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Abstract

In this article, we investigate the local behavior of the occupation measure µ of a
class of real-valued Markov processesM, defined via a SDE. This (random) measure
describes the time spent in each set A ⊂ R by the sample paths ofM. We compute
the multifractal spectrum of µ, which turns out to be random, depending on the
trajectory. This remarkable property is in sharp contrast with the results previously
obtained on occupation measures of other processes (such as Lévy processes), where
the multifractal spectrum is usually deterministic, almost surely. In addition, the
shape of this multifractal spectrum is very original, reflecting the richness and variety
of the local behavior. The proof is based on new methods, which lead for instance
to fine estimates on Hausdorff dimensions of certain jump configurations in Poisson
point processes.
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1 Introduction

The occupation measure of a Rd-valued stochastic process (Xt)t≥0 describes the time
spent by X in any borelian set A ⊂ Rd. It is the natural measure supported on the
range of the process X, and plays an important role in describing the different fractal
dimensions of the range of X. Local regularity results for the occupation measure and
its density when it exists (often called local times if X is Markovian) yield considerable
information about the path regularity of the process itself, see the survey article by
Geman and Horowitz [14] on this subject.
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Stable-like occupation measure

We describe the local behavior of this occupation measure via its multifractal analy-
sis. Multifractal analysis is now identified as a fruitful approach to provide organized
information on the fluctuation of the local regularity of functions and measures, see for
instance [18, 13]. Its use in the study of pointwise regularity of stochastic processes
and random measures has attracted much attention in recent years, e.g. (time changed)
Lévy processes [17, 5, 11, 12, 2], stochastic differential equations with jumps [4, 28, 26],
the branching measure on the boundary of a Galton-Watson tree [21, 22], local times
of a continuous random tree [7, 3], SPDE [24, 23, 19], Brownian and stable occupation
measure [15, 25, 20, 16, 10], amongst many other references.

In this article, we obtain the almost-sure multifractal spectrum of the occupation
measure of stable-like jump diffusions, which turns out to be random, depending on
the trajectory. This remarkable property is in sharp contrast with the results previously
obtained on occupation measures of other processes (such as Lévy processes), where the
multifractal spectrum is usually deterministic, almost surely. In addition, the shape of
this multifractal spectrum is very original, reflecting the richness and variety of the local
behavior. The proof is based on new methods, which lead for instance to fine estimates
on Hausdorff dimensions of certain jump configurations in Poisson point processes.

1.1 Definitions and notations

We first introduce the class of processes we focus on.

Definition 1.1. Let ε0 > 0, and β : R→ [ε0, 1−ε0] be a nowhere constant non-decreasing,
Lipschitz continuous map. The stable-like processM is the pure jump Markov process
whose generator can be written as

Lf(x) =

∫ 1

0

(f(x+ u)− f(x))β(x)u−1−β(x)du. (1.1)

Introduced by Bass [6] in the late 80’s by solving a martingale problem, this class
of processes has sample paths whose characteristics change as time passes, which is a
relevant feature when modeling real data (e.g. financial, geographical data). Roughly
speaking, the stable-like processes behave locally like a stable process, but the stability
parameter evolves following the current position of the process, see [4] or [28] for an
explanation from the tangent processes point of view.

Let us comment on the assumptions. The truncation at 1 for the jump measure is
not a restriction, since there is almost surely a finite number of large jumps in the unit
interval. From a technical standpoint, our actual proof relies heavily on the monotonicity
of the index function β. In particular, it is used (see Section 3) for determining the range
of the local dimensions of the occupation measure; it is also essential in the transference
from time spectrum to space spectrum (see Theorem 7.2). Of course, it would be worth
studying the same question with weaker assumptions.

Let M = {Mt, t ∈ [0, 1]} be a stable-like process associated with a given function
x 7→ β(x) as in Definition 1.1. Our purpose is to describe the local behavior of the
occupation measure ofM defined as

µ(A) =

∫ 1

0

1A(Mt)dt. (1.2)

It depicts how longM stays in any Borel set A ⊂ R. We investigate the possible local
dimensions for µ, as well as its multifractal spectrum. Let us recall these notions.

Definition 1.2. Let ν be a positive measure on R, whose support is Supp (ν) := {x ∈
R : ∀ r > 0, ν(B(x, r)) > 0}. The upper local dimension of ν at the point x ∈ Supp (ν) is
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Stable-like occupation measure

defined by

dim(ν, x) = lim sup
r↓0

log ν(B(x, r))

log r
.

Similarly, the lower local dimension of ν at x is

dim(ν, x) = lim inf
r↓0

log ν(B(x, r))

log r
.

When dim(ν, x) and dim(ν, x) coincide at x, the common value is denoted by dim(ν, x),
the local dimension of ν at x.

Our aim is to investigate two multifractal spectra of the occupation measure µ

associated with stable-like processes, related to these local dimensions. Let dimH stand
for the Hausdorff dimension in R, with the convention that dimH(∅) = −∞. The first
multifractal spectrum (in space) is defined as follows.

Definition 1.3. Let O be an open set in R, and ν a Borel measure on R. Consider the
level sets

Eν(O, h) = {x ∈ O ∩ Supp (ν) : dim(ν, x ) = h},
Eν(O, h) = {x ∈ O ∩ Supp (ν) : dim(ν, x ) = h}.

The space upper and lower multifractal spectrum of ν are the mappings

dν(O, ·) : h 7→ dimHEν(O, h),

dν(O, ·) : h 7→ dimHEν(O, h).

As the occupation measure is defined via the time-indexed processM, it is natural to
consider the set of times

{t ∈ [0, 1] : dim(µ,Mt) = h} and {t ∈ [0, 1] : dim(µ,Mt) = h}

where the upper (or lower) local dimension of µ atMt equals h. This consideration leads
to the definition of time multifractal spectra.

Definition 1.4. For every open set O ⊂ [0, 1], set

E
t

µ(O, h) = {t ∈ O : dim(µ,Mt) = h},

and the similar set for lower local dimensions Etµ(O, h).
The corresponding time upper multifractal spectrum of µ is

d
t

µ(O, ·) : h 7→ dimHE
t

µ(O, h),

One defines similarly the time lower multifractal spectrum dtµ(O, ·).

1.2 Main results

Let us start with known results on stable subordinators. The famous paper by Hu and
Taylor [15] states that for every α-stable subordinator {Lαt ; t ∈ R+} whose occupation
measure is denoted by µα, almost surely for all x ∈ Suppµα,

dim(µα, x) = α and dim(µα, x) ∈ [α, 2α]. (1.3)

It is a classical result [9] that when α ∈ (0, 1), the image of any interval I by Lα has
Hausdorff dimension α, almost surely. This implies that the support of µα has Hausdorff
dimension α, almost surely.
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h

dµα(h) = gα(h)

α

α 2α
0

Figure 1: Space upper multifractal spectrum of µα.

With all this in mind, the lower spectrum of µα is trivial: for each open interval O

intersecting Supp (µ), one has dµα(O, h) =

{
α when h = α,

−∞ when h 6= α.
Hu and Taylor also prove that the upper spectrum is much more interesting (see

Figure 1): Almost surely, for each open interval O that intersects Supp (µα),

dµα(O, h) = gα(h) :=

{
α
(

2α
h − 1

)
when h ∈ [α, 2α],

−∞ otherwise.
(1.4)

Regarding the time upper spectrum, Hu and Taylor prove that a.s.,

d
t

µα(O, h) =
gα(h)

α
=

{
2α/h− 1 when h ∈ [α, 2α],

−∞ otherwise.
(1.5)

Both time and space upper multifractal spectra are homogeneous, in the sense that they
do not depend on the choice of O.

The correspondence between (1.4) and (1.5) follows from the fact that for every
α-stable subordinator, almost surely for each measurable set E ⊂ [0, 1],

dimH(Lα(E)) = α · dimH(E). (1.6)

Up to a countable number of points, writing O = (g, d), one has the equality

Lα
(
E
t

µα(O, h)
)

= Eµα
(
(Lαg ,Lαd ), h

)
.

The method developed by Hu and Taylor consists first in proving (1.5), and then in
applying (1.6) to get (1.4). We follow this strategy in our proof.

Our first result gives the possible values for the local dimensions of the occupation
measure µ associated with a stable-like processM, which is an analog of (1.3).

Theorem 1.5. Consider a stable-like processM associated to a non-decreasing mapping
β, as in Definition 1.1, and the associated occupation measure µ. With probability 1, for
every x ∈ Supp (µ),

dim(µ, x) = β(x) and dim(µ, x) ∈ [β(x), 2β(x)].

Hence, the supports of the lower spectra dµ and dtµ are random, depending on the
trajectory ofM.

The time lower multifractal spectrum is then quite easy to understand, since the level
set Etµ(O, h) contains either one point or is empty, depending on whether h belongs to
the range of the index process {β(Mt) : t ∈ O} or not. The similar remark holds when
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Figure 2: Time upper multifractal spectrum of µ on an open set O. The spectrum (in
thick) is obtained as the supremum of a random countable number of functions of the
form gα(h)

α (drawn using dotted graphs), for the values α ∈ β(Mt), t ∈ O.

considering space lower spectrum. Theorem 1.5 indicates that the spectrum related to
the upper local dimension dim(µ, ·) should be more interesting. This is indeed the case,
as resumed in Theorem 1.7 on time spectra. Set

ĝα(h) :=

{
α
(

2α
h − 1

)
when h ∈ [α, 2α),

−∞ otherwise.

Note that the only difference between g and ĝ is at the value h = 2α.

Definition 1.6. For every monotone càdlàg function Υ : R+ → R, we denote by S(Υ)

the set of jumps of Υ.

Theorem 1.7. Set the (at most countable) set of real numbers

E1 = {β(Mt) : t ∈ S(M) and β(Mt) ≥ 2β(Mt−)}.

With probability 1, for every non-trivial open interval O ⊂ [0, 1],

dtµ(O, h) =

{
0 if h ∈ {β(Mt) : t ∈ O},
−∞ otherwise.

(1.7)

In addition, with probability one, for every h ∈ R+ \E1 and every non-trivial open interval
O ⊂ [0, 1], we have

d
t

µ(O, h) = sup

{
ĝα(h)

α
: α ∈ {β(Mt) : t ∈ O}

}
, (1.8)

and for every h ∈ E1 with h = β(Mt),

d
t

µ(O, h) =

{
0 if dim(ν,Mt) = β(Mt) and t ∈ O,
−∞ otherwise.

(1.9)

Remark 1.8. • The first part is trivial. Observe that there is a subtle difference
between (1.7) and (1.11) (space lower spectrum), since at each jump time t forM,
there is no s ∈ R such thatMs =Mt−.
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h

dµ(O, h)

0
β(Mt)

Figure 3: Space upper multifractal spectrum of µ on an open set O. The spectrum (in
thick) is obtained as the supremum of a random countable number of functions of the
form gα(h), for the values α ∈ β(Mt−),Mt ∈ O. It may happen that there is a hole in the
support of dO,µ (in red in the figure). In this case, the value of dO,µ at β(Mt) is either 0
or −∞.

• If, for instance, the range of β(·) is included in [1/2, 9/10], then almost surely E1 = ∅.
• The proof of Theorem 1.7 is based on a more general result (Theorem 4.1) for time

spectrum.

The space multifractal properties of µ are summarized in the following theorem.

Theorem 1.9. Set the (at most countable) sets of real numbers

E2 = {2β(Mt−) : t ∈ S(M) and β(Mt) ≥ 2β(Mt−)},
E = E1 ∪ E2. (1.10)

where E1 is defined in Theorem 1.7. With probability 1, for every non-trivial open interval
O ⊂ R, one has

dµ(O, h) =

{
0 if h ∈ {β(Mt) :Mt ∈ O, t ∈ [0, 1]},
−∞ otherwise,

(1.11)

and for every h ∈ R+ \ E ,

dµ(O, h) = sup
{
ĝα(h) : α ∈ {β(Mt) :Mt ∈ O, t ∈ [0, 1]}

}
. (1.12)

First, one shall notice that both spectra are random, depending on the trajectory and
on the interval O. In this sense, dµ(O, ·) and dµ(O, ·) are inhomogeneous, contrarily to
what happens for the occupation measure µα of α-stable subordinators (the spectra do
not depend on O).

One shall interpret the space upper spectrum as the supremum of an infinite number
of space multifractal spectra of “locally α-stable processes” for all values α ∈ {β(Mt) :

Mt ∈ O, t ∈ [0, 1]}. This formula finds its origin in the fact that locally, M behaves
around each point of continuity t as an α-stable process with α = β(Mt).

The allure of a typical space upper multifractal spectrum is depicted in Figure 3. This
shape is very unusual in the literature.

First, observe that, since β andM are increasing maps, when t0 ∈ S(M) is a jump
time forM, then the “local” index ofM jumps at t0 from β(Mt0−) to β(Mt0), and for
t ≥ t0, the only possibility to have dµ(O,Mt) = β(Mt0) is when t = t0. Similarly, when
t < t0, it is not possible to have dµ(O,Mt) = 2β(Mt0−).
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Stable-like occupation measure

In particular there may be a “hole” in the support of dµ(O, ·). Indeed, a quick
analysis of the functions gα(·) shows that this happens when there is a time t0 such that
β(Mt) > 2β(Mt−), which occurs with positive probability for functions β(·) satisfying
2ε0 < 1− ε0, see Definition 1.1.

All this explains the set of exceptional points E in Theorem 1.9. We deal with these
exceptional points in Section 7, Proposition 7.1, whose statement is rather long but
whose proof follows directly from a careful analysis of the previous results.

Following these lines, we start by proving Theorem 1.7. The original methods by Hu
and Taylor do not extend here, and an alternative way to compute the time multifractal
spectrum of µ is needed. For this, some scenario leading to the fact that µ has exactly
an upper local dimension equal to h at x =Mt is identified. More precisely, it will be
proved that dµ(O,Mt) = h when t is infinitely many times very closely surrounded by
two “large” jump times for the Poisson point process involved in the construction ofM.
Using this property, we build in Section 6 a (random) Cantor set of such times t with the
suitable Hausdorff dimension. The difficulty lies in the fact that the expected Hausdorff
dimension is random and depends on the interval we are working on.

The rest of this paper is organized as follows. We start by recalling basic properties
of the stable-like processes in Section 2. The local dimensions of the occupation measure
(Theorem 1.5) are studied in Section 3. The time spectra (Theorems 1.7) are obtained in
Section 4 using a general result (Theorem 4.1), whose proof is given in Sections 5 and 6.
Finally, the space spectrum (Theorem 1.9) is dealt with in Section 7, together with the
dimension of images of arbitrary sets by stable-like processes (Corollary 7.3).

2 Preliminaries

First of all, stable-like processes admit a Poisson representation which was regularly
used to study path properties of such processes, see for instance [4, 28, 27]. Let us
recall this representation and a coupling associated with it which will be useful for our
purposes.

Let N(dt, dz) be a Poisson measure on R+ × R with intensity dt ⊗ dz/z2. Such a
measure can be constructed from a Poisson point process which is the set of jumps of
a Lévy process with triplet (0, 0, dz/z2), see for instance Chapter 2 of [1]. We denote
Ft = σ ({N(A) : A ∈ B([0, t]× [0,+∞))}).

Recall the definition of a stable-like process and formula (1.1). The existence and
uniqueness of such jump diffusion processes is classical and recalled in the next proposi-
tion. Observe that by the substitution u = z1/β(x)(for each fixed x), the generator of a
stable-like process is rewritten as

Lf(x) =

∫ 1

0

(
f(x+ z

1
β(x) )− f(x)

) dz
z2
. (2.1)

Proposition 2.1. Let N be as in the last paragraph.

1. There exists a unique càdlàg (Ft)t∈[0,1]-adapted solution to

Mt =

∫ t

0

∫ 1

0

z
1

β(Mu−)N(du, dz). (2.2)

Furthermore,M is an increasing strong Markov process with generator L given
by (2.1).

2. For every α ∈ (0, 1), we define

Lαt =

∫ t

0

∫ 1

0

z
1
αN(du, dz). (2.3)
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Stable-like occupation measure

Then for all α ∈ (0, 1), {Lαt , t ∈ [0, 1]} is an α-stable subordinator whose jumps
larger than 1 are truncated.

Classical arguments based on Gronwall inequality and Picard iteration yield the first
item. For a proof, see Proposition 13 of [4] or Proposition 2.1-2.3 of [28] with some slight
modifications. The second item is standard, see for instance Section 2.3 of [1].

Remark 2.2. Recall that S(Υ) is the set of jumps of a monotone càdlàg function Υ :

[0, 1]→ R+.
Observe that by construction, almost surely, the processesM and the family of Lévy

processes (Lα)α∈(0,1) are purely discontinuous, increasing, with finite variation, and that
they jump at the same times, i.e. S(M) = S(Lα).

Next observation is key for the study of the local dimensions of µ.

Proposition 2.3. Consider the processM and Lα for all α ∈ (0, 1) introduced in Propo-
sition 2.1. Almost surely, for all 0 ≤ s ≤ t ≤ 1,

0 ≤ Lβ(Ms)
t − Lβ(Ms)

s ≤Mt −Ms ≤ Lβ(Mt−)
t − Lβ(Mt−)

s .

This is intuitively true because we construct simultaneouslyM and Lα such that they
jump at the same times, and the jump size of Lα is always larger than Lα′ whenever
α > α′. See Proposition 14 of [4] for a proof.

3 Local dimensions of µ: Proof of Theorem 1.5

Recall that (1.3) holds for a stable subordinator. A straightforward adaptation of Hu
and Taylor’s argument leads to (1.3) for a stable subordinator without jumps of size
larger than 1.

Now, observe that almost surely, for all α ∈ Q ∩ (0, 1), formula (1.3) is true. This,
together with Proposition 2.3, leads to the local dimension of µ.

Proof of Theorem 1.5. Three cases may occur.

1. x =Mt, where t is a continuity point ofM. Due to the coupling in their construction
(Proposition 2.1), almost surely, for every α, the process Lα is also continuous at t.

By continuity, for arbitrary rational numbers α, α′ ∈ (0, 1) satisfying α < β(Mt) <

α′, there exists a small δ > 0 such that for all s ∈ (t − δ, t + δ), α < β(Ms) < α′.
Using the occupation measure µα of the process Lα, and applying Proposition 2.3
to Lα and Lα′ , one gets when r is small

µα
′(

(Lα
′

t − r,Lα
′

t + r)
)
≤ µ

(
(Mt − r,Mt + r)

)
≤ µα

(
(Lαt − r,Lαt + r)

)
(3.1)

By formula (1.3) for the lower and upper local dimensions of µα, for all small ε > 0,
almost surely, one has for r small enough that

α− ε ≤
logµα

(
(Lαt − r,Lαt + r)

)
log(r)

≤ 2α+ ε,

and the same for α′. Hence

logµ
(
(Mt − r,Mt + r)

)
log(r)

≥
logµα

(
(Lαt − r,Lαt + r)

)
log(r)

≥ α− ε.

and

logµ
(
(Mt − r,Mt + r)

)
log(r)

≤
logµα

′(
(Lα′t − r,Lα

′

t + r)
)

log(r)
≤ 2α′ + ε.
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Stable-like occupation measure

Therefore, α− ε ≤ dim(µ, x) ≤ dim(µ, x) ≤ 2α′ + ε.

On the other hand, still by formula (1.3), dim(µα
′
, x) = α′, so there exists a sequence

(rn) converging to 0 such that

α′ − ε ≤
logµα

(
(Lα′t − rn,Lα

′

t + rn)
)

log(rn)
≤ α′ + ε,

so α− ε ≤ dim(µ, x) ≤ α′ + ε.

Letting ε tend to zero and α, α′ tend to β(Mt) with rational values yields β(Mt) =

dim(µ, x) ≤ dim(µ, x) ≤ 2β(Mt).

2. x = Mt with t a jump time for M. Observe that in this case µ
(
(x − r, x + r)

)
=

µ
(
(Mt,Mt + r)

)
for r > 0 small enough. For arbitrary rational numbers α <

β(Mt) < α′, the inequality (3.1) is straightforward using Proposition 2.3. We follow
the same lines in the first case to obtain the desired result.

3. x =Mt− with t a jump time forM. Now, µ
(
(x− r, x+ r)

)
= µ

(
(Mt− − r,Mt−)

)
for

r > 0 small. Then the proof goes like the previous items.

Let us end this Section with the proof of the easier part of Theorem 1.9: space lower
multifractal spectrum of µ.

Proof of Formula (1.11) of Theorem 1.9. As noticed in Remark 2.2, t 7→ β(Mt) is in-
creasing due to the monotonicity of M and β. Hence each level set of t 7→ β(Mt)

contains at most one point. This means that for each open interval O that intersects
Supp (µ),

Eµ(O, h) = {x ∈ Supp (µ) ∩ O : β(x) = h}

=


{β(Mt)} if h = β(Mt) for some t withMt ∈ O,
{β(Mt−)} if h = β(Mt−) for some t withMt ∈ O,
∅ if h 6∈ {β(Mt) :Mt ∈ O},

which completes the proof.

4 A general result to get the time spectrum (Theorems 1.7)

Let us present a general result, proved in Sections 5 and 6. This theorem gives
the dimension of the random set of times t where the local dimension mapping s 7→
dim(µ,Ms) coincides with a given function. The remarkable feature of this theorem
is that it allows to determine these dimensions for all the monotone càdlàg function
simultaneously, with probability one.

Theorem 4.1. For every non-increasing càdlàg function Υ : [0, 1]→ [1, 2] and every open
interval O ⊂ [0, 1], let us define Υmin = infu∈O Υ(u) and the sets

E
t

µ(O,Υ) =
{
t ∈ O : dim(µ,Mt) = Υ(t)β(Mt)

}
,

E
t,≥
µ (O,Υ) =

{
t ∈ O : dim(µ,Mt) ≥ Υ(t)β(Mt)

}
.

With probability 1, for every non-increasing càdlàg function Υ : [0, 1] → [1, 2] and
every open interval O ⊂ [0, 1], we have

dimHE
t

µ(O,Υ) = dimHE
t,≥
µ (O,Υ) = dimHE

t,≥
µ (O,Υmin) =

2

Υmin
− 1. (4.1)

The notation E
t,≥
µ (O,Υmin) means that we consider the constant function Υ ≡ Υmin.
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Stable-like occupation measure

4.1 Proof for the time upper multifractal spectrum

Let us explain why Theorems 1.5 and 4.1 together imply the time upper multifractal
spectrum. Theorems 1.7. Let us start with formula (1.9) for h ∈ E1 with h = β(Mt0) ≥
2β(Mt0−). By the monotonicity of the sample paths ofM, h/β(Mt) = β(Mt0)/β(Mt) >

2 for all t < t0 and h/β(Mt) < 1 for all t > t0. By Theorem 1.5,

E
t

µ(O, h) =

{
t ∈ O : dim(µ,Mt) =

h

β(Mt)
β(Mt)

}
=
{
t ∈ O ∩ {t0} : dim(µ,Mt) = h

}
=

{
{t0} if t0 ∈ O and dim(µ,Mt0) = β(Mt0),

∅ otherwise.

This proves (1.9).
One wants to prove formula (1.8) for h /∈ E1, which can be rewritten as

d
t

µ(O, h) = sup

{
2α

h
− 1 ∈ [0, 1) : α ∈ {β(Mt) : t ∈ O}

}
. (4.2)

One combines Theorem 1.5 and Theorem 4.1 with the family of functions {Υh(t) =

h/β(Mt) : h ≥ 0}. With probability one, these functions are all càdlàg decreasing.
Observe that for every open interval O,

dimHE
t

µ(O,Υh) = dimH
{
t ∈ O : dim(µ,Mt) = Υh(t)β(Mt)

}
= dimH

{
t ∈ O : dim(µ,Mt) = h

}
= d

t

µ(O, h).

We prove now that formula (4.1) applied to the family {Υh : h ≥ 0} implies formula
(4.2). Several cases may occur according to the value of h.

• If {1} 6⊂ Υh(O):

1. First case: For all t ∈ O, Υh(t) > 1.

• If inft∈O Υh(t) ≥ 2, then for all t ∈ O, Υh(t) > 2. Theorem 1.5 entails

E
t

µ(O,Υh) = ∅. So d
t

µ(O, h) = dimHE
t

µ(O,Υh) = −∞, which coincides with
(4.2).

• If inft∈O Υh(t) < 2, consider the entrance time in (1, 2) by Υh

τ = inf{t ∈ O : Υh(t) < 2}.

By construction, ∀ t ∈ (τ,∞) ∩ O, Υh(t) ∈ (1, 2). By Theorems 1.5 and 4.1, one
gets

d
t

µ(O, h) = d
t

µ((τ,∞) ∩ O, h) =
2

inft∈(τ,∞)∩O Υh(t)
− 1

=
2 supt∈(τ,∞)∩O β(Mt)

h
− 1,

which coincides with (4.2).

2. Second case: There exists t ∈ O, such that Υh(t) < 1. Define the passage time of
(−∞, 1) by Υh as

σ = inf{t ∈ O : Υh(t) < 1}.
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• If σ is the left endpoint of O, then for all t ∈ O, Υh(t) < 1. Theorem 1.5 yields

E
t

µ(O,Υh) = ∅. Again, this gives d
t

µ(O, h) = −∞, which coincides with (4.2).

• If σ belongs to the open interval O, the proof goes along the same lines as in
item 1. replacing O by (−∞, σ) ∩ O.

• If {1} ⊂ Υh(O): Let t0 ∈ O be the unique time such that Υh(t0) = 1, i.e. h = β(Mt0).
One distinguishes different cases according to the behavior of t 7→ Mt at t0.

1. If M is continuous at t0: β(M·) is also continuous at t0. By definition, the
entrance time τ satisfies τ < t0. Theorem 4.1 entails

d
t

µ(O, h) = d
t

µ((τ, t0) ∩ O, h) =
2

inft∈(τ,t0)∩O Υh(t)
− 1 = 1,

which coincides with (4.2).

2. If t0 is a jump time for M and β(Mt0−) < h = β(Mt0) < 2β(Mt0−): Then,
using that Υh(t0) = 1, one deduces that 0 < Υh(t0−) − Υh(t0) < 1, which implies
inft∈(τ,t0)∩O Υh(t) < 2. The same computation as in item 1. with O replaced by
(τ, t0) ∩ O yields formula (4.2).

3. If t0 is a jump time for M and h = β(Mt0) ≥ 2β(Mt0−): This has been consi-
dered at the beginning of this section.

4.2 Reduction of the problem

Observing that we have the obvious inclusion E
t

µ(O,Υ) ⊂ Et,≥µ (O,Υ) ⊂ Et,≥µ (O,Υmin),
we proceed in two parts:

• first, in Section 5, we show that

dimHE
t,≥
µ (O,Υmin) ≤ 2

Υmin
− 1 (4.3)

simultaneously for all Υ and O.

In order to get (4.3), it is equivalent to show that, almost surely, for each γ ∈ [1, 2]

and open interval (a, b) ⊂ [0, 1] with rational endpoints,

dimHE
t,≥
µ

(
(a, b), γ

)
≤ 2

γ
− 1.

We will actually prove that for γ ∈ (1, 2), almost surely,

dimHE
t,≥
µ

(
(0, 1), γ

)
≤ 2

γ
− 1. (4.4)

The extension to arbitrary a, b ∈ [0, 1] ∩Q and γ ∈ {1, 2} is straightforward.

• second, in Section 6, we complete the result by proving that

dimHE
t

µ(O,Υ) ≥ 2

Υmin
− 1 (4.5)

also simultaneously for all Υ and O, almost surely. It is also enough to get the
result for O = (0, 1).
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5 Proof of Theorem 4.1: upper bound

Our aim is to prove (4.4). For notational simplicity, we write E
t,≥
µ

(
(0, 1), γ

)
= E(γ).

Let us first observe that the family of sets {E(γ), γ ∈ [1, 2]} is non-increasing with respect
to γ. Recall that γ ∈ (1, 2) throughout this section.

The strategy is to find a natural limsup set which covers E(γ).
For this, we start by pointing out a property satisfied by all points in E(γ). Heuristi-

cally, it says that every t ∈ E(γ) is infinitely many times surrounded very closely by two
points which are large jumps of the Poisson point process generating N .

Proposition 5.1. With probability 1, one has: for each t ∈ E(γ) and ε > 0 small, there
exists an infinite number of integers n ≥ 0 such that N((t− 2−n, t]× [2−n/(γ−ε), 1]) ≥ 1

and N((t, t+ 2−n]× [2−n/(γ−ε), 1]) ≥ 1.

Proof. Let t ∈ E(γ). This implies that

lim sup
r→0

logµ
(
(Mt − r,Mt + r)

)
log r

≥ γ · β(Mt). (5.1)

This equation is interpreted as the fact that the time spent by the process M in the
neighborhood ofMt cannot be too large. The most likely way for µ to behave like this is
thatM jumps into this small neighborhood ofMt with a larger than normal jump, and
quickly jumps out of that neighborhood with another big jump. This heuristic idea is
made explicit by the following computations.

Lemma 5.2. Let 0 < ε < γ − 1. If t ∈ E(γ), then there exist infinitely many integers n
such that

(Mt+2−n −Mt) ∧ (Mt −Mt−2−n) ≥ 2−
n

(γ−ε/4)β(Mt) . (5.2)

Proof. Let us prove that t satisfies

lim sup
s→0+

(Mt+s −Mt) ∧ (Mt −Mt−s)

s1/(γ−ε/5)β(Mt)
≥ 1. (5.3)

Assume first thatM is continuous at t. Assume toward contradiction that for all s > 0

sufficiently small, |Mt+s −Mt| ≤ s1/((γ−ε/5)β(Mt)) or |Mt −Mt−s| ≤ s1/((γ−ε/5)β(Mt)).
If |Mt+s −Mt| ≤ s1/((γ−ε/5)β(Mt)), then setting r =Mt+s −Mt,

µ
(
(Mt − r,Mt + r)

)
≥ µ

(
(Mt,Mt + r)

)
= s ≥ r(γ−ε/5)β(Mt). (5.4)

The same holds true when |Mt −Mt−s| ≤ s1/((γ−ε/5)β(Mt)). We have thus proved that
(5.4) holds for every small r by continuity ofM at t, this contradicts (5.1).

When t is a jump time forM, the proof goes as above using the two obvious remarks:
µ(Mt− r,Mt + r) = µ(Mt,Mt + r) for all small r > 0, andMt−Mt−s > (Mt−Mt−)/2

when s is sufficiently small.
From (5.3) we deduce (5.2).

Next technical lemma, proved in [28], shows that when (5.2) holds, there are neces-
sarily at least two “large” jumps around (and very close to) t. Let us recall this lemma,
adapted to our context.

Lemma 5.3 ([28]). Let Ñ stand for the compensated Poisson measure associated with
the Poisson measure N . There exists a constant C such that for every δ > 1, for all
integers n ≥ 1

P

 sup
0≤s<t≤1

t−s≤2−n

2
n

δ(β(M
t+2−n )+2/n)

∣∣∣∣∣
∫ t

s

∫ 2−
n
δ

0

z
1

β(Mu−) Ñ(du, dz)

∣∣∣∣∣ ≥ 6n2

 ≤ Ce−n.
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Remark 5.4. The formula looks easier than the one in [28] because in our contextM is
increasing. When the function β is constant, the error term 2−n in time (on the LHS of
the inequality) is hidden and the term 2/n in the previous inequality disappears, see [2].

Recall formula (2.2) ofM. Last Lemma allows us to control not exactly the increments
ofM, but the increments of the “part ofM” constitued by the jumps of N of size less
than 2−

n
δ . It essentially entails that these “restricted” increments over any interval of

size less than 2−n are uniformly controlled by 2
− n
δ(β(M

t+2−n )+2/n) with large probability.
More precisely, Borel-Cantelli Lemma applied to Lemma 5.3 with δ = γ − ε yields that

for all integers n greater than some nγ−ε, (the term 2−n+1 on the RHS of the inequality
is not a typo)∣∣∣∣∣∣

∫ t+2−n

t

∫ 2
− n
γ−ε

0

z
1

β(Mu−) Ñ(du, dz)

∣∣∣∣∣∣ ≤ 6n2 · 2
− n

(γ−ε)(β(M
t+2−n+1)+2/n)

≤ 2
− n

(γ−ε/2)β(M
t+2−n+1) .

On the other hand, for all integers n greater than some other n′γ−ε, a direct computation
gives ∫ t+2−n

t

∫ 2
− n
γ−ε

0

z
1

β(Mu−) du
dz

z2
≤ C2−n2

− n
γ−ε

(
1

β(M
t+2−n )

−1

)

≤ 2
− n

(γ−ε)β(M
t+2−n ) .

Therefore, for all large n,∫ t+2−n

t

∫ 2
− n
γ−ε

0

z
1

β(Mu−)N(du, dz)

≤

∣∣∣∣∣∣
∫ t+2−n

t

∫ 2
− n
γ−ε

0

z
1

β(Mu−) Ñ(du, dz)

∣∣∣∣∣∣+

∫ t+2−n

t

∫ 2
− n
γ−ε

0

z
1

β(Mu−) du
dz

z2

≤ 2
− n

(γ−ε/3)β(M
t+2−n+1) . (5.5)

Similarly, one establishes that∫ t

t−2−n

∫ 2
− n
γ−4ε

0

z
1

β(Mu−)N(du, dz) ≤ 2
− n

(γ−ε/3)β(M
t+2−n+1) . (5.6)

Let us introduce, for every integer n ≥ 1, the process

M̃n
t =

∫ t

0

∫ 1

2
− n
γ−ε

z1/β(Mu−)N(du, dz),

so thatMt = M̃n
t +

∫ t
0

∫ 2
− n
γ−ε

0
z

1
β(Mu−)N(du, dz).

A direct estimate shows that by right-continuity ofM, when n becomes large, one
has

3 · 2
− n

(γ−ε/3)β(M
t+2−n+1) < 2−

n
(γ−ε/4)β(Mt)

Recalling formula (2.2), the three inequalities (5.2), (5.5) and (5.6) imply that for an
infinite number of integers n

(M̃n
t+2−n − M̃

n
t ) ∧ (M̃n

t − M̃n
t−2−n) ≥ 2

− n
(γ−ε/3)β(M

t+2−n+1) ≥ 2−
n

(γ−ε/2)β(Mt) . (5.7)
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Since M̃n (andM) are purely discontinuous and right continuous, this last inequality
proves the existence of at least one time tn1 ∈ (t−2−n, t] and another time tn2 ∈ (t, t+ 2−n]

such that M̃n (and M) has a jump. The desired property on the Poisson measure N
follows, and Proposition 5.1 is proved.

Further, in order to find an upper bound for the dimension of E(γ), one constructs a
suitable covering of it. For n ∈ N∗ and k = 0, . . . , 2n − 1, set

In,k = [k2−n, (k + 1)2−n) and În,k =

k+1⋃
`=k−1

In,`.

One introduces the collection of sets

En(γ, ε) =
{
În,k : N

(
În,k ×

[
2−

n
γ−ε , 1

])
≥ 2, k = 0, . . . , 2n − 1

}
,

which is constituted by the intervals În,k containing at least two jumps for N of size
greater than 2−

n
γ−ε . Finally, one considers the limsup set

E(γ, ε) = lim sup
n→+∞

⋃
Î∈En(γ,ε)

Î . (5.8)

Proposition 5.1 states exactly that E(γ) ⊂ E(γ, ε). So it is enough to find an upper
bound for the Hausdorff dimension of E(γ, ε). Next lemma estimates the number of
intervals contained in En(γ, ε).

Lemma 5.5. With probability 1, there exists a constant C such that for all n ≥ 1,

#En(γ, ε) ≤ Cn22n( 2
γ−ε−1).

Proof. For a fixed “enlarged” dyadic interval În,k, the inclusion În,k ∈ En(γ, ε) corre-
sponds to the event that a Poisson random variable with parameter qn = 3 · 2−n · 2

n
γ−ε is

larger than 2. Since qn → 0 exponentially fast, one has

pn := P(În,k ∈ En(γ, ε)) = Cn2−n(2− 2
γ−ε ),

where Cn is a constant depending on n which stays bounded away from 0 and infinity.
The events {În,3k ∈ En(γ, ε)}k≥0 being independent, the random variable #{k ∈

{1, . . . , b2n/3c : În,3k ∈ En(γ, ε)} is Binomial with parameters (b2n/3c, pn). An application
of Markov inequality yields

P
(

#
{
k : În,3k ∈ En(γ, ε)

}
≥ n2b2n/3cpn

)
≤ n−2.

Further, Borel-Cantelli Lemma gives that almost surely, for n sufficiently large,

#
{
k : În,3k ∈ En(γ, ε)

}
≤ n2b2n/3cpn.

The same holds for #
{
k : În,3k+1 ∈ En(γ, ε)

}
and #

{
k : În,3k+2 ∈ En(γ, ε)

}
. One con-

cludes that for all n ∈ N sufficiently large,

#En(γ, ε) ≤ 3n2b2n/3cpn,

which proves the claim.

Now we are in position to prove the upper bound for the Hausdorff dimension of
E(γ).
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Proof of (4.4). Let n0 be so large that the previous inequalities hold true for all integers
n ≥ n0. Recalling (5.8), one knows that for every n1 ≥ n0, the union

⋃
n≥n1

⋃
Î∈En(γ,ε) Î

forms a covering of E(γ, ε), thus a covering of E(γ).
Let s > 2

γ−ε − 1. Fix η > 0 and n1 so large that all intervals Î ∈ En1
(γ, ε) have a

diameter less than η. Using the covering just above, one sees that the s-Hausdorff
measure of E(γ) is bounded above by

Hsη(E(γ)) ≤
∑
n≥n1

∑
Î∈En(γ,ε)

|Î|s ≤
∑
n≥n1

Cn22n( 2
γ−ε−1)|3 · 2−n|s

which is a convergent series. Therefore, Hsη(E(γ)) = 0 as n1 can be chosen arbitrarily
large. This leads to Hs(E(γ)) = 0 for every s > 2

γ−ε − 1. We have thus proved almost
surely,

dimH(E(γ)) ≤ 2

γ − ε
− 1.

Letting ε→ 0 yields the desired upper bound.

6 Proof of Theorem 4.1: lower bound

The aim of this section is to get that with probability one, (4.5) holds with O = (0, 1)

for all non-increasing càdlàg function Υ : [0, 1]→ [1, 2].
Recalling the notations in Theorem 4.1, for simplicity, we write

F (Υ) = E
t

µ

(
(0, 1),Υ

)
.

Let ε > 0 and 0 < b < ε be fixed until the end of Section 6.7. We construct
simultaneously for all Υ with 1 + 2ε ≤ Υmin ≤ 2 − 2ε and ε′ > 0, a random Cantor set
C(Υ, ε′) ⊂ F (Υ) with Hausdorff dimension larger than 2/(Υmin +ε′)−1. The lower bound
for the Hausdorff dimension of F (Υ) follows.

We explain how to extend the proof to the functions Υ satisfying Υmin ∈ [1, 2] \ [1 +

2ε, 2− 2ε] in subsection 6.8.

6.1 The time scales, and some notations

We aim at constructing Cantor sets inside F (Υ). Recalling Proposition 5.1, some
configurations for the jump points are key in this problem. More precisely, one knows
that every point in F (Υ) is infinitely often located between two large jumps which are
really close to each other. So the Cantor set we are going to construct will focus on this
behavior.

Let us define a (deterministic) sequence of rapidly decreasing positive real numbers.
First, {

η1,0 = 10−10,

η1,` = η1+ε
1,`−1 for 1 ≤ ` ≤ `1 := min{` ≥ 1 : η1,` ≤ e−η

−1
1,0}.

By induction one defines the sequence {ηn,` : n ∈ N∗, 0 ≤ ` ≤ `n} as{
ηn,0 = ηn−1,`n−1 ,

ηn,` = η1+ε
n,`−1 for 1 ≤ ` ≤ `n := min{` ≥ 1 : ηn,` ≤ e−η

−1
n,0},

which are our time scales. One also sets

ηn,`n+1 = ηn+1,1

ηn = ηn,0.
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The natural partition of [0, 1] induced by this sequence is denoted by

Jn,` =

{
Jn,`,k = [kηn,`, (k + 1)ηn,`) : k = 0, . . . ,

⌊
1

ηn,`

⌋}
.

By convention, Jn,`,−1 = Jn,`,−2 = Jn,`,[ 1
ηn

]+1 = Jn,`,[ 1
ηn

]+2 = ∅.
Observe the multi-scale structure of these intervals: the main scales are determined

by the sequence {Jn,0;n ≥ 1} which decays extremely fast, and the intermediate scales
are determined by {Jn,`; ` ∈ {0, . . . , `n}} for each n, observing that Jn,`n = Jn+1,0.
We use subsequently the notation Jn = Jn,0. When it comes to the estimates for the
intermediate scales (e.g. Section 6.3), Jn,0 will be used, otherwise Jn will be used. The
same remark is valid for ηn and ηn,0.

Finally, one needs the enlarged intervals

Ĵn,`,k =

k+1⋃
i=k−1

Jn,`,i.

6.2 Zero jump and double jumps configuration

Two types of jump configuration along the scales are of particular interest, since they
are the key properties used to build relevant Cantor sets. Recall that the Poisson random
measure N has intensity dt⊗ dz/z2.

Definition 6.1. For any n ∈ N∗, 1 ≤ ` ≤ `n and γ ∈ [1 + 2ε, 2− 2ε], define

J zn,`(γ) =
{
Jn,`,k ∈ Jn,` : N

(
Ĵn,`,k × [η

1/γ
n,`+1, η

1/γ
n,` )

)
= 0
}

(6.1)

J dn,`(γ) =

Jn,`,k ∈ Jn,` :

N
(
Jn,`,k−2 × [η

1/γ
n,` /2, η

1/γ
n,` )

)
= 1

N
(
Jn,`,k+2 × [η

1/γ
n,` /2, η

1/γ
n,` )

)
= 1

 . (6.2)

Remark 6.2. The superscript “z” refers to “zero jump” while “d” refers to “double
jump”.

Let us start with straightforward observations:

• for (n, `) 6= (n′, `′), the composition (number and position of the intervals) of J zn,`(γ)

and J zn′,`′(γ) are independent thanks to the Poissonian nature of the measure N .
• The same holds true for the double jump configuration.
• Fixing (n, `), for |k − k′| ≥ 3, the events Jn,`,k ∈ J zn,`(γ) and Jn,`,k′ ∈ J zn,`(γ) are

independent.
• The same holds for J dn,`(γ) if one assumes that |k − k′| ≥ 5.

• For fixed (n, `, k), the events Jn,`,k ∈ J zn,`(γ) and Jn,`,k ∈ J dn,`(γ) are independent.

Next probability estimate is fundamental in the sequel.

Lemma 6.3. For all n ∈ N∗, 1 ≤ ` ≤ `n, γ ∈ [1 + 2ε, 2− 2ε] and J ∈ Jn,`,

pn,`,γ = P
(
J ∈ J zn,`(γ)

)
= exp

(
−Cn,`η

(1− 1+ε
γ )

n,`

)
(6.3)

qn,`,γ = P
(
J ∈ J dn,`(γ)

)
= C ′n,`η

2− 2
γ

n,` (6.4)

where Cn,`, C ′n,` are constants uniformly (with respect to n, ` and γ) bounded away from
0 and infinity.

Proof. The value of pn,`,γ corresponds the probability that a Poisson random variable with

parameter p = 3ηn,`

[
η

1/γ
n,`+1 − η

1/γ
n,`

]
equals zero, thus pn,`,γ = e−p. On the other hand,

each condition in (6.2) relies on the probability that a Poisson variable with parameter
q = η

1−1/γ
n,` equals one. Hence, by independence, qn,`,γ = (e−q ·q)2. The result follows.
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6.3 Random trees induced by the zero jump intervals and estimates of the
number of their leaves

In this section, one constructs for a fixed integer n ∈ N∗ a nested collection of
intervals, indexed by 0 ≤ ` ≤ `n. These intervals induce naturally a random tree with
height `n + 1.

One starts with any interval Jn ∈ Jn,0, which is the root of the tree, denoted by
Tn,0 = {Jn}. Define by induction, for 1 ≤ ` ≤ `n,

Tn,` = {J ∈ Jn,` : J ∈ J zn,`(γ) and J ⊂ J̃ for some J̃ ∈ Tn,`−1}.

One focuses on the Jn-rooted random tree Tn,γ(Jn) = (Tn,0, . . . , Tn,`n). The number of
leaves of Tn,γ(Jn), denoted by |Tn,γ(Jn)|, is the cardinality of Tn,`n .

Fact: Every point belonging to the intervals indexed by the leaves of the tree have
the remarkable property that “they do not see” large jump points between the scales ηn
and ηn+1. This observation is made explicit in Lemma 6.11.

Remark 6.4. Observe that we dropped the index γ in the definition of Tn,` to ease the
notations, since these sets will not re-appear in the following sections.

Our goal is to prove the following estimate on the number of leaves of Tn,γ(Jn).

Proposition 6.5. With probability one, for every integer n large, for every Jn ∈ Jn,0
and γ ∈ [1 + 2ε, 2− 2ε],

|Tn,γ(Jn)| ≥
⌊

ηn
2ηn+1

⌋
. (6.5)

The proof of this estimate is divided into several short lemmas.

Lemma 6.6. For all n ∈ N∗, Jn ∈ Jn,0 and γ ∈ [1 + 2ε, 2− 2ε], one has

P

(
#Tn,1 ≥

(
1− log(1/ηn,0)−2

) ⌊ηn,0
ηn,1

⌋
pn,1,γ

)
≥ 1− 3 exp

(
− log(1/ηn,0)−4

⌊
ηn,0
3ηn,1

⌋
pn,1,γ/2

)
Proof. For any (n, `) and for i ∈ {0, 1, 2}, set

T in,` = {J ∈ Tn,` : J = Jn,`,3k+i ∈ Jn,` : k ∈ N}.

By independence (see the observations before Lemma 6.3), for each i ∈ {0, 1, 2}, the
number of vertices in T in,1 is binomial with parameter (bηn,0/(3ηn,1)c, pn,1,γ).

By Chernoff inequality, for every binomial random variable X with parameter (n, p),
for any δ ∈ (0, 1), one has

P(X ≤ (1− δ)np) ≤ exp(−δ2np/2). (6.6)

The result follows applying (6.6) with δ = log(1/ηn,0)−2 for every i.

Lemma 6.7. Set a(n, `) = (1− log(1/ηn,`−1)−2)

⌊
ηn,`−1

ηn,`

⌋
pn,`,γ .

For all n ∈ N∗, Jn ∈ Jn,0, γ ∈ [1− 2ε, 2− 2ε] and 2 ≤ ` ≤ `n, a.s.

P
(
#Tn,` ≥ a(n, `)#Tn,`−1

)
≥ 1− 3 exp

(
− log(1/ηn,`−1)−4

(
#Tn,`−1

⌊
ηn,`−1

3ηn,`

⌋)
pn,`,γ/2

)
.
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Stable-like occupation measure

Proof. Using again the remarks before Lemma 6.3, for every i ∈ {0, 1, 2}, the law
of the random variable #T in,` conditioning on #Tn,`−1 is binomial with parameter

(#Tn,`−1

⌊
ηn,`−1

3ηn,`

⌋
, pn,`,γ). Applying (6.6) gives the estimate.

Lemma 6.8. Set

b(n, `) = 1− 3 exp

[
− log(1/ηn,`−1)−4

6(1− log(1/ηn,`−1)−2)

∏̀
k=1

a(n, k)

]
.

For all n ∈ N∗, Jn ∈ Jn,0 and γ ∈ [1− 2ε, 2− 2ε], one has

P

(
|Tn,γ(Jn)| ≥

`n∏
`=1

a(n, `)

)
≥

`n∏
`=1

b(n, `).

Proof. One has

P

(
|Tn,γ(Jn)| ≥

`n∏
`=1

a(n, `)

)

≥ P

(
|Tn,γ(Jn)| ≥

`n∏
`=1

a(n, `), #Tn,`n−1 ≥
`n−1∏
`=1

a(n, `)

)

≥ P

(
|Tn,γ(Jn)| ≥ a(n, `n)#Tn,`n−1, #Tn,`n−1 ≥

`n−1∏
`=1

a(n, `)

)
.

Conditioning on #Tn,`n−1, and using Lemma 6.7 with ` = `n, this probability is greater
than

E

[
E

[
1− 3 exp

(
− log(1/ηn,`n−1)−4#Tn,`n−1

⌊
ηn,`n−1

3ηn,`n

⌋
pn,`n,γ/2

)∣∣∣∣#Tn,`n−1

]
× 1#Tn,`n−1≥

∏`n−1
`=1 a(n,`)

]
≥ E

[
E

[
1− 3 exp

(
− log(1/ηn,`n−1)−4

6(1− log(1/ηn,`n−1)−2)
a(n, `n)#Tn,`n−1

)∣∣∣∣#Tn,`n−1

]
× 1#Tn,`n−1≥

∏`n−1
`=1 a(n,`)

]
≥ b(n, `n) P

(
#Tn,`n−1 ≥

`n−1∏
`=1

a(n, `)

)
.

Iterating this computation yields the desired inequality.

We are now in position to prove Proposition 6.5.

Proof. We are going to prove the following lemma:

Lemma 6.9. For some constant c1, for all n ∈ N∗ large enough, for every Jn ∈ Jn,0 and
γ ∈ [1 + 2ε, 2− 2ε], one has

P

(
|Tn,γ(Jn)| ≥

⌊
ηn

2ηn+1

⌋)
≥ exp

(
−c1 exp

(
−η−ε/2n

))
. (6.7)

Proof. One combines the estimates in Lemma 6.3 and Lemma 6.8. Let us first estimate∏`′

`=1 a(n, `) for 2 ≤ `′ ≤ `n. Observe that for large n, one has

`n = log

(
log(1/ηn,`n)

log(1/ηn,0)

)
/ log(1 + ε) ≤ log log(1/ηn,`n)/ log(1 + ε)

≤ log

(
1 + ε

ηn,0

)
/ log(1 + ε) ≤ 2 log(1/ηn,0).
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Thus for n large enough,

`′∏
`=1

(1− log(1/ηn,`−1)−2)

= exp

 `′∑
`=1

log
(

1− log(1/ηn,`−1)−2
) ≥ exp

−2

`′∑
`=1

log(1/ηn,`−1)−2


≥ exp

(
−2`′ log(1/ηn,0)−2

)
≥ exp

(
−4 log(1/ηn,0)−1

)
≥ 1/

√
2. (6.8)

Using the rapid decay of (ηn,`) to zero and the uniform boundedness of Cn,`, one can find
a constant c0 > 0 such that for all n large enough,

`′∏
`=1

pn,`,γ = exp

− `′∑
`=1

Cn,`η
1− 1+ε

γ

n,`

 ≥ exp

(
−c0η

1− 1+ε
γ

n,1

)
≥ 1/

√
2. (6.9)

Combing (6.8) and (6.9), one concludes that for all large n

`′∏
`=1

a(n, `) ≥
⌊
ηn,0

2ηn,`′

⌋
, and in particular,

`n∏
`=1

a(n, `) ≥
⌊

ηn
2ηn+1

⌋
. (6.10)

Now we estimate the other product
∏`n
`=1 b(n, `). Using (6.8), (6.9) and (6.10), there

exists a constant c1 > 0 such that for every large n

`n∏
`=1

b(n, `) ≥
`n∏
`=1

{
1− 3 exp

(
− log(1/ηn,`−1)−4

12

⌊
ηn,0
ηn,`

⌋)}

= exp

{
`n∑
`=1

log

(
1− 3 exp

(
− log(1/ηn,`−1)−4

12

⌊
ηn,0
ηn,`

⌋))}

≥ exp

{
−6

`n∑
`=1

exp

(
− log(1/ηn,`−1)−4

12

⌊
ηn,0
ηn,`

⌋)}

≥ exp

{
−c1 exp

(
− log(1/ηn,0)−4

12

⌊
ηn,0
ηn,1

⌋)}
≥ exp

(
−c1 exp

(
−η−ε/2n,0

))
= exp

(
−c1 exp

(
−η−ε/2n

))
.

where the fast decay rate of (ηn,`) to zero has been used for the third inequality.
These last equations prove exactly (6.7).

Finally, to prove Proposition 6.5, since the cardinality of Jn,0 is less than η−1
n ,

P

(
∃Jn ∈ Jn,0 : |Tn,γ(Jn)| <

⌊
ηn

2ηn+1

⌋)
≤ η−1

n

(
1− exp

(
−c1 exp

(
−η−ε/2n

)))
.

Using the fast decay of ηn to zero, this is the general term of a convergent series, and
the Borel-Cantelli lemma gives the result.

Remark 6.10. Essentially, one needs to keep in mind that the number of leaves of the
random tree Tn,γ(Jn) is the total number of intervals of Jn+1,0 inside Jn, up to a constant
factor 1/2.

One finishes this section by proving that every point belonging to a leaf of Tn,γ(J) “is
not close” to large jumps.
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Lemma 6.11. Let J ∈ Jn,0 and r ∈ [ηn+1, ηn). Assume that Tn,γ(J) is not empty. Then
for each t ∈ Tn,γ(J),

N(B(t, r)× [r
1/ΥnJn,0(t) , η

1/ΥnJn,0(t)

n ]) = 0.

Proof. For each t ∈ Tn,γ(J), denote by Jn,`(t) the unique interval such that t ∈ Jn,`(t)
for all 0 ≤ ` ≤ `n. Denote by `0 the unique integer such that ηn,`0+1 ≤ r < ηn,`0 . By
construction of the random tree Tn,γ(J), one has

N(B(t, r)× [r
1/ΥnJn,0(t) , η

1/ΥnJn,0(t)

n,`0
]) ≤ N(Ĵn,`0(t)× [η

1/ΥnJn,0(t)

n,`0+1 , η
1/ΥnJn,0(t)

n,`0
]) = 0.

Further, all ancestor intervals of Jn,`0(t) in the intermediate scales (for a fixed n), i.e.
intervals Jn,`(t) where 0 ≤ ` < `0, satisfy the zero jump configuration by construction, in
particular,

N(Ĵn,`0(t)× [η
1/ΥnJn,0(t)

n,`0
, η

1/ΥnJn,0(t)

n ]) = 0

Combining these estimates yields the result.

6.4 Double jumps configuration around the leaves, and key lemma

In the previous section, we have seen that the “zero jump” configuration is quite
frequent. The aim here is to estimate the number of intervals with “double jumps”
amongst the leaves of the trees. To this end, we introduce further some notations. Set

Mn(γ) = η
1−2/(γ+3·2−n−1)
n+1 η3

n.

Definition 6.12. Let J0 ∈ Jn and Tn,γ(J0) be the random tree defined in last subsection.
Consider its leaves that we denote {J ′i}i=1,...,|Tn,γ(J0)|, which are intervals of length ηn+1.

The families {F(J0, γ,m)}m=1,...,bMn(γ)/2c are defined as the following disjoint sub-
families of {J ′i}i=1,...,|Tn,γ(J0)|:

F(J0, γ,m) =

{
J ′

5k+2m
⌊
|Tn,γ (J0)|
Mn(γ)

⌋ : k ∈
{

0, ...,

⌊
|Tn,γ(J0)|
5Mn(γ)

⌋}}
.

Hence, two families F(J0, γ,m) and F(J0, γ,m
′) are disjoint and separated by a

distance equivalent to b|Tn,γ(J0)|/Mn(γ)cηn+1, and the intervals belonging to the same
F(J0, γ,m) are separated by the distance at least 4ηn+1.

Finally, denote by

Dn = {k2−n : k ∈ Z, n ∈ N∗}

the n-th generation dyadic numbers. One is ready to prove the key lemma.

Lemma 6.13. The following holds with probability 1: there exists a (random) integer
n0 such that for all n ≥ n0, for every J ∈ Jn, every γ ∈ Dn ∩ [1 + 2ε, 2 − 2ε], every
a ∈ {0, 1, 2, 3}, each family {F(J, γ,m)}m=1,...,bMn(γ)/2c contains at least one interval
belonging to J dn+1(γ + a · 2−(n+1)).

Remark that the intervals belonging to F(J, γ,m) come also from the tree Tn,γ(J)

associated with J , so they also enjoy the “zero jump” property.

Proof. Fix some positive integer n, J ∈ Jn, γ ∈ Dn ∩ [1 + 2ε, 2− 2ε], a ∈ {0, 1, 2, 3}.
Recall that Jn = Jn,0 and Jn+1,0 = Jn,`n with the notations of the previous sections.

EJP 22 (2017), paper 47.
Page 20/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP48
http://www.imstat.org/ejp/


Stable-like occupation measure

By Lemma 6.3 and the observations made before this Lemma, there exists a positive
finite constant c2 such that for all n large

P
(
∃m, ∀J ′ ∈ F(J, γ + a2−n−1,m), J ′ 6∈ J dn,`n(γ + a2−n−1)∣∣ |Tn,γ+a2−n−1(J)|

)
≥
⌊

ηn
2ηn+1

⌋)
≤
⌊
Mn(γ)

2

⌋ (
1− qn,`n,γ+a·2−n−1

) 1
Mn(γ)

·
⌊

ηn
10ηn+1

⌋

≤ η
1− 2

γ+3·2−n−1

n+1 η3
n

(
1− c2η

2− 2

γ+a2−n−1

n+1

) ηn

10η

2− 2
γ+3·2−n−1

n+1
η3
n

≤ η
1− 2

γ+3·2−n−1

n+1 η3
n exp

(
−c2η−2

n /10
)
.

Remark that ηn+1 ≤ e−η
−1
n ≤ ηn,`n−1 implies log(1/ηn+1) ≤ (1 + ε)η−1

n . The above
probability is thus bounded by above by

η3
n exp

((
2

γ + 3 · 2−n−1
− 1

)
(1 + ε)η−1

n −
c2
10
η−2
n

)
≤ η3

n.

On the other hand, by Lemma 6.9 one has

P

(
|Tn,γ+a2−n−1(J)| ≤

⌊
ηn

2ηn+1

⌋)
≤ 1 − exp

(
−c1 exp(−η−ε/2n )

)
≤ 2c1 exp(−η−ε/2n ).

Thus, P
(
∃m, ∀J ′ ∈ F(J, γ,m), J ′ 6∈ J dn+1(γ + a2−n−1)

)
≤ 2η3

n. One deduces that

P
(
∃J ∈ Jn, ∃m, ∀J ′ ∈ F(J, γ,m), J ′ /∈ J dn+1(γ + a2−n−1)

)
≤ η−1

n · 2η3
n = 2η2

n.

There are less than 2n possible choices for γ, and 4 choices for a. Hence,

P
(
∃ γ,∃ a,∃ J ∈ Jn, ∃m,∀J ′ ∈ F(J, γ,m), J ′ /∈ J dn+1(γ + a2−n−1)

)
≤ 2n+3η2

n,

which is the general term of a convergent series. An application of Borel-Cantelli Lemma
entails the result.

6.5 Construction of the Cantor sets

We are ready to construct the families of Cantor sets {C(Υ, ε′) associated with càdlàg
non-increasing functions Υ : [0, 1] → [1 + 2ε, 2 − 2ε], where ε′ is any positive rational
parameter. These sets are constituted by points which only see those double jump
configurations studied before, and their Hausdorff dimension satisfies dimH C(Υ, ε′) ≥

2
Υmin+2ε′ − 1.

Step 1 (Localization). For each Υ as above and ε′ > 0, there exist tε′ ∈ (0, 1), rε′ > 0

such that ∀ t ∈ [tε′ − rε′ , tε′ + rε′ ], we have Υ(t) < Υmin + ε′.
Let n0 be the random integer obtained in Lemma 6.13. We assume that n0 is so large

that the conclusions (6.5) of Proposition 6.5 hold, and also that

2ε′/ηn0 > KΥ · 2n0 , where KΥ = |Υ(1−)−Υ(0)| < +∞.

For every interval J , let OscΥ(J) = supt∈J Υ(t) − inft∈J Υ(t) be the oscillation of Υ

over J . By the monotonicity of Υ, for each n ≥ n0 one has

#{J ∈ Jn : J ⊂ [tε′ − rε′ , tε′ + rε′ ] and OscΥ(J) ≥ 2−n} ≤ KΥ · 2n (6.11)
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Step 2 (Initialization of the Cantor set). One chooses arbitrarily one interval
Jn0 ∈ Jn0

contained in [tε′ − rε′ , tε′ + rε′ ] such that

OscΥ(Jn0) < 2−n0 . (6.12)

Set the generation “zero” of the Cantor set as Cn0
(Υ, ε′) = Jn0 .

Simultaneously, we build a measure νn0
by setting νn0

(Jn0) = 1, and νn0
is uniformly

distributed on Jn0 .

Step 3 (Next generation of the Cantor set).
Let us introduce the following notation: for each n ∈ N∗ and J ∈ Jn, set

Υn
J = max

(
Dn ∩ [1, inf

t∈J
Υ(t)]

)
.

We explain how to get the second generation of intervals Cn0+1(Υ, ε′) of the Cantor
set.

The oscillation restriction (6.12) for Υ on Jn0 implies that for every J ∈ Jn0+1

contained in Jn0 , the quantity Υn0+1
J takes necessarily one of the four values {Υn0

Jn0 +

a2−n0−1 : a = 0, 1, 2, 3}.
Moreover, applying Lemma 6.13 to Jn0 , one obtains that for each a ∈ {0, 1, 2, 3},

each subfamily {F(Jn0 ,Υn0

Jn0 ,m)}m=1,...,bMn0
(Υ
n0
Jn0

)/2c contains at least one interval J

belonging to J dn0+1(Υn0

Jn0 + a2−n0−1).
Recalling that Υ is non-increasing, the quantities Υn0+1

J are also non-increasing
when J ranges from left to right. Since there are bMn0(Υn0

Jn0 )/2c disjoint families
{F(J0,Υ

n0

Jn0 ,m)} which are organized in increasing order, one deduces that
there is a ∈ {0, 1, 2, 3} such that there exist bMn0(Υn0

Jn0 )/8c different integers
m ∈ {1, ..., bMn0(Υn0

Jn0 )/2c} for which the family F(J0,Υ
n0

Jn0 ,m) contains (at least) one
interval J satisfying Υn0+1

J = Υn0

Jn0 + a2−n0−1 and J ∈ J dn0+1(Υn0+1
J ).

Observe that
2n0+1 � bMn0

(Υn0

Jn0 )/8c/2

where we used that Υmin < 2 − 2ε and Jn0 ⊂ [tε′ − rε′ , tε′ + rε′ ]. Then, applying (6.11)
for n = n0 + 1, one can choose the first bMn0(Υn0

Jn0 )/16c intervals J which satisfy
OscΥ(J) < 2−n0−1 among those already selected in the last paragraph.

Finally, Cn0
(Υ, ε′) is the union of these intervals, which are called the basic intervals

of generation n0 + 1. Observe that these intervals are separated by a distance larger
than ηn0

/(2Mn0
(Υn0

Jn0 )) (thanks to Borel-Cantelli applied to Lemma 6.5), and they all
have their length equal to ηn0+1.

Simultaneously, one defines a refinement νn0+1 of the measure ν0 by setting for every
Jn0+1 basic interval of Cn0+1(Υ, ε′)

νn0+1(Jn0+1) = νn0
(Jn0)

1

bMn0
(Υn0

Jn0 )/16c
,

and by saying that νn0+1 is uniformly distributed inside each Jn0+1.

Step 4 (Induction of the construction of the Cantor set).
Assume that for every i = n0, n0 + 1, ..., n0 + n, the generation Ci(Υ, ε′) has been

constructed and satisfies the following:

1. Ci(Υ, ε′) is constituted by a finite number of basic disjoint intervals J i belonging to
Ji,
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2. for every i = n0 + 1, ..., n0 + n, each basic interval J i ∈ Ci(Υ, ε′) is included in a
unique basic interval J i−1 ∈ Ci−1(Υ, ε′).

3. for every i = n0, n0 + 1, ..., n0 + n − 1, each basic interval J i ∈ Ci(Υ, ε′) contains
bMi(Υ

i
Ji)/16c intervals J i+1 ∈ Ci+1(Υ, ε′). These intervals are separated by a dis-

tance at least equal to ηi/(2Mi(Υ
i
Ji)). Moreover, each J i+1 belongs to J di+1(Υi+1

Ji+1).

4. Each basic interval J i of Ci(Υ, ε′) satisfies OscΥ(J i) ≤ 2−i.

5. for every i = n0 + 1, ..., n0 +n, νi is a measure supported by the basic intervals J i of
Ci(Υ, ε′), and if J i−1 is the unique interval in Ci−1(Υ, ε′) such that J i ⊂ J i−1, then

νi(J
i) = νi−1(J i−1)

1

bMi−1(Υi−1
Ji−1)/16c

(6.13)

and νi is uniformly distributed inside each J i.

We are now able to complete the induction.
For any basic interval Jn ∈ Cn(Υ, ε′), applying the same method as in step 3, one finds

bMn(Υn
Jn)/16c intervals Jn+1 ∈ J dn+1(Υn+1

Jn+1), also satisfying OscΥ(Jn+1) < 2−(n+1).
Then, Cn+1(Υ, ε′) is the union of these intervals, which constitue the basic intervals

of generation n+ 1. By construction, these basic intervals Jn+1 are separated by at least
ηn/(2Mn(Υn

Jn)), (where Jn is the “parent” interval of Jn+1, i.e. the unique basic interval
in Cn(Υ, ε′) such that Jn+1 ⊂ Jn), and they all have their length equal to ηn+1.

Simultaneously, the refinement νn+1 of the measure νn is defined by setting, for every
Jn is the “parent” interval of Jn+1,

νn+1(Jn+1) = νn(Jn)
1

bMn(Υn
Jn)/16c

,

and by saying that νn+1 is uniformly distributed inside each Jn+1.

Proposition 6.14. The Cantor set C(Υ, ε′) is defined as

C(Υ, ε′) =
⋂
n≥n0

⋃
J∈Cn(Υ,ε′)

J.

There exists a unique Borel probability measure νΥ,ε′ supported exactly by C(Υ, ε′)
such that for all n ≥ n0, the measure νΥ,ε′ restricted to the σ-algebra generated by
{Jk : n0 ≤ k ≤ n} is νn.

The proof is immediate, since the step 4. of the construction ensures that the measure
is a well-defined additive set function with total mass 1 on the algebra {Jn : n ≥ n0}
which generates the Borel σ-algebra, thus extends to a unique probability measure on
Borel sets.

Observe that the construction of the family of Cantor sets depends only on Lemma
6.13, which holds with probability one simultaneously for all functions Υ, as desired.

6.6 Properties of the Cantor sets

The following proposition is key, since it shows that our construction guarantees that
we have built points in F (Υ).

Proposition 6.15. Almost surely, for every non-increasing càdlàg function Υ : [0, 1]→
[1 + 2ε, 2− 2ε] and for every small ε′ > 0,

C(Υ, ε′) \
(
S(M) ∪ S(Υ)

)
⊂ F (Υ).
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Proof. Suppose that t ∈ [0, 1] ∩ C(Υ, ε′) is a point of continuity forM and Υ. One wants
to prove that dim(µ,Mt) = Υ(t)β(Mt).

We start by bounding dim(µ,Mt) from below.
By construction, for every n ≥ n0, t is covered by an interval Jn ∈ J dn (Υn

Jn), a basic
interval in Cn(Υ, ε′). Since Jn ∈ J dn (Υn

Jn), property (6.2) entails that t ∈ Jn is surrounded
by two jumps of the Poisson point process located at t1n and t2n whose size belong to

∈ [η
1/ΥnJn
n /2, η

1/ΥnJn
n ], and whose mutual distance is at least 3ηn, and at most 5ηn.

The processM jumps at t1n and t2n, with jump size η
1/(ΥnJnβ(Mt1n−

))

n , and η
1/(ΥnJnβ(Mt2n−

))

n .
Since the processM is increasing, if Jn is written [kηn, (k + 1)ηn), both size of jumps at
t1n and t2n are bounded by below by

rn = η
1

Υn
Jn

β(M(k−3)ηn
)

n .

Hence, µ (B (Mt, rn)) ≤ 5ηn. Applying this when n becomes large, one gets

dim(µ,Mt) ≥ lim sup
n→+∞

logµ (B (Mt, rn))

log rn
≥ lim sup

n→+∞

log 5ηn
log rn

= Υ(t)β(Mt),

where we used the continuity ofM and Υ at t.

The rest of the proof is dedicated to prove the converse inequality, i.e. dim(µ,Mt) ≤
Υ(t) · β(Mt), which is more delicate.

Let ε1 > 0 be small. Thanks to the continuity ofM at t, there exists r0 > 0 such that
r0 ≤ ηn0 and

N([t− r0, t+ r0]× [η
1/Υ

n0
Jn0

n0, , 1]) = 0,

where Jn0 is the unique interval of Cn0
(Υ, ε′) that contains t.

Now for any 0 < r < r0/3, there exists a unique integer n ≥ n0 such that ηn+1 ≤ r <
ηn. Let us call Jn(t) and Jn+1(t) the unique intervals of Jn and Jn+1 that contain t.

By construction of the random tree Tn(Jn(t)), there is no large jump around t. More
precisely, by Lemma 6.11,

N
(
B(t, r)× [r1/ΥnJn(t) , η

1/ΥnJn(t)
n ]

)
= 0.

Applying same argument as in Lemma 6.11 to scales between n0 and n, together with
the fact that the sequence n 7→ Υn+1

Jn+1(t) is increasing, yields that

N

(
B(t, r)× [η

1/ΥnJn(t)
n , η

1/Υ
n0
Jn0

n0 ]

)
= 0.

One deduces that the increment ofM between t− r and t+ r has the form

Mt+r −Mt−r =

∫ t+r

t−r

∫ r
1/Υn

Jn(t)

0

z1/β(Ms−)N(ds, dz).

Denote by m the unique integer such that 2−m−1 ≤ 2r < 2−m. One has

Mt+r −Mt−r ≤

∣∣∣∣∣∣
∫ t+r

t−r

∫ 2
−m/Υn

Jn(t)

0

z1/β(Ms−)Ñ(ds, dz)

∣∣∣∣∣∣
+

∫ t+r

t−r

∫ 2
−m/Υn

Jn(t)

0

z1/β(Ms−) dz

z2
ds := A1(r) +A2(r).

EJP 22 (2017), paper 47.
Page 24/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP48
http://www.imstat.org/ejp/
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Applying Lemma 5.3 entails

P

 sup
γ∈Dm

∩[1+2ε,2−2ε]

sup
0≤v<u≤1

|v−u|≤2−m

2
m

γ(β(M
u+2−m )+ 2

m
)

∣∣∣∣∣∣
∫ u

v

∫ 2
−m
γ

0

z1/β(Ms−)Ñ(ds, dz)

∣∣∣∣∣∣ ≥ 6m2


≤ C · 2m · e−m.

Borel-Cantelli Lemma yields that when m becomes larger than some m0, for every
γ ∈ Dm ∩ [1 + 2ε, 2− 2ε] and |v − u| ≤ 2−m (with u > v),∣∣∣∣∣∣

∫ u

v

∫ 2
−m
γ

0

z1/β(Mu−)Ñ(du, dz)

∣∣∣∣∣∣ ≤ 6m22
−m

γ(β(M
u+2−m )+2/m) .

Assume that r0 is so small that 2r0 ≤ 2−m0 . By our choices for n and m, one has m > n,
so Υn+1

Jn+1(t) ∈ Dm. By choosing γ = Υn
Jn(t), u = t+ r and v = t− r, one gets

A1(r) ≤ 6m22
−m

Υn
Jn(t)

(β(M
t+r+2−m )+2/m)

≤ 12(log2(1/4r))2(2r)1/(ΥnJn(t)(β(Mt+r+2−m )+2/m)).

In addition, by continuity ofM at t, when r0 is small enough, one has

|Υn
Jn(t) −Υ(t)| < ε1 and β(Mt+r+2−m) + 2/m ≤ β(Mt) + ε1,

so finally

A1(r) ≤ r
1

(Υ(t)+ε1)(β(Mt)+ε1) .

On the other hand, recalling the constant ε0 > 0 in Definition 1.1, an immediate
computation shows that

A2(r) ≤
∫ t+r

t−r

∫ 2−m/(Υ(t)+ε1)

0

z1/(β(Mt)+ε1) dz

z2
ds

≤ 2r

1/ε0 − 1
2

−m
(Υ(t)+ε1)

( 1
(β(Mt)+ε1)

−1)

≤ 1

2/ε0 − 2
(4r)

1
(Υ(t)+ε1)(β(Mt)+ε1)

− 1
Υ(t)+ε1

+1

≤ r
1

(Υ(t)+2ε1)(β(Mt)+ε1) ,

as soon as r0 is small enough.
Combining these estimates, one obtains that for all r ≤ r0,

Mt+r −Mt−r ≤ r
1

(Υ(t)+3ε1)(β(Mt)+ε1) ,

which entails for all 0 < r <Mt+r0 −Mt−r0 ,

µ(B(Mt, r)) ≥ r(Υ(t)+3ε1)(β(Mt)+ε1).

One concludes that

dim(µ,Mt) ≤ (Υ(t) + 3ε1)(β(Mt) + ε1).

Letting ε1 → 0 yields the desired upper bound for dim(µ,Mt).
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6.7 Dimension of C(Υ, ε′)
Here we prove that dimH C(Υ, ε′) ≥ 2/(Υmin + ε′)− 1.

Lemma 6.16. With probability 1, for every Υ in Theorem 4.1 with Υmin ∈ [1 + 2ε, 2− 2ε]

and ε′ > 0, there exists a finite positive constant KΥ,ε′ such that for all B ∈ B([0, 1]),

νΥ,ε′(B) ≤ KΥ,ε′ |B|
2

Υmin+2ε′−1
(6.14)

Proof. Let Υ and ε′ > 0 be fixed.
Let B be an open interval in [0, 1] such that |B| ≤ ηn0

.
If B ∩ C(Υ, ε′) = ∅, (6.14) holds trivially.
If B ∩ C(Υ, ε′) 6= ∅, let n1 be the largest integer such that B intersects Cn1

(Υ, ε′) in
exactly one basic interval, denoted by Jn1 .

Denote by δn1+1(Υ, ε′, Jn1) the minimal distance between any two intervals of
Cn1+1(Υ, ε′) which are contained in Jn1 . Then |B| contains at most

min
(
Mn1

(Υn1

Jn1 ), |B|/δn1+1(Υ, ε′, Jn1)
)

intervals of generation n1 + 1.
In addition, by construction, one has

δn1+1(Υ, ε′, Jn1) ≥ ηn1

2Mn1
(Υn1

Jn1 )
. (6.15)

Hence by (6.13), since all the intervals Jn1+1 of generation n1 + 1 within Jn1 have the
same ν-mass, one has (using (6.15))

νΥ,ε′(B)

≤ min
(
Mn1

(Υn1

Jn1 ), |B|/δn1+1(Υ, ε′, Jn1)
)
· νn1+1(Jn1+1)

≤ min

(
Mn1

(Υn1

Jn1 ), |B|
2Mn1(Υn1

Jn1 )

ηn1,0

)
·

(
n1−1∏
k=n0

1

Mk(Υmin + ε′)

)
· 1

Mn1(Υn1

Jn1 )

≤ 2

(
n1−1∏
k=n0

1

Mk(Υmin + ε′)

)
· η−1
n1
·min (ηn1

, |B|) .

Due to our choices for the sequence (ηn)n≥1, when n0 is large,

n1−1∏
k=n0

1

Mk(Υmin + ε′)
≤ (Mn1−1(Υmin + ε′))−1 ≤ η

2
Υmin+2ε′−1

n1 ,

so applying the inequality x ∧ y ≤ xsy1−s for s ∈ (0, 1) and 0 < x, y < 1 yields

νΥ,ε′(B) ≤ 2η
2

Υmin+2ε′−1

n1 · η−1
n1
· η

2− 2
Υmin+2ε′

n1 · |B|
2

Υmin+2ε′−1
= 2|B|

2
Υmin+2ε′−1

.

Finally the mass distribution principle applied to the measure νΥ,ε′ , which is sup-
ported by the Cantor set C(Υ, ε′), allows one to conclude that

dimH C(Υ, ε′) ≥
2

Υmin + 2ε′
− 1.

6.8 Extension to Υmin ∈ {1, 2}
Letting ε → 0 along a countable sequence yields that almost surely, for all Υ with

Υmin ∈ (1, 2),

dimH F (Υ) ≥ 2

Υmin
− 1. (6.16)
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It remains to treat the extreme cases.

First case: Υmin = 1. For each ε2 > 0, there exists an open interval O ∈ (0, 1) such
that every t ∈ O satisfies Υ(t) ≥ 1 + ε2 > 1. Applying (6.16) yields that dimH F (Υ) ≥

2
1+ε2

− 1 . Letting ε2 → 0 establishes that dimH F (Υ) = 1.

Second case: Υmin = 2, i.e. Υ ≡ 2. In order to prove dimH F (Υ) ≥ 0, it suffices
to show that there exists almost surely t ∈ (0, 1) such that dim(µ,Mt) = 2β(Mt), i.e.
F (Υ) 6= ∅. To this end, some changes are needed for the construction of the Cantor set.
We only sketch the proof since it is essentially the same as the one in the precedent
sections (with simplification). Set{

ρ0 = 1/2 and ρn = exp(−ρ−1
n−1) for all n ≥ 1,

ηn = ρn log(1/ρn)−1 for all n ≥ 0.

Let Jn(2) be the set composed of intervals Jn,k = [kηn, (k + 1)ηn) that satisfy

N

(
[Jn,k−2 ×

[
ρ

1/2
n

(
log 1

ρn

)−3

, 1

])
= 1,

N

(
Jn,k+2 ×

[
ρ

1/2
n

(
log 1

ρn

)−3

, 1

])
= 1,

N

(
Ĵn,k ×

[
ρ

1/2
n

(
log 1

ρn

)−3

, 1

])
= 0,

(6.17)

It is easy to check that any point t covered by the collection Jn(2) infinitely often
satisfy dim(µ,Mt) ≥ 2β(Mt) (necessarily, one has equality thanks to Theorem 1.5). We
construct as before, by induction, the collection Cn(Υ ≡ 2) of basic intervals and the
Cantor set C(Υ ≡ 2) =

⋂
n Cn(Υ ≡ 2) contained in F (Υ). The same arguments as in

Lemma 6.3 give a constant Cn uniformly bounded below and above by 0 and +∞ such
that for any fixed Jn,k,

P(Jn,k ∈ Jn(2)) = Cn · ρn
(

log
1

ρn

)4

.

Thus one bounds from above the probability that there exists Jn,k such that none of the
intervals Jn+1,k′ contained in Jn,k belongs to Jn+1(2) by

1

ηn

(
1− Cn+1 · ρn+1

(
log

1

ρn+1

)4
) ηn
ηn+1

.

Observe that

ηn
ηn+1

= Cn+1ρ
−3
n−1 · (Cn+1)−1ρ−1

n+1

(
log

1

ρn+1

)−3

with Cn+1ρ
−3
n−1 � 1.

So the probability in question is less than

η−1
n e−Cn+1ρ

−3
n−1 ≤ η−1

n e−3ρ−1
n−1 = η−1

n ρ3
n ≤ ρn.

Borel-Cantelli Lemma implies the existence of a sequence of embedded intervals with
length tending to 0 that satisfy (6.17). This justifies that F (Υ) 6= ∅.

7 Space spectrum: proof of Theorem 1.9

Next proposition deals with (at most countable) exceptional values of h. This, com-
bined with Theorem 1.9, completes the statement of the space spectrum.

EJP 22 (2017), paper 47.
Page 27/36

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP48
http://www.imstat.org/ejp/


Stable-like occupation measure

Proposition 7.1. With probability 1, for every non-trivial open interval O ⊂ R, when
h ∈ E , three cases may occur.

1. h = β(Mt) > 2β(Mt−). IfMt /∈ O, dµ(O, h) = −∞, otherwise one has

dµ(O, h) =

{
0 if dim(µ,Mt) = h,

−∞ if dim(µ,Mt) > h.

2. h = 2β(Mt−) < β(Mt). IfMt− /∈ O, dµ(O, h) = −∞, otherwise one has

dµ(O, h) =

{
0 if dim(µ,Mt−) = h,

−∞ if dim(µ,Mt−) < h.

3. h = β(Mt) = 2β(Mt−). If {Mt,Mt−} ∈ O, one has

dµ(O, h) =

{
0 if dim(µ,Mt−) = h or dim(µ,Mt) = h,

−∞ if dim(µ,Mt−) < h and dim(µ,Mt) > h.

If only one ofMt andMt− belongs to O (say,Mt−), one has

dµ(O, h) =

{
0 if dim(µ,Mt−) = h,

−∞ if dim(µ,Mt−) < h.

If neitherMt norMt− belongs to O, one has dµ(O, h) = −∞.

7.1 A first theorem on dimensions, and the space spectrum

Throughout this section, we set ε = ε0, which is defined in (1.1). We are going to
prove the following theorem.

Theorem 7.2. Let ε > 0. Denote by P = {(Tn, Zn)}n≥1 a Poisson point process that
generates the Poisson measure N(dt, dz) with intensity dt⊗ dz/z2. Consider the family
(2.3) of stable processes (Lα. )α∈(ε,1−ε). Also, for every non decreasing càdlàg function
f : [0, 1]→ [ε, 1− ε], consider the process

Lft =

∫ t

0

∫ 1

0

z
1

f(t−)N(ds, dz). (7.1)

Almost surely, for every set E ⊂ [0, 1], for every function f : [0, 1] → [ε, 1 − ε], if
α < inf{f(t) : t ∈ E} and β > sup{f(t) : t ∈ E}, then

dimH(Lα(E)) ≤ dimH Lf (E) ≤ dimH(Lβ(E)) =
β

α
dimH(Lα(E)).

The following corollary should be understood as a generalization of the uniform
dimension result of type (1.6) to stable-like processes.

Corollary 7.3. Almost surely, for every mesurable set E ⊂ [0, 1], one has

dimHM(E) ∈ dimH(E) ·
[

inf
t∈E

β(M(t)), sup
t∈E

β(M(t−))
]
. (7.2)

Moreover, if the set E satisfies that for every non-trivial subinterval O ⊂ [0, 1],
dimH(E) = dimH(E ∩ O), then

dimHM(E) = dimH(E) · sup
t∈E

β(M(t−)).
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Proof. The first part (the formula (7.2)) is immediate.
For the second part, let E ⊂ [0, 1] be such that for every non-trivial subinterval

I ⊂ [0, 1], dimH(E) = dimH(E ∩ I).
For every η > 0, there exists an interval I of length less than η such that[

inf
t∈E∩I

β(M(t)), sup
t∈E∩I

β(M(t−))
]
⊂
[

sup
t∈E

β(M(t−))− η, sup
t∈E

β(M(t−))
]
.

This follows from the càdlàg regularity of t 7→ β(M(t)). Hence, applying (7.2) to E ∩ I
gives

dimHM(E ∩ I) ∈ dimH(E ∩ I) ·
[

sup
t∈E

β(M(t−))− η, sup
t∈E

β(M(t−))
]
.

Since dimHM(E ∩ I) ≤ dimHM(E) and dimH(E) = dimH(E ∩ I), the result follows by
letting η tend to zero.

These results are fine enough for us to deduce Theorem 1.9 from Theorem 1.7. Also,
the corollary solves partially a question left open in [27].

Before proving Theorem 7.2 next subsection, let us explain how we deduce the space
spectrum of the occupation measure. The following lemma which will be used in the
proof of Theorem 1.9.

Lemma 7.4. For every open interval I ⊂ [0, 1] and h ≥ 0, consider the smallest interval

I0 ⊂ I (it may be not open or reduced to a point) such that E
t

µ(I, h) = E
t

µ(I0, h). Denote
by d(I0) the right endpoint of I0 Almost surely, for every open interval I ⊂ [0, 1] and
h ≥ 0, one has

dimHM
(
E
t

µ(I, h)
)

= dimHE
t

µ(I0, h) · sup
t∈I0\d(I0)

β(Mt). (7.3)

with the convention that 0× (−∞) = 0 and (−∞)× (−∞) = −∞.

Proof. If E
t

µ(I, h) is empty or a singleton, there is nothing to prove. One thus assumes

that E
t

µ(I, h) is neither empty nor a singleton, so I0 is a non-trivial interval. One could
check the analysis in the proof of Theorem 1.7 for a construction of I0. Observe that the
left-hand side of (7.3) is less than or equal to the right-hand side due to Corollary 7.3.
The converse inequality follows by minimality of I0 and a localization procedure as in
the proof of Corollary 7.3.

Proof of Theorem 1.9 and Proposition 7.1. To deduce the space spectrum, one needs
some additional analysis other than the time spectrum. This is due to the following basic
observation: for all t ∈ S(M),Mt− is not in the range ofM, but in the support of µ.

When O does not intersect the range ofM, the level set Eµ(O, h) = ∅, as is given in
Theorem 1.9 and Proposition 7.1.

When O intersects the range ofM, by the càdlàg property ofM, there is a non-trivial
interval Õ such that

M((0, 1)) ∩ O =M(Õ).

The set Õ is an open set (a, b) if M enters O continuously, or is a semi-open interval
[a, b) ifM enters O with a jump. In any case,Ma− /∈ O andMb /∈ O because O is open.
Observe that

Eµ(O, h)

= {x ∈ Suppµ ∩ O : dim(µ, x) = h}
= {Mt ∈ O : dim(µ,Mt) = h} ∪ H

=M(E
t

µ(Õ, h)) ∪H
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where

H = {Mt− : t ∈ S(M) ∩ Õ \ {g(Õ)} and dim(µ,Mt−) = h}

with g(Õ) the left endpoint of Õ. Since the Hausdorff dimension of H is at most 0, one
distinguishes two types of situations according to the value of h.

• Type A. The time level set E
t

µ(Õ, h) 6= ∅, so one ignores H in the last union when

computing the Hausdorff dimension of Eµ(O, h). If #E
t

µ(Õ, h) = 1 (necessarily h =

β(Mt) with dim(µ,Mt) = β(Mt) for some t ∈ S(M) with β(Mt) ≥ 2β(Mt−)), one has
dµ(O, h) = 0 which coincide with the formula in Proposition 7.1. Otherwise Lemma 7.4

applied to h and Õ entails the existence of a minimal Õ0 (that we can and will suppose
open) such that

dµ(O, h) = d
t

µ(Õ0, h) · sup
t∈Õ0\d(Õ0)

β(Mt)

= sup
{
ĝα(h)/α : α ∈ {β(Mt) : t ∈ Õ0}

}
· sup
t∈Õ0

β(Mt)

= sup
{
ĝα(h) : α ∈ {β(Mt) : t ∈ Õ0}

}
= sup

{
ĝα(h) : α ∈ {β(Mt) : t ∈ Õ}

}
= sup {ĝα(h) : α ∈ {β(Mt) :Mt ∈ O}} ,

as desired.
• Type B. The time level set

E
t

µ(Õ, h) = ∅ (7.4)

so one has to consider the set H which is (at most) countable. Compared with the time
spectrum, several cases may occur according to the value of h. Recall that Õ = [a, b)

(when M jumps into O) or (a, b) (when M enters O continuously). In the following
analysis, the caseMt0 /∈ O is trivial. We thus assume that everyMt0 below belongs to
O.

1. (7.4) is due to 2β(Mt0−) < h < β(Mt0) with t0 ∈ S(M). For all t > t0,
dim(µ,Mt−) ≥ β(Mt−) > β(Mt0) > h. For all t ≤ t0, dim(µ,Mt−) ≤ 2β(Mt−) ≤
2β(Mt0−) < h. So H = ∅ and dµ(O, h) = −∞ as desired.

2. (7.4) is due to the fact that 2β(Mt0−) < β(Mt0) = h with t0 ∈ S(M) and
dim(µ,Mt0) 6= β(Mt0). As in the last item, H = ∅ as desired.

3. (7.4) is due to h = 2β(Mt0−) < β(Mt0) or h = 2β(Mt0−) = β(Mt0). As before
for all t 6= t0, one has dim(µ,Mt−) 6= h. If dim(µ,Mt0−) = 2β(Mt0−), H = {t0},
otherwise H = ∅. This coincides with the claims of Proposition 7.1.

4. (7.4) is due to h ≥ 2β(Mb−). For all t < b, dim(µ,Mt−) ≤ 2β(Mt0−) < 2β(Mb−) ≤
h, hence H = ∅, as desired.

5. (7.4) is due to h ≤ β(Ma). Recall first that β(Ma) /∈ O. Further, for all t > a,
dim(µ,Mt) > h. Hence, H = ∅, as desired.

7.2 Proof of Theorem 7.2

We start with a Lemma describing the distribution properties of the Poisson point
process P = {(Tn, Zn)}n≥1.

Lemma 7.5. For every j ≥ 1, let Pj = {n : Zn ∈ [2−j−1, 2−j)}. Almost surely, there exist
two positive decreasing sequences (εj)j≥1 and (ηj)j≥1 converging to zero such that for
every integer J large enough, one has:
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1. 2J(1−εJ ) ≤ #PJ ≤ 2J(1+εJ ),

2. for every interval I ⊂ [0, 1] with length 2−J ,

1 ≤ #
⋃

j≤J(1+ηJ )

{n ∈ Pj : Tn ∈ I} ≤ 2JεJ ,

3. for every interval I ⊂ [0, 1] with length 2−J ,

0 ≤ #
⋃

j≤J/3

{n ∈ Pj : Tn ∈ I} ≤ 1,

4. for every interval I ⊂ [0, 1] with length 2−J , for every j ≥ J(1 + ηJ),

#{n ∈ Pj : Tn ∈ I} ≤ 2j(1+εj)2−J .

Routine computations as in Lemma 6.3 entail Lemma 7.5.

Let E ⊂ [0, 1], α = inf{f(t) : t ∈ E} and β = sup{f(t) : t ∈ E}.

Call Eα (resp. Ef , Eβ) the image of E by Lα (resp. Lf , Lβ).

Lemma 7.6. Almost surely, the following holds. With each interval B̃α such that B̃α ∩
Eα 6= ∅, one can associate an interval of the form Bα = Lα([Tm, Tn)) such that |Bα| ≤
2|B̃α| and possibly a singleton of the form {Lα(Tn)}, such that

Eα ∩ (Bα ∪ {Lα(Tn)}) = Eα ∩ B̃α.

The same holds true for every interval B̃f such that Ej ∩ B̃f 6= ∅, which can be replaced
by Bf = Lf ([Tm, Tn)) and possibly a singleton.

Proof. Almost surely all the processes Lα, Lβ and Lf are strictly increasing and càdlàg.
Let B̃α = [xα, yα] be an interval satisfying B̃α ∩ Eα 6= ∅.
If xα is not of the form Lα(Tm), then two cases occur:

• when xα /∈ Lα(E): B̃α can be replaced by [x′α, yα], where x′α = inf(B̃α ∩ Eα), with-
out altering the covering Rα. Since Lα is increasing and càdlàg, x′α is necessarily
the image of some jump point Tm by Lα.

• when xα ∈ Lα(E): xα can be written as Lα(t), for some t which is a point of
continuity for Lα. Using the density of the jump points, there exists (Tm, Zm) such
that Tm < t and Lα(t)− Lα(Tm) < |B̃α|/2. We then choose x′α = Lα(Tm).

In all cases, B̃α is replaced by B′α = [x′α, yα], where |B′α| ≤ 3/2|Bα|.
Similarly, if yα is not of the form Lα(Tn−) (i.e. the left limit of Lα at Tn for some jump

point Tn), then:

• when yα /∈ Lα(E): B′α can be replaced by Bα = [x′α, y′α], where y′α = sup(Bα∩Eα),
without altering the covering Rα. Since Lα is increasing and càdlàg, y′α is of the
form Lα(Tn−) for some jump point Tn.

• when yα = Lα(Tn) for some jump time Tn: Then B′α can be replaced by {Lα(Tn)}∪
Bα, where Bα = [x′α,Lα(Tn−)]. Indeed, there is no point of Eα between Lα(Tn−)

and Lα(Tn).

• when y = Lα(t) for some t which is a point of continuity for Lα. Using the same
argument as above, there exists (Tn, Zn) such that Tn > t and Lα(Tn) − Lα(t) <

|Bα|/2. We then choose y′α = Lα(Tn−).

This proves the claim.
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Observe that the previous Lemma holds almost surely, for every interval Bα, for all α,
since the randomness is only located in the distribution of the Point Poisson process and
the strictly increasing and càdlàg properties of the processes, which hold simultaneously
almost surely.

Next Lemma establishes that the increment of the process in an interval I is approxi-
mately the same order as the size of the largest jump in I, uniformly for all I and all the
parameters.

Lemma 7.7. With probability one, there exists a non-decreasing function g : [0, 1]→ R+

with g(0) = 0, continuous at 0, such that the following holds. Let (Tm, Zm) and
(Tn, Zn) (with Tm < Tn) be two couples of the point Poisson process. Let Bα =

[Lα(Tm),Lα(Tn−)], Bβ = [Lβ(Tm),Lβ(Tn−)] and Bf = [Lf (Tm),Lf (Tn−)]. Then when
Bα = [Lα(Tm),Lα(Tn−)] is small enough, one has

|Bα|α/β+g(|Bα|) ≤ |Bβ | ≤ |Bα|α/β−g(|B
α|) (7.5)

and
|Bα| ≤ |Bf | ≤ |Bβ |. (7.6)

Proof. The three processes Lα, Lf and Lβ are almost surely pure jump processes with
finite variations. One deduces that

|Bα| =
∑

p∈N:Tp∈[Tm,Tn)

Z1/α
p , (7.7)

and the same holds true for |Bβ | by replacing 1/α by 1/β. Similarly,

|Bf | =
∑

p∈N:Tp∈[Tm,Tn)

Z1/f(Tp−)
p .

Then (7.6) follows immediately since f is monotone and α ≤ f(t) ≤ β.

We write B = [Tm, Tn), and consider J the unique integer such that 2−(J+1) <

|Tn − Tm| ≤ 2−J . We assume that J is so large that εJ ≤ (1/(1− ε)− 1)/4 ≤ (1/α− 1)/4.
We now make use of Lemma 7.5.
Let (TN , ZN ) be the point Poisson process in the above sum (7.7) with largest jump

ZN . We write ZN = 2−JN . Then one decomposes |Bα| into

|Bα| = Z
1/α
N +

∑
j≤J(1+ηJ ):Tp∈B and p∈Pj

Z1/α
p +

∑
j>J(1+ηJ ):Tp∈B and p∈Pj

Z1/α
p . (7.8)

Call S1 and S2 the two above sums.

Assume that JN < J/3.
Observe that since B strictly contains an interval of length 2−J−1, the left inequality

part (2) of Lemma 7.5 yields that JN ≤ (J + 1)(1 + ηJ+1).
Since B is contained in an interval of length 2−J , one knows that all the jumps other

than (TN , ZN ) appearing in formula (7.8) are smaller than 2−J/(3α). Hence, the right
inequality in part (2) of Lemma 7.5 yields

S1 ≤ 2JεJ2−J/(3α).

Similarly, applying part (4) of Lemma 7.5, S2 is bounded by

S2 ≤
∑

j≥J(1+ηJ )

2j(1+εj)2−J2−j/α ≤ 2J(1+ηJ )(1+εJ−1/α)−1

23/4(1/α−1) − 1

≤ Cε2
−J/α2J(εJ+ηJ (1+εJ−1/α)), (7.9)
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where Cε := 1
23/4(1/(1−ε)−1)−1

. Recalling that JN ≤ J/3, one gets

|Bα| ≤ (ZN )1/α + 2−J(1/(3α)−εJ ) + Cε2
−J(1/α−εJ−ηJ (1+εJ−1/α))

≤ (ZN )1/α + (ZN )1/(α)−εJN /3 + (ZN )3(1/α−εJN−ηJN (1+εJN−1/(1−ε))).

One concludes that
(ZN )1/α ≤ |Bα| ≤ (ZN )1/α−ε̃JN ,

for some ε̃JN which depends only on εJN and ηJN (not on α), is decreasing as a function
of εJN and ηJN , and which tends to zero when JN tends to infinity. In addition, the
fact that (ZN )1/α ≤ |Bα| implies that JN ≥ −α log2 |Bα| ≥ b−ε log2 |Bα|c. Hence ε̃JN ≤
g1(b−ε log2 |Bα|c), where g1(r) = ε̃b−ε log2 rc. One can write finally

(ZN )1/α ≤ |Bα| ≤ (ZN )1/α−g1(|Bα|). (7.10)

By construction, this mapping g1 is non decreasing with r, and tends to 0 when r tends
to 0.

Observe that since ε̃JN is small (uniformly in α), one also has

(ZN )1/α ≤ |Bα| ≤ (ZN )1/(2α). (7.11)

Assume now that JN ≥ J/3.
All the jumps other than (TN , ZN ) involved in formula (7.8) are smaller than 2−JN/α.

Hence, part (2) of Lemma 7.5 yields

S1 ≤ 2JεJ2−JN/α ≤ 2−JN (1/α−3εJN ).

The sum S2 is still bounded by above by (7.9) with J replaced by 3JN . One deduces that

|Bα| ≤ (ZN )1/α + (ZN )1/(α)−3εJN + (ZN )3(1/α−εJN−ηJN (1+εJN−1/(1−ε))).

One concludes that |Bα| ≤ (ZN )1/α−ε̃JN for some ε̃JN which depends only on JN (not on
α), and which tends to zero when JN tends to infinity. For the same reasons as above,
equation (7.10) holds true.

Using that (7.10) holds true with β instead of α (but with the same mapping ε̃), one
sees that

|Bβ | ≤ (ZN )1/β−g1(|Bβ |) ≤ |Bα|α/β−αg1(|Bβ |).

In addition, using (7.11) with β instead of α, one has |Bβ | ≤ (ZN )1/2β ≤ |Bα|α/(2β). We
deduce that αg1(|Bβ |) ≤ (1− ε)g1(|Bα|α/(2β)) := g2(|Bα|), hence

|Bβ | ≤ |Bα|α/β−(1−ε)g2(|Bα|). (7.12)

Similarly, recalling that |Bα| and |Bβ | are small quantities,

|Bβ | ≥ (ZN )1/β ≥ |Bα|1/(β(1/α−g1(|Bα|)) ≥ |Bα|α/β+2βg1(|Bα|) ≥ |Bα|α/β+g3(|Bα|). (7.13)

where g3(r) = 2(1 − ε)ε̃(r). Finally, (7.12) and (7.13) gives the result, with g(r) =

max(g2(r), g3(r)).

Observe that one can also write

|Bα|α/β+g̃(|Bβ |) ≤ |Bβ | ≤ |Bα|α/β−g̃(|B
β |) (7.14)

for some mapping g̃ which enjoys the same properties as g.
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One can now prove Theorem 7.2.

The following holds almost surely, since it depends only on Lemmas 7.6 and 7.7.

Let us denote by dα = dimHE
α, dβ = dimHE

β , df = dimHE
f .

Let s > dα β/α, and let s̃ = sα/β − (sα/β − dα)/2. One has dα < s̃ < sα/β.

By definition of dα, there exists η > 0 such that Hs̃η/2(Eα) ≤ 4−s. Hence, for some
η/2-covering Rα of Eα, one has ∑

B̃α∈Rα

|B̃α|s̃ ≤ 2−s.

First, using 7.6, by slightly modifying the intervals B̃α ∈ R̃α, one can replace these
intervals with intervals of the form Bα = Lα([Tm, Tn)) (plus at most a countable number
of singletons), satisfying |Bα| ≤ 2|B̃α|, whose union is still covering Eα.

Hence, the initial η/2-covering R̃α can be replaced by an η-covering Rα, such that
one has ∑

Bα∈Rα
|Bα|s̃ ≤ 1.

Let us choose η so small that g(ηα/β−g(η)) < sα/β−dα
2s .

Each ball Bα is written Lα(B), where B = [Tm, Tn). As above, we write Bβ = Lβ(B)

and Bf = Lf (B), and (7.5) and (7.6) hold true.

Since the balls (Bα) form an η-covering of Eα, the balls (Bβ) form a η̃ := ηα/β−g(η)-
covering of Eβ, and the balls (Bf ) also form a η̃-covering of Ef . We denote by Rβ and
Rf these two coverings. One has∑

Bf∈Rf
|Bf |s ≤

∑
Bβ∈Rβ

|Bβ |s ≤
∑

Bα∈Rα
|Bα|s(α/β−g(|B

α|))

≤
∑

Bα∈Rα
|Bα|sα/β−(sα/β−dα)/2 =

∑
Bα∈Rα

|Bα|s̃ ≤ 1.

Since Rβ is an η̃-covering of Eβ, the s-pre-Hausdorff measure of Eβ, Hsη̃(Eβ) is less

than 1. The same holds for Hsη̃(Ef ). This remains true for any sufficiently small η̃ > 0,

we conclude that both Hs(Ef ) and Hs(Eβ) less than 1, hence df and dβ are smaller than
s. Since this holds for any s > dα β/α, one gets that max(df , dβ) ≤ dα β/α.

Next, starting with a η-covering of Ef by balls Bf , one associates with every ball
Bf = Lf ([Tm, Tn)) the ball Bβ = Lβ([Tm, Tn)), the same lines of computation (simply
using that |Bf | ≤ |Bβ |) yields that df ≤ dβ .

The same argument shows that dα ≤ df .

It remains us to prove the last inequality dα ≤ dβ α/β. The proof follows exactly the
same lines, we write it without details.

Let s > dβ α/β, and let s̃ = sβ/α− (sβ/α− dβ)/2. One has dβ < s̃ < s β/α.

There exists an η-covering Rβ of Eβ by intervals of the form Bβ = Lβ([Tm, Tn)), such
that ∑

Bβ∈Rβ
|Bβ |s̃ ≤ 1.

One considers the associated intervals (Bα) and (Bf ), and the natural coverings Rα and
Rf of Eα and Ef provided by these intervals.
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Let η be so small that g̃(|Bβ |) ≤ g̃(η) <
s−dβα/β

4s , where g̃ is given by (7.14). One has∑
Bα∈Rα

|Bα|s ≤
∑

Bβ∈Rβ
|Bβ |s/(α/β+g̃(|Bβ |)) ≤

∑
Bβ∈Rβ

|Bβ |sβ/α−2sg̃(|Bβ |)β/α

≤
∑

Bβ∈Rβ
|Bβ |sβ/α−(sβ/α−dβ)/2 =

∑
Bβ∈Rβ

|Bα|s̃ ≤ 1.

This holds true for any η > 0 small enough, so that Hs(Eα) < +∞, hence dα ≤ s.
Since this holds true for any s > dβ α/β, one gets that dα ≤ dβ α/β.

One concludes that dα ≤ df ≤ dβ = dαβ/α.
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