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Finitely dependent insertion processes
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Abstract

A q-coloring of Z is a random process assigning one of q colors to each integer in such
a way that consecutive integers receive distinct colors. A process is k-dependent if
any two sets of integers separated by a distance greater than k receive independent
colorings. Holroyd and Liggett constructed the first stationary k-dependent q-colorings
by introducing an insertion algorithm on the complete graph Kq. We extend their
construction from complete graphs to weighted directed graphs. We show that
complete multipartite analogues of K3 and K4 are the only graphs whose insertion
process is finitely dependent and whose insertion algorithm is consistent. In particular,
there are no other such graphs among all unweighted graphs and among all loopless
complete weighted directed graphs. Similar results hold if the consistency condition is
weakened to eventual consistency. Finally we show that the directed de Bruijn graphs
of shifts of finite type do not yield k-dependent insertion processes, assuming eventual
consistency.
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1 Introduction

A proper q-coloring of Z is a sequence of colors (xi)i∈Z with xi ∈ [q] := {1, . . . , q}
such that xi 6= xi+1 for all i. A random q-coloring (Xi)i∈Z is stationary if (Xi)i∈Z and
(Xi+1)i∈Z are equal in law. A stationary q-coloring is k-dependent if (Xi)i<0 and (Xi)i≥k
are independent, and finitely dependent if it is k-dependent for some k ≥ 0.

The simplest examples of stationary finitely dependent processes are the block
factors. These are stochastic processes of the form {f(Yi, . . . , Yi+k)}i∈Z where f is
deterministic and {Yi}i∈Z are an i.i.d. sequence. In the 1960s, Ibragimov and Linnik
first suggested that there may exist non-block factor stationary finitely dependent
processes [15, 16]. Since then, examples of such processes have been constructed by
several authors in the course of studying properties of finitely dependent processes
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Finitely dependent insertion processes

[1, 7, 9, 2, 17]. Until recently, it has been believed that most ‘natural’ finitely dependent
processes are block factors [6].

Yet block factors have subtle limitations. For example, these processes are never
supported on proper colorings [3]. It turns out that finitely dependent processes do
not have this limitation, although this fact is highly non-obvious and remains to be fully
understood. This was discovered by Holroyd and Liggett in a recent breakthrough [13],
in which they disproved a conjecture of Schramm [14] by showing that stationary finitely
dependent colorings of the integers exist. These are perhaps the first natural non-block
factor finitely dependent processes.

Specifically, Holroyd and Liggett constructed symmetric 3- and 4-colorings with these
properties. It is remarkable that, while their construction produces a q-coloring for each
integer q ≥ 2, only when q ∈ {3, 4} is the coloring finitely dependent. Using a more
complicated construction, these authors later obtained symmetric q-colorings for all
q ≥ 4 [12].

As described in [13], the q-colorings therein have the following characterization.
For each integer q ≥ 2, let Z = (Z1, . . . , Zn) be a sequence of independent random
variables each taking the values 1, 2, . . . , q with equal probability. Let σ be an independent
uniformly random permutation of 1, . . . , n, which we interpret as meaning that the
symbol Zσ(i) arrives at time i. Let E be the event that, for every time t = 1, . . . , n, the
subsequence of Z formed by those symbols that arrived up to time t (ordered as in
the original sequence Z) forms a proper coloring (i.e. no two consecutive elements in
the subsequence are equal). Then the conditional law of Z given E equals the law of
(X1, . . . , Xn), where X is the q-coloring constructed in [13].

It was observed by Holroyd (personal communication) that the proper coloring
condition in the previous paragraph may be replaced by a graph adjacency condition. The
case of a q-coloring corresponds to the complete graph with vertex set {1, . . . , q}, denoted
Kq. A general graph will encode which pairs of vertices may appear consecutively. See
e.g. [5, Example 2.5] for more on this perspective. Since few stationary finitely dependent
colorings are currently known, it is natural to pursue this generalization in the search
for new finitely dependent processes.

Fix a finite graph G containing at least one edge. Let Z = (Z1, . . . , Zn) be a sequence
of independent uniformly random vertices of G. Let σ be an independent uniformly
random permutation of 1, . . . , n, which we interpret as meaning that the vertex Zσ(i)
arrives at time i. Let E be the event that, for every time t = 1, . . . , n, the subsequence of
Z formed by those vertices that arrived up to time t (ordered as in the original sequence
Z) forms a path in G. Then let (Y1, . . . , Yn) denote a random tuple whose law equals
the conditional law of Z given E. This generalizes the construction of the q-coloring
in [13].

To produce a stochastic process (Yi)i∈Z from these random tuples, we must apply
a limiting procedure. Let Pn denote the probability mass function of (Y1, . . . , Yn). If
for all n the mass functions of (Y1, . . . , Yn−1) and (Y2, . . . , Yn) equal Pn−1, then by the
Kolmogorov Extension Theorem [10] there exists a unique stochastic process (Ỹi)i∈Z
such that (Ỹ1, . . . , Ỹn) has mass function Pn for all n ≥ 1. In this case we say that {Pn}∞n=1

is consistent and that G satisfies property (C). More generally, we say that the mass
functions are eventually consistent and that G satisfies property (EC) if the preceding
condition holds for all sufficiently large n. In this case, we construct a process (Ỹi)i∈Z in
the same manner as before by taking a projective limit [18] over sufficiently large n. We
call (Ỹi)i∈Z the insertion process associated to G.

Holroyd and Liggett showed that for all q ≥ 2, the complete graph Kq has property (C)
[13, Proposition 10]. Furthermore, they discovered that the insertion process associated
to K4 is 1-dependent and the insertion process associated to K3 is 2-dependent and that
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these are the unique values of q for which the insertion process is finitely dependent [13,
Proposition 13].

One may embellish these examples in our general setting. Replacing each of the 4

(resp. 3) colors with r copies of itself yields the complete multipartite graphs Kr,r,r,r

(resp. Kr,r,r). Both of these graphs are easily seen to have property (C) and to have a 1-
(resp. 2-)dependent insertion process. We establish the remarkable fact that these are
essentially the only (EC) graphs with a finitely dependent insertion process.

Theorem 1. Let G be a finite graph satisfying property (C). Then the insertion process
associated to G is k-dependent if and only if either: G = Kr,r,r and k ≥ 2, or G = Kr,r,r,r

and k ≥ 1.
If G satisfies property (EC), then the associated insertion process is k-dependent if

and only if it is a disjoint union of one of the above graphs with a set of isolated vertices.

In the hope of uncovering other finitely dependent insertion processes, we consider
weighted graph variants. A weighted digraph on a vertex set V is simply a non-negative
function w : V 2 → R≥0. For i, j ∈ V , we regard w(i, j) as the weight of the directed edge
from i to j, with 0 signifying that no edge is present. Suppose a weighted digraph with
vertex set V is given. Then consider the random sequence

X1
1 , (X2

1 , X
2
2 ), . . . , (Xn

1 , . . . , X
n
n ), . . . ∈ V × V 2 × · · · × V n × · · ·

produced by the following algorithm (where, for all n ≥ 1, we set Xn
0 = Xn

n+1 = ∆ to be
a symbol not in V and where we define w(∆, i) = w(i,∆) = w(∆,∆) = 1 for all i ∈ V ).

Algorithm 1.

i. Let X1
1 be a uniformly random element of V . Set n = 1.

ii. If
n∑
i=0

∑
v∈V

w(Xn
i , v) · w(v,Xn

i+1) > 0, let I ∈ {0, . . . , n} and V ∈ V be random with

P(I = i,V = v | Xn
1 , . . . , X

n
n ) =

w(Xn
i , v) · w(v,Xn

i+1)∑
i,v w(Xn

i , v) · w(v,Xn
i+1)

, i ∈ {0, . . . , n}, V ∈ V,

and proceed to (iii). Otherwise, halt.

iii. Set (Xn+1
1 , . . . , Xn+1

n+1 ) = (Xn
1 , . . . , X

n
I ,V, Xn

I+1, . . . , X
n
n ), increment n, and go to (ii).

The weighted digraph is said to satisfy property (EC) if this algorithm does not halt
and if the law of (Xn

1 , . . . , X
n
n ) is eventually consistent as n → ∞. In this case, we

associate to the weighted digraph a stochastic process Y = (Yi)
∞
i=1 such that (Y1, . . . , Yn)

and (X1
1 , . . . , X

n
n ) are equal in law for all large enough n. We call Y the insertion process.

A weighted digraph is uniform of weight w if w(i, j) ∈ {0, w} for all vertices i and j,
and if in addition w(i, j) = w(j, i) and w(i, i) = 0. We remark that uniform weight graphs
underly a model of endpoint-weighted insertion introduced in [11, §4].

Theorem 2. Let G be a finite weighted digraph of uniform weight satisfying property
(C). Then the insertion process associated to G is k-dependent if and only if either:
G = Kr,r,r and k ≥ 2, or G = Kr,r,r,r and k ≥ 1.

If G satisfies property (EC), then the associated insertion process is k-dependent if
and only if it is a disjoint union of one of the above graphs with a set of isolated vertices.

Theorems 1 and 2 demonstrate that the requirement of satisfying property (EC) and
having a finitely dependent associated insertion process is extremely restrictive on a
graph. This continues to hold for a wide range of weighted digraphs.
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Theorem 3. Let G be a weighted digraph satisfying property (C) such that w(i, i) = 0

and w(i, j) > 0 for all distinct vertices i and j. Then the insertion process associated to
G is k-dependent if and only if G is unweighted and either: G = K3 and k ≥ 2; or G = K4

and k ≥ 1.

Another way to generalize graph coloring is to consider shifts of finite type [19, 14].
A loopless shift of finite type is a set of the form

S =
{
x ∈ [q]Z : (xi+1, . . . , xi+n) ∈W ∀i ∈ Z

}
,

for some W ⊂ [q]n \ {(i, . . . , i) : i ∈ [q]}. The de Bruijn graph [8] associated to S has
vertex set W and edge set

E =
{(

(x1, . . . , xn), (x2, . . . , xn+1)
)

: (x1, . . . , xn), (x2, . . . , xn+1) ∈W
}
.

Theorem 4. Consider a loopless shift of finite type with de Bruijn graph G. Suppose
that G has property (EC). The insertion process associated to G extends to a process
supported on the shift of finite type, but this process is never finitely dependent.

When n = 2, shifts of finite type correspond to edge sets of directed graphs. In
analogy with Theorems 1 to 3, one might expect K3 and K4 to appear in Theorem 4. The
reason this is not the case is that Theorems 1 to 3 pertain to insertion processes on the
vertex set, whereas Theorem 4 describes insertion processes on the edge set.

Open questions

In our quest to uncover new finitely dependent processes, we considered a class of
insertion processes arising from graphs (or weighted and directed variants thereof) with
vertex set V . Such an insertion process arose as a limit of a random tuple in V n as n→∞.
However, our method of extracting such a limit required delicate combinatorial identities
to hold in the graph: the sequence of laws was required to be eventually consistent.
Thus it is natural to ask whether similar results continue to hold after weakening this
requirement further.

Question 1.1. Does Theorem 1 continue to hold if we replace property (EC) with the
assumption that sequence of laws converges weakly in the product topology?

In Theorem 3, we do not even know if property (C) can be weakened to property (EC),
let alone to weak limits.

Question 1.2. Does Theorem 3 continue to hold for strongly connected weighted di-
graphs if we replace property (C) with property (EC)?

Unweighted digraphs already pose challenges for our techniques.

Question 1.3. Does Theorem 1 continue to hold for strongly connected unweighted
digraphs?

The hypotheses of Theorem 3 require that the weighted digraph is strictly positive.
Is this assumption necessary?

Question 1.4. Let G be a weighted digraph satisfying property (C) such that w(i, i) = 0

for all i. Suppose that the insertion process associated to G is k-dependent for some
integer k. Does it follows that G is unweighted and either G = K3 for k ≥ 2 or G = K4

for k ≥ 1?

Overview

Section 2 presents a combinatorial analysis of insertion processes associated to
weighted digraphs. Theorems 1 and 2 are proven in Section 3. Uniform weight graphs

EJP 22 (2017), paper 32.
Page 4/19

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP35
http://www.imstat.org/ejp/


Finitely dependent insertion processes

x1 x2 x3 x4 x5 x6 x7

Figure 1: Left: The arrival order for σ = 4752613. Right: Multiply the edge weights to
get w(x1 · · ·x7;σ).

appear in Subsection 3.1, complete multipartite graphs in Subsection 3.2, and the proofs
of Theorems 1 and 2 are in Subsection 3.3. Section 4 combines Theorem 2 with some
additional arguments to deduce Theorem 3. Lastly, we deduce Theorem 4 in Section 5
from Lemma 2.4 in Subsection 2.2.

2 Weighted insertion

Let V be a finite alphabet. A word (of length n) is a finite sequence x = (x1, x2, . . . ,

xn) ∈ V n, which we sometimes abbreviate to x1x2 · · ·xn. The word of length 0 is denoted
by ∅. Let Sn be the symmetric group of all permutations of 1, . . . , n. Let x ∈ V n be a word
and let σ ∈ Sn be a permutation. We interpret σ as meaning that at time t = 1, . . . , n

symbol xσ(t) arrives in (relative) position σ(t).
Let Min(σ) := {1 ≤ t ≤ n : σ(t) = mins≤t σ(s)} denote the running minima of σ. Let

Max(σ) := {1 ≤ t ≤ n : σ(t) = max
s≤t

σ(s)}

denote the set of running maxima. If σ(t) is neither a running minimum nor maximum,
then at time t the symbol xσ(t) is inserted between xσ(t−) and xσ(t+) where

σ(t−) = max
s<t
{σ(s) : σ(s) < σ(t)} and σ(t+) = min

s<t
{σ(s) : σ(s) > σ(t)}.

A weighted digraph with vertex set V is a function w : V 2 → R≥0. We define the
weight of the pair (x, σ) ∈ V n × Sn to be

w(x;σ) :=
∏

t 6∈Min(σ)

w
(
xσ(t−), xσ(t)

) ∏
t 6∈Max(σ)

w
(
xσ(t), xσ(t+)

)
. (2.1)

For example, when σ = id is the identity permutation of 1, . . . , n we have w(x; id) =

w(x1, x2) · · ·w(xn−1, xn). We denote this quantity by w(x). When the length of x is at
most 1, we have that w(x) = 1.

If we imagine building the word dynamically using σ, then when xσ(t) is inserted
between xσ(t−) and xσ(t+) a multiplicative weight of w(xσ(t−), xσ(t)) w(xσ(t), xσ(t+)) is
incurred in (2.1).

Definition 1. Given a weighted digraph with vertex set V and a word x ∈ V n, define

B(x) :=
∑
σ∈Sn

w(x;σ).

This is a generalization of the building number defined in [13], which is the special
case consisting of the weighted digraph w with vertex set {1, . . . , q} and weight function
w(i, j) = 1[i 6= j].
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Clearly B(x) > 0 if and only if there exists σ ∈ Sn such that w(x;σ) > 0. In this case
σ = id works. Word x has positive weight if either of the equivalent conditions B(x) > 0

or w(x) > 0 holds.
For a word x = x1x2 · · ·xn, we write x̂i = x1 · · ·xi−1xi+1 · · ·xn.

Lemma 2.1. Suppose that x ∈ V n. Then B(x) is equal to

B(x̂1)w(x1, x2) +

n−1∑
i=2

w(xi−1, xi) B(x̂i) w(xi, xi+1) + w(xn−1, xn)B(x̂n).

Proof. Fix an index i. For any σ which satisfies i = σ(n),

w(x;σ) = w(xi−1, xi) w(x̂i; σ̂i) w(xi, xi+1),

with the obvious modifications when i = 1, n. Summing over all σ ∈ Sn yields the
result.

2.1 Eventual consistency

Let G be a weighted digraph with (finite) vertex set V . Say that G is recurrent if
there exist arbitrarily long words of positive weight. We remark that this is equivalent to
there existing positive-weight words of every length, since if w(x1x2 · · ·xn) > 0 then also
w(x1x2 · · ·xk) > 0 for all 1 ≤ k ≤ n. Furthermore, it is easy to see that G is recurrent if
and only if ∑

y∈V n

B(y) > 0 for all n ≥ 0. (2.2)

If G is a recurrent digraph, then for all n ≥ 0 we define a probability mass function Pn
on V n by setting

Pn(x) =
B(x)∑

y∈V n B(y)
, x ∈ V n. (2.3)

It is a simple consequence of Lemma 2.1 that the random element of V n computed by
Algorithm 1 (from the introduction) has mass function Pn. Moreover, Algorithm 1 halts if
and only if G is not recurrent.

If G is recurrent and the mass functions {Pn}∞n=0 satisfy

Pn(x) =
∑
v∈V

Pn+1(xv) =
∑
v∈V

Pn+1(vx) for all n ≥ 0, (2.4)

we say that G satisfies property (C) and that the mass functions are consistent. Like-
wise if G is recurrent and (2.4) holds for all sufficiently large n, we say that G satisfies
property (EC) and that the mass functions are eventually consistent.

Clearly, equation (2.4) is equivalent to the existence of constants Cn > 0 such that
(2.5) holds for all x ∈ V n: ∑

v∈V
B(xv) =

∑
v∈V

B(vx) = CnB(x). (2.5)

Thus, a recurrent graph satisfies property (C) if and only if there exists Cn > 0 such that
(2.5) holds for all n ≥ 0. Similarly, a recurrent graph satisfies property (EC) if and only if
for all sufficiently large n, there exists Cn > 0 such that (2.5) holds.

When the mass functions {Pn} are eventually consistent, it follows from the Kol-
mogorov extension theorem [10] that there is a unique process (Xi)i∈Z satisfying

P
(
(Xi+1, . . . , Xi+n) = x

)
= Pn(x)

for all sufficiently large n. This is the insertion process associated to an (EC) weighted
digraph. It follows by construction that the insertion process is stationary.
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Lemma 2.2. Suppose that G has property (EC). Then the associated insertion process is
k-dependent if and only if for all n,m ∈ N sufficiently large, there are positive constants
Cn,m > 0 for which∑

W∈V k

B(x W y) = Cn,mB(x)B(y), x ∈ V n and y ∈ V m. (2.6)

Proof. By normalizing (2.6) we see it is equivalent to∑
W∈V k

Pn+k+m(x W y) = Pn(x)Pm(y).

This is equivalent to the associated insertion process (Xn)n∈Z having the property that
(Xi)i∈I and (Xj)j∈J are independent for any pair of sufficiently large intervals I and J
separated by a distance of k or greater. Since restriction preserves independence, we
may remove the adjective ‘sufficiently large’ from the previous sentence.

Holroyd and Liggett [13] proved that the (unweighted, undirected) complete graph
Kq has property (C) for all q ≥ 2. Furthermore, they showed that the associated
insertion process is k-dependent if and only if q = 3 and k ≥ 2 or q = 4 and k ≥ 1. In
Section 3 we show that apart from minor modifications, these are the only unweighted
and undirected graphs with property (EC) for which the associated insertion process is
finitely dependent.

2.2 Necessary conditions for k-dependence

Consider a weighted digraph G satisfying property (EC). In this subsection, we
present necessary conditions for the associated insertion process to be finitely dependent.
We show that such digraphs must contain directed triangles (Lemma 2.4) and are not
too far from being strongly connected (Lemma 2.5).

A directed triangle on (a, b) is a triple of vertices (a, b, c) ∈ V 3 satisfying

w(a, b) w(b, c) w(a, c) > 0.

In the next lemma, we consider weighted digraphs that lack directed triangles. Equiva-
lently, all insertions in Algorithm 1 must occur at the endpoints.

Lemma 2.3. For a weighted digraph lacking directed triangles, any x ∈ V n satisfies
B(x) = 2n−1w(x).

Proof. For any 1 < i < n, since w(xi−1, xi) > 0 and w(xi, xi+1) > 0 we must have that
w(xi−1, xi+1) = 0. Applying Lemma 2.1 yields that

B(x) = w(x1, x2) ·B(x̂1) + w(x`−1, x`) ·B(x̂`),

which implies the claim by induction on the length of the word.

Lemma 2.4. If a weighted digraph satisfies property (EC) and the associated insertion
process is finitely dependent, then it contains a directed triangle.

Proof. Suppose there was a weighted digraph G lacking directed triangles that satisfies
property (EC) and whose associated insertion process is k-dependent for some k ≥ 0.
Let V denote its vertex set. Applying Lemma 2.2, it follows that for all sufficiently large
m and n and for all vertices i, j ∈ V we have that∑

P∈Vm,W∈V k,Q∈Vm

B(iPWQj) = Cm,n
∑
P∈Vm

B(i P )
∑
Q∈V n

B(Q j). (2.7)
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Let A denote the adjacency matrix of G, which is the V × V matrix with Aij = w(i, j).
Using Lemma 2.3 to express the left hand side of (2.7) in terms of the adjacency matrix
we obtain that

(Am+k+n+1)ij = 2−m−k−n+1
∑

P∈Vm,W∈V k,Q∈Vm

B(iPWQj). (2.8)

Combining (2.7) with (2.8) implies that rank(AN ) ≤ 1 for N = m + k + n + 1. Let
λ1, . . . , λ|V | denote the multiset of (possibly complex) eigenvalues of A, listed according
to algebraic multiplicity. Then λN1 , . . . , λ

N
|V | comprise the multiset of eigenvalues of AN .

But since rank(AN ) ≤ 1, there can be at most 1 nonzero eigenvalue.
In fact, all eigenvalues must vanish. To see why, consider TrA =

∑
i∈V w(i, i). Since

(i, i, i) is a directed triangle, our hypothesis that G lacks directed triangles implies that
w(i, i) = 0 and thus TrA = 0. Combined with the previous paragraph, this implies that
all eigenvalues vanish and thus A is nilpotent.

From this it follows that all but finitely many words in
⋃
`≥0 V

` have weight zero.
Thus G is not recurrent, contradicting our assumption that G satisfies property (EC).

A weighted digraph G is strongly connected if for every pair of vertices i, j ∈ V ,
there is a positive-weight word x ∈

⋃
`≥1 V

` that begins with i and ends with j. We denote
the existence of such an x by writing i → j. The strongly connected components
(SCCs) of a weighted digraph are the equivalence classes of the relation{

(i, j) ∈ V 2 : i→ j and j → i
}
.

By convention i→ i since singleton words are defined to have weight 1 (see the remark
prior to Definition 1). Also, recall from our discussion following Definition 1 that a word
has positive weight if and only if w(x) > 0, which occurs if and only if B(x) > 0.

Recall that a weighted digraph is a function w : V 2 → R≥0. A subset U ⊆ V induces
a subdigraph by restriction of w to U2. Say that an SCC is recurrent if the induced
subdigraph of G is recurrent. By our remarks at the beginning of Subsection 2.1, an
SCC with vertex set C is recurrent if and only if there are arbitrarily large n such that
there exists a positive-weight word x ∈ Cn.

Note that any SCC with at least two vertices is recurrent, for if a and b are any two
such vertices, then each of the words (ab)n ∈ C2n have positive weight. Also observe
that for a directed acyclic graph, the SCCs are singletons, none of which is recurrent.
Moreover, a singleton SCC is recurrent if and only if its vertex has a self-loop. In general,
each directed cycle is contained in a recurrent SCC.

For the remainder of this section, we restrict attention to weighted digraphs satisfying
property (EC) and whose associated insertion process is finitely dependent. We will show
in Lemma 2.5 that such digraphs are not too far from being strongly connected.

Lemma 2.5. Let G be a weighted digraph with property (EC) whose associated insertion
process is finitely dependent.

i. G has a unique recurrent SCC.

ii. Vertices not in the recurrent SCC belong to singleton SCCs that have no directed
path to or from the recurrent SCC.

iii. The subdigraph of G induced by the recurrent SCC also has property (EC). More-
over, its associated insertion process coincides with that of G.

iv. If moreover G has property (C), then it is strongly connected.
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In particular, it follows from Lemma 2.5 that the family of finitely dependent insertion
processes associated to weighted digraphs is unchanged if one restricts attention to
strongly connected weighted digraphs.

Proof. Let (Xi)i∈Z denote the insertion process on G. Suppose without loss of generality
that it is (k + 1)-dependent, for some k ≥ 0. In particular, we have the i.i.d. subsequence
(Xik)i∈Z.

Let C1, . . . , C` denote the strongly connected components of G. The weighted digraph
G induces the weighted digraph GSCC on the set of SCCs, denoted VSCC := {C1, . . . , C`},
given by the weight

wSCC(Ci, Cj) :=
∑

u∈Ci,v∈Cj
w(u, v).

Observe that Ci → Cj in GSCC if and only if for some u ∈ Ci and v ∈ Cj , there is a
positive-weight word x composed of vertices of G that begins with u and ends with v.
Thus if Ci → Cj and Cj → Ci, then Ci ∪ Cj is also an equivalence class, whereupon Ci = Cj .

Consider the function f : V → VSCC that assigns to each vertex its strongly connected
component. Then the sequence

(
f(Xi)

)
i∈Z has the property that for all i < j, we have

f(Xi) → f(Xj) in GSCC almost surely. But if f(Xi) occurs once in the sequence, it a.s.
occurs infinitely many times (by passing to an i.i.d. subsequence). Thus there exists ` > j

such that f(X`) = f(Xi). Consequently the sequence(
f(Xi)

)
i∈Z = (. . . , Crec, Crec, . . .) (2.9)

is a.s. constant. Furthermore, the unique value Crec that it takes must be a recurrent SCC,
since the marginals of the process (Xi)i∈Z then yield arbitrarily long positive-weight
words in

⋃
`≥1 C`rec.

On the other hand, each vertex v ∈ V belonging to a recurrent SCC occurs infinitely
often in the sequence (Xi)i∈Z. Indeed, we can fix a sufficiently long positive-weight
word containing v and observe that it occurs with positive density in (Xi)i∈Z by finite
dependence. Thus by the previous paragraph, it follows that Crec is the a unique recurrent
SCC of G, establishing property (i).

Property (ii) follows by combining our previous observation that an SCC containing
distinct vertices is recurrent with the following argument. If there was a directed path
joining Crec to another strongly connected component denoted C′, then there would be
arbitrary long positive-weight words that contain vertices in C′. But then C′ appears in
the sequence

(
f(Xi)

)
i∈Z, by consideration of a sufficiently long marginal of the insertion

process. This contradicts (2.9), proving (ii).
For all n > |V |, every word x ∈ V n contains some vertex at least twice. Thus by (ii), it

follows that if such a word satisfies B(x) > 0, then necessarily x ∈ Cnrec. Hence∑
x∈V n

B(x) =
∑
x∈Cnrec

B(x),

and it follows that all sufficiently long marginals of the insertion processes associated to
G and the subdigraph induced by Crec coincide. This yields (iii).

Finally, (iv) follows from the observation that B(x) = 1 for all words of length 1. Thus
if G satisfies property (C), the random variable X0 in the associated insertion process is
uniformly random on the vertex set V . But by (2.9) we have that X0 ∈ Crec almost surely,
implying that V = Crec and therefore G is strongly connected.

3 Uniform weight graphs

We establish Theorem 2 in this section, and deduce Theorem 1 as a corollary. The
plan of attack is as follows:
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i. Subsection 3.1 defines the special class of weighted digraphs to which Theorem 2
applies, which we call uniform weight graphs. We deduce necessary structural
properties for a uniform weight graph to satisfy property (EC).

ii. Subsection 3.2 is devoted to complete multipartite graphs of uniform weight. It
is shown that understanding finite dependence for such graphs reduces to the
analysis of complete graphs, which has already been undertaken in [13].

iii. Subsection 3.3 proves Theorem 2 by using a combinatorial argument to show
that the structural properties in Subsection 3.1 imply that the graph is complete
multipartite, then applying the results of Subsection 3.2.

3.1 Uniform weights

Uniform weight graphs are weighted digraphs that are undirected and of constant
weight. Their associated insertion processes are sufficiently general to encompass the
end-weighted insertion processes of [11, Section 4] as a special case.

Definition 2. A uniform weight graph with weight w > 0 is a weighted digraph whose
weight function is such that for all i, j ∈ V ,

i. either w(i, j) = 0 or w(i, j) = w, and

ii. w(i, j) = w(j, i), and

iii. w(i, i) = 0.

We regard uniform weight graphs as being undirected. As such, we refer to
their strongly connected components simply as connected components (when applying
Lemma 2.5, for instance). For uniform weight graphs, we say that vertices i and j are
adjacent if and only if w(i, j) > 0, in which case w(i, j) = w.

Applying (2.5) to a positive-weight word in a uniform weight graph yields that

B(x) = wB(x̂1) + w2
n−1∑
i=2

B(x̂i) + wB(x̂n), x ∈ V n. (3.1)

For any positive integer n, we denote by (ab)n/2 the unique alternating word in {a, b}n
beginning with a (in particular, note that n may be odd).

Lemma 3.1. If w(a, b) > 0 and w(b, v) > 0, then

B
(

(ab)n/2 v
)

=


(2w)n, w(a, v) = 0[
2w2(w + w2)n−1 − (2w)n

]
/(w − 1), w(a, v) = w and w 6= 1

2n−1(n+ 1), w(a, v) = w and w = 1.

(3.2)

Proof. First suppose that w(a, v) = 0. By (3.1) we have that

B
(

(ab)n/2 v
)

= w ·B
(

(ba)(n−1)/2 v
)

+ w ·B
(

(ab)n/2
)
.

Applying this inductively yields the first case of (3.2).
Next, suppose that w(a, v) = w and w 6= 1. Again by (3.1),

B
(

(ab)n/2 v
)

= w ·B
(

(ba)(n−1)/2 v
)

+ w2 ·B
(

(ab)(n−1)/2 v
)

+ w ·B
(

(ab)n/2
)

= (w + w2) ·B
(

(ba)(n−1)/2 v
)

+ w · (2w)n−1.

Now the second case of (3.2) follows by induction, starting from the base caseB(av) = 2w.
The final case of (3.2) follows from a simplification of the previous calculation.
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a

b c

d

Figure 2: The kite (abc; d)

Lemma 3.2. If G is a non-empty connected uniform weight graph satisfying property
(EC), then the following conditions hold.

i. The graph G is d-regular for some d ≥ 1.

ii. For some t ≥ 0, there are t triangles on every edge of G.

Proof. Let w be the common weight of the edges in G. Fix a vertex b. Let d denote
the degree of b. By hypothesis, there exists an edge (a, b). Let t denote the number of
triangles on the edge (a, b). First suppose that w 6= 1. By Lemma 3.1,∑

v

B
(

(ab)n/2 v
)

= (2w)n(d− t) +

[
2w2(w + w2)n−1 − (2w)n

w − 1

]
t.

Recall that B
(
(ab)n/2

)
= (2w)n−1. Thus by (2.5), it follows that

Cn = 2w(d− t) +

[
w(w+1

2 )n−1 − 1

w − 1

]
(2wt) (3.3)

for all sufficiently large n if w 6= 1. Likewise if w = 1, for all sufficiently large n we have
that Cn = 2(d− t) + (n+ 1)t. In either case, both d and t are determined by the values of
Cn for n sufficiently large. Thus d and t take the same value, for all vertices b and all
edges (a, b).

Consider the graph that appears in Figure 2.

Definition 3. An undirected graph on the vertices a, b, c, d is a kite if (a, b, c) form a
triangle and d is adjacent to a and to no other vertex.

Lemma 3.3. Suppose that G has uniform weight and satisfies property (EC). Then there
is no kite which occurs as an induced subgraph of G.

Proof. Suppose to the contrary that G contains a kite (abc; d). For all n ≥ 3, we will
construct words x and y satisfying∑

v∈V

B(xv)

B(x)
>
∑
v∈V

B(yv)

B(y)
,

from which it will follow that G cannot satisfy property (EC).
Let x = (ba)n/2 and let y = d(ab)(n−1)/2. Simple casework reveals that for each σ ∈ Sn

we have w(x;σ) = w(y;σ), and consequently B(x) = B(y). Note that this common value
is positive (by Lemma 3.1, for instance). Thus we need only establish that∑

v

B(xv) >
∑
v

B(yv).
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First observe that we have the weaker inequality∑
v

B(xv) ≥
∑
v

B(yv). (3.4)

Indeed, each σ ∈ Sn + 1 with w(yv;σ) > 0 is seen to satisfy w(xv;σ) > 0 as well. Since
the graph has uniform weight, it therefore follows that w(xv;σ) ≥ w(yv;σ) and the claim
follows upon summation.

To obtain strict inequality, observe that if σ ∈ Sn+1 satisfies σ({1, 2}) = {1, n + 1}
then w(xc;σ) > w(yc;σ) = 0. When combined with the previous inequality, it follows that
B(xc) > B(yc).

3.2 Complete multipartite graphs

In this section we relate property (EC) for complete multipartite graphs to property
(EC) for complete graphs. This allows us to extend results of Holroyd and Liggett [13] to
handle complete multipartite graphs.

We use the following notation: Kq denotes the complete graph on q vertices, Kr,...,r

denotes the complete multipartite graph with q parts each of size r, and w ·Kr,...,r denotes
the uniform weight graph in which each edge of the corresponding complete multipartite
graph has weight w > 0. In all cases, we take the vertex set to be [qr] := {1, . . . , qr} (with
r = 1 in the case of Kq), and we take the edge set to be {(i, j) : i 6≡ j mod q}. In the case
of w ·Kr,...,r, the weight function is given by w(i, j) = w · 1[i 6≡ j mod q].

Note that the graph Kr,...,r is a Turán graph [4].

Lemma 3.4. For any r ≥ 1 and k ≥ 0, the graph w ·Kr,...,r satisfies property (EC) and its
associated insertion process is k-dependent if and only if the same holds for w ·Kq.

Proof. Consider the mapping f : [qr] → [q] given by f(i) = i mod q. For any word
x ∈ [qr]n, let f(x) denote the word f(x1)f(x2) · · · f(xn) ∈ [q]n. Observe that

w(i, j) = w
(
f(i), f(j)

)
∀i, j ∈ [qr],

from which it follows that B(x) = B
(
f(x)

)
. Thus the following are equivalent:

i.
∑
v∈[qr]

B(xv) = rCnB(x)

ii.
∑
v′∈[q]

B
(
f(x)v′

)
= CnB

(
f(x)

)
By (2.5), it follows that w ·Kq satisfies property (EC) if and only if w ·Kr,...,r satisfies
property (EC).

Similarly, the following are equivalent:

i.
∑

W∈[qr]k
B(x W y) = rkCnmB(x)B(y)

ii.
∑

W ′∈[q]k
B
(
f(x) W ′ f(y)

)
= CnmB

(
f(x)

)
B
(
f(y)

)
The result now follows by Lemma 2.2.

Lemma 3.5. Suppose that w 6= 1 and q ≥ 3. Then the graph w · Kq does not satisfy
property (EC).
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Proof. Consider an integer n ≥ 3. Fix distinct vertices a, b, c ∈ Kq. Keeping in mind our
notation for alternating words, set

x = (ba)n/2 ∈ {a, b}n, y = c (ab)(n−1)/2 ∈ {a, b, c}n

(regardless of the parity of n). Consider the quantities

Qn =
∑
v∈Kq

B(xv)

B(x)
, Rn =

∑
v

B(yv)

B(y)
.

We will prove by induction on n that Qn > Rn for all w > 1 and Qn < Rn for all w ∈ (0, 1).
From (3.1) we deduce the recurrences B(xv) = wB(x̂1v) + w2B(x̂nv) + wB(x) and

B(yv) = wB(ŷ1v) + w2B(ŷ2v) + w2B(ŷnv) + wB(y), yielding that

Qn =

(
w + 1

2

)
Qn−1 + qw − w(w + 1)

Rn =
wB(x̂1)

B(y)
Qn−1 +

2w2B(ŷ2)

B(y)
Rn−1 + qw − w(w + 1).

Subtracting the previous equations and substituting the recurrence B(y) = wB(ŷ1) +

w2B(ŷ2) + wB(ŷn) yields that 2B(y)(Qn −Rn)/w equals[
(w − 1)B(x̂1) + (w + 1)2B(ŷ2)

]
Qn−1 − 4wB(ŷ2)Rn−1 (3.5)

When w > 1, we leave out the first term, using (w + 1)2 ≥ 4w to obtain

2B(y)(Qn −Rn)/w > 4w(Qn−1 −Rn−1).

Since the right side vanishes for n = 3, it follows that Qn > Rn by induction.
Next suppose that w < 1. This case requires a tighter bound. We begin by establishing

that for all m ≥ 3,

B
(

(ba)m/2
)
> (1− w)B

(
c (ba)(m−1)/2

)
.

Indeed, we deduce the bound inductively from

B
(

(ba)m/2
)

= 2wB
(

(ab)(m−1)/2
)

= [(1− w)w + w2 + w]B
(

(ab)(m−1)/2
)

(induction) > (1− w)

[
wB

(
(ab)(m−1)/2

)
+ w2B

(
c (ba)(m−2)/2

)
+ wB

(
c (ba)(m−2)/2

)]
= (1− w)B

(
c (ab)(m−1)/2

)
.

Consequently
(1− w)B(x̂1) > (1− w)2B(ŷ2) (3.6)

Now we plug the bound (3.6) into (3.5) to obtain a bound which is suitable for induction:

2B(y)(Rn −Qn)/w = 4wB(ŷ2)Rn−1

+
[
(1− w)B(x̂1)− (w + 1)2B(ŷ2)

]
Qn−1

using (3.6) > 4wB(ŷ2)(Rn−1 −Qn−1).

As before, when n = 3 the right side vanishes. Thus it follows by induction that if
0 < w < 1, we have Rn > Qn for all n ≥ 3. Combined with the previous case, we
conclude that when w 6= 1 and q ≥ 3, the graph w ·Kq does not satisfy property (EC).
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Combining several results allows us to determine which uniform weight complete
multipartite graphs satisfy property (EC) and have a finitely dependent associated
insertion process.

Lemma 3.6. The graph w · Kr,...,r for q ≥ 3 and r ≥ 1 has property (EC) and has a
k-dependent associated insertion process if and only if w = 1 and either: q = 3 and k ≥ 2;
or q = 4 and k ≥ 1.

Proof. By Lemma 3.4, it suffices to consider w · Kq. By Lemma 3.5, w = 1. Applying
Propositions 10 and 13 of [13], the insertion process on Kq is k-dependent if and only if
q = 3 (k ≥ 2) or q = 4 (k ≥ 1).

3.3 Extension to uniform weight graphs

We now combine the results of Subsections 3.1 and 3.2 to extend the conclusion of
Lemma 3.6 to all uniform weight graphs. We establish that the only uniform weight
graphs satisfying property (EC) that have a k-dependent associated insertion process
are Kr,r,r and Kr,r,r,r, and unions thereof with isolated vertices. Note that these graphs
have weight w = 1, even though we allow w > 0 to be arbitrary a priori. These graphs
are closely related to the graphs K3 and K4 corresponding to the colorings discovered
by Holroyd and Liggett; in fact, the graphs Kr,r,r and Kr,r,r,r are obtained from K3 (resp.
K4) by replacing each vertex with r copies of itself. Similarly, the insertion process on
Kr,r,r (resp. Kr,r,r,r) is obtained from the corresponding process on K3 (resp. K4) by
replacing each instance of vertex i with an i.i.d. choice of one of its r copies in Kr,r,r

(resp. Kr,r,r,r).
The following graph-theoretic lemma allows us to reduce the general uniform weight

case to that of the complete multipartite graphs treated in Subsection 3.2. We will use
Lemma 3.7 to show that any uniform weight graph either contains a kite, or is complete
multipartite.

Lemma 3.7. Let G be a kite-free connected loopless graph containing a triangle abc.
Then every vertex d ∈ V is adjacent to at least two of {a, b, c}.

a

b

d

c

Figure 3: The problematic triangle abc in Lemma 3.7

Proof. By Lemma 3.3, no vertex d ∈ V is adjacent to exactly one of abc. Hence it suffices
to show that every vertex d is adjacent to abc.

Suppose to the contrary that some d ∈ V is non-adjacent to abc (Figure 3). Choose a
minimal path joining d to abc. We show that a kite is present near the intersection of the
path with abc, from which we obtain the desired contradiction.

Let d′ denote the path vertex adjacent to abc. There are two cases to consider: either
d′ is adjacent to a single vertex of abc (left half of Figure 4), or it is adjacent to more than
one vertex (right half of Figure 4).

If d′ is adjacent to a single vertex, then (abc; d′) is a kite. Now suppose that d′ is
adjacent to more than one vertex. Without loss of generality, suppose that d′ is adjacent
to a and c. Let d′′ denote a neighbor of d′ on the path from d to d′. By minimality of the
path, d′′ is non-adjacent to abc. Consequently (d′ac; d′′) is a kite.
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b

d

c

a

d′

d′′

d′

d

b c

a

Figure 4: Reaching a contradiction

We are now in a position to prove Theorem 2.

Proof of Theorem 2. Suppose that G is a uniform weight graph with property (EC) and
suppose that the insertion process associated to G is k-dependent. We will deduce that
either G = Kr,r,r,r and k ≥ 2, or G = Kr,r,r and k ≥ 1, or G is a disjoint union of one of
these graphs with a collection of isolated vertices.

Since uniform weight graphs are undirected, Lemma 2.5 takes on a simpler form in
the present context. Indeed, it implies that both the (EC) property and the insertion
process are unchanged by deletion of isolated vertices, and moreover it implies that the
resulting graph is connected. Hence it suffices to consider the connected case.

We show in this case that G is complete multipartite. Consider the relation{
(i, j) ∈ V 2 : w(i, j) = 0

}
. (3.7)

This relation is reflexive and symmetric by definition of a uniform weight graph. Once
we establish transitivity, it will follow that the graph G is complete multipartite with
partite sets given by the equivalence classes of this relation.

Suppose to the contrary that transitivity did not hold. Then there would exist vertices
a, b, d such that w(a, b) > 0 yet w(a, d) = w(b, d) = 0. By Lemma 2.4 and Lemma 3.2, there
are t ≥ 1 triangles on every edge. In particular, we may complete the edge (a, b) into a
triangle abc. By Lemma 3.3, G lacks kites, and by assumption it is connected. Moreover
by definition of uniform weight, G is loopless.

Thus we have verified the conditions of Lemma 3.7. Consequently, the vertex d

is adjacent to at least two of a, b, c. This contradicts the hypothesis that w(a, d) =

w(a, b) = 0. Thus the relation (3.7) is transitive, and we deduce that it is an equivalence
relation.

Decompose the vertex set into equivalence classes of (3.7). Then G is complete mul-
tipartite, with partite sets are given by the equivalence classes of (3.7). By Lemma 3.2,
G is a regular graph and thus the parts have equal sizes. Thus G = w ·Kr,...,r, for some
w > 0 and r ≥ 1.

Applying Lemma 2.4 again, we see that G contains a triangle and therefore q ≥ 3.
The result now follows when G has property (EC) by Lemma 3.6.

Finally, observe that if G also satisfies property (C), then there can be no isolated
vertices by Lemma 2.5(iv).

4 Complete weighted digraphs with property (C)

The results in this section apply to loopless complete weighted digraphs satisfying
property (C). That is, the digraphs under consideration satisfy w(i, i) = 0 and w(i, j) > 0
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i j i j i j i v

Figure 5: Let x ∈ {i, j}n be the unique alternating word ending in i. For σ ∈ Sn+1, let ` be
as in (4.3). Consider the nearest neighbor graph on {1, . . . , n+1}, except we modify vertex
n+ 1 to be adjacent to its nearest ` neighbors. This graph is drawn above with vertex
i labeled with the ith symbol of the word xv. Then w(xv;σ) =

∏
e=(i,j) w

(
(xv)i, (xv)j

)
,

where the product is taken over the edges of the graph we have just described.

for all distinct vertices i and j, as well as property (C). We will establish Theorem 3,
which states that the only such graphs for which the associated insertion process is
k-dependent are the (unweighted) graphs K3 (for k ≥ 1) and K4 (for k ≥ 2). We will
establish this result by reducing it to the case of a uniform weight graph and applying
results from Section 3.

For distinct indices i, j ∈ V , we define the quantity

Tn(i, j) =
∑
v∈V

w(i, v)dn/2ew(j, v)bn/2c,

where we use the convention 00 := 1.

Lemma 4.1. Fix a loopless complete weighted digraph satisfying property (C) and fix
an integer n ≥ 1. Then the value of Tn(i, j) is constant over all vertices i and j with
w(i, j) > 0.

Proof. Let x ∈ {i, j}n be the unique alternating word ending in i. By Definition 1,

B(xv) =
∑
σ∈Sn

w(xv;σ). (4.1)

Since w(i, i) = w(j, j) = 0 by assumption, for all permutations with w(xv;σ) > 0 we have

w(xv;σ) = w(x)w(i, v)d`/2ew(j, v)b`/2c, (4.2)

where ` is given by the formula

` = n+ 1− max
t<σ−1(n+1)

σ(t). (4.3)

This is straightforward to verify from the definitions, as indicated in Figure 5.
By (4.3), we see that ` ranges over {1, . . . , n} as σ ranges over Sn+1. Thus substituting

(4.2) into (4.1) implies that there are integers d1, . . . , dn > 0 whose values depend only
on n such that

B(xv) = w(x)

n∑
`=1

d` w(i, v)d`/2ew(j, v)b`/2c.

Summing over all vertices v ∈ V , we obtain

∑
v∈V

B(xv) = w(x)

n∑
`=1

d` T`(i, j).
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By (2.5) we have that
∑
v∈V B(xv) = CnB(x). Furthermore B(x) = 2n−1w(x), by

Lemma 2.3 applied to the subgraph induced by {i, j}. As w(x) > 0, we have that

n∑
`=1

d` T`(i, j) = 2n−1Cn.

Since d1, . . . , dn > 0, we may explicitly solve this system of equations to obtain that

T1(i, j)
...

Tn(i, j)

 =


d1 0 · · · 0

d1 d2 · · · 0

d1 d2
. . . 0

d1 d2 · · · dn


−1

C1

2C2

...
2n−1Cn

 .

In particular, it follows that Tn(i, j) is independent of the pair (i, j).

In light of Lemma 4.1, we write Tn in place of Tn(i, j) from now on.

Lemma 4.2. For all pairs of distinct indices (i, j) and (i′, j′), we have w(i, j) = w(i′, j′).

Proof. Let z1 > z2 > · · · denote the set of distinct positive values attained by w(i, v)w(j, v)

as v ranges over V . Let V` denote the vertices which contribute to z`, given by

V` = {v ∈ V : w(i, v)w(j, v) = z`},

and let a` =
∑
v∈V`

w(i, v). Rewriting the expression for T2n+1 yields

T2n+1 =
∑
`

a`z
n
` .

Next, observe that z1 = infn→∞(T2n+1)1/n and a1 = infn→∞
T2n+1

zn1
. Hence the parameters

a1 and z1 can be reconstructed given the sequence {Tn}. Applying the same procedure
to T2n+1 − a1zn1 allows us to iteratively reconstruct all of the parameters. Thus a` and z`
are uniquely determined by the {Tn}, so they are independent of the choice (i, j). Finally,
observe that

∑
` a` =

∑
v 6=j w(i, v). Therefore

w(i, j) = T1 −
∑
`

a`,

which shows that for i 6= j, the value of w(i, j) is constant.

Combining Lemma 4.2 with the results of Section 3 allows us to deduce Theo-
rem 3.

Proof of Theorem 3. Suppose that G is a loopless weighted digraph such that w(i, j) > 0

for all distinct vertices i and j. Moreover, suppose that G has property (C) and that the
associated insertion process is k-dependent process. We show that either: G = K3 and
k ≥ 2; or G = K4 and k ≥ 1.

By Lemma 4.2, the graph G has uniform weight, and by Lemma 2.5 it is strongly
connected. Applying Theorem 2, we conclude that either G = Kr,r,r and k ≥ 2, or
G = Kr,r,r,r and k ≥ 1. Since w(i, j) > 0 for all i 6= j, it follows that r = 1. Thus G is a
complete graph, and applying [13, Proposition 13] we deduce that G is either K3 (for
k ≥ 2) or K4 (for k ≥ 1).

Conversely, by the main result of [13] the graphs K3 and K4 are k-dependent for
k ≥ 2 and k ≥ 1 respectively.
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5 Shifts of finite type

We turn to the proof of Theorem 4, which states that if the de Bruijn graph of a
loopless shift of finite type satisfies property (EC), then the associated insertion process
on the shift of finite type is not finitely dependent.

Proof of Theorem 4. Let G denote the de Bruijn graph of the shift of finite type and let
{Y`}`∈Z denote the insertion process associated to G. We write

Y` = (x`, . . . , x`+n−1) ∈ {1, . . . , q}n.

Since {Y`} is almost surely a path in G, the overlapping elements in adjacent tuples Y`
and Y`+1 almost surely coincide. We extend the insertion process from G to the shift of
finite type by considering the random sequence {x`}`∈Z.

Suppose to the contrary that for some k, this process is k-dependent. Then the tuples
Y` = (x`, . . . , x`+n−1) form an (n+ k − 1)-dependent sequence. Applying Lemma 2.4 to
the insertion process on G, it follows that G has a directed triangle (a, b, c). Hence we
may write

a = (x1, x2, . . . , xn), b = (x2, . . . , xn+1), c = (x3, . . . , xn+2).

Since the edge (a, c) is present in G, we must have

(x2, x3, . . . , xn) = (x3, . . . , xn+1).

Thus x2 = x3 = · · · = xn+1, so b is a constant sequence. This contradicts our assumption
that the vertex set of G lacks elements of the form (i, . . . , i). Therefore the associated
insertion process is not k-dependent.
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