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Abstract

We consider Gaussian multiplicative chaos measures defined in a general setting of
metric measure spaces. Uniqueness results are obtained, verifying that different
sequences of approximating Gaussian fields lead to the same chaos measure. Special-
ized to Euclidean spaces, our setup covers both the subcritical chaos and the critical
chaos, actually extending to all non-atomic Gaussian chaos measures.
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1 Introduction

The theory of multiplicative chaos was created by Kahane [20, 21] in the 1980’s in
order to obtain a continuous counterpart of the multiplicative cascades, which were
proposed by Mandelbrot in early 1970’s as a model for turbulence. During the last
10 years there has been a new wave of interest on multiplicative chaos, due to e.g.
its important connections to Stochastic Loewner Evolution [3, 29, 15], quantum field
theories and quantum gravity [18, 13, 14, 24, 6, 23], models in finance and turbulence
[25, Section 5], and the statistical behaviour of the Riemann zeta function over the
critical line [16, 27].

In Kahane’s original theory one considers a sequence of a.s. continuous and centered
Gaussian fields X,, that can be thought of as approximations of a (possibly distribution
valued) Gaussian field X. The fields are defined on some metric measure space (7, \)
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Uniqueness of critical Gaussian chaos

and the increments X,,;1 — X,, are assumed to be independent. One may then define the
random measures /i, on 7 by setting

pn(d) 2= exp(Xon (1) — 5T X (2)?)A(dl).

In this situation basic martingale theory verifies that almost surely there exists a (random)
limit measure p = lim,_, 1., Where the convergence is understood in the weak*-
sense. The measure p is called the multiplicative chaos defined by X (or rather by
the sequence (X)), and Kahane shows that the limit does not depend on the choice
of the approximating sequence (X,,), assuming that the covariances of the increments
X,+1 — X, are non-negative. However, the limit may well reduce to the zero measure
almost surely.

We next recall some of the most important cases of multiplicative chaos in the basic
setting where 7 is a subset of a Euclidean space, say 7 = [0,1]%, and ) is the Lebesgue
measure. Especially we assume that the limit field X is log-correlated, i.e. it has the
covariance

Cx(z,y) = 2dB*log |z — y| + G (=, y), z,yeT, (1.1)

where G is a continuous and bounded function. As an important example in dimension 2,
the Gaussian free field has locally such a covariance structure.
Assuming that the X,, are nice approximations of the field X as explained above,

Kahane’s theory yields that in case 5 € (0,1) the convergence ., wy ug takes place
almost surely and the obtained chaos g is non-trivial. It is an example of subcritical
Gaussian chaos, and, as we shall soon recall in more detail, in this normalisation 5 =1
appears as a critical value.

In order to give a more concrete view of the chaos we take a closer look at a
particularly important example of approximating Gaussian fields in the case where d = 1
and p is the so-called exactly scale invariant chaos due to Bacry and Muzy [4], [25,
p. 331]. Consider the hyperbolic white noise W in the upper half plane ]Ri so that
E W (A1)W(A2) = mnyp (A1 N Ag) for Borel subsets A;, Ay € Ri with compact closure in
Ri. Above dmyy, = y~2dz dy denotes the hyperbolic measure in the upper half plane.
For every t > 0 consider the set

A(z) = {(@,y") € RY : ¢y > max(e 2|2’ — z|) and |2’ — 2| < 1/2} (1.2)
and define the field X; on [0, 1] by setting
Xi(xz) := V2dW (A(x)).

Note that the sets A;(z) are horizontal translations of the set A4;(0). One then defines
the subcritical exactly scale invariant chaos by setting

dpg(z) = Jlim exp (5X(2) — %2E(Xt(:c))2) dz for B < 1. (1.3)

If 8 = 1, the above limit equals the zero measure almost surely. To construct the
exactly scaling chaos measure at criticality # = 1, one has to perform a non-trivial
normalization as follows:

duq(z) := tlggo Vtexp (Xi(z) — %E (X¢(2))?) da, (1.4)

where the limit now exists in probability.
The need of a nontrivial normalisation at the critical parameter value in (1.4) has
been observed in many analogous situations before, e.g. [8, 33]. A convergence result
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analogous to (1.4) was proven by Aidekon and Shi in the important work [2] in the
case of Mandelbrot chaos measures that can be thought of as a discrete analogue of
continuous chaos. Independently C. Webb [31] obtained the corresponding result (with
convergence in distribution) for the Gaussian cascades ([2] and [31] considered the total
mass, but the convergence of the measures can then be verified without too much work).
Finally, Duplantier, Rhodes, Sheffield and Vargas [10, 12] established (1.4) for a class
of continuous Gaussian chaos measures including the exactly scaling one. We refer to
[25, 11] for a much more thorough discussion of chaos measures and their applications,
as well as for further references on the topic.

An important issue is to understand when the obtained chaos measure is independent
of the choice of the approximating fields X,,. As mentioned before, Kahane’s seminal
work contained some results in this direction. Robert and Vargas [26] addressed the
uniqueness question in the case of subcritical log-correlated fields (1.1) for convolution
approximations X,, = ¢., * X. Duplantier’s and Sheffield’s paper [14] gives uniqueness
results for particular approximations of the 2-dimensional GFF. More general results
developing the method of [26] are contained in the review [25] due to Rhodes and Vargas,
whose conditions are very similar to ours. In [9, 19]! the method is also applied for a class
of convolution approximations of the critical chaos. Another approach is contained in
the paper of Shamov [28]. The techniques of the latter paper are based on an interesting
new characterisation of chaos measures, which produces strong results but is applicable
only in the subcritical range. Finally, in the paper [5] Berestycki provides an elegant and
simple treatment of convolution approximations, again in the subcritical regime.

In the present paper we develop a new approach to the uniqueness question, which
gives a simple proof of uniqueness in the subcritical regime, but more importantly it
also applies to the case of critical chaos. Our idea uses a specifically tailored auxiliary
field added to the original field in order to obtain comparability directly from Kahane’s
convexity inequality, and the choice is made so that in the limit the effect of the auxiliary
field vanishes. The approach is outlined before the actual proof in the beginning of
Section 3. One obtains a unified result that applies in general to chaos measures obtained
via an arbitrary normalization, the only requirement is that the chaos measure is non-
atomic almost surely. Therefore, our results apply also to a class of chaos measures that
lie between the critical and supercritical ones, which one expects to be useful in the
study of finer properties of the critical chaos itself.

Our basic result considers the following situation: Let (X,,) and (X,) be two se-
quences of Holder-regular Gaussian fields (see Section 2 for the precise definition)
on a compact doubling metric space (7,d). Assume that for each n > 1 we have a
non-negative Radon reference measure p,, defined on 7. Define the measures

d/in(x) = 6X7L($)7%E[X"‘(x)2] dpn(l)
for all n > 1. The measures ji,, are defined analogously by using the fields )?n instead.
Theorem 1.1. Let C,(7,y) and C,(z,y) be the covariance functions of the fields X,,
and X, respectively. Assume that the random measures ji,, converge in distribution
to an almost surely non-atomic random measure ji on 7. Moreover, assume that the

covariances C,, and én satisfy the following two conditions: There exists a constant
K > 0 such that

sup |Cp(z,y) — Cp(z,y)| < K < oo foralln >1, (1.5)
z,yeT
and N
lim sup |Cn(z,y)— Cu(z,y)|=0 foreveryd > 0. (1.6)

0 d(w,y) >0

1 We would like to thank the anonymous referee for pointing out the latter article.
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Then the measures ji,, converge in distribution to the same random measure /i.

Remark 1.2. For simplicity we have stated the above theorem and will give the proof
in the setting of a compact space 7. Similar results are obtained for non-compact 7 by
standard localization. For example assume that 7 has an exhaustion 7 = U;l’ozl K,, with
compacts K1 C Ky C --- C T, such that every compact K C 7T is eventually contained in
some K,. Then if the assumptions of Theorem 1.1 are valid for the restrictions to each
K, the claim also holds for 7, where now weak convergence is defined using compactly
supported test functions.

The proof of the above theorem is contained in Section 3, where it is also noted that
one may somewhat loosen the condition (1.5), see Remark 3.6. We refer to Section 2
for precise definitions of convergence in the space of measures and other needed
prerequisities.

Section 4 addresses the interesting question when the convergence in Theorem 1.1
can be lifted to convergence in probability (or in LP). Theorem 4.4 below provides
practical conditions for checking this when the convergence is known for some other
approximation sequence that has a martingale structure - a condition which is often met
in applications.

In Section 5 we discuss consequences for convolution approximations (see Corollar-
ies 5.2 and 5.4). In addition to general results we consider both circular averages and
convolution approximations of the Gaussian free field in dimension 2 (Corollary 5.8).

Finally, Section 6 illustrates the use of the results of the previous sections. This is
done via taking a closer look at the fundamental critical chaos on the unit circle, obtained
from the GFF defined via the Fourier series

X(z) =24/log2Ay + \/52 k12 (Ag sin(2rkz) + By cos(2mkz)) for z € [0,1),
k=1

where the A, B,, are independent standard Gaussians. In [3] the corresponding sub-
critical Gaussian chaos was constructed using martingale approximates defined via the
periodic hyperbolic white noise. We shall consider four different approximations of X:

1. X, is the approximation of X obtained by cutting the periodic hyperbolic white
noise construction of X on the level 1/n.

2. Xo(2) = 2y/I0g 240 + V23 )_ k=12 (A sin(2rka) + By, cos(2rkz)) for z € [0, 1).

3. X3, = ¢1/n * X, where ¢ is a mollifier function defined on 7 that satisfies some
weak conditions.

4. X4, is obtained as the nth partial sum of a vaguelet decomposition of X.

Theorem 1.3. Forall j =1,...,3 the random measures

Viognexp (X n(z) — %IE) (Xjn(2))?) dz

converge as n — oo in probability to the same nontrivial random measure ji; s on T,
which is the fundamental critical measure on 7. The convergence actually takes place
in LP(R?) for every 0 < p < 1. The same holds for the vaguelet decomposition X, ,, with
the normalization \/nlog 2 instead of \/log n.

We refer to Section 6 for the precise definitions of the approximations used above.
Theorem 1.3 naturally holds true in the subcritical case if above X, is replaced by
BX;, with 3 € (0,1), and one removes the factor y/log n. We denote the limit measure

by pg st
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2 Notation and basic definitions

A metric space is doubling if there exists a constant M > 0 such that any ball of
radius ¢ > 0 can be covered with at most M balls of radius ¢/2. In this work we shall
always consider a doubling compact metric space (7,d). We denote by M™ the space
of (positive) Radon measures on 7. The space M of real-valued Radon measures on 7
can be given the weak*-topology by interpreting it as the dual of C(7). We then give
M+ C M the subspace topology.

The space M™ is metrizable (which is not usually the case for the full space M), for
example by using the Kantorovich-Rubinstein metric defined by

d(m,m’) := sup {/T flx)ydm—m/)(z): f: T — Ris 1-Lipschitz} .

For a proof see [7, Theorem 8.3.2].

Let P(M™) denote the space of Radon probability measures on M™*. One should
note that Borel probability measures and Radon probability measures coincide in this
situation, as well as in the case of P(7T), since we are dealing with Polish spaces. Let
(Q, F,P) be a fixed probability space. We call a measurable map p: 0 — M™ a random
measure on 7. For a given random measure p the push-forward measure P € P(M™)
is called the distribution of iz and we say that a family of random measures p,, converges
in distribution if the measures pu,.]P converge weakly in P(M™) (i.e. when evaluated
against bounded continuous functions P(M™) — R). In order to check the convergence
in distribution, it is enough to verify that

i (f) = / £(@) dpn(a)

converges in distribution for every f € C(T), see e.g. [22, Theorem 16.16].

A stronger form of convergence is the following: We say that a sequence of random
measures (u,) converges weakly in LP to a random measure p if for all f € C(T) the
random variable [ f(z)du,(x) converges in LP(Q2) to [ f(x) du(z). This obviously implies
the convergence u,, — u in distribution.

A (pointwise defined) Gaussian field X on 7 is a random process indexed by 7 such
that (X (¢1),...,X(t,)) is a multivariate Gaussian random variable for every ¢i,...,t, € T,
n > 1. We will assume that all of our Gaussian fields are centered unless otherwise
stated.

Definition 2.1. A (centered) Gaussian field X on a compact metric space T is Hélder-
regular if the map (z,y) — /E|X (z) — X (y)|? is a-Hélder continuous on T x T for some
a > 0.

Lemma 2.2. The realizations of any Holder-regular Gaussian field on T can be chosen
to be almost surely 3-Hélder continuous with some (3 > 0.

Proof. This is an immediate consequence of Dudley’s theorem (See for instance [1,
Theorem 1.3.5].) and the fact that our space is doubling. O

Remark 2.3. By Dudley’s theorem the conclusion of Lemma 2.2 would be valid under
much less restrictive assumptions on the covariance, and most of the results of the
present paper could be reformulated accordingly.

Assume that we are given a sequence of Holder-regular Gaussian fields (X,,) on T
and also a sequence of measures p, € M*. Define for all n > 1 a random measure
tn: 8 — M by setting

in(f) = / Fla)eXn @ X @) g (1), 2.1)
T
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forall f € C(T). In the case where the measures y,, converge in distribution to a random
measure u: Q — M™T, we call u a Gaussian multiplicative chaos (GMC) associated with
the families X,, and p,,. We call the sequence of measures p,, a normalizing sequence.
In the standard models of subcritical and critical chaos the typical choices are p,, := A
and p, := Cy/nA (or p, := Cy/logn)), respectively, where )\ stands for the Lebesgue
measure.

Unless otherwise stated, when comparing the limits of two sequences of random
measures (u,) and (@,), we will always use the same normalizing sequence (p,,) to
construct both u,, and .

Lastly we recall the following fundamental convexity inequality due to Kahane [20].

Lemma 2.4. Assume that X and Y are two Hélder-regular fields such that the co-
variances satisfy Cx(s,t) > Cy(s,t) for all s,t € T. Then for every concave function
f:1]0,00) — [0,00) we have

E f(/ex(t)—%E[X(t)2] dp(t)) <E
-

_1 2
f(/Tem) LE[Y (1) ]dp(t))]
forall p e M™.

3 Convergence and uniqueness: Proof of Theorem 1.1

In this section we prove Theorem 1.1. The simple idea of the proof is as follows: We
construct a sequence of auxiliary fields Y (see especially Lemma 3.5) that we add on
top of the fields X,, in order to ensure that the covariance of X,, + Y. dominates the
covariance of )~(n pointwise. The fields Y. become fully decorrelated as ¢ — 0, and
their construction relies on the non-atomicity of the random measure . After these
preparations one may finish by a rather standard application of Kahane’s convexity
inequality (Lemma 2.4).

The next two lemmata are almost folklore, but we provide proofs for completeness.

Lemma 3.1. Let (u,) be a tight sequence of random measures. Then there exists a
function h: [0,00) — [0, 00) that has the following properties:

1. functions h, h? and h* are increasing and concave with h(0) = 0 and lim,_,, h(z) =
00,

2. h satisfies min(1, z)h(y) < h(zy) < max(1,z)h(y), and
3. sup,>1 Eh(u,(T))* < oo.

Proof. First of all, by the definition of tightness one may easily pick an increasing
g: [0,00) — [1,00) with lim,_, g(x) = oo such that sup,,~; E[g(pn(7T))] < co. Namely,
let 0 = tg < t; < ta < ... be an increasing sequencé of real numbers such that
sup,,>1 Plun(T) > tx] < k2 forall k > 1 and set g(z) = Y7 X[t,,00)- One may choose a
concave function £ that is majorized by g and satisfies both 1(0) = 0 and lim, o0 h(z) =
oco. Finally, set h(z) := (h(z))'/*. Condition (3) follows, and (2) is then automatically
satisfied by concavity. Since compositions of non-negative concave functions remain
concave we obtain (1) as well. O

Lemma 3.2. For n > 1 let X,, and )?n be Holder-regular Gaussian fields on 7 with
covariance functions Cn(z,y) and C,(z,y). Define the random measures [, and [i,, using
the fields X,, and X, respectively. Assume that there exists a constant K > 0 such that

sup (Cp(z,y) — Cp(z,y)) < K < o0
z,ye€T
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for alln > 1 and that the family (i,,) is tight (in P(M™)). Then also the family (u,,) is
tight.

Proof. By the Banach-Alaoglu theorem it is enough to check that

lim sup P[u,(7) > u] =0.

U—r00 n>1

Since lim,_, h(u) = oo, it suffices to verify that sup,,~; Eh(u(7)) < co, where h is the
concave function given by Lemma 3.1 for the tight sequence [in. Pick an independent
standard Gaussian G. By our assumption the covariance of the field X/, := X,, + K'/2G
dominates that of the field X,,, and if the random measure uh, is defined by using the
field X/, we obtain by Kahane’s concavity inequality

E (h(47,(T)))* < B (h(fin(T)))* < ¢ foranyn > 1

for some constant ¢ > 0 not depending on n.
1/2
Since p, = ef / G-K/2,, the properties (2) and (3) of Lemma 3.1 enable us to
estimate for all n > 1 that

Eh(un(T)) = E he K GHER2Y (7)) < E (max(1, e K2y (T)))
< (B (max(1, e~ *E/2))2) 2 (B (h(1,(T)))?) " < Ve,

for some ¢’ > 0. O

Our proof of Theorem 1.1 is based on the following two lemmas.

Lemma 3.3. Let (X,,) and (X,,) be two sequences of Holder-regular Gaussian fields on
T. Assume that there exists a constant K > 0 such that the covariances satisfy

sup |Cp(z,y) — Cu(z,y)] < K < o0
z,ye€T

for alln > 1. Assume also that both of the corresponding sequences of random measures
(un) and (i) converge in distribution to measures u and ji respectively, and that [ is
almost surely non-atomic. Then also u is almost surely non-atomic.

Proof. Let G be an independent centered Gaussian random variable with variance
E G? = K. Then the covariance of the field X,, + G dominates that of the field )?n. Define
a field U, (z,y) := X,,(z) + X,.(y) + 2G on the product space 7 x 7. Its covariance is
given by

E [Un(z,y)Un(2,y")] = B [ X, (2) X (2")] + B [ X0 (y) Xn (y)] + E [ X (2) X0 ()]
+ B [Xn(y) X (2)] + 4K,

and therefore dominates the covariance of the field V, (z,y) := X,.(z) + X, (y) given by

E [V (2, y)Va(2',y)] = B [Xp(2) Xp(2")] + E [ X, (y) Xn(y)] + E [Xn(x))zn(y/)]

Fore > 0, let

fe(z,y) :== max (0, 1— |z ; yl)

be a continuous approximation of the characteristic function of the diagonal A := {(z,z) :
x € T} C T x T. Define a measure p,, on 7 x T by setting

dpl, (z,y) = fo(2,y)eB F@XWlg(p, @ p,)(2,y)
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and let h be as in Lemma 3.1. Then by Kahane’s convexity inequality applied to the fields
U, and V,, w.r.t. the measure p/, on the product space 7 x 7 we have

Eh((n @ pn)(fe))

_ ]Eh(/ fa(x7y)eUn(m,y)—ZG—%EUn(w,y)Q-i—]EX,L(I)X7l(y)+2K d(pn ® pn)(x,y))
TXT
< E max(1, (321{72C")Eh(/eU"(I’y)*%EU"(‘/""’y)2 dp%(z,y))

< E max(1, eZK*QG)IE}h</ev"("c’y)*%]EV"("’”’)2 dp’n(x,y))
< E max(1, e 29)e"Eh((fin ® fin) (f:(2,9)))-

Above we applied Lemma 3.1 (2) twice. By letting n — oo we obtain

Eh((n® p)(A) SEA((p e p)(f) < CER(1® p)(fe)),

where C = eXTE max(1,e2572%) is a constant that only depends on K. Letting ¢ — 0 lets
us conclude that (u ® p)(A) = 0 almost surely, which entails that x is non-atomic almost
surely. O

Remark 3.4. One should note that the above proof is not valid as such if one just
assumes that the dominance of the covariance is valid in one direction only. In a sense
we perform both a convexity and a concavity argument while deriving the required
inequality. We do not know whether this is a limitation of our proof, or whether there
exists an example where one-sided bound is not enough.

Lemma 3.5. Assume that the conditions of Theorem 1.1 hold. Then there exists a
collection Y, (0 < ¢ < 1) of Hélder-regular Gaussian fields on T such that for a fixed
0 < € < 1 the covariance of the field X,, + Y. is pointwise larger than the covariance
of the field X,, for all large enough n. Moreover, there exists a constant C = C(K)
depending only on the constant K appearing in (1.5) such that

2

E /eygmféE[Ys(z)z]dA(x)_A(T) <
-

3EENT)2+CA@N{(z,y) €T : |z —y| < 2))
for any A € M™* and e € (0,1).

Proof. Fix a sequence of independent standard Gaussian random variables A;, 1 > 1,
such that they are also independent of the fields X,,. Let ¢ > 0 and choose a maximal
set of points aq,...,a, in 7 such that |a; —a;| > ¢/2foralll < i < j < n. Let B; be
the ball B(a;,e). Then the balls B; cover 7 and we may form a Lipschitz partition of
unity p1,...,p, with respect to these balls. That is, py,...,p, are non-negative Lipschitz
continuous functions such that p;(z) = 0 when = ¢ B(a;,¢) and for all x € T we have
>imipi(@) =1L
Define the field Z.(z) by setting

whence the covariance of Z. is given by

Ce(2,y) = E[Z(2) Z:(y)] = Z Vi()pi(y)-
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By the Cauchy-Schwartz inequality we see that

Ce(z,y) < Zpi(x) Zpi(y)—

for all z,y € 7. Futhermore C.(z,z) =1forallz € T.

We may now define the field Y.(z) = G + VK Z.(z) where G is a standard Gaussian
random variable independent of the fields Z. and X,,. The conditions (1.5) and (1.6)
together with compactness yield that for all large enough n the covariance of the field
X, + Y is greater than the covariance of the field X,, at every point (x,y) e T xT.

Now a direct computation gives

‘/ Yoo~ E 02 g (1)

// KC(ew)+<* _ 1) d\(z) dA(y).

Clearly when |z — y| > 2¢, we have |z — a;| + |y — a;| > 2¢, so one of z or y lies outside of
B; for every 1 < i < n, which implies that C.(x,y) = 0. Therefore we have

// KC:(u)+e* _ 1) d\(z) dA(y)

— (@ DOz -9l >2)) + Al (T 1) 0@ N )

< (652 ~DA@N{Jz -yl > 25} + (¢ — DA @ N ({lw - y| < 2¢}),

from which the claim follows, since et 1 <3?2for0<e< 1. O

Proof of Theorem 1.1. We will first assume that both sequences (u,,) and (z,,) converge
in distribution and show how to get rid of this condition at the end.

Let Y. be the independent field constructed as in Lemma 3.5. We may assume,
towards notational simplicity, that our probability space has the product form Q= Q1 xQo,
and for (wy,ws) € Q one has X, ((w1,ws2)) = X, (w1) and X, ((w1,ws)) = X,,(w1) together
with Y. ((w1,ws2)) = Yz(we) forall e > 0. Let ¢: [0,00) — [0,00) be a bounded, continuous
and concave function. Then by Kahane’s convexity inequality we have

E |:(p </T F(2)eXn @+Ye(0)= 4B (X (0] SB[V, (0)? dpn(x)))} <
AIpm——
o[ s pul)

for all non-negative f € C(T). Since for all fixed wy € Q, Yo(ws)(z) — FE[Vo(2)?] is a
continuous function on 7, we see that

[ (/f 2)+Ye(2)— E[Xn(w)QléE[YE(I)Q]dpn(w)ﬂ -
AT
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as n — oo. In particular we have by Fatou’s lemma that

E [Sﬂ (/7_ f(x)eyg(x)—%E[Ye(x)Q] dﬂ(x))] (3.1)

~Eq, Jin B, ¢ (/ Fla)e s (40~ E[XWéE[YeW]dpnwﬂ

< s [o ([ 2 4550
—& o ([ s dm)].

Accoding to Lemma 3.5, for almost every w; € €2; we know that

/f oYe(@)— Yg(ac)]dﬂ( — 9 _/f ) dp(x (3.2)

in L?(22). We next note that for a suitable fixed sequence ¢, — 0 this convergence also
happens for almost every w, € (2. By Lemma 3.5 we have the estimate

9e = 911720, <BENFIZ o n(T)? + Cllf I (1 © w) ({2 -yl < 2¢}) = &,

Choose the sequence ¢ so that

Plee, > 47 < 15,

which is possible because (4 ® u)({(z,z) : € T}) = 0 almost surely. By the Borel-
Cantelli lemma there exists a random index ky(w;) > 1 such that with probability 1 we
have
19 — 9ll72(0,) < 47"

for all k > ko(w1). Now a standard argument verifies the almost sure convergence in
(3.2).

The almost sure convergence finally lets us to conclude for all non-negative f € C(T)
and non-negative, bounded, continuous and concave ¢ that

B o ([ rwaw)| <o ([ soaw)].

Similar inequality also holds with the measures p and i switched, so we actually have

B o ([ f@aua)| =k [o( [ s@dnw)|.

It is well known that this implies p ~ p.

Let us now finally observe that one can drop the assumption that both families
of measures converge. By Lemma 3.2 and Prokhorov’s theorem we know that every
subsequence p,, has a further subsequence that converges in distribution to a random
measure. Lemma 3.3 ensures that the limit measure of any converging sequence has
almost surely no atoms, and hence by the previous part of the proof this limit must equal
i This implies that the original sequence must converge to ;i as well. O

Remark 3.6. Our proof of Theorem 1.1 may be modified in a way that allows the
conditions (1.5) and (1.6) to be somewhat relaxed. E.g. in the case of subcritical
logarithmically correlated fields it is basically enough to have for £ > 0 the inequality

)

for n > n(e). Analogous results exist also for the critical chaos, but in this case the
specific conditions are heavily influenced by the approximation sequence X,, one uses.

|Cn(87t> - 5”(S)t)| S E(l + 10g+ |S o t|
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4 Convergence in probability

In the previous section convergence was established in distribution, which often suffices,
and the main focus was on the uniqueness of the limit. In the present section we estab-
lish the convergence also in probability, assuming that this is true for the comparison
sequence [i,,, which is constructed using approximating sequence ()?n) that has indepen-
dent increments. Convergence in probability in the subcritical case was also discussed
in [28], and our Theorem 4.4 below can be seen as an alternative way to approach the
question.

Here is an outline of our method: We assume that the sequence u,, is defined using
linear approximations R, X of the field X (see Definition 4.3), and invoke Lemma 4.1
to prove the convergence in probability by showing that if g is any (random) function
that depends only on X1, ..., X} for some fixed k£ > 1, then we have the convergence in
distribution g du,, — g dji. To establish the latter convergence, we split the measure p,
as

dun = eEkv"eXk_%E[le]eRn(X_Xk)_%E[(Rn(Xn—Xk))z] de“

where Ej, ,, is a 0(X1, ..., Xi)-measurable error resulting from the approximation that

goes to 0 as n — oo. By applying Lemma 4.2 we then conclude that g du, converges to

geX+—3EIXZ] gy, in distribution, where vy, is a random measure independent of X, ..., Xj.

Finally, by using the convergence in probability of /i, we can write fi = eX+~3EXZ gy,

for a random measure 7y, also independent of X,..., X, and Lemma 4.2 tells us that

v, and 7;, have the same distribution. This lets us conclude that geX*~3E Xl dyy ~ g dji.
Enough speculation, it is time to work.

Lemma 4.1. Let /; C F» C ... be an increasing sequence of sigma-algebras and denote
Foo 1= O'(U;il Fi) C F. Assume that the real random variables X, X1, X, ... satisfy: X
and X, are F,-measurable, and for any J; measurable set I/ (with arbitrary j > 1) it
holds that

YeXr -5 x5 X as k— oo (4.1)

ThenXkLXask%oo.

Proof. We first verify that (4.1) remains true also if the set F is just F,,-measurable.
For that end define h; := E(xg|F;) and construct an F,.-measurable approximation
E; = hj_l((l/Q, 1]). The martingale convergence theorem yields that P(E;AE) — 0 as
J — oo. Since the claim holds for each E;, it also follows for the set F by a standard
approximation argument.

Let us then establish the stated convergence in probability. Fix ¢ > 0 and pick M > 0
large enough so that P(|X| > M/2) < ¢/2, and such that P(|]X| = M) = 0. Then for
some ko we have that P(|X,| > M) < e if k > ky. Divide the interval (—M, M] into non
overlapping half open intervals Iy, ..., I, of length less than £/2 and denote E; := X ~1(I;)
for j =1,...,¢. In the construction we may assume that 0 is the center point of one of
these intervals and P(X = a) = 0 if a is an endpoint of any of the intervals. We fix j and
apply condition (4.1) to deduce that x E, X5 i) X EjX as k — oo. Assume first that 0 ¢ I;.
Then the Portmonteau theorem yields that limy 0. P(xg, Xx € I;) = P(xg, X € I;), orin
other words

IP({X S I]} n {Xk S Ij}) — IP(X € Ij) as k — oo.

In particular, for large enough k£ we have that

P(E; N (X — X3| > ¢)) < 2% (4.2)

If 0 € I; we obtain in a similar vein that limy . P(xg, Xx € (1;)¢) = P(xg; X € (I;)¢) =0,
or in other words P({X € I;} N {X}, € If}) — 0, so that we again get that P(E; N (|X —
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Xi| > 5) < 5 for large enough k. By summing the obtained inequalities for j =1,...,¢
and observing that ]P(Ui:1 Ey) > 1 —¢/2 we deduce for large enough & the inequality
P(|X — Xi| > ¢) < ¢, as desired. O

Lemma 4.2. Let X be a Hélder-regular Gaussian field on T that is independent of the
random measures ;i and v on T .

() IfeXu ~ eXv, then also j1 ~ v.

(ii) If (u,) is a sequence of random measures such that the sequence (eX j1,,) converges
in distribution, then also the sequence (u.,,) converges in distribution.

Proof. We will first show that if X is of the simple form N f with NV a standard Gaussian
random variable and f € C(7T), then the claim holds. To this end let us fix g € C(7) and
consider the function ¢: R — C defined by

p(r) = IE [exp (i/eNfe_Ifg dp)] = E [exp (i/eNfe_wfg dv)].

Because N is independent of i and v, we may write

oo 1 y2
7 Brew(i [ o954 -5 g
o) = [ Blesali [ €0 gau) =% dy
; _ L[ o—tf _ —— 1 -z
By denoting u(t) = E[exp(i [ e " gdu)], v(t) = E[exp(i [ e g dv)] and h(z) = =e 7,

we see that ¢(z) = (ux* h)(z) = (v=* h)(z). Because the Fourier transform of h is also
Gaussian we deduce by taking convolutions that the Fourier transforms u and v coincide
as Schwartz distributions. Since u and v are continuous, this implies that u(z) = v(z) for
all z. In particular setting x = 0 gives us

Elexp(i [ gdu)] = Blexp(i [ gav)

for all g € C(T), whence the measures p and v have the same distribution.
To deduce the general case, note that we have the Karhunen-Loéve decomposition

X = ZNkfk

k=1

where Ny, are standard Gaussian random variables and f; € C(7) for all kK € IN. Moreover
the above series converges almost surely uniformly. (See for example [1, Theorem
3.1.2.].) By the first part of the proof we know that eX«=n» N&fx 1, and eXk=n Ve/t 1 have
the same distribution for all n € IN. By the dominated convergence theorem we have

n—oo

E[exp(i/gdu)} = lim E[exp(i/emo:“ Nk g dp)]

n—oo

= lim E[exp(i/ezgo:" NiJr g dp)) :E[exp(z'/gdl/)]

for all g € C(T), which shows the claim.

The second part of the lemma follows from the first part. Since sup,. X () < oo
almost surely, one checks that the sequence (u,,) inherits the tightness of the sequence
(eXpu,). It is therefore enough to show that any two converging subsequences have
the same limit. Indeed, assume that ux, — p and p,; — v in distribution. Then by
independence we have e* i, — ey and eX ., — e*v, but by assumption the limits are
equally distributed and hence also ¢ and v have the same distribution. O
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A typical example of a linear regularization process described in the following defini-
tion is given by a standard convolution approximation sequence. We denote by C*(T)
the Banach space of a-Holder continuous functions on 7.

Definition 4.3. Let (X}) be a sequence of approximating fields on 7. We say that a
sequence (Ry,) of linear operators R,,: |J,c 0,1y C*(T) — C(T) is a linear regularization
process for the sequence (X}) if the following properties are satisfied:

1. We have lim;,,oc [|Rn f — flloc = 0 forall f € U,¢(0,1) C*(T)-

2. The limit R, X := limy_, ., R, X} exists in C(T) almost surely.
Theorem 4.4. Assume that the increments {X,,4+1 — X,,, : m > 1} of the approximating
fields X,, are independent and that there is the convergence in probability

dfiy = X 2B X gp 25 (4.3)

n—oo

Let R,, be some linear regularization process for the sequence X such that

eFn X =3Bl X)?] g -y 1y

n—0o0

Then also dy,, = efnX—3E[(R.X)’]

dp, converges to ji in probability.

Remark 4.5. As in Remark 1.2 the above theorem extends to the case of a non-compact
T when the assumptions are suitably reinterpreted. In a particular application it is also
enough to assume the condition (1) in Definition 4.3 for one suitable fixed value of a > 0,

if the exponent of the Holder regularity of the approximating fields is known.

Proof. Define the filtration F,, := o(X1,..., X,). First of all, since eX»~2E (X2 dp,, con-
verges to 1 in probability as n — oo, we also have

eXn—Xk—%E[(Xn—Xk)Q —Xp+3E|[

Vdpn e X'?]ﬁ for every k > 1.

n—oo

To see this, one uses that E [(X,, — X;)?] = E[X?] — E[X?] and considers almost surely
converging subsequences, if necessary. We denote 7 := e~ X+ +3EIXi7,
Notice that E [(R, X)(R,X)] = E[(R,X})?] by the independent increments and the

definition of R,, X. We may thus write
dpiy, = ePn X =3BI(RaX)’] g (4.4)

_ [eRnxk—XH%E{XE%RTLX;«)?}}exwéE[Xi]eRn(Xwaf%E[(Rn(xka»ﬂ dpn.

Above on the right hand side the term in brackets is negligible as n — co. To see this,
we note first that e®»*+~X» tends almost surely to the constant function 1 uniformly
according to Definition 4.3(1). Moreover, E [X? — (R, Xj)?] tends to 0 in C(7), since
the field X}, takes values in a fixed C7(7T) for some v > 0, and by the Banach-Steinhaus
theorem sup,,>1 || Rx |l cv(1)—c(m) < 0o. Namely,

1B (X} — (R Xi)?Ilcr) < BII(Xk — R Xi)(Xk + RuXi)lloor)
<E |[|Xk = Ro Xkl Xk + RnXkHC(T)}
SE Xkl e

whence the dominated convergence theorem applies, since || X[ c~(7) has a super
exponential tail by Fernique’s theorem. All in all, invoking the assumption on the
convergence of i, we deduce that

Xk 2B [X] R (X=Xi) =B [(Ra(X=X))] g5 4 3y (4.5)
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in distribution as n — oo.
By Lemma 4.2 we thus have the distributional convergence

fn(X=X0) =3 BUR (X=X g5 5 1 as n — o0,

where the limit v, may be assumed to be independent of Fj. In particular, recalling (4.5)
we deduce that eX+~3E[Xly, has the same distribution as i = eX*~3E[Xily, . Lemma 4.2
now verifies that v, ~ 1. In order to invoke Lemma 4.1, fix any F; measurable bounded
random variable g. Then g and X, are independent of X — X}, and we therefore have
the distributional convergence

geXre FBIXE] R (X=X1) =3B [(Ru (X =X0))’] g, (4.6)

— g BN gy~ g IE Ny = g,

n—oo
where the second last equality followed by independence. Finally, again by the negli-
gibility of the term efinXr=Xre=3E[Xi—(R.X1)*] and using (4.4) we see that (4.6) in fact
entails the convergence of g du,, to g dp in distribution. At this stage Lemma 4.1 applies
and the desired claim follows. O

Remark 4.6. In the previous theorem it was crucial that we already have an approxi-
mating sequence of fields along which the corresponding chaos converges in probability.
In general if one only assumes convergence in distribution in (4.3), one may not auto-
matically expect that it is possible to lift the convergence to that in probability, even
for natural approximating fields. However, for most of the standard constructions of
subcritical chaos this problem does not occur, as we have even almost sure convergence
in (4.3) due to the martingale convergence theorem.

5 Convolution approximations

In this section we provide a couple of useful results for dealing with convolution approxi-
mations, x-scale invariant fields and circular averages of 2-dimensional Gaussian fields.
We also note that the results can be applied to a 2-dimensional Gaussian free field in a
domain.

The next lemma and its corollaries show that any two convolution approximations
(with some regularity) applied to log-normal chaos stay close to each other in the sense
of Theorem 1.1.

Lemma 5.1. Let ¢,¢: R — R satisfy [p(z)dz = [(x)dx = 1 and |p(z)|, [ (x)] <
C(1 + |z|)~ @+ for all z € RY with some constants C,§ > 0. Then if u € BMO(R?), we
have

(e * u)(z) = (e xu)(z)| < K
for some constant K > 0 not depending on e.

Proof. One can use the mean zero property and decay of ¢ — ¢ together with a standard
BMO-type estimate [17, Proposition 7.1.5.] to see that for any ¢ > 0 we have

/Rd(% — ) (tu(z — 1) dt‘

[0t~ f,  atete =) ds)

u(ele = 1)) = Fo el — s ds|
/Rd (L + [t])2F5

< Casllu(e(z = ))llBmo = CasllullBaro- O

<
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Corollary 5.2. Let f(z,y) = 2d3*log™ |xiy‘ + g(x,y) be a covariance kernel of a distri-
bution valued field X defined on R®. Here g is a bounded uniformly continuous function.
Assume that ¢ and 1) are two locally Hélder continuous convolution kernels in R? that
satisfy the conditions of Lemma 5.1. Let (¢,,) be a sequence of positive numbers ¢,
converging to 0. Then the approximating fields X,, := ¢, * X and )Z'n = 1, * X satisfy
the conditions (1.5) and (1.6) of Theorem 1.1.

Proof. The function /(x) := 2d3?log™ X belongs to BMO(RY) since log |z| € BMO(R?),

[z]
see for example [17, Example 7.1.3]. One computes that the covariance of . * X equals

//%(1‘ —1)pe(y — s)l(t — s)dtds + //Lpg(.%‘ — ) (y — s)g(t, s) dt ds.

Because g is bounded and uniformly continuous the second term goes to g(z, y) uniformly,
so we may without loss of generality assume that g(z,y) = 0. The first term equals
(pe * we(—) * £)(x — y), so the condition (1.5) follows from Lemma 5.1 applied to the
convolution kernels ¢ * o(—-) and 1 * ¢)(—-). Here one easily checks that also ¢ * ¢(—-)
satisfies the conditions of Lemma 5.1 and that (¢ * ¢(—)): = ¢e * @-(—-). Finally, the
condition (1.6) is immediate. O

Remark 5.3. One may easily state localized versions of the above corollary.

Corollary 5.4. Assume that f(z,y) = 2% log™ m + g(x,y) is the covariance of
a (distribution valued) field X on the unit circle. Here g is a bounded continuous function
that is 1-periodic in both variables x and y and we have identified the unit circle with
R/Z. Assume that ¢ and 1) are two locally Hélder continuous convolution kernels in R
that satisfy the conditions of Lemma 5.1, and let (¢,,) be a sequence of positive numbers
en converging to 0. Then the approximating fields X,, := ., * X and X, = Ve, * X
satisfy the conditions (1.5) and (1.6) of Theorem 1.1.

Remark 5.5. Above when defining the approximating fields X,, we assume that X stands
for the corresponding periodized field on R and the fields X, will then automatically be
periodic so that they also define fields on the unit circle.

Proof. One easily checks that ¢(z) = 23%log" 5~ is in BMO(R). The rest of the

2| sin(wz)|
proof is analogous to the one of the previous corollary. O

The previous result showed that different convolution approximations lead to the
same chaos. In turn, in order to show that a single convolution approximation converges
to the desired chaos, one may often compare the convolution approximation directly
to a martingale approximation field used originally to define the chaos. As an example
of this, we show that the convolutions of x-scale invariant fields are comparable (in
the sense of Theorem 1.1) with the natural approximating fields arising from the x-
scale decomposition. This also extends the convergence of the critical chaos in [12] to
convolution approximations.

Lemma 5.6. Let k: [0,00) — R be a compactly supported and positive definite C*-
function with k(0) = 1. Define the x-scale invariant field X on R?, whose covariance is
(formally) given by

u

EX(2)X(y) = /100 Rz =D 4, (5.1)

Moreover, let ¢ be a convolution kernel satisfying the conditions of Corollary 5.2. Then
the approximating fields X,, := p,-» * X and the fields X,, whose covariance is given by

E X, (2)Xn(y) = /1 ke =y 4,

u
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satisfy the conditions (1.5) and (1.6) of Theorem 1.1.

Proof. One may easily check that the covariance in (5.1) is of the form

log™* + g(z,y),

|z -y

and therefore by Corollary 5.2 it is enough to show the claim for one mollifier ¢. In
particular, we may without generality assume that the support of ¢ is contained in
B(0,1/2) and that ¢ is a symmetric non-negative function. A short calculation shows

that we have .
EXn(O)Xn(m):/ (pe=n * per x hul - D) () o -

u

Let ¢ = ¢ * . Then the support of ¢ is contained in B(0,1) and ©,—n = @e—n * @e—n. Thus
we get

E X,(0)X,(z) — E X, (0)X, ()
_ / (Ye-n * k(ul - ) () — Kk(ulz]) dw/"" (Ye-n x k(|- )(2) ,

u n u

u.
Fix R > 0 so that the support of k is contained in [0, R]. Then we have

(e E(ul - ) () — k(ulz])] < / Yen(w — s)|k(uls|) — k(ulz])] ds

B(z,e~™)
< 0, if(lz] —e ™u>R
“ | ullK||cce™™, otherwise

We also have the bound

w%wmmwm»ﬂmuémyywm—@m

< 0, if(Jz] —e"™u >R
= Cllk[looll¥]|oo Brem?,  otherwise

for some constant C' > 0. Using just the upper bounds of these estimates for all = we get

Lfﬂwwmmm»mmwwmuﬂgwmn

u

and

| [ et D) ) < oo

verifying (1.5). Assume then that ¢ > 0 is fixed and |z| > . Then for large enough n we
have that e < §/2 and

| (hemn * klul - ) (@) — k(ulz]) KT
]/1 - du’g/l 1K |ooe™" du — 0

and

n (A

[ttt D),

showing (1.6). O

Finally, we state a result for circle averages of 2-dimensional Gaussian fields.
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Lemma 5.7. Let X be a two dimensional Gaussian field with covariance of the form
E X (2)X(y) = 48%logt -2 + g(x,y), where g is continuous and bounded. Let X, () =

lz—yl
X(z + ee?)df and let ¢ be a convolution kernel satisfying the conditions of

1 2m
27 Jo
Corollary 5.2. Then the approximating fields X, := ¢.-» * X and the fields X, :=

= OQW X (x + e~"*) df satisfy the conditions (1.5) and (1.6) of Theorem 1.1.

Proof. We may compute

1 2m 2m ) N 1
E X, (2)Xn(y) = R/O /(; (46 log |z + e~nFis —y — e—ntit|

+g(x+e "y + e ) dsdt.

Clearly we can assume that g = 0, since that part of the integral is bounded by a constant
and converges uniformly. Moreover, we may assume that |z — y| < % since the integral
converges uniformly to the right value as n — oo when |z — y| > % Thus we may write

_ _ 1 27 2 ) 1
EX,(2)X,(y) = HA A 45°log [z + e—ntis —y — e—ntit]

for n large enough so that |z + e "% — y — e7"+i| < 1, Now if [z — y| > 2¢", then by
invoking the harmonicity of the logarithm and using the mean value principle twice, we
have

E X, (2) X, (y) = 458%log

|z =yl
On the other hand if |x — y| < 2¢™", then we may write
E X, (2)X(y) =n + — %/%4621 !
n(x) X, =n+— o) - —
Ay a2 )y Uy le(@—y) + e — e

where the integrand on the right hand side is bounded from below, and boundedness
from above of the whole integral follows since the inner integral contains at most a
logarithmic singularity, which is integrable. Thus we have shown that

== {n+0<1>7 if [2 — y| < 2e7"

E X, (2)X,(y) =
DX = a2 108 iy + @) + o), iyl > 267

This is enough to show the claim, since it is easy to check that certain convolution
kernels ¢ yield approximations with similar covariance structure. O

We then very briefly note that the above results can be applied to the 2-dimensional
Gaussian free field and its variants. We refer to the paper [12] for the definition of the
massless free field (MFF) and a Gaussian free field (GFF) in a bounded domain.

Corollary 5.8. Let X be the MFF, or a GFF in some planar domain with Dirichlet
boundary conditions. Then the critical chaos defined via convolution approximations
(naturally one needs to localize in the case of GFF) of X exists and is independent of the
convolution kernel used. The same applies to the circle averages.

Proof. The MFF is of the x-scale invariant form, so our result applies directly. In the
case of a GFF, we may write X as a smooth perturbation of the MFF (see [12]), whence
the claim follows easily. O

Remark 5.9. We note that Theorem 4.4 often applies for convolution approximations.
Especially it can be easily localized and it works for the MFF and GFF, including circular
average approximations. The verification of the latter fact is not difficult and we omit it
here.
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Remark 5.10. Convergence of convolution approximations for the critical GFF in the
unit circle have also been proven in [19]. The method used there is 'interpolation’ of
Gaussian fields X; and X, by the formula VX1 + 1 —tX,, used already in [26]. It is
not immediately clear how far beyond convolution approximations this approach can be
extended.

6 An application (Proof of Theorem 1.3)

The main purpose of this chapter is to prove Theorem 1.3 and explain carefully the
approximations mentioned there. For the reader’s convenience we try to be fairly
detailed, although some parts of the material are certainly well-known to the experts.
We start by defining the approximation X5 ,, of the restriction of the free field on the
unit circle S* := {(z1,22) € R?: 2% + 23 = 1}. Following [3] recall that the trace of the
Gaussian free field on the unit circle (identified with R/Z) is defined to be the Gaussian
field?
X(z) = 24/log2G + \@i (Ak cos(2rkx) + Bi sin(27rk;x)) (6.1)
x g 2 7 T , .
where Aj, B; and G are independent standard Gaussian random variables. The field
X is distribution valued and its covariance (more exactly, the kernel of the covariance
operator) can be calculated to be

o
2| sin(m (2 —y))|

A natural approximation of X is then obtained by considering the partial sum of the
Fourier series

E[X(2)X(y)] = 4log(2) + 2log (6.2)

A B
Xon(z) = 2¢/1022G + V23 (£ cos(2mka) + —= sin(2rkz) ).
og ; <\/E cos N )

Another way to get hold of this covariance is via the periodic upper half-plane white
noise expansion that we define next - recall that the non-periodic hyperbolic white noise
W and the hyperbolic area measure my,, were already defined in the introduction. We
define the periodic white noise W, to be

Wper(A) = W(A mod 1),

where A mod 1 = {(x mod 1,y) : (z,y) € A} and we define z mod 1 to be the number

2’ € [-1,3) such that = — 2’ is an integer. Now consider cones of the form

1 2
H(z):={(z",¢): |2/ —z| < 39> = tan ||z’ — z|[}.
7r

It was noted in [3] that the field # — +/2W,,.,.(H(x)) has formally the right covariance
(6.2), whence a natural sequence of approximation fields (X ,) is obtained by cutting
the white noise at the level 1/n. More precisely we define the truncated cones

Hy(x) := H(x)N{(z,y) € R*:y >e '} (6.3)
and define the regular field X, ,, by the formula

X1.0(2) = V2Wper(Hiogn (). (6.4)

20bserve that we have in fact multiplied the standard definition by v/2 to get the critical field. Also the
innocent constant term 2+/log 2G is often omitted in the definition.
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The third approximation fields X3 ,, are defined by using a Holder continuous function
¢ € L*(R) that satisfies [ ¢ = 1 and possesses the decay

o@)] € s

S U e

for some C,0 > 0. We then set X3, := 1/, * Xper, Where Xy, (z) = X (2 + 277Z) is
the natural lift of X to a map R — R. This form of convolution is fairly general, and
encompasses convolutions against functions ¢ defined on the circle whose support do
not contain the point (—1,0).

Example 6.1. Let u be the harmonic extension of X in the unit disc and consider the
approximating fields X, (z) = u(r,z) for z € S! and for an increasing sequence of radii
r, tending to 1. Then X, (x) is obtained from X by taking a convolution against the
Poisson kernel ¢, on the real axis, where ¢(z) = {7522;2 and &, = log ;-. This kind of
approximations might be useful for example in studying fields that have been considered
in [24].

The fourth approximation fields X, ,, are defined by using a wavelet ¥: R — IR, that
is obtained from a multiresolutional analysis, see [32, Definition 2.2]. We further assume
that ¢ is of bounded variation, so that the distributional derivative v’ is a finite measure.
Finally we require the mild decay

[(@)| < C(1+ [z])~ (6.5)
with some constants C' > 0 and « > 2, and the tail condition
/ (14 [z])d[¢"|(x) < oo. (6.6)

Remark 6.2. The conditions (6.5) and (6.6) are fairly general, especially the standard
Haar wavelets satisfy them.

With the above definitions it follows from [32, Proposition 2.21] that the periodized

wavelets -
Yik(x) =212 Y " (2 (@~ 1)~ k)
l=—00

together with the constant function 1 form a basis for the space L?(]0, 1]).

We next consider vaguelets that can be thought of as half-integrals of wavelets. Our
presentation will be rather succinct — another more detailed account can be found in the
article by Tecu [30]. The vaguelet v: R — R is constructed by setting

v(x): (6.7)

Joo L /°° v

Vo ) et
An easy computation utilizing the decay of ¢ and the fact that [+ = 0 verifies that
v: R — R satisfies

C
< - - 6.8
@) S (6.8)
for some C',§ > 0. We may then define the periodized functions
vik(x) =Y v (z—1) - k) (6.9)
leZ.

forall j > 0and 0 < k < 27 —1. It is straightforward to check that the Fourier coefficients
of v; ;. satisfy

¥jk(n)
vjk(n) = —F—
i,k (1) Tl
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The field X, , can now be defined by

n 29-1
Xyn(z) :=24/log2G + \/271'2 Z A wvji(z), (6.10)
j=0 k=0

where G and A, are independent standard Gaussian random variables. To see that this
indeed has the right covariance one may first notice that

co 291

Y =33 Ajsik(x)

j=0 k=0

defines a distribution valued field satisfying E (Y, u)(Y, v) = (u,v) for all 1-periodic C*°
functions v and v. The field X, ,(z) is essentially the half integral of this field, whose
covariance is given by

E (IV2y, u)(I'2Y,v) = B (Y, IY2u) (Y, IV?0) = (1Y ?u, I'V?0) = (Tu,v),

where the lift semigroup /° f for functions f on S' is defined by describing its action
on the Fourier basis: I°e?™" = (2r|n|)~#e2™"* for any n # 0 and I®1 = 0. A short
calculation shows that the operator I has the right integral kernel % log m
Proof of Theorem 1.3. The road map for the proof (as well as for the rest of the section)
is as follows:

1. We first show in Lemma 6.4 below that the chaos measures constructed from the
white noise approximations converge weakly in I.? by comparing it to the exactly
scale invariant field on the unit interval by using Proposition A.2.

2. Next we verify in Lemma 6.5 that the Fourier series approximations give the same
result as the white noise approximations. This is done by a direct comparison of
their covariances to verify the assumptions of Theorem 1.1.

3. Thirdly we deduce in Lemma 6.7 that convolution approximations also yield the
same result by comparing a convolution against a Gaussian kernel to the Fourier
series and again using Theorem 1.1.

4. Fourthly we prove in Lemma 6.8 that a vaguelet approximation yields the same
result by comparing it against the white noise approximation.

5. Finally, in Lemma 6.9 convergence in probability is established for the Fourier
series, convolution and vaguelet approximations by invoking Theorem 4.4.

After the steps (1)-(5) the proof of Theorem 1.3 is complete.
The following lemma gives a quantitative estimate that can be used to compare fields
defined using the hyperbolic white noise on H.

Lemma 6.3. Let U be an open subset of {(x,y) € H : y < 1} such that the set {(x,y) €
U :y = s} is an interval for all 0 < s < 1. Let f(s) denote the length of this interval
and assume that f(s) < Cs'*° for some § > 0. Then the map (z,5) — W(Us + x)
admits a modification that is almost surely continuous in [a,b] x [0, 1] for any a < b, and
almost surely the maps x — W (Us + z) tend to W (U + z) uniformly when s — 0. Here
Us={(z,y) €U :y > s}.
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Proof. Let us first show that
E|W (U, +z) — WU, +y)|> < Clz — y| 5.

for some C' > 0. By translation invariance of the covariance it is enough to consider
E|W(Us + ) — W(Us)|* and we can clearly assume that 0 < = < 1. Obviously the
1-dimensional Lebesgue measure of the set ((Us + z) N {y = a})A(U; N {y = a}) equals
2min(f(a),z). Hence we have

" min(f(y), )
s y?
= 2max(1,C)((1+ 67 )a™ —z) < Cats.

y1-|-67 CL’)

1 .
E WU, + ) — W(U,)]? =2 dy < 2max(1,C)/ mm(yz dy
0

Notice next that

E|W(U,) - W(U,)|? = F () du < %(fﬁ — %),

2
s U

It follows that the map (z, s) — W (Us+x) is Holder-regular both in z and s, and therefore
also jointly. By Lemma 2.2 the realizations can be chosen to be almost surely continuous
in the rectangle [a, b] x [0, 1] which obviously yields the claim. O

The claim concerning the approximating fields X; ,, follows from the next lemma by
taking into account the definitions (6.3) and (6.4). In the proof we identify the field on
the unit circle locally as a perturbation of the exactly scaling field on the unit interval.
For the chaos corresponding to the last mentioned field the fundamental result on
convergence was proven in [12], and we use this fact as the basis of the proof of the
following lemma.

Lemma 6.4. Let either 5 < 1 and p,; be the Lebesgue measure on the circle, orlet § = 1
and dp;(r) = \/t dv. Then the measures

BVEWaer (@) =8B Wper (Hu()?) g, ()

defined on the unit circle (which we identify with R/Z) converge weakly in LP({2) to a
non-trivial measure g s1 for0 <p < 1.

Proof. As our starting point we know that the measures defined by
diy () := eBV2W (Ar(2))=BE [W (A¢(2))?] dpy ()
on the interval [—3, 1] converge weakly in LP(Q2) to a non-trivial measure for 0 < p < 1
under the assumptions we have on § and p;. Here A; stands for the cone defined in (1.2)
in the introduction. One should keep in mind that we are using the same hyperbolic
white noise when defining both W and W,,..
Let us split the cones H; into two sets H," and H, , where

H; (z) == Hy(x) N {(z,y) € H:y > 1} and H, (z) := Hy(z) N {(x,y) € H:y < 1}.

Clearly Wy, (Hy(2)) = Wper(H; (2)) + Wper (H; (2)) and by elementary geometry it is
easy to see that if we restrict « to the interval (—dg, dg) where §p = % — M ~ 0.18,
we have (Wpe, (H; (7)))ze(—s50,60) = (W(H; (7)))ze(—50,5,)- Hence our aim is to first verify
the convergence on the interval (—dy, dg).
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Write then
)/t(l‘) = WpeT'(Ht Z‘)),
Y, (x) = W(H,; (x))
h

and similarly for the limit fields (which clearly exist in the sense of distributions) write

Y (2) = Wper(H(2)),
Y (2) = Wyer (H* (2)),
Y7 (z) =W(H (z)).

Let X (z) :== W(A¢(z)) and X (z) := W(A(z)) and define Z;(x) := Y, (z) — X¢(z) so that
we may write Y, (z) = X¢(z) + Z:(x). We next make sure that Z;(z) is a Holder regular
field, the realizations of which converge almost surely uniformly to the Holder regular
Gaussian field Z(z) :=Y () — X(z).

The field Z(z) decomposes into a sum L(z) + R(z) + T(x), where L(z) = —W (L + ),
R(z) = —W(R+ z) and T(z) = =W (T + z) with

We define the truncated versions of L;, R; and T; by cutting the respective sets at the
level e~ as usual, so that Z;(z) = Li(x) + Ri(z) + Ti(z). Clearly T}(z) = T'(z) for t > 0.

Let now f(u) = % — L arctan(Zw). Using the Taylor series of arctan(u) = u — % + % -
“—77 + ... we have

2

flu) = b
so f(u) < Cu? for some constant C' > 0. It follows from Lemma 6.3 that L;(z) and R;(x)
converge almost surely uniformly to the fields L(x) and R(z), so Z;(x) converges almost
surely uniformly to Z(z) as t — occ.

Note that E [Z;(x) X (z)] tends to a finite constant as ¢ — oo, so the assumptions of
Proposition A.2 are satisfied. Therefore the measures

v = /f(x)eﬂx/iY[(x)—ﬂ2E[Y[(x)Q} dps(x)

u® + O(u?),

on (—4,4) converge weakly in L?(2) for all 0 < p < 1. Because Y is a regular field, we
may again use Proposition A.2 to conclude that also the measures

in(f) = / J)e? VTR dp (1)

on (—4,0) converge in LP(2). By the translation invariance of the field the same holds
for any interval of length 26. Let I3, ..., I,, be intervals of length 26 that cover the unit
circle and let py, ..., p, € C(S') be a partition of unity with respect to the cover Ij. The

measure
ol f) = / F(@)eP VB @ -8B gy, (1)

on the whole unit circle can be expressed as a sum du:(z) = pl(x)dﬁgl)(m) + -+
D2 (x)dﬁi”) (z). Because each of the summands converges in L?()), we see that also the
family of measures pu; converges in L? (). O
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Lemma 6.5. Let either § < 1 and dp,(x) = dx for alln > 1 orlet § = 1 and dp,(z) =
v1ogndx. Then the measures

iz () i= #Xo (=B X2 0 g ()
converge in distribution to the random measure g g1 constructed in Lemma 6.4.
Proof. Let f,(z) := E [X2,,(2)X2,,(0)]. It is straightforward to calculate that

cos(2mkx)

f()—410g2+22 -

In particular f,(0) = 4log2 + 2H,,, where H, is the nth Harmonic number, H, 1og n+
v+ O(L) with ~ being the Euler-Mascheroni constant. Let f(z) := 4log2 + 2log Temtra] sm(m)|
be the limit covariance and define g,(z) := f(z) — f.(x). One can easily compute that
for 0 < z < 1 we have

2m cos(2m(n + 3)z)

sin(mwz)

gn(z) = —

In particular the maximums and minimums of the difference g, (x) occur at the points

g") = ji ié 0 < j < n. Consider the telescoping sum

(@) = (gn(@™) = gu(@P)) + - 4 (ga(@l)) = (@) + ga(lM).  (6.11)

Here the terms in parentheses form an alternating series whose terms are decreasing in

absolute value. Moreover, the term gn(xé")) - gn(xgn)) stays bounded as n — oo and the

term g, (z, (n )) goes to 0 as n — oco. All this is obvious from writing

) 2j+3
@) = anle”) = [ a0 = 2e [T SEEE 0 ea2)
i Thye
27 /1/2 cos(m(y+j+1)) p
2n+1/_4,2 sin(m y;ffll)
_(-1)72r V2 cos(my) i
 2n+1 /1/2 bln(ﬂ'y;;i:_ll) Y

gn (M) = —210g(2) — 2 Z

In particular we deduce that
sup sup |gn(x)] < 0. (6.13)
n>1 IZZL’((;L)
Notice also that for any fixed ¢ > 0 all the maximums and minimums in the range x > ¢
are located at the points xg.") with 7 > 2en +¢ — % and
li (n) y _ O
m sup |gn(xj+1) gn(xj )|

n—,oo . 1
Jj>ente—3

by (6.12). From this and (6.11) it follows that the Fourier covariance converges to the
limit covariance uniformly in the set {|z| > ¢}, a fact that could also be deduced from
the localized uniform convergence of the Fourier series of smooth functions [34, p. 54,
Theorem 6.8].
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Consider next the white noise covariance h;(z) := 2 [Wyer (H¢(x)) Whper (H:(0))]. By
symmetry we may assume all the time that z > 0. After a slightly tedious calculation one
arrives at the formula

4log2 + 2log ﬁ(m)’ if z > 2 arctan(Ze ™)
he(z) = { —2xet + 2t jt210g(cos(gas)) + log(m2e=2t 4 4)
+2“Ct+(je) — 2log(7), if # < Z arctan (3e7").

Let us consider the approximation along the sequence ¢, = log(n). Then h;, (0) =
2log(n) + O(1). Moreover at the point z,, = 2 arctan(Ze ") = 2 arctan(3-) we have

1
2sin(2arctan(y-))

hi, () = 4log 2+ 2log = 2log(n) + O(1).

Because the function h;, without the bounded term —2log(cos(5x)) is linear and decreas-
ing on the interval [0, z,,] we know that it is actually 2log(n)+ O(1) on that whole interval.
Similarly it is easy to check that for the Fourier series we have f,(z) = 2log(n) + O(1)
on the interval [0, z,,] because | f},(z)| < 47n and z,, = O(2). Thus |f,(2) — hy, (z)| = O(1)
for x < x,. For z > z,, it follows from (6.13) that |f,(x) — ht, ()| = |gn(x)| is bounded.
From the above considerations and symmetry it follows that the covariances of the

fields X, and X5, satisfy the assumptions of Theorem 1.1. This finishes the proof. O

Remark 6.6. The somewhat delicate considerations in the previous proof are necessary
because of the fairly unwieldy behaviour of the Dirichlet kernel.

Next we verify that any convolution approximation to the field X also has the same
limit.
Lemma 6.7. Let ¢ be a Holder continuous mollifier satisfying ffooo p(z)dz = 1 and
¢(x) = O(z~'7%) for some § > 0. Then the fields X3, defined on S' by using the
periodized field on R:
Xs,n(x) = (‘Pl/n * Xpe?“)(x)

are Holder-regular and the measures

2
duzpn = BX3.n (@)= B [Xs,0(2)?] dpn ()

)

converge in distribution to ugs:. Here p, is the Lebesgue measure if § < 1 and

dpn, = Vlogndx if § = 1.

Proof. It is enough to show the assumptions of Theorem 1.1 for one kernel satisfying the
conditions of the lemma because of Corollary 5.4, and because of Lemma 6.5 we can do

our comparison against the covariance obtained from the Fourier series construction.

IL'2 .
We will make the convenient choice of p(z) = \/%e*T as our kernel. The covariance of

22
the field ¢. * X, is given by (¢, * f)(z — y), where 9. (z) = (v * 0. (—))(z) = 26{/;674?2

and f(x) :4log2+21og2lb+

n(rx)|”

Using the identity log ETCI vy w, a short computation shows that we

can write the difference of the covariances of X, ,, (the Fourier field) and X3 ,, in the
form (we may take y = 0 as we are in the translation invariant case)

" cos(2mkx) _4n?E2 . cos(2mkx) g2
2§ SSCTEY) (| antlyy gy COSCTRY) —ati

k k
k=1 k=n-+1
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Since 1 — e™® < x for x > 0, the first term is bounded by 2 2221 422’“ < 1672, In turn the
second term is bounded from above by

o) —4772% oo —4r242
2 / £ T at=2 / < ds.
n 3 1 s

Because both of the covariances converge locally uniformly outside the diagonal, we
again see that the assumptions of Theorem 1.1 are satisfied. O

Our next goal is to prove the convergence in distribution for the vaguelet approxi-
mation X4 ,,. In the lemma below we recall the definition of the field X4 ,, in (6.10). The
elementary bounds on vaguelets we use are gathered in Appendix B.

Lemma 6.8. Let either 8 < 1 and dp,(x) = dz for alln > 1 orlet § = 1 and dp,(z) =
vnlog2dx. Then the measures

Qjtan o= P Xn @)= B g, ()
converge in distribution to the random measure g g1 constructed in Lemma 6.4.
Proof. The covariance C,(z,y) of the field X, ,, is given by
n 29-1
C’n(x,y):4log2+27rzz )V k(Y
§=0 k=0

Let 9, 1 be the periodized wavelets. Then there exists a constant D > 0 such that
% klloo < D27/2 forall j > 0,0 < k < 2/ — 1. It follows from Lemma B.1 and Lemma B.3
that when |z — y| < 27", we have

n 29-1
|Cn(,2) = Co(z, ) <20 Y > win(@)|lvj k(@) — vk ()] (6.14)
7=0 k=0
n 27-1
<2wCVle =yl D > wik(@)lllv koo
7=0 k=0

<21t ACD+/|x — y| Z2j/2 < FE.
j=0

for some constant £ > 0. From Lemma B.3 it also follows that for any ¢ > 0 the
covariances C,,(z,y) converge uniformly in the set V. = {(z,y) : dist(x, y) > ¢}. Obviously
by definition there is a distributional convergence to the right covariance 4log?2 +
2log m and this must agree with the uniform limit in V.. Especially, by invoking
again the bound from Lemma B.3 we deduce that

|Cp(z,z+27") —4log2 — 2log | <27B. (6.15)

2sin(727")
Thus by combining (6.14) and (6.15) the covariance satisfies
|Cr(z,y) —2nlog2| < F forall (z,y) € {(z,y) : dist(z,y) < 27"}

for some constant F' > 0. From the known behaviour (see e.g. the end of the proof of
Lemma 6.5) of the covariance of the white noise field X ,, it is now easy to see that the
assumptions of Theorem 1.1 are satisfied for the pair (X4 ,,) and (X1,,). O
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Finally we observe that the convergence in lemmas 6.5, 6.7 and 6.8 also takes place
weakly in L?.
Lemma 6.9. The convergences stated in lemmas 6.5, 6.7 and 6.8 take place in LP for
0 < p < 1 (especially in probability).

Proof. We only prove the claim in the critical case since the subcritical case is similar.
We will use the fields X ,, as the fields X, in Theorem 4.4. Then according to Lemma 6.4

-1B[X

we have that e¥ nl dp, converges in probability to a measure y; g1 when dp,, =

Vviogndzx.
In the case of the Fourier approximation we can define R,, in Theorem 4.4 to be the
nth partial sum of the Fourier series. That is

_ 2774: f(k)egﬂ]m.

k=—n

Recalling Jackson’s theorem on the uniform convergence of Fourier series of Holder
continuous functions, it is straightforward to check that R,, is a linear regularization
process.

In the case of convolutions we take R,, to be the convolution against i(p(é), where
(en)n>1 is a sequence of positive numbers tending to 0. The sequence (R,,) obviously
satisfies the required conditions.

Finally, we sketch the proof for the vaguelet approximations. This time we employ
the sequence of operators

n 29-1

/ F+YY° </ by 1/21”(y))cl1/> vik(@).

7=0 k=0

Because of finiteness of the defining series it is easy to see that (R,,) satisfies the second
condition in Definition 4.3. For the first condition we first fix a € (0,1/2) and observe
that R,vj v = vj/ 1v as soon as n > j'. By the density of vaguelets, in order to verify the
first condition it is enough to check that the remainder term tends uniformly to 0 for any
f € C*(S'). We begin by noting that % = —{HI !, where H is the Hilbert transform,
which yields for f € C%(S?)

‘/01 Vi k() (I*l/2f(y))’ _ ‘/01 d%wj,k(y (HIf(y) ‘ <027, zel0,1),

since HIt'/2f(z) € C**t1/2(S') by the standard mapping properties of I”, and the
Hilbert transform is bounded on any of the C*-spaces. Above, the final estimate was
obtained by computing for any g € C**1/2(S') with periodic continuation G to R that

/01 4 ol

— 9i/2

‘/ 244y (2 2)G ()

/jo dy' (z)(G(277z) — G(0))
< 2j/2/_ |y ()| (27 2)* /2 < 279 /OO |y’ (2)](1 + []).

The last integral is finite by the assumption (6.6). Together with Lemma B.3 this obviously
yields the desired uniform convergence.

The proofs of the lemmas 6.5, 6.7 and 6.8 show that the covariances stay at a bounded
distance from the covariance of the field X ,,, and therefore a standard application of
Kahane’s convexity inequality gives us an LP bound. Combining this with Theorem 4.4
yields the result. O
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As noted in the beginning of this section, having proved all the lemmas above we may
conclude the proof of Theorem 1.3. O

Remark 6.10. In the case of vaguelet approximations we may also rewrite
b ~
X(z) =Y Awi(w),
1=1

where Ei and 7; are the random coefficents and vaguelets appearing in (6.10) ordered
in their natural order. The convergence and uniqueness then also holds for the chaos
constructed from the fields

Xﬁl,n = i ;L’l\/’l(l’),
i=1

with the normalizing measure dp, () = y/logndz.

Remark 6.11. There are many interesting questions that we did not touch in this paper.
For example (this question is due to Vincent Vargas), it is natural to ask whether the con-
vergence or uniqueness of the derivative martingale [10] depends on the approximations
used.

A Localization

The Proposition A.2 below is needed in a localization procedure in Lemma 6.4 that
is used to carry results from the real line to the unit circle. For its proof we need the
following lemma.

Lemma A.1l. Assume that ., is a sequence of random measures that converges to
weakly in L?(Q). Let F': Q — C(T) be a function valued random variable and assume
that there exists q > 0 such that

[e%

E |sup F(x)

zeT

< o0

for some o > P4 Then [ F(x)dp,(z) tends to [ F(x)du(z) in L7(<).

Proof. It is again enough to show that any subsequence possesses a converging sub-
sequence with the right limit. To simplify notation let us denote by u,, an arbitrary
subsequence of the original sequence.

Directly from the definition of the metric in the space M™* we see that u, — u
in probability, meaning that we can pick a subsequence ., that converges almost
surely. Then the almost sure convergence holds also for the sequence [ F/(x)dpy,(z).
Finally, for any allowed value of ¢q a standard application of Holder’s inequality shows
that E| [ F(x) dpn, (2)|97¢ is uniformly bounded for some ¢ > 0. This yields uniform
integrability and we may conclude. O

Proposition A.2. Let (X,,) and (Z,) be two sequences of (jointly Gaussian) Hélder-
regular Gaussian fields on 7. Assume that the pseudometrics arising in Definition 2.1 can
be chosen to have the same Holder exponent and constant for all the fields Z,,. Assume
further that there exists a Holder-regular Gaussian field Z such that Z,, converges to Z
uniformly almost surely and that E [X,,(z)Z,(z)] converges uniformly to some bounded
continuous function ¢ — E[X (z)Z(z)]. Then if the measures

dpn () = X =FE g ()
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converge weakly in LP(2) to a measure p, also the measures

dyn(l') = e(Xn(I)-