the Edgeworth expansion (4.5) has the same form as the one obtained
under the stronger classical Cramér condition, i.e. no additionnal terms are needed as it
is the case of lattice distributions.

Remark 4.7. In the statement of Theorem 4.3, the hypotheses concerning the decrease
of the sequence εn can be replaced by requiring that εn = n−δ with

s− 2

2
< δ <

1

b
+

1

2
.

5 Proofs

This last section is dedicated to the proofs of the results stated above. Namely, in
the next Section 5.1, we give the proofs of Propositions 2.4 and 2.7 concerning random
variables that satisfy the weak Cramér condition. The proof of the small ball estimate
stated in Theorem 3.1 is given in Section 5.2 whereas the proof of the Edgeworth
expansion stated in Theorem 4.3 is given is Section 5.3.

5.1 Proofs of Propositions 2.4 and 2.7

Before giving the proof of Proposition 2.4, let us state and prove two auxiliary lemmas.

Lemma 5.1. For all p ≥ 3, u = (ui)1≤i≤p ∈ Rp and b > 1/(p− 2), we have the inclusion
Mp(u) ⊂ C(1, 2b) whenever

lim inf
|t|→+∞

|t|b max
2≤j≤p

dist(tvj , 2πZ) ≥ 1, (5.1)

where vj := u1 − uj for 2 ≤ j ≤ p.

Proof of Lemma 5.1. Let us consider X and X̃ two independent variables with common
distribution

∑p
i=1 ciδui ∈Mp(u). Since IE[sin(t(X − X̃))] = 0, we have for all t ∈ R∣∣IE(eitX)
∣∣2 = IE(eitX)IE(e−itX) = IE

(
eit(X−X̃)

)
= IE

(
cos
(
t(X − X̃)

))
=

∑
i 6=j

cicj cos (t(ui − uj)) +

p∑
i=1

c2i .

Substracting 1 =
∑
i 6=j cicj +

∑
i c

2
i on both sides of the last equation, we get

1−
∣∣IE(eitX)

∣∣2 =
∑
i6=j

cicj (1− cos (t(ui − uj))) ≥
2

π2

∑
i 6=j

cicjdist2(t(ui − uj), 2πZ),

where we have used the fact that 1 − cos(x) ≥ 2
π2x

2 for all x ∈ [−π, π]. Now, setting
cmin := min1≤i≤p ci > 0, we obtain that, for all t ∈ R

1−
∣∣IE[eitX ]

∣∣ ≥ 2

1 + |IE[eitX ]|
c2min

π2

p∑
j=2

dist2(t(u1 − uj), 2πZ),

and in particular

1−
∣∣IE[eitX ]

∣∣ ≥ c2min

π2
max

2≤j≤p
dist2(t(u1 − uj), 2πZ). (5.2)

If the condition (5.1) is fulfilled, one deduce that

lim inf
|t|→+∞

|t|2b
(
1−

∣∣IE[eitX ]
∣∣) ≥ c2min

π2
,

hence the result.
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Lemma 5.2. With the same notations as in Lemma 5.1, if condition (5.1) does not hold
and if vj 6= 0 for 2 ≤ j ≤ p, then there exists c > 0 and some sequences of integers
(qj,n)n≥0, 2 ≤ j ≤ p, such that limn→+∞ |qj,n| = +∞ and

max
2≤j≤p

∣∣∣∣vjv2
− qj,n
q2,n

∣∣∣∣ ≤ c

|q2,n|1+b
. (5.3)

Proof of Lemma 5.2. If condition (5.1) does not hold, namely if

lim inf
|t|→+∞

|t|b max
2≤j≤p

dist(tvj , 2πZ) < 1,

one can find sequences tn and (qj,n) such that limn→+∞ |tn| = +∞, limn→+∞ |qj,n| = +∞
and |tnvj − 2πqj,n| ≤ |tn|−b for all 2 ≤ j ≤ p and n ≥ 0. Therefore, there exists two
constants 0 < c1 < c2 < +∞ such that c1|tn| ≤ |qj,n| ≤ c2|tn| for all 2 ≤ j ≤ p and n ≥ 0,
so that ∣∣∣∣vjv2

− qj,n
q2,n

∣∣∣∣ =

∣∣∣∣ tnvjtnv2
− 2πqj,n

2πq2,n

∣∣∣∣
≤

∣∣∣∣ tnvj − 2πqj,n
tnv2

∣∣∣∣+
|2πqj,n||tnv2 − 2πq2,n|
|2πq2,n||tnv2|

≤ 1

|v2||tn|1+b
+

c2
|v2|c1|tn|1+b

≤ c

|q2,n|1+b
,

where the constant c is given by

c :=
c1+b
2

v2
+
c2+b
2

v2c1
.

which yields the desired inequality (5.3).

With the help of Lemmas 5.1 and 5.2, we can now give the proof of Proposition 2.4 by
choosing the vector u at random, with a density with respect to the Lebesgue measure.

Proof of Proposition 2.4. For 0 < m < M , let us define Sm,M := (−M,M)\(−m,m).
Since

⋃
(m,M)∈Q∗+×Q∗+

Sm,M = R∗, thanks to Lemma 5.1, it is sufficient to exhibit some

random vector (U1, . . . , Up) whose density is positive on Spm,M such that almost surely,
the associated Vj := Uj − U1 satisfy condition (5.1), or in virtue of Lemma 5.2, do not
satisfy the condition (5.3) for all n ≥ 0. So let us choose U1 uniformly in (−M,M), and let
us consider Uj of the form Uj := U1 − Vj for 2 ≤ j ≤ p, where the variables (Vj)2≤j≤p are
mutually independent and are also independent of the first component U1, with common
uniform distribution on Sm,M . Let us fix b > z > 1

p−2 , and for any non zero integer r, let
us define the random sets

B(r) :=
⋃

|q|≤1+
4|r|M
m

]
qV2

r
− 1

2|r|1+z
,
qV2

r
+

1

2|r|1+z

[
and Ar :=

p⋂
j=3

{Vj ∈ B(r)}.

Then, the variables Vj being independent, if we denote by PV2 the conditional probability
given V2, we have

P

 ∞⋃
|r|=1

Ar

 ≤
∞∑
|r|=1

P (Ar) =

∞∑
|r|=1

E
[
PV2 (V3 ∈ B(r))

]p−2
=

∞∑
|r|=1

(
E[λ1 (B(r))]

2(2M −m)

)p−2

≤
∞∑
|r|=1

(
1

2(2M −m)

(
1 + 2

(
1 +

4|r|M
m

))
1

|r|1+z

)p−2

≤
(

4(M + 1)

m(2M −m)

)p−2 ∞∑
|r|=1

1

|r|z(p−2)
<∞.

EJP 22 (2017), paper 59.
Page 12/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP77
http://www.imstat.org/ejp/


A weak Cramér condition and applications

Relying on Borel-Cantelli lemma, almost surely, there is only finitely many integers r such
that the event Ar is realized. Thus, there exists a set Ω′ ⊂ Ω of full measure, such that
for all ω ∈ Ω′, there exists r0 = r0(ω) > 0 such that for any r > r0 and any |q| ≤ 1 + 4|r|M

m ,
we have

max
2≤j≤p

∣∣∣∣Vj(ω)− qV2(ω)

r

∣∣∣∣ ≥ 1

2|r|1+z
.

In particular, since b > z, the right hand side of the following inequality

|r|1+b max
2≤j≤p

∣∣∣∣Vj(ω)

V2(ω)
− q

r

∣∣∣∣ ≥ |r|b−z2m
.

is unbounded as |r| goes to infinity. This shows that almost surely, condition (5.3) fails to
hold, hence the result.

We now give the proof of Proposition 2.7. The general idea behind the proof is
similar to the one of Proposition 2.4, but instead of using Borel–Cantelli Lemma i.e. a
probabilistic argument as above, the next result is based on Diophantine approximation,
and more precisely on the Subspace Theorem on simultaneous rational approximation.

Proof. The proof is again based on Lemma 5.2. Let us fix b > z > 1
p−2 . If we denote

as above vj := uj − u1 for 2 ≤ j ≤ p, the numbers 1, v3/v2, . . . , vp/v2 are rationally
independent, and with the same notations as the ones of Remark 7.3.4 of [BG06], taking

N = q2, αj =
vj
v2
, n = p− 2 and ε = z − 1

p− 2
> 0,

the Subspace Theorem ensures that there is some constant κ > 0 such that for any
integers (q2, . . . , qp) ∈ Zp:

max
2≤j≤p

∣∣∣∣vjv2
− qj
q2

∣∣∣∣ ≥ κ

|q2|1+z
.

In particular, the right hand side of

|q2|1+b max
2≤j≤p

∣∣∣∣vjv2
− qj
q2

∣∣∣∣ ≥ κ|q2|b−z

is unbounded, and the condition (5.3) of Lemma 5.2 is not fulfilled, hence the result.

5.2 Small ball estimates

Let us first give the proof of Theorem 3.1 on the small ball estimate for sum of
independent random vectors.

Proof of Theorem 3.1 . Let us fix δ > 0, thanks to the Markov inequality, for all t > 0 we
have

P

(
1√
n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi,n

∣∣∣∣∣
∣∣∣∣∣ ≤ δ

)
= P

(
exp

(
− t

2

2n
||

n∑
i=1

Xi,n||2
)
≥ exp

(
− t

2δ2

2

))

≤ e t
2δ2

2 E

[
exp

(
− t

2

2n
||

n∑
i=1

Xi,n||2
)]

.

Now, the density of the standard gaussian variable being a fixed point for the Fourier
transform in Rd, for all y ∈ Rd, we can write

exp

(
−||y||

2

2

)
= Cd

∫
Rd
e−is·ye−

||s||2
2 ds,
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where Cd := (2π)−d/2 and thus, letting y = t√
n

∑n
i=1Xi,n in the above inequality, we get

P

(
1√
n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi,n

∣∣∣∣∣
∣∣∣∣∣ ≤ δ

)
≤ Cd e

t2δ2

2 E

[∫
Rd
e
−is· t√

n

∑n
i=1Xi,ne−

||s||2
2 ds

]

= Cd e
t2δ2

2

∫
Rd
E
[
e
−is· t√

n

∑n
i=1Xi,n

]
e−
||s||2

2 ds

= Cd e
t2δ2

2

∫
Rd

n∏
i=1

φXi,n

(
ts√
n

)
e−
||s||2

2 ds

= Cd e
t2δ2

2

( n
t2

)d/2 ∫
Rd

n∏
i=1

φXi,n (u) e−
n||u||2

2t2 du

≤ Cd e
t2δ2

2

( n
t2

)d/2 ∫
Rd

n∏
i=1

|φXi,n(u)|e−
n||u||2

2t2 du.

Note that from the arithmetico-geometric inequality, we always have

n∏
i=1

∣∣φXi,n(u)
∣∣ = exp

(
n× 1

n

n∑
i=1

log
(∣∣φXi,n(u)

∣∣))

≤ exp

(
n× log

(
1

n

n∑
i=1

∣∣φXi,n(u)
∣∣)).

Thus, if we introduce the following notation to simplify the expressions :

Φn(u) :=
1

n

n∑
i=1

∣∣φXi,n(u)
∣∣ ,

we have

P

(
1√
n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi,n

∣∣∣∣∣
∣∣∣∣∣ ≤ δ

)
≤ Cd e

t2δ2

2

( n
t2

)d/2 ∫
Rd
en log(Φn(u))e−

n||u||2

2t2 du.

= I1 + I2 + I3

(5.4)

where the last sum corresponds to the decomposition the last integral over the whole Rd

into three parts: the integral for ||u|| ≤ r for a small r > 0 to be fixed later, the integral
for ||u|| ≥ R for another constant R > 0 to be precised, and finally the in between integral
for r < ||u|| < R, i.e.

I1 := Cd e
t2δ2

2

( n
t2

)d/2 ∫
||u||≤r

en log(Φn(u))e−
n||u||2

2t2 du,

I2 := Cd e
t2δ2

2

( n
t2

)d/2 ∫
||u||≥R

en log(Φn(u))e−
n||u||2

2t2 du,

I3 := Cd e
t2δ2

2

( n
t2

)d/2 ∫
r<||u||<R

en log(Φn(u))e−
n||u||2

2t2 du.

Let us first consider the integral I1 in a neighborhood of zero and prove the following
auxiliary lemma.
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Lemma 5.3. For any integer d ≥ 1, there exists a finite absolute constant ηd, so that for
all u ∈ Rd and for all random vector X in Rd with characteristic function φX satisfying
E[X] = 0 and E[||X||3] < +∞ we have

|φX(u)|2 ≤ 1− u∗cov(X)u+ ηd||u||3E[||X||3].

Proof of Lemma 5.3. Let X ′ be an independent copy of X and consider the new random
vector X := X −X ′. We have then φX(u) = |φX(u)|2 for all u ∈ Rd, cov(X) = 2 cov(X)

and by the triangle inequality E[||X||3] ≤ 8E[||X||3]. Since X admits a third moment, its
characteristic function φX is a class C3. Performing Taylor–Lagrange expansion at zero,
for any u ∈ Rd, there exists θu ∈]0, 1[ such that

φX(u) = 1− 1

2
u∗cov(X)u+

1

6
D(3)φX(θuu)u3,

where

D(3)φX(θuu)u3 :=

d∑
i,j,k=1

(∂ijkφX(θuu))uiujuk,

so that

∣∣∣D(3)φX(θu)u3
∣∣∣ ≤ E

 d∑
i,j,k=1

|uiujukXiXjXk|

 ≤ sup
i=1...d

|ui|3 × E
[
||X||31

]
.

Using the equivalence of norms in finite dimension, we deduce that there exists a finite
constant ηd such that for all u ∈ Rd∣∣∣∣φX(u)− 1 +

1

2
u∗cov(X)u

∣∣∣∣ ≤ ηd||u||3E[||X||3].

In other words, doubling the constant ηd, we obtain that is∣∣|φX(u)|2 − 1 + u∗cov(X)u
∣∣ ≤ ηd||u||3E[||X||3],

and in particular
|φX(u)|2 ≤ 1− u∗cov(X)u+ ηd||u||3E[||X||3].

We can now give an upper bound for the integral term I1. Indeed, applying the last
Lemma 5.3 to each random vector Xi,n, and using Cauchy–Schwarz inequality, we have

|Φn(u)|2 ≤ 1

n

n∑
i=1

∣∣φXi,n(u)
∣∣2 ≤ 1− u∗

(
1

n

n∑
i=1

cov(Xi,n)

)
u+ ηd||u||3

1

n

n∑
i=1

E[||Xi,n||3].

Now from the hypotheses 1 and 2 on the mean of the third moment of Xi,n and on the
covariance matrix, we deduce that for n large enough and for all u ∈ Rd

|Φn(u)|2 ≤ 1− c1||u||2 + ηd ρ ||u||3.

In particular, there exists r > 0 small enough such that for all ||u|| ≤ r and for n large
enough, we have

|Φn(u)|2 ≤ 1− c1
2
||u||2.

Taking the logarithm, since log(1− x) ≤ −x for 0 < x < 1, we get

log (Φn(u)) ≤ −c1
4
||u||2.
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Injecting this estimate in the integral for ||u|| ≤ r gives that for n large enough∫
||u||≤r

en log(Φn(u))e−
n||u||2

2t2 du ≤
∫
||u||≤r

e−
n
2 ( c12 + 1

t2
)||u||2du

≤ n−d/2
(
c1
2

+
1

t2

)−d/2 ∫
Rd
e−

1
2 ||u||

2

du

≤ C−1
d n−d/2

(
c1
2

+
1

t2

)−d/2
.

In particular, we have for n large enough

I1 ≤
e
t2δ2

2(
c1t2

2 + 1
)d/2 . (5.5)

We now focus on the integral I2 in the neighborhood of infinity. Since the variables Xi,n

satisfy the weak Cramér condition, there exists constants A > 0 and R > 0 such that, for
n large enough and for ||u|| > R, we have

Φn(u) ≤ 1− A

||u||b
.

Taking the logarithm, using again the fact that log(1− x) ≤ −x for 0 < x < 1, one deduce
that for n and R large enough and for all ||u|| > R

log(Φn(u)) ≤ − A

||u||b
.

Injecting this new estimate in the integral for ||u|| ≥ R gives∫
||u||≥R

en log(Φn(u))e−
n||u||2

2t2 du ≤
∫
||u||≥R

exp

(
−n

2

(
2A

||u||b
+
||u||2

t2

))
du

= Vd

∫ +∞

R

exp

(
−n

2

(
2A

sb
+
s2

t2

))
sd−1ds,

(5.6)

where Vd is the volume of the unit sphere in dimension d. Now, if we fix 0 < a < 1/b, a
simple change of variable yields∫ na

R

exp

(
−n

2

(
2A

sb
+
s2

t2

))
sd−1ds ≤ e−An

1−ab
∫ na

R

exp

(
−ns

2

2t2

)
sd−1ds

≤ e−An
1−ab

( n
t2

)−d/2 ∫ ∞
0

e−u
2/2ud−1du.

(5.7)

Besides, we have∫ +∞

na
exp

(
−n

2

(
2A

sb
+
s2

t2

))
sd−1ds ≤

∫ +∞

na
exp

(
−ns

2

2t2

)
sd−1ds

=
( n
t2

)−d/2 ∫ +∞

na+1/2/t

exp

(
−u

2

2

)
ud−1du

≤
( n
t2

)−d/2
h

(
na+1/2

t

)
,

(5.8)

where h(x) := 2xd−2e−x
2/2, as soon as na+1/2/t is large enough. Combining Equations

(5.6), (5.7) and (5.8), we get that there exists a constant Γd which only depends on the
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dimension d, such that

I2 ≤ Γd e
t2δ2

2

(
e−An

1−ab
+ h

(
na+1/2

t

))
. (5.9)

We are left with the in between integral I3, where the integral bounds r and R are now
fixed. Since the sequence Xi,n satisfy the weak Cramér condition, from Proposition
2.10, there exists ε > 0 such that, for n large enough, uniformly in r < ||u|| < R we
have Φn(u) ≤ 1 − ε. We can moreover choose ε small enough so that we also have
log(Φn(u)) ≤ −ε/2. Injecting this last estimate in the integral between r and R yields:∫

r<||u||<R
en log(Φn(u))e−

n||u||2

2t2 du ≤
(
e−ε/2

)n ∫
r<||u||≤R

e−
n||u||2

2t2 du

≤
(
e−ε/2

)n ( n
t2

)−d/2 ∫
Rd
e−

1
2 ||u||

2

du

≤ C−1
d

(
e−ε/2

)n ( n
t2

)−d/2
.

In particular, we get

I3 ≤ e
t2δ2

2

(
e−ε/2

)n
. (5.10)

Eventually, combining Equations (5.4),(5.5),(5.9) and (5.10), we get that for all δ > 0 and
t > 0, and for n large enough

P

(
1√
n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi,n

∣∣∣∣∣
∣∣∣∣∣ ≤ δ

)
≤ e

t2δ2

2(
ct2

2 + 1
)d/2 + Γd e

t2δ2

2

(
e−An

1−ab
+ h

(
na+1/2

t

))

+ e
t2δ2

2

(
e−ε/2

)n
.

Letting t = 1/δ, we conclude that there exists a positive constant Γ which does not
depend on n or δ such that for n large enough

P

(
1√
n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi,n

∣∣∣∣∣
∣∣∣∣∣ ≤ δ

)
≤ Γ

(
δd + e−An

1−ab
+ h

(
δna+1/2

)
+
(
e−ε/2

)n)
.

In particular, if δ is of the form δ = n−γ for some 0 < γ < a + 1
2 < 1

b + 1
2 , making the

constant Γ a bit larger, we get that for n large enough

P

(
1√
n

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi,n

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

nγ

)
≤ Γ

ndγ
,

hence the result.

5.3 Edgeworth expansion

We now give the proof of Theorem 4.3 stated in Section 4 which asserts that there
is a valid Edgeworth expansion for the normalized sum of independent random vectors
satisfying the weak mean Cramér condition (2.3).

Proof of Theorem 4.3. As already noticed in Remark 4.2, the classical Cramér condition
is used only once in the original proof of Theorems 20.1 and 20.6 of [BR86], from which
we adopt the notations, namely for the control of the integral I1 in Equation (20.36) p.
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211. As our hypotheses in Theorem 4.3 only differ from the ones of Battharcharia and
Rao by the fact that the classical Cramér condition is replaced by the weak mean Cramér
condition, we are left to check in details that an analoguous control of I1 can be actually
achieved under the weakened Cramér condition. Roughly speaking, the global strategy
of the original proof is to truncate and center the original variables Xi,n appearing in the
statement and show that if the normalized sum of the truncaded and centered variables
satisifies a valid Edgeworth expansion, then so does the normalized sum of the original
variables. Thus, starting from the variables (Xi,n)1≤i≤n, we introduce the new variables

Zi,n := Xi,n1||Xi,n||≤
√
n − E[Xi,n1||Xi,n||≤

√
n],

with components in Rd

Zi,n =: (Zi,n(1), . . . , Zi,n(d)) .

Note that we have ||Zi,n|| ≤ 2
√
n for all 1 ≤ i ≤ n. We denote by Q′n the law of the

normalized sum

Q′n
law
:=

1√
n

(Z1,n + . . .+ Zn,n) ,

and by Q̂′n its characteristic function. The integral term I1 which is the object of our
attention involves multi-index derivatives of Q̂′n so let us specify our notations. For a
given multi-index γ = (γ1, . . . , γd) ∈ Nd, we denote by |γ| its length, namely |γ| :=

∑d
i=1 γ

i.
If we are now given a family a n multi-indexes γ = (γ1, . . . , γn) with γi = (γji )1≤j≤d ∈ Nd,
we set |γ| :=

∑n
i=1 |γi| =

∑
i,j γ

j
i . If α ∈ Nd and β ∈ Nd are multi-indexes such that

αi ≤ βi for all 1 ≤ i ≤ d, the associated multinomial coefficient is denoted by(
β − α
γ

)
:=
|β − α|!∏n
i=1 |γi|!

.

The proof of Theorems 20.1 and 20.6 in [BR86] also involves a smoothing Kernel Kε,
with Fourier transform K̂ε, whose derivatives satisfy the a priori estimate (20.18) p.210,
namely for all ε > 0, for all t ∈ Rd, and for all mutli-indexes α of length |α| ≤ s+ d+ 1∣∣∣DαK̂ε(t)

∣∣∣ ≤ ε|α|c3(s, d)e−(ε||t||)1/2 , (5.11)

for some absolute constant c3(s, d) > 0. We can now make explicit the integral term I1
that we want to control under the weakened Cramér condtion:

I1 = I1(n, ε) :=

∫
||t||≥cn

∣∣∣Dβ−αQ̂′n(t)
∣∣∣ ∣∣∣DαK̂ε(t)

∣∣∣ dt, (5.12)

where cn :=
√
n

16ρ3(n) . By independence of the variables Xi,n and thus by independence of
the new variables Zi,n, we have

Q̂′n(t) =

n∏
i=1

φi,n

(
t√
n

)
, with φi,n(t) = E

[
ei t·Zi,n

]
.

Let us observe that, for all multi-indexes α = (α1, . . . , αd) ∈ Nd, we have∣∣∣∣Dαφi,n

(
t√
n

)∣∣∣∣ =
1

n|α|/2

∣∣∣∣∣∣E
ei t√

n
·Zi,n

 d∏
j=1,αj 6=0

Zi,n(j)α
j

∣∣∣∣∣∣ ,
and thus, since |Zi,n| ≤ 2

√
n, ∣∣∣∣Dαφi,n

(
t√
n

)∣∣∣∣ ≤ 2|α|. (5.13)

EJP 22 (2017), paper 59.
Page 18/24

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP77
http://www.imstat.org/ejp/


A weak Cramér condition and applications

Using the multi-index and multidimensional Leibniz rule, if α ∈ Nd and β ∈ Nd are
multi-indexes such that αi ≤ βi for all 1 ≤ i ≤ d, we have then

Dβ−αQ̂′n(t) =
∑

γ∈(Nd)n,|γ|=|β−α|

(
β − α
γ

) n∏
i=1

Dγiφi,n

(
t√
n

)
,

where the sum is taken on the family of multi-indexes γ = (γ1, . . . , γn) ∈
(
Nd
)n

whose
total length |γ| =

∑
i,j γ

i
j is equal to the length |β − α| of the multi-index β − α ∈ Nd.

Taking the modulus, we have then

∣∣∣Dβ−αQ̂′n(t)
∣∣∣ =

∣∣∣∣∣∣∣∣∣
∑

γ∈(Nd)n

|γ|=|β−α|

(
β − α
γ

) n∏
i=1
γi 6=0

Dγiφi,n

(
t√
n

) n∏
i=1

γi=0∈Nd

φi,n

(
t√
n

)∣∣∣∣∣∣∣∣∣
≤

∑
γ∈(Nd)n

|γ|=|β−α|

(
β − α
γ

) ∣∣∣∣∣∣∣
n∏
i=1
γi 6=0

Dγiφi,n

(
t√
n

)∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣
n∏
i=1
γi=0

φi,n

(
t√
n

)∣∣∣∣∣∣∣,
and using the inequality (5.13), we deduce that

∣∣∣Dβ−αQ̂′n(t)
∣∣∣ ≤ 2|β−α|

∑
γ∈(Nd)n

|γ|=|β−α|

(
β − α
γ

) ∣∣∣∣∣∣∣
n∏
i=1
γi=0

φi,n

(
t√
n

)∣∣∣∣∣∣∣ . (5.14)

Combining both estimates (5.11) and (5.14) in the expression (5.12) of I1, we get that
for all integer n ≥ 1 and for all ε > 0

I1(n, ε) ≤ c3(s, d)ε|α|2|β−α|
∑

γ∈(Nd)n

|γ|=|β−α|

(
β − α
γ

)
Jγ(n, ε), (5.15)

where we set

Jγ(n, ε) :=

∫
||t||≥cn

∣∣∣∣∣∣∣
n∏
i=1
γi=0

φi,n

(
t√
n

)∣∣∣∣∣∣∣ e−(ε||t||)1/2dt.

Performing the change of variables t/
√
n 7→ t, this last term reads

Jγ(n, ε) = nd/2
∫
||t||≥ cn√

n

∣∣∣∣∣∣∣
n∏
i=1
γi=0

φi,n (t)

∣∣∣∣∣∣∣ e−(ε
√
n||t||)1/2dt.

By hypothesis, there exists r > 0 such that for n large enough cn/
√
n ≥ r. Therefore,

noticing that the number of 1 ≤ i ≤ n such that γi = 0 is greater than n− |γ| and using
the arithmetico-geometric inequality as in the proof of Theorem 3.1, we have for n large
enough, and for all ε > 0

Jγ(n, ε) ≤ nd/2
∫
||t||≥r

exp

(
(n− |γ|) log

(
n

n− |γ|
1

n

n∑
i=1

|φi,n (t) |

))
e−(ε

√
n||t||)1/2dt
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or, developping the logarithm,

Jγ(n, ε) ≤ nd/2 exp

(
(n− |γ|) log

(
n

n− |γ|

))
Kγ(n, ε), (5.16)

where

Kγ(n, ε) :=

∫
||t||≥r

exp

(
(n− |γ|) log

(
1

n

n∑
i=1

|φi,n (t) |

))
e−(ε

√
n||t||)1/2dt.

We are now left to check that, if the characteristic functions of the Xi,n satisfy the weak
mean Cramér condition of the statement, then so do the characteristic functions φi,n of
the truncated and centered variables Zi,n. The next lemma shows that it is the case, at
least for ||t|| less that a fractional power of n.

Lemma 5.4. For all integers n ≥ 1 and for all t ∈ Rd, we have

1

n

n∑
i=1

|φi,n (t) | ≤ 1

n

n∑
i=1

∣∣φXi,n(t)
∣∣+

2ρ

n
s
2
. (5.17)

In particular, under the hypotheses of Theorem 4.3, for all 0 < r < R, there exists η > 0

such that we have the local Cramér condition

lim sup
n→+∞

sup
r<||t||<R

1

n

n∑
i=1

|φi,n (t) | ≤ 1− η, (5.18)

and there exists A > 0 such that, for n large enough and for all R < ||t|| ≤
(
A
4ρ

) 1
b

n
s
2b

1

n

n∑
i=1

|φi,n (t) | ≤ 1− A

2||t||b
. (5.19)

Proof of Lemma 5.4. Let us observe that

|φi,n (t) | =
∣∣E[eit·Zi,n ]

∣∣ =
∣∣∣E [ei t·Xi,n1||Xi,n||≤

√
n

]∣∣∣
=
∣∣∣E [ei t·Xi,n1||Xi,n||≤

√
n

]
+ P(||Xi,n|| >

√
n)
∣∣∣

=
∣∣∣E [ei t·Xi,n

]
− E

[(
ei t·Xi,n − 1

)
1||Xi,n||>

√
n

]∣∣∣.
In particular, recalling that, by definition φXi,n(t) := E

[
ei t·Xi,n

]
, we have

|φi,n (t) | − |φXi,n(t)| ≤
∣∣∣E [(ei t·Xi,n − 1

)
1||Xi,n||>

√
n

]∣∣∣
≤ 2P(||Xi,n|| >

√
n)

≤ 2E [||Xi,n||s]
n
s
2

.

Summing over i yields Equation (5.17). Now, if the variables Xi,n belong to the class
C(d, b), there exists R > 0 and A > 0, such that for n large enough, and for all ||t|| > R

1

n

n∑
i=1

∣∣φXi,n(t)
∣∣ ≤ 1− A

||t||b
.
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In particular, for R < ||t|| ≤
(
A
4ρ

) 1
b

n
s
2b , we deduce from Equation (5.17) that

1

n

n∑
i=1

|φi,n (t) | ≤ 1− A

2||t||b
.

Now, from Proposition 2.10, if the sequence Xi,n belong to the class C(d, b), we also have
a local Cramér estimate, namely, there exists η > 0 such that

lim sup
n→+∞

sup
r<||t||<R

1

n

n∑
i=1

|φXi,n (t) | ≤ 1− 2η.

Therefore, choosing n large enough, we deduce from Equation (5.17) that

lim sup
n→+∞

sup
r<||t||<R

1

n

n∑
i=1

|φi,n (t) | ≤ 1− η,

hence the result.

Let us go back to the proof of Theorem 4.3 and the estimate of Kγ(n, ε) from which we
will deduce obvious estimates for Jγ(n, ε) and finally I1(n, ε). As in the proof of Theorem
3.1, let us decompose Kγ(n, ε) as the sum

Kγ(n, ε) := K1
γ(n, ε) +K2

γ(n, ε) +K3
γ(n, ε),

where

K1
γ(n, ε) :=

∫
r≤||t||<R

exp

(
(n− |γ|) log

(
1

n

n∑
i=1

|φi,n (t) |

))
e−(ε

√
n||t||)1/2dt,

K2
γ(n, ε) :=

∫
R≤||t||≤( A4ρ )

1
b n

s
2b

exp

(
(n− |γ|) log

(
1

n

n∑
i=1

|φi,n (t) |

))
e−(ε

√
n||t||)1/2dt,

K3
γ(n, ε) :=

∫
||t||≥( A4ρ )

1
b n

s
2b

exp

(
(n− |γ|) log

(
1

n

n∑
i=1

|φi,n (t) |

))
e−(ε

√
n||t||)1/2dt.

From the local estimate (5.18), for n large enough and for all ε > 0, the integral K1
γ(n, ε)

is bounded by

K1
γ(n, ε) ≤ e−(n−|γ|)η

∫
r≤||t||≤R

e−(ε
√
n||t||)1/2dt ≤ Bd(R)e−(n−|γ|)η, (5.20)

where Bd(R) denotes the volume of the ball of radius R in Rd. The right hand side of
(5.20) goes to zero exponentially fast in n as n goes infinity, uniformly in ε > 0. We now
consider the integral term K3

γ(n, ε) and we define

R(n, ε) := ε

(
A

4ρ

) 1
b

n
s
2b+ 1

2 .

Bounding the first exponential term by one and performing the simple change of variables
ε
√
nt 7→ u, we get that for all n ≥ 1 and for all ε, the term K3

γ(n, ε) is bounded by

K3
γ(n, ε) ≤

∫
||t||≥( A4ρ )

1
b n

s
2b

e−(ε
√
n||t||)1/2dt = (ε

√
n)−d

∫
||u||≥R(n,ε)

e−
√
||u||du.
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There exists a positive constant C(d) only depends on the dimension d, such that∫
||u||≥R(n,ε)

e−
√
||u||du = C(d)

∫ +∞

R(n,ε)

rd−1e−
√
rdr,

and an integration by parts gives∫ +∞

R(n,ε)

rd−1e−
√
rdr = 2R(n, ε)d−

1
2 e−
√
R(n,ε) +

∫ +∞

R(n,ε)

2d− 1√
r

rd−1e−
√
rdr

≤ 2R(n, ε)d−
1
2 e−
√
R(n,ε) +

2d− 1√
R(n, ε)

∫ +∞

R(n,ε)

rd−1e−
√
rdr

so that, as soon as R(n, ε) > 4d2, we have∫ +∞

R(n,ε)

rd−1e−
√
rdr ≤ 2R(n, ε)d√

R(n, ε)− (2d− 1)
e−
√
R(n,ε) ≤ 2R(n, ε)de−

√
R(n,ε).

and
K3
γ(n, ε) ≤ 2C(d)(ε

√
n)−dR(n, ε)de−

√
R(n,ε). (5.21)

In particular, if ε = εn, then K3
γ(n, εn) goes to zero faster than any polynomial as n goes

infinity, as soon as R(n, εn) diverges with a polynomial growth. It is always the case if
the following conditions are fulfilled:

1

b
>
s− 3

s
, εn = o

(
n−

s−2
2

)
, and lim

n→+∞
log
(
εnn

s−2
2

)
/ log(n) = 0. (5.22)

Now, from the asymptotic Cramér estimate (5.19), for n large enough and for all ε > 0,
the integral K2

γ(n, ε) is bounded by

K2
γ(n, ε) ≤

∫
R≤||t||≤( A4ρ )

1
b n

s
2b

e
− (n−|γ|)A

2||t||b e−(ε
√
n||t||)1/2dt

≤
∫
||t||≥R

e
− (n−|γ|)A

2||t||b e−(ε
√
n||t||)1/2dt

≤ Vd
∫
u≥R

e−
(n−|γ|)A

2ub e−(ε
√
nu)1/2uk−1du.

As in Equations (5.7) and (5.8) in the end of the proof of Theorem 3.1, the last term can
be controlled by decomposing the integral between R and na and then between na and
+∞, with a such that 1− ab > 0. Namely, there exists a positive constant C̃(d) > 0 which
only depends on the dimension d such that,∫

R≤u≤na
e−

(n−|γ|)A
4ub e−(ε

√
nu)1/2ud−1du ≤ C̃(d)(ε

√
n)−d exp

(
−n1−ab(1 + o(1))

)
. (5.23)

Otherwise, we have∫
u≥na

e−
(n−|γ|)A

4ub e−(ε
√
nu)1/2ud−1du ≤ (ε

√
n)−d

∫
u≥εna+1/2

e−
√
uud−1du. (5.24)

Therefore, combining (5.23) and (5.24), we get that if ε = εn goes to zero as n goes to
infinity, the integral K2

γ(n, ε) goes to zero faster than any polynomial as n goes infinity,

as soon as εnna+1/2 goes to infinity with a polynomial growth. This is always the case if

1

b
>
s− 3

2
, εn = o

(
n−

s−2
2

)
, and lim

n→+∞
log
(
εnn

s−2
2

)
/ log(n) = 0. (5.25)
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Note that since s ≥ 3, condition (5.25) is actually stronger than condition (5.22). From
Equations (5.20)–(5.24), we thus deduce that if the last condition (5.25) is satisfied, then
as n goes to infinity, uniformly in γ such that |γ| = |β − α|, we have

K2
γ(n, εn) = o(n−α), for all α > 0. (5.26)

From Equation (5.16), we then deduce that, uniformly in γ such that |γ| = |β − α|

Jγ(n, εn) = o(n−α), for all α > 0. (5.27)

To conclude, let us remark that in Equation (5.15), the number multi-indexes γ ∈ (Nk)n

such that |γ| = |β − α| is polynomial in n of degree less than |β − α|. Therefore, we also
have

I1(n, εn) = o(n−α), for all α > 0.

At this point, we have thus a similar control of I1 = I1(n, εn) as in Equation (20.34) of
[BR86]. The rest of the proof follows the exact same lines as the proof of Bhattacharya

and Rao, with the only difference that εn = o
(
n−

s−2
2

)
here, in place of ε = e−dn in the

original proof. Therefore, we have the control∣∣∣∣∫ fdQn −
∫
fdQ̃n

∣∣∣∣ ≤Ms′(f)δ1(n) + c(s, d, ρ)ω̄f (2εn : Φ), (5.28)

which is precisely the one given by Equation (4.4) in the statement of Theorem 4.3.

Acknowledgments. We are grateful to the anonymous Referee for his/her very con-
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