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Conditional survival distributions of Brownian
trajectories in a one dimensional Poissonian

environment in the critical case*
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Abstract

In this work we consider a one-dimensional Brownian motion with constant drift
moving among a Poissonian cloud of obstacles. Our main result proves convergence
of the law of processes conditional on survival up to time t as t converges to infinity in
the critical case where the drift coincides with the intensity of the Poisson process.
This complements a previous result of T. Povel, who considered the same question in
the case where the drift is strictly smaller than the intensity. We also show that the
end point of the process conditioned on survival up to time t rescaled by

√
t converges

in distribution to a non-trivial random variable, as t tends to infinity, which is in fact
invariant with respect to the drift h > 0. We thus prove that it is sub-ballistic and
estimate the speed of escape. The latter is in a sharp contrast with discrete models
of dimension larger or equal to 2 when the behaviour at criticality is ballistic, see
[7], and even to many one dimensional models which exhibit ballistic behaviour at
criticality, see [8].

Keywords: Brownian motion; Poisson obstacles; limit theorems for condititioned processes.
AMS MSC 2010: 60G51; 60G55; 60F17.
Submitted to EJP on August 6, 2015, final version accepted on December 7, 2016.

1 Introduction

The investigation of stochastic processes in a random environment has along history
and is still an active area of research. A very thoroughly studied model is the one of a
diffusive particle in a Poissonian environment of obstacles. For a detailed description
of the general framework and the mathematical details we refer to the very readable
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Survival distributions of Brownian trajectories among obstacles

account of this presented in [16]. Our starting point is the following model composed
of a one-dimensional Brownian particle (Xt)t≥0, starting from 0, with a constant drift
h 6= 0 and law Wh, which moves in an environment given by an independent Poisson
process in R with intensity ν whose law is denoted by P. Further we denote by Ct =

sups≤tXs − infs≤tXs = Mt −mt the range of the process. Let Wh
t be the restriction of

the Wiener measure Wh to C (0, t). The Brownian particle starts from zero and gets
killed upon hitting a point of the Poisson process, i.e. the killing time is denoted by T . In
this work we will focus on the expected survival time

Wh ⊗ P {T > t} = Eh
[
e−νCt

]
and in particular on the behaviour of the conditioned law

Qt :=
e−νCt

Eh
[
e−νCt

]dWh
t .

Our special emphasis is on the case where |h| = ν which due to symmetry can be reduced
to h = ν. Before we state our results we recall what is known if h 6= ν and indicate why
this model is of interest.

Motivated by previous heuristic arguments by physicists and simulation studies (see
[9] and [5]) it was shown in [4] that even for the higher dimensional analogue this model
exhibits a phase transition in the sense that

lim
t→∞

1

t
log
(
e
h2

2 tEh
[
e−νCt

])
=

{
1
2 (|h| − ν)2 if |h| > ν

0 if |h| ≤ ν.
(1.1)

Thus there is a critical parameter regime given by |h| = ν. In [15] it was later demon-
strated that in dimension one

lim
t→∞

1

t
1
3

log
(
e
h2

2 tEh
[
e−νCt

])
=

1

2
(|h| − ν)2) if |h| < ν, (1.2)

which gives a much more precise version for the subcritical case |h| < ν than (1.1). The
correct scaling exponents for the higher dimensional problems have also been derived in
[15]. The one-dimensional situation was further investigated in more detail by T. Povel in
[10], where he in particular proved the following result

Theorem 1.1 (Theorem A in [10]). Let |h| ∈ (0, ν).

1. The limiting distribution of t−
1
3X
·t

2
3

under Qt as t goes to infinity is given as the

taboo measure starting from 0 with taboo interval (0, c0) where c0 =
(

π2

ν−|h|

) 1
3

.

2. The limiting distribution of the process X· under the measure Qt converges as
t→∞ to a mixture of Bessel-3-processes under which X starts in 0 and never hits
a random level ã and the density of the mixture is given by h2ãe−|h|ã, ã > 0.

The taboo measure in [10, Theorem A i)] is defined for a ∈ (0, c0) and B ∈ Ft by

P(0,c0)
a (B) =

e
π2

2c20
t

φ(a)
E0
a

(
1B∩{T(0,c0)>t}φ (Xt)

)
,

where X is a zero-drift Brownian motion, T(0,c) = inf {t ≥ 0 : Xt /∈ (0, c)} and φ is the

first eigenfunction for the operator 1
2
d2

dx2 with Dirichlet boundary condition. For a = 0

the taboo measure can be defined as a weak limit of P(0,c0)
a (·) as a→ 0.
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Survival distributions of Brownian trajectories among obstacles

As is explained nicely in [10] item 2 of Theorem 1.1 describes the microscopic
behaviour of the model and as a matter of fact the limit result is different in the case
h = 0. Thus the presence of the drift has an influence on the microscopic limit.

Analogues results for the case of a random walk with drift instead of a Brownian
motion with drift have been established in [18] and in the case of a Brownian motion
with drift moving among soft Poissonian obstacles the precise analogue of Theorem 1.1
is offered in [14]. In those works a similar exclusion of the critical case is supposed.

As mentioned in this document we study the critical value model in Povel, i.e. for a
Brownian motion with drift h we investigate the convergence of the Brownian motion
under the measure

Q
(h)
t =

e−hCt

Eh (e−hCt)
Wh
t , (1.3)

i.e. we focus on the case h = ν.

Even though this type of problem has been intensively investigated we have not been
able to locate results covering this case in the present literature and it is the aim of
the present work to fill in this gap. It will turn out that the macroscopic behaviour is
the same as the one in the case |h| < ν but the details of the proof tend to be much
more demanding. Our starting point will be the same as the one of Povel [10] but
we are forced to work a long a different route as already one of his first steps breaks
down in the case h = ν. In fact the first task consists in controlling the behavior of the
normalization constant Eh

[
e−νCt

]
as t→∞. In order to establish this Povel [10] relies

on an application of the classical Laplace method, which is not applicable in our setting
namely the case h = ν.

Remark 1.2. In contrast to [10] our method of analysing the asymptotic behaviour of
Q

(h)
t will essentially rely on some facts from the theory of Mellin transforms and on some

ideas around the Poisson summation formula.

The topic of our work can be considered to be a further contribution to the general
topic of penalizations of diffussion processes (compare e.g. [11], [12] and [13]). Let us
also emphasize that the range of diffusion processes has been of considerable interest in
the probability literature (see e.g. [6], [2] and [17]) but our main result does not seem to
follow easily from these studies.

Let us end this introduction with some remarks concerning the structure of this work.
In the subsequent section 2 we summarize our main results concerning the asymptotic
behaviour of the survival distribution and the limit of the conditioned measure Q(h)

t .
These results are proved in sections 3 and 4, wherein we make use of the asymptotic
properties of certain functions appearing naturally during the proof. The investigation of
those functions is deferred to sections 5, 6, 7 and 8.

During the preparation of the revision of the manuscript Hugo Panzo informed us
that he considered a strongly related problem, namely the case of Brownian motion with
positive drift reflected at zero penalized by the maximum of this process. He announced
very precise results for this model.

2 Main Results

2.1 Notation and conventions

Throughout the paper we use f ∼ g to denote that lim f/g = 1 and f � g to imply the
existence of two positive constants C1 < C2 such that C1f ≤ g ≤ C2f .

Throughout the paper we consider a one-dimensional Brownian motion X with drift
h ∈ R. We write Wh respectively Wh

t for the Wiener measure on C (0,∞) respectively
the restriction of the Wiener measure on C (0, t). When h = 0 we drop the superscript.
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Survival distributions of Brownian trajectories among obstacles

Similarly, we denote by Ehx [·] the expectation of the Brownian motion with drift h 6= 0

started from x. When h = 0 we omit the superscript and write instead Ex [·].
We use the mt, Mt, 0 ≤ t ≤ ∞ to denote the running minimum, running maximum

of X, i.e. mt = infs≤tXs and Mt = sups≤tXs. We use Ct for the running range of the
process, i.e. Ct = Mt −mt.

Due to symmetry throughout the paper we assume that h = ν > 0.

2.2 Asymptotic expansion for the Laplace exponent

As mentioned before the first crucial quantity to be understood is E(h)
0

[
e−νCt

]
when

ν = h since it is the normalizing constant in the conditioned measure (1.3). When the
drift ν 6= h, [10, p.223, (4) and (5)] discusses the precise rate of asymptotic. Furthermore,

when ν = h it follows from (1.1) that E(h)
0

[
e
h2t
2 e−hCt

]
does not grow exponentially and

in our one-dimensional situation it is also not difficult to see that E(h)
0

[
e
h2t
2 e−hCt

]
→ 0.

Obviously, for our purpose a much stronger control on the rate of decay is necessary
and therefore as a first step we provide in Lemma 2.1, which is proved in section 3.2, a
complete asymptotic expansion for the behaviour of E(h)

0

[
e−hCt

]
as t→∞.

Lemma 2.1. Let X be a one-dimensional Brownian motion with drift h > 0. We have the
following asymptotic expansion: namely for any n ∈ N+, as t→∞,

Eh0
[
e−hCt

]
= e−h

2 t
2E0

[
eXth2−Cth2

]
= e−h

2 t
2

(
1

th2
+

n∑
l=1

(−1)
l 2l (l + 1)!

(th2)l+1
+ o

(
1

tn+1

))
.

(2.1)

Remark 2.2. It is useful to compare the assertion of this Lemma with the results (1.1)
and (1.2). In the one-dimensional situation the critical case the asymptotic behaviour
of the expected survival distribution differs significantly from the subcritical and the
supercritical cases in the fact that the decay has only additionally a polynomial decay
factor. Therefore, from this point of view it is not clear, whether the behaviour of
Xt under Q(h)

t in the critical case is similar to the subcritical and the supercritical,
respectively, or different from both regimes.

2.3 End point limiting behaviour

The next result shows that the minimum mt under the limiting measure is a non-
degenerate random variable and thus in the limit the process is pushed away from
−∞.

Theorem 2.3. For any A > 0, we have that

lim
t→∞

Q
(h)
t (−mt ≤ A) = h

∫ A

0

e−hada (2.2)

and therefore limt→∞mt
d
= m∞ with m∞ ∼ Exp(h).

In the following theorem we study the joint law of the maximum Mt = sups≤tXs up
to time t and the Xt as t→∞.

Theorem 2.4. We have that under Q(h)
t ,

lim
t→∞

(
Mt√
t
,
Xt√
t

)
d
= (M∞,M∞) . (2.3)

where M∞ has a distribution function which does not depend on h > 0 and is given by
the expression

T (x) = −G
(

1

x2
,

1

2

)
= 2

∞∑
j=1

(−1)
j+1

e−
π2j2

2
1
x2 , x > 0, (2.4)
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where the function G(·, ·) is defined in (5.3).

Remark 2.5. This result shows that under Q(h)
t the process is sub-ballistic and estimates

its escape rate, i.e.
√
t. This is in contrast with higher dimensional discrete models of

the same type where at criticality the process is ballistic, see [7], and the fact that in
one dimension all models but this one are ballistic too, see [8]. Let us emphasize, that
results which analogously to Theorem 2.4 do identify the scale t1/2 seem to be missing
in the subcritical case.

Remark 2.6. Thus in the case h = ν the position Xt at time t and its maximum up to time
t properly rescaled exhibit the same behaviour and even converge to a fully dependent
pair of random variables. Moreover, the limiting distribution does not depend on h. This
eventually follows from the scaling property of the Brownian motion, see section 3.5.
The same will be valid for the minimum process mt and Xt provided h < 0.

Remark 2.7. It is interesting to note that variants of (2.4) appear throughout the review
paper [1]. Thus, our random variable M∞ is a transformation of various quantities such
as the maximum of a Brownian bridge, etc., but since we have no further probabilistic
explanation as to why these relationships hold we do not discuss the matter further.

2.4 Limiting process

Next we consider the convergence of the process X under the measures Q(h)
t . Thus,

we will specify how the beginning of the process X is affected in the limit by the
conditional measures (1.3). We have the following result.

Theorem 2.8. Under Q(h)
t the process X converges to the process Y which is a mixture

of (shifted) three dimensional Bessel processes. In more detail, Y is a Brownian motion
started from zero and not allowed to hit independent random level −ã whose density is
given by h2ae−hada, a > 0.

This result is the analogue of Povel’s Theorem 1.1 for the critical case |h| = ν. It tells
us that at the critical case for the initial behaviour of X in the limit under the conditional
measures (1.3) there is no transition.

This is in contrast with the transition of the behaviour of the normalizing quantities
Eh
[
e−νCt

]
in (1.3). Let us point out, that our results clearly demonstrat that the large

time behaviour of the the process under the conditional measure differs from the
behaviour of the Xt under the conditional measure Qt, significantly.

Remark 2.9. Let h = 1. Note that the exponential law of the global infimum under
the limiting measure differs from the law of the barrier ã in Theorem 2.8. A three
dimensional Bessel that is started from x > 0 then its global infimum is distributed as a
uniform random variable on [0, x], see [3, (8.3.5), p.85] wherein h(x) = x. Since we start
from an independent random level we have that the density of the global minimum is
given by

∫∞
x

1
yye
−ydydx = e−xdx where 1/y is the density of the uniform distribution on

[0, y] and ye−y is the density of the random level. This shows that the two results are
consistent.

3 Proofs

3.1 Useful analytical and spectral computations

We start the proofs by deriving useful formulae and introducing suitable notation.
Recall that T(0,c) = inf {t ≥ 0 : Xt /∈ (0, c)} is the first exit time for the process X from
the interval (0, c) , c > 0. First using Girsanov’s theorem and then following [10, p.226]

our first claim expresses E(h)
0

[
e−hCt

]
in terms of the double exit times for the Brownian

motion with zero drift.
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Lemma 3.1. Let X be a one-dimensional Brownian motion with drift h > 0. We have
that, for any 0 < y ≤ ∞,

E
(h)
0

[
e−hCt1{Xt<y}

]
= e−

h2

2 t

∫ ∞
0

e−c
∫ c

0

e−aEa

(
eXth2 1{T(0,c)>th2}1{Xth2<hy}

)
dadc (3.1)

Proof. Using the Girsanov’s theorem and then the scaling property of the Brownian
motion we rewrite (3.1) as follows

E
(h)
0

[
e−hCt1{Xt<y}

]
= e−

h2

2 tE
[
ehXt−hCt1{Xt<y}

]
= e−

h2

2 tE0

[
eXth2−Cth2 1{Xth2<hy}

]
.

(3.2)
As in [10, p.226] we re-express the quantity

e−Ct =

∫ ∞
Mt

∫ ∞
mt

e−a−bdadb =

∫ ∞
0

∫ ∞
0

e−a−b1{T(−a,b)>t}dadb, (3.3)

where T(−a,b) = inf{s ≥ 0 : Bs /∈ (−a, b)}. Using this and changing variables c = a+ b, a =

a we get

E
(h)
0

[
e−hCt1{Xt<y}

]
= e−

h2

2 t

∫ ∞
0

e−c
∫ c

0

e−aEa

(
eXth2 1{T(0,c)>th2}1{Xth2<hy}

)
dadc.

From (3.1) of Lemma 3.1 it is obvious that it suffices to work with the case h = 1.
Before proceeding further we evaluate the quantities involved in Lemma 3.1 using
some tools from spectral theory. In the sequel we denote by a ∧ b = min{a, b} and
a ∨ b = max{a, b}.
Lemma 3.2. Let X be a one-dimensional Brownian motion with drift h > 0. Recalling
that E(0)

a [·] = Ea [·], we have, for any 0 < y ≤ ∞,

e−cEa

[
eXt1{T(0,c)>t}1{Xt<y}

]
= −2

∞∑
j=1

e−
π2j2

2c2
t sin

(
πj

c
a

)
πj

π2j2 + c2

(
e(y∧c)−c cos

(
πj

c
(y ∧ c)

)
− e−c

)

+ 2

∞∑
j=1

e−
π2j2

2c2
t sin

(
πj

c
a

)
c

π2j2 + c2
e(y∧c)−c sin

(
πj

c
(y ∧ c)

)
, (3.4)

In more detail when y =∞ we have that

e−cEa

[
eXt1{T(0,c)>t}

]
= 2

∞∑
j=1

(−1)
j+1 πj

π2j2 + c2
e−

π2j2

2c2
t sin

(
πj

c
a

)(
1− (−1)

j
e−c
)
,

(3.5)

and therefore∫ c

0

e−ae−cEa

[
eXt1{T(0,c)>t}

]
da = 2c

∞∑
j=1

(−1)
j+1 π2j2

(π2j2 + c2)
2 e
−π

2j2

2c2
t
(

1− (−1)
j
e−c
)2
,

(3.6)

which implies that

E
(1)
0

[
e−Ct

]
= e−

1
2 t

∫ ∞
0

2c

∞∑
j=1

(−1)
j+1 π2j2

(π2j2 + c2)
2 e
−π

2j2

2c2
t
(

1− (−1)
j
e−c
)2
dc. (3.7)
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Proof. The semigroup of Brownian motion with zero drift killed at the double exit time
T(0,c) = inf{s ≥ 0 : Bs /∈ (0, c)} is a compact selfadjoint semigroup and the transition
density has the following eigenfunction expansion

p
(0,c)
t (x, y) = pct(x, y) =

2

c

∞∑
j=1

e−
π2j2

2c2
t sin

(
πj

c
x

)
sin

(
πj

c
y

)
, (3.8)

for all x, y ∈ (0, c), where λj = −π
2j2

2c2 , j ≥ 1, are the eigenvalues and
√
2√
c

sin
(
πj
c x
)
, j ≥

1, x ∈ (0, c), are the normalized eigenfunctions of the operator ∆ = 1
2
d2

dx2 with vanishing
boundary conditions at 0 and c. Using (3.8) we then easily get upon integration that

e−cEa

(
eXt1{T(0,c)>t}1{Xt<y}

)
=

2

c

∞∑
j=1

e−
π2j2

2c2
t sin

(
πj

c
a

)∫ y∧c

0

sin

(
πj

c
x

)
exdx.

Employing the identity∫ v

0

sin

(
πj

c
x

)
exdx = − cπj

π2j2 + c2

(
ev cos

(
πj

c
v

)
− 1

)
+

c2

π2j2 + c2
ev sin

(
πj

c
v

)
, (3.9)

with v ≤ c, we derive immediately (3.4) and, plugging y =∞ in (3.4) then (3.5) follows.
Using (3.5) we can compute that∫ c

0

e−ae−cEa

(
eXt1{T(0,c)>t}

)
da = 2c

∞∑
j=1

(−1)
j+1 π2j2

(π2j2 + c2)
2 e
−π

2j2

2c2
t
(

1− (−1)
j
e−c
)2
,

where we have used∫ v

0

sin

(
πj

c
x

)
e−xdx = − cπj

π2j2 + c2

(
e−v cos

(
πj

c
v

)
− 1

)
− c2

π2j2 + c2
e−v sin

(
πj

c
v

)
(3.10)

with v = c and the application of the Fubini theorem is immediate since the series (3.5)
is clearly uniformly convergent for a ∈ [0, c], for any fixed c, t > 0. This is precisely (3.6).
Finally, (3.7) follows by substitution in (3.1) of (3.6) with h = 1. This completes the
proof.

3.2 Proof of Lemma 2.1

Proof. To prove Lemma 2.1 we rewrite (3.7) as follows: first thanks to (3.1) we work
with h = 1 and we change variables c2 7→ w,w 7→ 1/u, u 7→ v/t to get

E
(1)
0

[
e−Ct

]
= e−

1
2 t

∫ ∞
0

2c

∞∑
j=1

(−1)
j+1 π2j2

(π2j2 + c2)
2 e
−π

2j2

2c2
t
(

1− (−1)
j
e−c
)2
dc

= e−
1
2 t

∫ ∞
0

∞∑
j=1

(−1)
j+1 π2j2

(π2j2u+ 1)
2 e
−π

2j2

2 ut
(

1− (−1)
j
e−u

−1/2
)2
du

= e−
1
2 t

1

t

∫ ∞
0

∞∑
j=1

(−1)
j+1 π2j2(

π2j2 vt + 1
)2 e−π2j2

2 v
(

1− (−1)
j
e−t

1/2v−1/2
)2
dv.

We then write

I1(t) :=

∫ ∞
0

∞∑
j=1

(−1)
j+1 π2j2(

π2j2 vt + 1
)2 e−π2j2

2 vdv =

∫ ∞
0

F (v, t)dv,
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with the following definition of the integrand

F (v, t) =

∞∑
j=1

(−1)
j+1 π2j2(

π2j2 vt + 1
)2 e−π2j2

2 v (3.11)

and we put

I2(t) :=

∫ ∞
0

∞∑
j=1

(−1)
j+1 π2j2(

π2j2 vt + 1
)2 e−π2j2

2 v
(
−2 (−1)

j
e−t

1/2v−1/2

+ e−2t
1/2v−1/2

)
dv.

Note that immediately then we get that

E
(1)
0

[
e−Ct

]
= e−

1
2 t

1

t
(I1(t) + I2(t)) . (3.12)

Study of I1(t): From section 6, see (6.13), we deduce that, for any n ∈ N+,

e−
1
2 t

1

t
I1(t) = e−

1
2 t

1

t

∫ ∞
0

F (v, t)dt = e−
1
2 t

(
1

t
+

n∑
l=1

(−1)
l 2l (l + 1)!

tl+1
+ o

(
1

tn+1

))
.

(3.13)
Study of I2(t): Let A(t) = o(t), A(t) ↑ ∞ and t > 1. Estimating from above the function
under the integral of I2(t) we get that

|I2(t)| =

∣∣∣∣∣∣
∫ ∞
0

∞∑
j=1

(−1)
j+1 π2j2(

π2j2 vt + 1
)2 e−π2j2

2 v
(
−2 (−1)

j
e−t

1/2v−1/2

+ e−2t
1/2v−1/2

)
dv

∣∣∣∣∣∣
≤ 4

∫ A(t)

0

∞∑
j=1

π2j2e−
π2j2

2 ve
−
√
t√
v dv + 4

∫ ∞
A(t)

∞∑
j=1

π2j2e−
π2j2

2 vdv

≤ 4e
−
√

t−1
A(t)

∫ A(t)

0

∞∑
j=1

π2j2e−
π2j2

4 ve
− 1√

v dv + 4e−
A(t)

4

∫ ∞
A(t)

∞∑
j=1

π2j2e−
π2j2

4 vdv

≤ 4 max

{
e
−
√

t−1
A(t) ; e−

A(t)
4

}∫ ∞
0

∞∑
j=1

π2j2e−
π2j2

4 ve
− 1√

v dv +

∫ ∞
1

∞∑
j=1

π2j2e−
π2j2

4 vdv


= 4 max

{
e
−
√

t−1
A(t) ; e−

A(t)
4

}(
−1

2

∫ ∞
0

G′
(v

2
, 0
)
e
− 1√

v dv − 1

2

∫ ∞
1

G′
(v

2
, 0
)
dv

)
,

where the function G′( v2 , 0) under the integral is computed from (5.3) of section 5. Clearly
then the asymptotic relation (5.6), which yields

∣∣G′ (v2 , 0)∣∣ ∼ 4√
πv3/2

, when v → 0, and an
obvious computation ∫ ∞

1

∞∑
j=1

π2j2e−
π2j2

4 vdv = 4

∞∑
j=1

e−π
2j2 <∞

imply that ∫ ∞
0

∣∣∣G′ (v
2
, 0
)∣∣∣ e− 1√

v dv +

∫ ∞
1

∣∣∣G′ (v
2
, 0
)∣∣∣ dv <∞

and thus, for any n ∈ N+,

e
1
2 tI2(t) = o

(
1

tn

)
(3.14)

Therefore using (3.14) and (3.13) in (3.12) lead to our claim (2.1) where we just recall
that when h 6= 1 we use relation (3.1) which is basically a rescaling of the time.
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3.3 Preliminary estimates

The proof of Theorem 2.3 and subsequent results hinge on the following key state-
ments.

Lemma 3.3. Let a > 0. We have that

lim
t→∞

t

∫ ∞
a

e−cEa

[
eXt1{T(0,c)>t}

]
dc = a. (3.15)

Moreover we have uniform convergence, namely

lim
t→∞

sup
b≤a

∣∣∣∣t∫ ∞
b

e−cEb

[
eXt1{T(0,c)>t}

]
dc− b

∣∣∣∣ = 0. (3.16)

Proof. From (3.5) we get that∫ ∞
a

e−cEa

[
eXt1{T(0,c)>t}

]
dc

= 2

∫ ∞
a

∞∑
j=1

(−1)
j+1 πj

π2j2 + c2
e−

π2j2

2c2
t sin

(
πj

c
a

)(
1− (−1)

j
e−c
)
dc.

Changing variables u := t/c2 we get

t

∫ ∞
a

e−cEa

[
eXt1{T(0,c)>t}

]
dc

=
t√
t

∫ t
a2

0

1√
u

∞∑
j=1

(−1)
j+1 πj

π2j2 ut + 1
e−

π2j2

2 u sin

(
πja

√
u√
t

)(
1− (−1)

j
e
−
√
t√
u

)
du

=
1√
t

∫ t
a2

0

1√
u
H

(
a, u,

1

t
, 1,

√
u√
t
, 1

)
du+

1√
t

∫ t
a2

0

1√
u
H

(
a, u,

1

t
, 1,

√
u√
t
, 0

)
du

= tJ1(t, a) + tJ2(t, a), (3.17)

where we refer to (7.9) and (8.1) with ν =∞ for the expressions of J1(t, a), J2(t, a) and
recall that for s ∈ {0, 1} the function H is defined by

H (a, u, ρ, γ, h, s) = (−1)s
∞∑
j=1

πj

π2j2uρ+ 1
e−

π2j2

2 uγ sin (πjs+ πjah) . (3.18)

Relations (3.15) and (3.16) follow from the representation (3.17), the application Lemma
7.2 with ν =∞ ( yielding tJ1(t, a)→ a uniformly on a−compact intervals ) and Lemma 8.1
with ν =∞ ( yielding tJ2(t, a) = o(1) uniformly on a ≥ 0 ) and the fact that G

(
0, 12
)

= −1,
see (5.4) for more detail.

Our next lemma improves the result above in a sense that it allows to truncate the
integral from ln(t). This will be useful when we wish to remove the dependence on a at
the lower limit of the integrals in (3.15) and (3.16).

Lemma 3.4. As t→∞,

sup
a≤ln(t)

t

∣∣∣∣∣
∫ ∞
ln(t)

e−cEa

[
eXt1{T(0,c)>t}

]
dc− a

∣∣∣∣∣
= sup
a≤ln(t)

t

∣∣∣∣∫ ∞
a

e−cEa

[
eXt1{T(0,c)>t}

]
dc− a

∣∣∣∣+ o
(
e
− πt

4 ln2(t)

)
(3.19)
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Proof. We observe that from the spectral expansion (3.8)

sup
a∈(0,c)

Pa
(
T(0,c) > t

)
≤
√

2√
c

∞∑
j=1

e−
π2j2

2c2
t.

Now we derive an easy estimate by splitting the supremum over (0, c) and giving appro-
priate estimates for the cases c ∈ (0, 1) and c ∈ (1, ln(t))

sup
0≤c≤ln(t)

sup
a∈(0,c)

Pa
(
T(0,c) > t

)
≤ sup

0≤c≤ln(t)

√
2√
c

∞∑
j=1

e−
πj

2c2
t = sup

0≤c≤ln(t)

√
2√
c

e−
π

2c2
t

1− e−
π

2c2
t

≤ sup
0≤c≤ln(t)

√
2√
c

e−
π

2c2
t

1− e−
π

2 ln2(t)
t
≤ C max

{
e−

π
2 (t−1) sup

0≤c≤1

1√
c
e−

1
c2 , e

− πt
2 ln2(t)

}
= O

(
e
− πt

2 ln2(t)

)
.

Therefore using the elementary bound eXt ≤ ec valid on t < T(0,c) we obtain that

sup
a≤ln(t)

t

∣∣∣∣∣
∫ ln(t)

a

e−cEa

[
eXt1{T(0,c)>t}

]
dc

∣∣∣∣∣ ≤ t ln(t) sup
0≤c≤ln(t)

sup
b∈(0,c)

Pb
(
T(0,c) > t

)
= o

(
e
− πt

4 ln2(t)

)
(3.20)

and the claim follows.

3.4 Proof of Theorem 2.3

Now we are ready to start with the proof of Theorem 2.3.

Proof of Theorem 2.3: The result is an easy consequence of Lemma 3.3. Recall that by
the definition of Q(h) and then (3.2), for any A > 0,

Q
(h)
t (−mt ≤ A) =

E(h)
[
e−hCt1{−mt≤A}

]
E(h) [e−hCt ]

=
E0

[
eXth2−Cth2 1{−mth2≤Ah}

]
E0

[
eXth2−Cth2

] .

From the representation (3.3) together with 1{T(−a,b)>th2} × 1{−mth2≤Ah} =

1{T(−(a∧Ah),b)>th2} for the numerator and (2.1) for the denominator we easily get that

Q
(h)
t (−mt ≤ A) =

∫∞
0

∫∞
0
e−b−aE0

[
eXth2T(−(a∧Ah),b) > th2

]
dadb

E0

(
eXth2−Cth2

)
∼ h2t

∫ ∞
0

∫ ∞
0

e−b−aE0

[
eXth2T(−(a∧Ah),b) > th2

]
dadb. (3.21)

Shifting the starting point from 0 7→ a ∧ Ah for the zero mean Brownian motion under
E [.] we get

Q
(h)
t (−mt ≤ A) ∼ h2t

∫ ∞
0

∫ ∞
0

e−b−a−a∧AhEa∧Ah
[
eXth2 , T(0,b+(a∧Ah)) > th2

]
dadb

= h2t

∫ ∞
0

∫ Ah

0

e−b−2aEa
[
eXth2 , T(0,b+a) > th2

]
dadb

+ th2
∫ ∞
0

e−b−2AhEAh
[
eXth2 , T(0,b+Ah) > th2

]
db

=

∫ Ah

0

e−ath2
(∫ ∞

a

e−cEa
[
eXth2 , T(0,c) > th2

]
dc

)
da

+ e−Ahth2
∫ ∞
Ah

e−cEAh
[
eXth2 , T(0,c) > th2

]
dc. (3.22)
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Now the uniform convergence in (3.16) of Lemma 3.3 shows that the dominated conver-
gence theorem (DCT) is applicable to the last two expression yielding that

lim
t→∞

Q
(h)
t (−mt ≤ A) =

∫ Ah

0

ae−ada+Ahe−Ah = h

∫ A

0

e−ahda.

This is valid for any A > 0 and we note that he−hada is the probability density of Exp(h).
This concludes our claim.

3.5 Proof of Theorem 2.4

Proof of Theorem 2.4: Choose ν > 0 and we consider as in the proof of Theorem 2.3

Q
(h)
t

(
Mt ≤ ν

√
t
)

=
E0

[
eXth2−Cth2 1{Mth2≤hν

√
t}

]
E0

[
eXth2−Cth2

]
∼ h2tE0

[
eXth2−Cth2 1{Mth2≤hν

√
t}

]
∼ Q(1)

th2

(
Mth2 ≤ ν

√
th2
)
.

Therefore we note that any possible limit will be invariant with respect to h. Hence,
assume that h = 1. An easy computation involving the representation (3.3) and
1{T(−a,b)>t} × 1{Mt≤ν

√
t} = 1{T(−a,b∧ν√t)>t} and shift of the starting position of X from

0 7→ a yield that

E0

[
eXt−Ct1{Mt≤ν

√
t}

]
=

∫ ∞
0

∫ ∞
0

e−b−aE0

[
eXt , T(−a,b∧ν√t) > t

]
dadb

=

∫ ν
√
t

0

∫ ∞
0

e−b−2aEa
[
eXt , T(0,b+a) > t

]
dadb

+ e−ν
√
t

∫ ∞
0

e−2aEa

[
eXt , T(0,ν√t+a) > t

]
da

=

∫ ∞
0

e−a
∫ a+ν

√
t

a

e−cEa
[
eXt , T(0,c) > t

]
dcda (3.23)

+ e−ν
√
t

∫ ∞
0

e−2aEa

[
eXt , T(0,ν√t+a) > t

]
da

= Yt(ν) +Ot(ν).

Let us first study Ot(ν). Choose A > 0. We have that

Ot(ν) = e−ν
√
t

∫ A
√
t

0

e−2aEa

[
eXt , T(0,ν√t+a) > t

]
da (3.24)

+ e−ν
√
t

∫ ∞
A
√
t

e−2aEa

[
eXt , T(0,ν√t+a) > t

]
da.

Note that

e−ν
√
t−aEa

[
eXt , T(0,ν√t+a) > t

]
≤ 1

and henceforth

e−ν
√
t

∫ ∞
A
√
t

e−2aEa

[
eXt , T(0,ν√t+a) > t

]
da ≤ e−A

√
t. (3.25)
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To study the first term in (3.24) we use (3.5) with c = ν
√
t + a, the fact that a ≤ A

√
t,

sin(x) ≤ |x| and (a+ b)−1 ≤ a−1, a > 0, b > 0 to obtain that

e−ν
√
t−aEa

[
eXt , T(0,ν√t+a) > t

]
= 2

∞∑
j=1

(−1)
j+1 πj

π2j2 +
(
a+ ν

√
t
)2 e− π2j2

2(a+ν
√
t)2

t
sin

(
πja

a+ ν
√
t

)(
1− (−1)

j
e−a−ν

√
t
)

(3.26)

≤ 4a(
a+ ν

√
t
)3 ∞∑

j=1

π2j2e
− π2j2

2(ν+A)2 ≤ C a

ν3t
3
2

.

Therefore from (3.25) and (3.26) we deduce in (3.24) that tOt(ν) = o (1) and hence

Q
(1)
t

(
Mt ≤ ν

√
t
)
∼ tYt(ν) = t

∫ ∞
0

e−a
∫ a+ν

√
t

a

e−cEa
[
eXt , T(0,c) > t

]
dcda.

However, we proceed with the same steps leading to (3.17) in the proof of Lemma 3.3 to
get with obvious modification coming from integrating between (a, a+ ν

√
t) in the inner

integral

Yt(ν) =

∫ ∞
0

e−a (J1(t, a, ν) + J2(t, a, ν)) da,

where J1(t, a, ν), J2(t, a, ν) are defined and studied in sections 7.2 and 8. From (8.2) and
DCT we obtain that ∫ ∞

0

e−a |tJ2(t, a, ν)| da = o (1) .

From Corollary 7.6 we get that

lim
t→∞

∫ t
1
6

0

e−aJ1(t, a, ν)da = −G
(

1

ν2
,

1

2

)
.

This proves (2.4) since by Corollary 7.4 we have that

t

∫ ∞
t
1
6

e−a |J1(t, a, ν)| da = o(1)

We then observe that for any ν > ϑ > 0

Q
(h)
t

(
Mt > ν

√
t;Xt ≤ ϑ

√
t
)

=
E0

[
eXth2−Cth2 1{Mth2>ν

√
th2;Xth2≤ϑ

√
th2}

]
E0

[
eXth2−Cth2

]
∼ th2E0

[
eXth2−Cth2 1{Mth2>ν

√
th2;Xth2≤ϑ

√
th2}

]
∼ Q(1)

th2

(
Mth2 > ν

√
th2;Xth2 ≤ ϑ

√
th2
)
.

Then without loss of generality put h = 1. However, using (3.3) to express e−Ct and the
same computation as in (3.23) we get that

E0

[
eXt−Ct1{Mt>ν

√
t;Xt≤ϑ

√
t}

]
=E0

[
eXt1{Xt≤ϑ

√
t}

∫ ∞
0

∫ ∞
0

e−a−b1{Mt>ν
√
t}1{T(−a,b)>t}dadb

]
=

∫ ∞
0

e−a
∫ ∞
a+ν
√
t

e−cEa

[
eXt1{Xt≤ϑ

√
t+a}, T(0,c) > t

]
dcda

− e−ν
√
t

∫ ∞
0

e−2aEa

[
eXt1{Xt≤ϑ

√
t+a}, T(0,ν√t+a) > t

]
da

=Yt (ν, ϑ) +Ot (ν, ϑ) .
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Exactly as the proof of tOt(ν) = o (1) we get tOt(ν, ϑ) = o (1), namely that the second
integral is irrelevant for the asymptotic. However, noting that

Ea

[
eXt1{Xt≤ϑ

√
t+a}, T(0,c) > t

]
≤ eϑ

√
t+aPa

(
T(0,c) > t

)
≤ eϑ

√
t+a

we get that

tYt (ν, ϑ) ≤ t
∫ ∞
0

e−a
∫ ∞
a+ν
√
t

e−c+ϑ
√
t+adcda

= te−(ν−ϑ)
√
t

∫ ∞
0

e−ada = o (1)

and this shows that, for any pair ν > ϑ > 0, we have that

lim
t→∞

Q
(h)
t

(
Mt > ν

√
t;Xt ≤ ϑ

√
t
)

= 0.

This proves that limt→∞

(
Xt√
t
, Mt√

t

)
d
= (M∞,M∞).

4 Proof of Theorem 2.8

4.1 Preliminaries and notation

We recall that a three dimensional Bessel process Y a started from a ≥ 0 is a stochastic
process with continuous paths. It describes the radial part of a three dimensional
Brownian motion started from a and can be identified with a Brownian motion started
from a ≥ 0 conditioned not to cross zero. We denote by P†a the canonical measure
induced by Y a on the space C (0,∞). We recall that the scaling property of the Bessel
process translates as follows: for any bounded functional F : C (0,∞) 7→ R, h > 0, a ≥ 0

E†a [F (X·h2)] = E
†
a
h

[F (hX·)] . (4.1)

Furthermore, if F : C (0, u) 7→ R, a > 0, u > 0, x > 0 then

E†a
[
F (X·) 1{Xu∈dx}

]
=
x

a
Ea
[
F (X·) 1{Xu∈dx}, T(0,∞) > u

]
, (4.2)

where T(0,∞) is the first exit from the half-line (0,∞), see [3, (8.3.2) p.83] which applies
with h(x) = x in the case of zero drift Brownian motion.

4.2 Proof of Theorem 2.8

Proof of Theorem 2.8. Fix u > 0 and a bounded, continuous functional F := Fu :

C (0, u) 7→ R+ with ||F ||∞ its supremum norm. Choose B > 0 and let in the sequel

x ∈ [−B,B]. Denote by EQ
(h)
t the expectation under Q(h)

t . Choose A > 2B
(
h+ h−1

)
and

write

EQ
(h)
t
[
F (X·)1{Xu∈dx}

]
= EQ

(h)
t
[
F (X·)1{Xu∈dx}1{mt≥−A}

]
+ EQ

(h)
t
[
F (X·)1{Xu∈dx}1{mt≤−A}

]
= Ut,h(dx,A) + Vt,h(dx,A), (4.3)

where Ut,h(., A), Vt,h(., A) are finite measures on [−B,B]. However, an obvious estimate
and Theorem 2.3 give that

lim sup
t→∞

Vt,h([−B,B], A) ≤ ||F ||∞ lim
t→∞

Q(h)
(
1{mt≤−A}

)
= ||F ||∞

(
1− h

∫ A

0

e−hada

)
.

(4.4)
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Like in any of the previous proofs and especially (3.21) we have that in the sense of
measures

Ut,h(dx,A) =

∫
ω∈C(0,∞)

F (ω)1{wu∈dx}1{mt(ω)≥−A}Q
(h)
t (dω)

=
1

E0(e−hCt)

∫
ω∈C(0,∞)

F (ω)1{wu∈dx}1{mt(ω)≥−A}e
−Ct(ω)Wh

t (dω) (4.5)

=
E0

[
eXth2−Cth2F

(
X.h2
h

)
1{Xuh2∈hdx}1{mth2≥−Ah}

]
E0(e−hCt)

∼ th2E0

[
eXth2−Cth2F

(
X.h2

h

)
1{Xuh2∈hdx}1{mth2≥−Ah}

]
=: Ũ(dx,A).

Moreover, to evaluate the latter we follow with immediate modifications (3.22) to get

Ũ(dx,A) = th2
∫ Ah

0

e−a
∫ ∞
a

e−cEa
[
eXth2O(X)1{Xuh2∈hdx+a}T(0,c) > th2

]
dcda

+ th2e−Ah
∫ ∞
Ah

e−cEAh
[
eXth2O(X)1{Xuh2∈hdx+a}T(0,c) > th2

]
dc (4.6)

= U1
t,h(dx,A) + U2

t,h(dx,A),

where for the sake of brevity we have put

O(X) = F

(
X.h2 − a

h

)
. (4.7)

Clearly, we have from Lemma 3.3 that

lim sup
t→∞

U2
t,h([−B,B] , A) ≤ lim sup

t→∞
||F ||∞e−Ah

(
th2
∫ ∞
Ah

e−cEAh
[
eXth2 , T(0,c) > th2

]
dc

)
= ||F ||∞Ahe−Ah. (4.8)

Since
lim
A→∞

lim sup
t→∞

th2
(
U2
t,h([−B,B] , A) + Vt,h([−B,B], A)

)
= 0

and (4.5) holds it suffices to study th2U1
t,h(dx,A). Using the Markov property at time uh2

above we get

th2U1
t,h(dx,A) = th2

∫ Ah

0

e−a
∫ ∞
a

e−cEa

[
O(X)1{Xuh2∈hdx+a}1{T(0,c)>uh2}

]
× Ea+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dadc.

Assuming the validity of Lemma 4.1 below and using the asymptotic relation (4.5) we
get that, for any Borel measurable C ⊂ [−B,B],

lim
t→∞

∫
x∈C

th2U1
t,h(dx,A) = lim

t→∞
EQ

(h)
t
[
F (X·)1{Xu∈C}1{mt≥−A}

]
= h2

∫
C

∫ Ah

0∨(−x)
ae−ahE†a

[
Fu(X· − a)1{Xu∈dx+a}}

]
da.

Setting A ↑ ∞ we then get

lim
t→∞

EQ
(h)
t
[
F (X·)1{Xu∈C}

]
= h2

∫
C

∫ ∞
0∨(−x)

ae−ahE†a
[
Fu(X· − a)1{Xu∈dx+a}}

]
da.
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This concludes the proof as B > 0 is arbitrary and this holds for any bounded positive
measurable functional F and any u > 0. However, the last expression corresponds to
a shifted to zero three dimensional Bessel process Y eh − eh, started from independent
random variable with distribution P (eh ∈ dx) = h2xe−hxdx, x > 0. This concludes the
proof of the theorem.

To study the measure th2U1
t,h(dx,A) we prove the following proposition.

Lemma 4.1. We have that for any x ∈ [−B,B], A > 2B
(
h+ h−1

)
lim
t→∞

th2U1
t,h(dx,A) =

∫ A

0∨(−x)
h2ae−haE†a

[
Fu(X· − a)1{Xu∈dx+a}}

]
da (4.9)

Proof. Recall (4.7) for the definition of O(X). We consider and estimate in the sense of
measures

th2Ũ1
t,h(dx,A) = th2

∫ Ah

0

e−a
∫ ln(t)

a

e−cEa

[
O(X)1{Xuh2∈hdx+a}1{T(0,c)>uh2}

]
× Ea+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dadc

≤
∫ Ah

0

e−aEa

[
O(X)1{Xuh2∈hdx+a}1{T(0,∞)>uh2}

]
×

(
th2
∫ ln(t)

a

e−cEa+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dc

)
da.

Then elementary modification of Lemma 3.4 and (3.20) whenever ln(t) > Ah + Bh =

sup(a+ hx) yields

th2Ũ1
t,h([−B,B], A) ≤ ||F ||∞o (1) . (4.10)

Therefore, it remains to study the remaining portion of the integral, or the measure

th2Û1
t,h (dx,A) = th2

∫ Ah

0

e−a
∫ ∞
ln(t)

e−cEa

[
O(X)1{Xuh2∈hdx+a}1{T(0,c)>uh2}

]
× Ea+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dcda. (4.11)

Splitting on the event {T(0,∞) > uh2} we get that

th2
∫ Ah

0

e−a
∫ ∞
ln(t)

e−cEa

[
O(X)1{Xuh2∈hdx+a}1{T(0,c)>uh2}

]
× Ea+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dcda

= th2
∫ Ah

0

e−aEa

[
O(X)1{Xuh2∈hdx+a}1{T(0,∞)>uh2}

]
×
∫ ∞
ln(t)

e−cEa+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dcda

− th2
∫ Ah

0

e−a
∫ ∞
ln(t)

e−cEa

[
O(X)1{Xuh2∈dx+a}1{T(0,∞)>uh2∩T(0,c)≤uh2}

]
× Ea+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dcda

= S(t, dx,A)− S̃(t, dx,A),
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where we note that a ≥ 0∨ (−hx) since otherwise we have that the impossible inequality
mt > Xu, u ≤ t must hold, namely the running minimum to exceed the value of the
process. However, according to Lemma 3.4 and the uniform convergence in (3.16) we
get that, for a+ hx > 0, a ∈ (0, A), x ∈ [−B,B],

lim
t→∞

sup
a+hx>0,a∈(0,A),x∈[−B,B]

∣∣∣∣∣th2
∫ ∞
ln(t)

e−cEa+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dc− a− hx

∣∣∣∣∣
= 0 (4.12)

and henceforth

lim
t→∞

S(t, dx,A) = lim
t→∞

(∫ Ah

0∨(−hx)
e−aEa

[
O(X)1{Xuh2∈hdx+a}1{T(0,∞)>uh2}

]
×
(
th2
∫ ∞
ln(t)

e−cEa+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dc
)
da

)
(4.13)

=

∫ Ah

0∨(−hx)
e−a(a+ hx)Ea

[
O(X)1{Xuh2∈hdx+a}1{T(0,∞)>uh2}

]
da.

However (4.2) allows us to deduct that

(a+ hx)Ea

[
O(X)1{Xuh2∈hdx+a}1{T(0,∞)>uh2}

]
= aE†a

[
O(X)1{Xuh2∈hdx+a}

]
.

We show using (4.1), O(X) = F
(
X.h2−a

h

)
, the rescaling property for the Bessel process

and lastly changing variables a
h 7→ a that we have

lim
t→∞

S(t, dx,A) =

∫ Ah

0∨(−hx)
ae−aE†a

[
F

(
X.h2 − a

h

)
1{Xuh2∈hdx+a}}

]
da

=

∫ Ah

0∨(−hx)
ae−aE†a

h

[
F
(
X· −

a

h

)
1{Xu∈dx+ a

h}}
]
da

= h2
∫ A

0∨(−x)
ae−haE†a

[
F (X· − a) 1{Xu∈dx+a}}

]
da

To conclude that

lim
t→∞

th2Û1
t,h (dx,A) = lim

t→∞
th2U1

t,h (dx,A) = lim
t→∞

S (t, dx,A)

it remains to show that limt→∞ S̃ (t, dx,A) is the zero measure. First note that for any
fixed 0 ≤ a ≤ A and c > ln(t) we have that in sense of measures

Ea

[
O(X)1{Xuh2∈hdx+a}1{T(0,ln(t))>uh2}

]
≤ Ea

[
O(X)1{Xuh2∈hdx+a}1{T(0,c)>uh2}

]
≤ Ea

[
O(X)1{Xuh2∈hdx+a}1{T(0,∞)>uh2}

]
.
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This for the first inequality together with the estimate (4.12) for the second give

S̃(t, [−B,B], A) ≤∫ B

x=−B
th2
(∫ A

0∨(−hx)
e−aEa

[
O(X)1{Xuh2∈hdx+a}1{T(0,∞)>uh2∩T(0,ln(t))≤uh2}

]
×
∫ ∞
ln(t)

e−cEa+hx

[
eXth2−uh2 1{T(0,c)>th2−uh2}

]
dcda

)
≤
∫ B

x=−B

(∫ A

0∨(−hx)
e−aEa

[
O(X)1{Xuh2∈hdx+a}1{T(0,∞)>uh2∩T(0,ln(t))≤uh2}

]
× sup
a+hx>0,a∈(0,A),x∈[−B,B]

(a+ hx+ o(1))da
)

≤ 2B(Bh+A+ o(1))||F ||∞ sup
0<a<A

Pa
(
T(0,∞) > uh2 ∩ T(0,ln(t)) ≤ uh2}

)
≤ 2B(Bh+A+ o(1))||F ||∞ sup

0<a<A
Pa
(
T{ln(t)} ≤ uh2

)
≤ 2B(Bh+A+ o(1))||F ||∞PA

(
T{ln(t)} ≤ uh2

)
= o(1),

where T{ln(t)} = inf {s > 0 : Xs = ln(t)}.

5 Poisson summation and the function G(v, x)

We consider the Fourier transform defined as follows

f̂(ξ) :=

∫ ∞
−∞

e−2πξixf(x)dx. (5.1)

We recall that if |f(x)|+
∣∣∣f̂(x)

∣∣∣ ≤ C(1 + |x|)−1−δ for some δ > 0, C > 0 and ∀x ∈ R then

∞∑
j=−∞

f(j + x) =

∞∑
j=−∞

f̂(j)e2iπjx. (5.2)

When f(x) = 1√
2πσ2

e−
x2

2σ2 , x ∈ R then f̂(ξ) = e−2π
2ξ2σ2

, ξ ∈ R and the function clearly
admits Poisson summation thanks to its rapid decay at infinity.

Define for v > 0, x ∈ [0, 1]

G(v, x) = 2

∞∑
j=1

cos(2πjx)e−
π2j2

2 v =

∞∑
j=−∞

cos(2πjx)e−
π2j2

2 v − 1. (5.3)

Then the following result is a standard consequence of the Poisson summation.

Lemma 5.1. For any v > 0,

G(v, x) =

√
2√
πv

∞∑
j=−∞

e−2
(j−x)2
v − 1. (5.4)

If x ∈ (0, 1) then, as v → 0, for any l ≥ 0, l ∈ N ∪ {0}

∂lG

∂vl
(v, x) = G(l)(v, x) ∼ 2l

√
2

√
πv2l+

1
2

∞∑
j=−∞

(j − x)
2l
e−2

(j−x)2
v . (5.5)

If x ∈ {0, 1} then, as v → 0, for any l ≥ 0, l ∈ N ∪ {0}

∂lG

∂vl
(v, x) = G(l)(v, x) ∼ (−1)

l

√
2l!

√
πvl+

1
2

. (5.6)
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Proof. To justify (5.4) we apply the Poisson summation for f(x) = 1√
2πσ2

e−x
2/2σ2

with

σ =
√
v/2 to get

G(v, x) = 2

∞∑
j=1

cos (2πjx) e−
π2j2

2 v =

∞∑
j=−∞

cos (2πjx) e−
π2j2

2 v − 1

=

∞∑
j=−∞

cos (2πjx) e−
π2j2

2 v − 1 =

√
2√
πv

∞∑
j=−∞

e−2
(j−x)2
v − 1.

The relations (5.5) and (5.6) are a result of differentiation of (5.4) which applies due to
the uniform convergence of (5.3) in any small enough neighbourhood of v > 0.

6 The function F (v, t)

We recall that the Mellin transform is defined as follows

Mf(s) :=

∫ ∞
0

xs−1f(x)dx. (6.1)

Then Mellin transform is well defined at least for all s such thatM|f |(<(s)) <∞. If for
exampleMf(s) is defined, absolutely integrable and uniformly decaying to zero along
the lines of the strip a < c := <(s) < b, for a < b, the Mellin inversion theorem applies as
follows

f(x) :=
1

2πi

∫ c+i∞

c−i∞
Mf(s)x−sds, (6.2)

for any a < c < b. We recall that with fa(x) = (1 + x)
−a, for any a > 0, we have that

Mfa(s) =
Γ(s)Γ(a− s)

Γ(a)
, for all s : 0 < <(s) < a. (6.3)

We note the special case that will be needed further which follow from the

Mf2(s) =
π (1− s)
sin (πs)

, for 0 < c < 2. (6.4)

We know that, as θ →∞, the following asymptotic holds

1

| sin (π(c+ iθ)) |
∼ Ce−π|θ|. (6.5)

ThereforeMf2 is invertible on its region of definition.
Recall that from (3.11) we have that by definition

F (v, t) =

∞∑
j=1

(−1)
j+1 π2j2(

π2j2 vt + 1
)2 e−π2j2

2 v.

We see that using formally (6.4) and (6.2) with x = π2j2 vt , for any 0 < c = <(s) < 1, we
obtain that

F (v, t) =
1

2πi

∞∑
j=1

(−1)
j+1

π2j2
∫ c+i∞

c−i∞
v−stsπ−2sj−2s

π(1− s)
sin(πs)

dse−
π2j2

2 v

=
1

2πi

∫ c+i∞

c−i∞
v−sts

π(1− s)
sin(πs)

∞∑
j=1

(−1)
j+1

π2−2sj2−2se−
π2j2

2 vds.
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The interchange of integration and summation is justified by the fact that∫ ∞
−∞

∞∑
j=1

j2−2ce−
π2j2

2 v ||θ|+ 1|
|sin(π(c+ iθ))|

dθ <∞,

which in turn follows from (6.5). We denote by

η(s, v) =

∞∑
j=1

(−1)
j+1

π2−2sj2−2se−
π2j2

2 v (6.6)

and note that η(s, v) is clearly an entire function for any v > 0. Then we have that

F (v, t) =
1

2πi

∫ c+i∞

c−i∞
v−sts

π(1− s)
sin(πs)

η(s, v)ds. (6.7)

Clearly, from the reflection formula the poles of π/ sin(πs), for <(s) < 1, are located at
0,−1,−2,−3, · · · and it has residues at each pole of value (−1)

n. Since (6.5) holds we
can use the residue theorem to conclude that upon shifting the contour from c ∈ (0, 1) to
c ∈ (−n− 1,−n) that

F (v, t) = η(0, v) +

n∑
l=1

(−1)
l
(l + 1)

vl

tl
η(−l, v) +

1

2πi

∫ c+i∞

c−i∞
v−sts

π(1− s)
sin(πs)

η(s, v)ds. (6.8)

Next we investigate the properties of η(s, v) where we recall that s = c + iθ. We
check from (6.6) immediately that, for c ∈ (−n− 1,−n) with {c} = −c− n, the following
representation of η is available

η(c+ iθ, v) =

∞∑
j=1

(−1)
j+1

(π2j2)n+2(π2j2){c}−1−iθe−
π2j2

2 v

= 2c+1−iθ
∞∑
j=1

(−1)
j+1

(π2j2)n+2 1

Γ({c}+ 1− iθ)

∫ ∞
0

e−
π2j2

2 uu{c}−iθdue−
π2j2

2 v

=
2c+1−iθ

Γ({c}+ 1− iθ)

∫ ∞
0

 ∞∑
j=1

(−1)
j+1

(π2j2)n+2e−
π2j2

2 (u+v)

u{c}−iθdu (6.9)

=
2c+1−iθ

Γ({c}+ 1− iθ)

∫ ∞
0

η(−1− n, u+ v)u{c}−iθdu.

We proceed to study in more detail η(−l, v).

Lemma 6.1. We have that η(−l + 1, v) = (−1)
l−1

2l−1G(l)
(
v, 12

)
, l ≥ 1 and η(0, v) =

F (v, 0). As v → 0,

η(−l + 1, v) = (−1)
l−1

2l−1G(l)

(
v,

1

2

)
∼ (−1)

l−1 22l−1
√

2
√
πv2l+

1
2

∞∑
j=−∞

(
j − 1

2

)2l

e−2
(j− 1

2 )
2

v

(6.10)

and, as v →∞,

η(−l + 1, v) = (−1)
l−1

2l−1G(l)

(
v,

1

2

)
∼ (−1)

l
π2le−π

2v. (6.11)

Proof. The representation of η(−l+1, v) follows by formal differentiation in (5.3) with x =

1/2 and inspection of the terms. Finally the proof of (6.11) follows from differentiation of
(5.3) and (6.10) is a result of differentiation and (5.5).
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We are now ready to obtain our crucial result.

Lemma 6.2. We have that, for any n ∈ N, and uniformly for compact sets of v the
following asymptotic expansions hold

F (v, t) = η(0, v) +

n∑
l=1

(−1)
l
(l + 1)

vl

tl
η(−l, v) + h(v)o

(
1

tn

)
(6.12)

and ∫ ∞
0

F (v, t)dv = 1 +

n∑
l=1

(−1)
l 2l (l + 1)!

tl
+ o

(
1

tn

)
(6.13)

Proof. Recall that s = c+ iθ. Relation (6.12) holds immediately from (6.8) and the fact
that from (6.6)

|η(s, v)| ≤
∞∑
j=1

π2cj2ce−
π2j2

2 v <∞.

To prove (6.13) we observe that all terms involving vlη(−l+1, v) are absolutely integrable
thanks to (6.10) and (6.11). Indeed at infinity all is clear from (6.11) whereas we apply
(6.10) as follows ignoring any constants with respect to v:∫ 1

0

vl |η(−l + 1, v)| dv .
∫ 1

0

1

vl+1

∞∑
j=−∞

(
j − 1

2

)2l

e−2
(j− 1

2 )
2

v dv

=

∞∑
j=−∞

∫ ∞
1

(
j − 1

2

)2l

vl−1e−2(j−
1
2 )

2
vdv

=

∞∑
j=−∞

∫ ∞
(j− 1

2 )
2
vl−1e−2vdv <∞.

Also we conclude from η(0, v) = G′
(
v, 12

)
that∫ ∞

0

η(0, v)dv = G

(
∞, 1

2

)
−G

(
0,

1

2

)
= 1,

where the latter integration to 1 can be concluded from (5.3) and (5.4). The other terms
in (6.13), namely ∫ ∞

0

vlη (−l, v) dv = 2ll!

can be deduced by using that η(−l, 0) = (−1)
l
2lG(l+1)

(
v, 12

)
from Lemma 6.1, integration

by parts which holds due to (6.10) and (6.11).
So it remains to consider the integral term. Invoking (6.9) we note that

H̃(v) :=

∣∣∣∣ 1

2πi

∫ c+i∞

c−i∞
v−sts

π(1− s)
sin(πs)

η(s, v)ds

∣∣∣∣
≤ 2ctc

vc

∫ ∞
−∞

|1− c+ iθ|
|sin(π(c+ iθ))Γ ({c}+ 1− iθ)|

∫ ∞
0

|η(−n− 1, u+ v)|u{c}dudθ.

Upon integration with respect to v and changing variables x = u+ v, y = u we get∫ ∞
0

H̃(v)dv ≤

2ctc
∫ ∞
−∞

|1− c+ iθ|
|sin(π(c+ iθ))Γ ({c}+ 1− iθ)|

∫ ∞
0

|η(−n− 1, x)|
∫ x

0

y{c}(x− y)−cdydxdθ

≤ 2ctcB({c}+ 1, 1− c)
∫ ∞
−∞

|1− c+ iθ|
|sin(π(c+ iθ))Γ ({c}+ 1− iθ)|

∫ ∞
0

|η(−n− 1, x)|x1+ndxdθ

<∞,
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where we have used that c = −{c} − n and B(·, ·) is the classical Beta function.
The finiteness of the last integral is a similar consequence from (6.10) and (6.11) as
before and the decay of |sin(π(c+ iθ))| ∼ Ceπ|θ|, see (6.5) which surpasses that of
|Γ ({c}+ 1− iθ)| � e−π2 |θ|.

7 The function J1(a, t, ν)

7.1 The auxillary functions Γ and H

We recall that

H (a, u, ρ, γ, h, 1) = −
∞∑
j=1

πj

π2j2uρ+ 1
e−

π2j2

2 uγ sin (πj + πjah) , (7.1)

see (3.18). Denote by

Γ (a, u, ρ, γ, h, 1) =

∞∑
j=1

1

π2j2uρ+ 1
e−

π2j2

2 uγ cos (πjah+ πj)

=

∞∑
j=1

∫ ∞
0

e−
π2j2

2 uγe−π
2j2uρv−v cos

(
2πj

(
ah

2
+

1

2

))
dv

=

∫ ∞
0

∞∑
j=1

e−
π2j2

2 uγe−π
2j2uρv cos

(
2πj

(
ah

2
+

1

2

))
e−vdv

=
1

2

∫ ∞
0

G

(
uγ + 2uρv,

ah+ 1

2

)
e−vdv, (7.2)

where the interchange of integration and summation is obviously possible for any fixed
pair u > 0, γ > 0 and we have used (5.3) to identify the expressions with G(·, ·). Applying
(5.4) we see further that

Γ (a, u, ρ, γ, h, 1) =
1

2

∫ ∞
0

(
1√

2πu (γ + 2ρv)

) ∞∑
j=−∞

e
−

2(j− ah2 − 1
2 )

2

uγ+2 vu
t e−vdv − 1

2

and thus

∂Γ

∂γ

(
a, u,

1

t
, 1,

√
u√
t
, 1

)
= − 1

4
√

2πu

∫ ∞
0

1(
1 + 2 vt

) 3
2

∞∑
j=−∞

e
−

2

j− a
√
u√
t

2
− 1

2


2

u+2 vu
t e−vdv

+
1

2
√

2πu3

∫ ∞
0

1(
1 + 2 vt

) 5
2

∞∑
j=−∞

j − a
√
u√
t

2
− 1

2

2

e
−

2

j− a
√
u√
t

2
− 1

2


2

u+2 vu
t e−vdv, (7.3)

where the interchange of the derivative in γ, for any u > 0, and the integral is clear
due to the absolute integrability of the expressions under the integrals above. This
expression (7.3) will be useful when u ≤ 1. Otherwise, when u ≥ 1, we use the following
which is immediate from the definition of Γ, namely

∂Γ

∂γ

(
a, u,

1

t
, 1,

√
u√
t
, 1

)
= −u

2

∞∑
j=1

π2j2

π2j2 ut + 1
e−

π2j2

2 u cos

(
πja

√
u√
t

+ πj

)
. (7.4)

Clearly upon differentiation we get

∂H

∂a

(
a, u,

1

t
, 1,

√
u√
t
, 1

)
=

2

t1/2u1/2
∂Γ

∂γ

(
a, u,

1

t
, 1,

√
u√
t
, 1

)
. (7.5)

These representations allow for the following claim
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Proposition 7.1. We have that, for any t > 100a2,∫ ∞
0

1√
u

∣∣∣∣∂H∂a
(
a, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣ du =
2√
t

∫ ∞
0

1

u

∣∣∣∣∂Γ

∂γ

(
a, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣ du <∞ (7.6)

and even

sup
t>100a2

sup
0≤b≤a

1√
u

∣∣∣∣∂H∂a
(
b, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣ ≤ f(u) (7.7)

sup
t>100a2

sup
0≤b≤a

2

u

∣∣∣∣∂Γ

∂γ

(
b, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣ ≤ f(u) (7.8)

with
∫∞
0
f(u)du <∞.

Proof. We start with (7.8). Clearly, when u ≥ 1, a trivial bound using (7.4) gives (7.8)
with

f(u) := u

∞∑
j=−∞

π2j2e−
π2j2

2 u

and
∫∞
1
f(u)du <∞. Assume that u ≤ 1. Then sup0≤b≤a b

√
u√
t
≤ 1/10 for t > 100a2, u ≤ 1,

and using this in (7.3) the following estimate is obtained

sup
t≥100a2

sup
0≤b≤a

∣∣∣∣ 2u ∂Γ

∂γ

(
b, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣
≤ C

u
5
2

∫ ∞
0

∞∑
j=−∞

(
j − 1

3

)2

e
−2 (j− 1

3 )
2

u(1+ v
50a2

) e−vdv := f(u)

for some C > 0 big enough. Put bj = bj(v, a) :=
(j− 1

3 )
2

(1+ v
50a2

)
and we get upon changing

variables u 7→ 1/w that∫ 1

0

f(u)du = C

∞∑
j=−∞

(
j − 1

3

)2 ∫ ∞
0

∫ ∞
1

√
we−wbjdwe−vdv

= C

∞∑
j=−∞

(
j − 1

3

)2 ∫ ∞
0

b
− 3

2
j

∫ ∞
bj

√
we−wdwe−vdv

≤ C
∞∑

j=−∞

1∣∣j − 1
3

∣∣ ∫ ∞
0

(
1 +

v

50a2

) 3
2

∫ ∞
bj

√
we−wdwe−vdv.

Splitting the integration in v at the point where bj =
∣∣j − 1

3

∣∣, namely vj = 50a2
∣∣j − 1

3

∣∣− 1,
we get that∫ 1

0

f(u)du ≤ C
∫ ∞
0

(
1 +

v

50a2

) 3
2

e−vdv ×
∞∑

j=−∞

1∣∣j − 1
3

∣∣ ∫ ∞|j− 1
3 |

√
we−wdw

+ C

∫ ∞
0

√
we−wdw ×

∞∑
j=−∞

j2(
j − 1

3

)3 ∫ ∞
vj

(
1 +

v

50a2

) 3
2

e−vdv

<∞.

This proves (7.8).
When u ≤ 1, t > 100a2, we get from (7.5) and (7.3) that∣∣∣∣∂H∂a

(
a, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣ ≤ C

u
3
2

∫ ∞
0

∞∑
j=−∞

(
j − 1

3

)2

e
−2 (j− 1

3 )
2

u(1+ v
50a2

) e−vdv
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and the rest is the same as in (7.8). Therefore∫ 1

0

1√
u

∣∣∣∣∂H∂a
(
a, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣ du <∞.
When u > 1 we use (7.5) and (7.4) and the fact that t > 100a2 to get easily that∣∣∣∣∂H∂a

(
a, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣ ≤ Cue−u
and henceforth ∫ ∞

1

1√
u

∣∣∣∣∂H∂a
(
a, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣ du <∞.
Inequality (7.7) is immediate from the computations above and (7.5). Finally, (7.6)
follows from (7.7) and (7.8).

7.2 Main results on J1(a, t, ν)

For any 0 < ν ≤ ∞ define the function

J1(t, a, ν) :=
1√
t

∫ t
a2

t

(a+ν
√
t)2

1√
u

∞∑
j=1

(−1)
j+1 πj

π2j2 ut + 1
e−

π2j2

2 u sin

(
πja

√
u√
t

)
du

=
1√
t

∫ t
a2

t

(a+ν
√
t)2

1√
u
H

(
a, u,

1

t
, 1,

√
u√
t
, 1

)
du. (7.9)

Note that J1(t, a,∞) = J1(t, a) in (3.17). We are now ready to study J1(t, a, ν).

Lemma 7.2. For any 0 < ν ≤ ∞, we have that

lim
t→∞

tJ1(t, a, ν) = lim
t→∞

∫ a

0

t
∂J1(t, b, ν)

∂b
db = −aG

(
1

ν2
,

1

2

)
, (7.10)

where G
(
ν, 12

)
is defined in (5.3). Moreover, for some function f : [0,∞) 7→ [0,∞)

sup
t>100a2

sup
b≤a
|tJ1(t, b, ν)| ≤ a

∫ ∞
0

f(u)du <∞ (7.11)

and the convergence in (7.10) is uniform on a-compact intervals.

Proof. We will discuss t∂J1(t, a, ν)/∂a showing that it converges to 1, as t → ∞. Then
since J1(t, 0, ν) = 0 we get the answer by using the DCT in

J1(t, a, ν) =

∫ a

0

∂J1(t, b, ν)

∂b
db.

First note that thanks to the definition of J1(t, a, ν), Proposition 7.1 and (7.5) we obtain
that

t
∂J1(t, a, ν)

∂a
= 2

∫ t
a2

t

(a+ν
√
t)2

1

u

∂Γ

∂γ

(
a, u,

1

t
, 1,

√
u√
t
, 1

)
du

− 2t

a2
H

(
a,

t

a2
,

1

t
, 1,

1

a
, 1

)
+

2t(
a+ ν

√
t
)2H

(
a,

t(
a+ ν

√
t
)2 , 1

t
, 1,

1

a+ ν
√
t
, 1

)
.

(7.12)
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However, from (7.1) we get that

2t

a2
H

(
a,

t

a2
,

1

t
, 1,

1

a
, 1

)
=

2t

a2

∞∑
j=1

πj

π2j2a−2 + 1
e−

π2j2

2
t
a2 sin (2πj) = 0.

When ν =∞ we clearly have

2t(
a+ ν

√
t
)2H

(
a,

t(
a+ ν

√
t
)2 , 1

t
, 1,

1

a+ ν
√
t
, 1

)
= 0.

Let us consider 0 < ν <∞. Then from (7.1) we get the bound

sup
0≤b≤a

2t(
b+ ν

√
t
)2
∣∣∣∣∣H
(
b,

t(
b+ ν

√
t
)2 , 1

t
, 1,

1

b+ ν
√
t
, 1

)∣∣∣∣∣
≤ 1

ν2
sup

0≤b≤a

∞∑
j=1

πj
π2j2

(b+ν
√
t)

2 + 1
e
− π2j2

2(b+ν
√
t)2

t
∣∣∣∣sin(πj + πj

b

b+ ν
√
t

)∣∣∣∣
≤ 1

ν2

∞∑
j=1

πje
− π2j2

4( a2t +ν2) sup
0≤b≤a

∣∣∣∣sin(πj b

b+ ν
√
t

)∣∣∣∣
≤ a

ν3
√
t

∞∑
j=1

π2j2e
− π2j2

4( a2t +ν2) = o(1),

which means that

sup
0≤b≤a

∣∣∣∣∣∣t∂J1(t, b, ν)

∂b
− 2

∫ t
b2

t

(b+ν
√
t)2

1

u

∂Γ

∂γ

(
b, u,

1

t
, 1,

√
u√
t
, 1

)
du

∣∣∣∣∣∣ ≤ a

ν3
√
t

∞∑
j=1

π2j2e
− π2j2

4( a2t +ν2)

= o (1) .

(7.13)

Henceforth (7.8) allows us to apply the DCT to demonstrate that

lim
t→∞

t
∂J1(t, a, ν)

∂a
= 2

∫ ∞
1
ν2

1

u

∂Γ

∂γ
(a, u, 0, 1, 0, 1) du.

However, from (7.4),

2

u

∂Γ

∂γ
(a, u, 0, 1, 0, 1) =

2

u

∂Γ

∂γ
(0, u, 0, 1, 0, 1) = G′

(
u,

1

2

)
=

∞∑
j=1

(−1)
j+1

π2j2e−
π2j2

2 u.

Finally from (3.11) we recognize that the last sum is simply F (u, 0) which according to
(5.3) leads to F (u, 0) = G′

(
u, 12

)
. Therefore since G

(
∞, 12

)
= 0, see (5.3),

lim
t→∞

t
∂J1(t, a, ν)

∂a
=

∫ ∞
1
ν2

F (u, 0)du = G

(
∞, 1

2

)
−G

(
1

ν2
,

1

2

)
= −G

(
1

ν2
,

1

2

)
.

Moreover, (7.6) ensures that even

sup
b≤a

∣∣∣∣t∂J1(t, b, ν)

∂b

∣∣∣∣ ≤ ∫ ∞
0

2

u

∣∣∣∣∂Γ

∂γ

(
b, u,

1

t
, 1,

√
u√
t
, 1

)∣∣∣∣ du ≤ ∫ ∞
0

f(u)du <∞

and therefore the DCT applies and yields our claim namely (7.10). Even more this
uniform bound on the derivative gives (7.11) and subsequently the uniform convergence
in (7.10) for a-compact sets.
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When ν <∞ we are able to give some other useful estimates.

Proposition 7.3. Let∞ > ν > 0. Then, for any h > 0, we have that

|J1(t, a, ν| ≤ 1

a

∞∑
j=1

π2j2e

− π2j2

2

(
a√
t
+ν

)2
=

2

a
G′

 1(
a√
t

+ ν
)2 , 0

 , (7.14)

where G is defined in (5.3).

Proof. The proof is immediate from (7.9) and | sin(x)| ≤ |x|. Indeed note that using this
we get

|J1(t, a, ν| ≤ a√
t

∫ t
a2

t

(a+ν
√
t)2

1√
u

∞∑
j=1

π2j2e−
π2j2

2 u

√
u√
t
du

≤ a

t

t

a2

∞∑
j=1

π2j2e

− π2j2

2

(
a√
t
+ν

)2
≤ 2

a

∞∑
j=1

π2j2e

− π2j2

2

(
a√
t
+ν

)2
,

which proves the assertion.

Corollary 7.4. We have that as t→∞

t

∫ ∞
t
1
6

e−a |J1(t, a, ν)| da = o(1). (7.15)

Proof. Set a(t) = t
1
6 . From Proposition 7.3 we get that

t

∫ ∞
a(t)

e−a |J1(t, a, ν)| da ≤ t
∫ ∞
a(t)

e−a
2

a

∣∣∣∣∣∣∣G′
 1(

a√
t

+ ν
)2 , 0


∣∣∣∣∣∣∣ da

≤ 2te−a(t)
∫ ∞
0

e−wG′

 1(
w+a(t)√

t
+ ν
)2 , 0

 dw

≤ Cte−t
1
6

∫ ∞
0

e−w

(
1 ∨

(
w + a(t)√

t
+ ν

)3
)
dw

= o (1) ,

where we have used that from (5.6) we get that |G′ (v, 0) | � 1
v3/2

, as v → 0. This proves
(7.15).

The next result allows us to improve the uniform convergence proved in Lemma 7.2.

Proposition 7.5. Let ∞ > ν > 0 and a(t) ↑ ∞ such that a(t) = o
(
t
1
4

)
then for some

C > 0

R(t) := sup
0≤b≤a(t)

∣∣∣∣∣t∂J1(t, b, ν)

∂b
− 2

∫ ∞
1
ν2

1

u

∂Γ

∂γ
(0, u, 0, 1, 0, 1) du

∣∣∣∣∣ ≤ C
(
a2(t)

t
+
a(t)√
t

)
.

(7.16)
and

r(t) := sup
0≤b≤a(t)

∣∣∣∣∣tJ1(t, b, ν)− 2b

∫ ∞
1
ν2

1

u

∂Γ

∂γ
(0, u, 0, 1, 0, 1) du

∣∣∣∣∣ ≤ C
(
a3(t)

t
+
a2(t)√
t

)
(7.17)
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Proof. From (7.13) which is valid, for any a > 0, we see that the following bound can be
immediately derived

R(t) ≤ Ca(t)√
t

+ sup
0≤b≤a(t)

∣∣∣∣∣∣2
∫ ∞

1
ν2

1

u

∂Γ

∂γ
(0, u, 0, 1, 0, 1) du− 2

∫ t
b2

t

(b+ν
√
t)2

1

u

∂Γ
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(
b, u,

1

t
, 1,

√
u√
t
, 1

)
du

∣∣∣∣∣∣
=
Ca(t)√

t
+R1(t). (7.18)

Next we study R1(t). Consider

R̂1(t) = sup
0≤b≤a(t)

∣∣∣∣∣∣
∫ t
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√
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2
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(
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1

t
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√
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t
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))
du

∣∣∣∣∣∣ .
Then from (7.4) we easily get writing

− 2
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1

t
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∞∑
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that the following inequalities hold
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1
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t
,

where we have used implicitly | cos(x + πj) − cos(πj)| = |1 − cos(x)| ≤ x2/2. Next we
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estimate using (7.4) that

R̃1(t) = sup
0≤b≤a(t)

∣∣∣∣∣∣
∫ 1
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t
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√
t)2
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.

Finally, using again (7.4) we obtain

R̄1(t) = sup
0≤b≤a(t)

∣∣∣∣∣
∫ ∞
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2
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∞∑
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e
−π2j2 t

2a2(t) ≤ C a
2(t)

t
.

Since R1(t) ≤ R̃1(t) + R̄1(t) + R̂1(t) we get that

R1(t) ≤ C
(
a2(t)

t
+
a(t)√
t

)
and (7.16) follows. Now (7.17) is an immediate consequence of (7.16) applied in the
sequence of inequalities

r(t) = sup
0≤b≤a(t)

∣∣∣∣∣tJ1(t, b, ν)− 2b

∫ ∞
1
ν2

1

u

∂Γ

∂γ
(0, u, 0, 1, 0, 1) du

∣∣∣∣∣
≤ sup

0≤b≤a(t)

∫ b

0

∣∣∣∣∣∂J1(t, c, ν)

∂c
− 2

∫ ∞
1
ν2

1

u

∂Γ

∂γ
(0, u, 0, 1, 0, 1) du

∣∣∣∣∣ dc
≤
∫ a(t)

0

sup
0≤b≤a(t)

∣∣∣∣∣∂J1(t, c, ν)

∂c
− 2

∫ ∞
1
ν2

1

u

∂Γ

∂γ
(0, u, 0, 1, 0, 1) du

∣∣∣∣∣ dc ≤ a(t)R(t).

Corollary 7.6. With G defined as in (5.3) and J1 in (7.9) we have that

lim
t→∞

t

∫ t
1
6

0

e−aJ1(t, a, ν)da = −G
(

1

ν2
,

1

2

)∫ ∞
0

ae−ada = −G
(

1

ν2
,

1

2

)
. (7.19)

Proof. Set a(t) = t
1
6 . Then from (7.17)∣∣∣∣∣t

∫ a(t)

0

e−aJ1(t, a, ν)da−
∫ a(t)

0

e−aa

∫ ∞
1
ν2

2

u

∂Γ

∂γ
(0, u, 0, 1, 0, 1) duda

∣∣∣∣∣ ≤ r(t)
≤ C

(
t−

1
2 + t−

1
6

)∫ a(t)

0

e−ada . t−
1
6 . (7.20)

By (7.4), (5.3) and G(∞, 12 ) = 0 the difference in (7.20) can be written as

G

(
1

ν2
,

1

2

)∫ a(t)

0

e−aada (7.21)

since
2

u

∂Γ

∂γ
(0, u, 0, 1, 0, 1) =

∞∑
j=1

(−1)
j+1

π2j2e−
π2j2

2 u = G′
(
u,

1

2

)
Therefore, we obtain (7.19) from (7.20).
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8 The function J2(a, t)

Define, for any 0 < ν ≤ ∞,

J2(t, a, ν) :=
1√
t

∫ t
a2

t

(a+ν
√
t)2

1√
u

∞∑
j=1

πj

π2j2 ut + 1
e−

π2j2

2 u sin

(
πja

√
u√
t

)
e
−
√
t√
u du

=
1√
t

∫ t
a2

t

(a+ν
√
t)2

1√
u
H

(
a, u,

1

t
, 1,

√
u√
t
, 0

)
du, (8.1)

where H
(
a, u, 1t , 1,

√
u√
t
, 0
)

is defined in (3.18).

Lemma 8.1. We have that

sup
ν>0

sup
0≤b<∞

t |J2(t, b, ν)| = o (1) . (8.2)

Proof. From (8.1) we easily get the estimate

sup
ν>0

sup
0≤b<∞

t |J2(t, b, ν)| ≤
√
t

∫ ∞
0

1√
u

∞∑
j=1

π2j2e−
π2j2

2 ue
−
√
t√
u du

= −
√
t

∫ ∞
0

1√
u
G′ (u, 0) e

−
√
t√
u du.

(8.3)

We then split this integral into three regions.
Region u ≤ 1: We know from (5.6) that |G′(u, 0)| ∼ Cu− 3

2 . Then this feeds in (8.3) to
yield

√
t

∫ 1

0

1√
u

∞∑
j=1

π2j2e−
π2j2

2 ue
−
√
t√
u du =

√
t

∫ 1

0

1√
u
|G′(u, 0)| e−

√
t√
u du

≤
√
te−

√
t

2

∫ 1

0

1√
u
|G′(u, 0)| e−

1
2
√
u du = o(1) (8.4)

Region 1 < u ≤ t 1
4 : For this region we directly estimate

√
t

∫ t
1
4

1

1√
u

∞∑
j=1

π2j2e−
π2j2

2 ue
−
√
t√
u du ≤

√
te−t

1
4

∞∑
j=1

π2j2e−
π2j2

2

∫ t
1
4

1

e−(u−1)du = o(1).

(8.5)

Region t
1
4 < u <∞: This part is also easily estimated as follows

√
t

∫ ∞
t
1
4

1√
u

∞∑
j=1

π2j2e−
π2j2

2 ue
−
√
t√
u du ≤

√
te−

t
1
4
4

∫ ∞
t
1
4

 ∞∑
j=1

π2j2e−
π2j2

2
u
4

 du = o(1). (8.6)

Collecting (8.4), (8.5) and (8.6) and plugging them in (8.3) we prove (8.2).
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