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Abstract

We study the evolution of genealogies of a population of individuals, whose type
frequencies result in an interacting Fleming-Viot process on Z. We construct and
analyze the genealogical structure of the population in this genealogy-valued Fleming-
Viot process as a marked metric measure space, with each individual carrying its
spatial location as a mark. We then show that its time evolution converges to that
of the genealogy of a continuum-sites stepping stone model on R, if space and time
are scaled diffusively. We construct the genealogies of the continuum-sites stepping
stone model as functionals of the Brownian web, and furthermore, we show that its
evolution solves a martingale problem. The generator for the continuum-sites stepping
stone model has a singular feature: at each time, the resampling of genealogies only
affects a set of individuals of measure 0. Along the way, we prove some negative
correlation inequalities for coalescing Brownian motions, as well as extend the theory
of marked metric measure spaces (developed recently by Depperschmidt, Greven and
Pfaffelhuber [DGP11]) from the case of probability measures to measures that are
finite on bounded sets.
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1 Introduction and main results

In the study of spatial population models on discrete geographic spaces (for example
7%, such as branching processes, voter models, or interacting Fisher-Wright diffusions
(Fleming-Viot models), the technique of passing to the spatial continuum limit has proven
to be useful in gaining insight into the qualitative behaviour of these processes. A key
example is branching random walks on Z¢, leading to the Dawson-Watanabe process
[Daw77] on R and Fisher-Wright diffusions; catalytic branching and mutually catalytic
branching on Z, leading to SPDE on R [KS88, EF96, DP98, DEFT02b, DEFT02a]. The
goal of this paper is to carry out this program at the level of genealogies, rather than just
type or mass configurations. We focus here on interacting Fleming-Viot models on Z.

1.1 Background and overview

We summarize below the main results of this paper, recall some historical background,
as well as state some open problems.

Summary of results. The purpose of this paper is twofold. On the one hand, we
want to understand the formation of large local one-family clusters in Fleming-Viot
populations on the geographic space Z!, by taking a space-time continuum limit of the
genealogical configurations equipped with types. On the other hand we use this example
to develop the theory of tree-valued dynamics via martingale problems in some new
directions. In particular, this is the first study of a tree-valued dynamics on an unbounded
geographical space with infinite sampling measure, which requires us to extend both
the notion of marked metric measure spaces in [GPW09, DGP11] and the martingale
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problem formulations in [GPW13, DGP12] to marked metric measure spaces with infinite
sampling measures that are boundedly finite (i.e., finite on bounded sets).

Here is a summary of our main results:

(1) We extend the theory of marked metric measure spaces [GPW09, DGP12] from
probability sampling measures to infinite sampling measures that are boundedly
finite, which serve as the state space of marked genealogies of spatial population
models. See Section 1.2.

(2) We characterize the evolution of the genealogies of interacting Fleming-Viot (IFV)
models by well-posed martingale problems on spaces of marked ultrametric mea-
sure spaces. See Section 1.3.

(3) We give a graphical construction of the spatial continuum limit of the IFV genealogy
process, which is the genealogy process of the so-called Continuum Sites Stepping-
stone Model (CSSM), taking values in the space of ultrametric measure spaces
with spatial marks and an infinite total population. The graphical construction is
based on the (dual) Brownian web [FINRO4]. The CSSM genealogy process has
the feature that, as soon as ¢ > 0, the process enters a regular subset of the state
space that is not closed under the topology. Only on this subset we can evaluate
the action of the operator of the martingale problem in its action on test functions.
The nice aspect is that the set of these states are preserved under the dynamic.
This leads to a singular structure with complications for the associated martingale
problem and for the study of continuity of the process at time 0. See Section 1.4.

(4) We prove that under suitable scaling, the IFV genealogy processes converge to the
CSSM genealogy process. The proof is based on duality with spatial coalescents,
together with a novel approach of controlling the genealogy structure using a
weaker convergence result on the corresponding measure-valued processes, with
measures on the geographic and type space (with no genealogies). See Section 1.5.

(5) We show that the CSSM genealogy process solves a martingale problem with
a singular generator. More precisely, the generator action involves individuals,
which are not typical under the sampling measure, so that the dynamic is driven
by atypical individuals at atypical locations. In particular, the generator is only
defined on a regular subset of the state space. See Section 1.6.

(6) We prove some negative correlation inequalities for coalescing Brownian motions,
which are of independent interest. See Appendix C.

Besides the description of the genealogies of the current population, we also prepare
the ground for the treatment of all individuals ever alive, i.e. fossils, moving from the
state space of marked ultrametric measure spaces to the state space of marked measure
RR-trees, which will be carried out elsewhere.

History of the problem: Why are we particularly interested in one-dimensional geo-
graphic spaces for our scaling results? Many interacting spatial systems that model
evolving populations, i.e., Markov processes with state spaces I“(I = R, N, [0, 1], etc.,
and G = Z¢ or the hierarchical group 2y) that evolve by a migration mechanism be-
tween sites and a stochastic mechanism acting locally at each site, exhibit a dichotomy
in their longtime behavior. For example, when G = Z? and the migration is induced by
the simple symmetric random walk: in dimension d < 2, one observes convergence to
laws concentrated on the traps of the dynamic; while in d > 3, nontrivial equilibrium
states are approached and the extremal invariant measures are spatially homogeneous
ergodic measures characterized by the intensity of the configuration. Typical examples
include the voter model, branching random walks, spatial Moran models, or systems of
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interacting diffusions (e.g., Feller, Fisher-Wright or Anderson diffusions). One obtains
universal dimension-dependent scaling limits for these models if an additional continuum
spatial limit is taken, resulting in, for example, super Brownian motion (see Liggett
[Lig85] or Dawson [Daw93]).

In the low-dimension regime, the cases d = 1 and d = 2 are very different. In d = 2,
one observes for example in the voter model the formation of mono-type clusters on
spatial scales t*/? with a random a € [0,1], a phenomenon called diffusive clustering
(see Cox and Griffeath [CG86]). In the one-dimensional voter model, the clusters have
an extension of a fixed order of magnitude but exhibit random factors in that scale. More
precisely, in space-time scales (/%,t) for t — oo, we get annihilating Brownian motions.
Similar results have been obtained for low-dimensional branching systems (Klenke
[Kle00], Winter [Win02]), systems of interacting Fisher-Wright diffusions (Fleischmann
and Greven [FG94], [FG96] and subsequently [Zho03], [DEFT00]) and for the Moran
model in d = 2 (Greven, Limic, Winter [GLWO05]).

In all these models, one can go further and study the complete space-time genealogy
structure of the cluster formation and describe this phenomenon asymptotically by the
spatial continuum limit. In particular, the description for the one-dimensional voter
model can be extended to the complete space-time genealogy structure, obtaining as
scaling limit the Brownian web [Arr79, Arr81, TW98, FINRO04] (see Appendix B, and the
recent survey [SSS15]). More precisely, the Brownian web is defined by considering
instantaneously coalescing one-dimensional Brownian motions starting from every space-
time point in R x R. It arises as the diffusive scaling limit of continuous time coalescing
simple symmetric random walks starting from every space-time point in Z x R, which
represent the space-time genealogies of the voter model. This is analogous to the study
of historical process for branching processes, which approximates the ancestral paths
of branching random walks by that of super Brownian motion (see e.g. [DP91, FG96,
GLWO05]).

The basic idea behind all this is that, we can identify the genealogical relationship
between the individuals of the population living at different times and different locations.
This raises the question of whether one can obtain a description of the asymptotic
behavior of the complete genealogical structure of the process on large space-time
scales, which will in turn allow for asymptotic descriptions of interesting genealogical
statistics that are not expressible in a natural way in terms of the configuration process.

These observations on the genealogical structure goes back to the graphical con-
struction of the voter model due to Harris, and continues up to the historical process
of Dawson and Perkins for branching models [DP91], or representation by contour pro-
cesses [G]98, Ald93]. To better describe genealogies, the notion of R-trees, marked
R-trees or marked measure R-trees were developed as a framework [Eva97, EPWO06].
These objects contain the relevant information abstracted from the labeled genealogy
tree, where every individual is coded with its lifespan and its locations at each time. Such
a coding means in particular that all members of the population are distinguished, which
information is mostly not needed. In the large population limit, it suffices to consider the
statistics of the population via sampling.

For this purpose, one equips the population with a metric (genealogical distance), a
probability measure (the so-called sampling measure, which allows to draw typical finite
samples from the population) together with a mark (specifying types and locations). This
description in terms of random marked metric measure spaces (in fact, the metric defines
a tree) is the most natural framework to discuss the asymptotic analysis of population
models, since it comprises exactly the information one wants to keep for the analysis in
the limits of populations with even locally infinitely many individuals. The evolution of a
process with such a state space is described by martingale problems [GPW13, DGP12].
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Open problems and conjectures. We show in this paper that the spatial continuum
limit of the one-dimensional interacting Fleming-Viot genealogy process solves a martin-
gale problem. However, due to the singular nature of the generator, the uniqueness of
this martingale problem is non-standard, and we leave it for a future paper. In particular,
it is difficult to establish the duality relation at the level of generators, because the
generators for the process and its dual are only defined for special test functions at
special points.

Instead of Z, resp. R, as geographic spaces, one could consider the hierarchical
group Qy = &nZy, With Zy being the cyclical group of order N, respectively the
continuum hierarchical group Q% = €, Zn. Brownian motion on R can be replaced by
suitable Lévy processes on 2% and the program of this paper can then be carried out.
The Brownian web would have to be replaced by an object based on Lévy processes as
studied in [EF96], [DEFT00]. We conjecture that the analogues of our theorems would
hold in this context. A further challenge would be to give a unified treatment of these
results on R, Q%.

Another direction is to consider the genealogy processes of interacting Feller dif-
fusions, catalytic or mutually catalytic diffusions, interacting logistic Feller diffusions,
and derive their genealogical continuum limits. A more difficult extension would be to
include ancestral paths as marks, which raises new challenges related to topological
properties of the state space. Namely, as the space of paths is a Polish space, it is not a
Heine-Borel space as closed balls around a path are not compact.

Outline of Section 1. The remainder of the introduction is organized as follows. In
Subsection 1.2, we recall and extend the notion of marked metric measure spaces needed
to describe the genealogies. In Subsection 1.3, we define the interacting Fleming-Viot
(IFV) genealogy process via a martingale problem and give a dual representation in
terms of a spatial coalescent. In Subsection 1.4, we give, based on the Brownian web, a
graphical construction for the continuum-sites stepping stone model (CSSM) on R and
its marked genealogy process, which is the continuum analogue and scaling limit of
the interacting Fleming-Viot genealogy process on Z, under diffusive scaling of space
and time and normalizing of measure, a fact which we state in Subsection 1.5. In
Subsection 1.6, we formulate a martingale problem for the CSSM genealogy process. In
Subsection 1.7 we outline the rest of the paper.

1.2 Marked metric measure spaces

In this subsection we introduce the state space of the genealogies of interacting
Fleming-Viot processes. We want to describe evolving genealogies of the whole popula-
tion of all individuals currently alive allowing to sample from this population. We also
want to include the individuals’ positions in geographic space and possible genetic types.
We therefore regard genealogies as (equivalence classes) of marked metric measure
spaces. As our geographic space is infinite (and not compact), it won’t be possible to
sample individuals by means of a finite (or after renormalizing of a probability) measure.
We rather require the sampling measure to be finite on all subpopulations which can be
obtained by restricting to finite geographic subspaces.

The following definition of marked metric measure spaces extends the one introduced
in [DGP11] which considered probability measures only.

Definition 1.1 (V-mmm-spaces). Let (V,ry) be a complete separable metric space with
metric ry, and let o be a distinguished point in V.

1. We call (X,r, ) a V-marked metric measure space (V-mmm space for short) if:
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(i) (X,r) is a complete separable metric space,
(ii) p is a measure on the Borel o-algebra of X x V, with u(X x B,(R)) < oo for

each ball B,(R) C V of finite radius R centered at o.

2. We say two V-mmm spaces (X, rx, ux) and (Y, ry, uy) are equivalent if there exists
a measureable map ¢ : X — Y, such that

rx(z1,22) = ry(o(z1), p(z2)) for all z1,x9 € supp(ux (- x V)), (1.1)

andif g: X xV =Y x V is defined by o(x,v) := (p(z),v), then
py =pxo@ . (1.2)

In other words, ¢ is an isometry between supp(ux (- x V')) and supp(py (- x V')), and
the induced map @ is mark and measure preserving. We denote the equivalence
class of (X, r, ) by

(X,r, pn). (1.3)
3. The space of (equivalence classes of) V-mmm spaces is denoted by

MY = {(X,r, ) : (X,r,p) is a V-mmm space}. (1.4)

4. The subspace of (equivalence classes of) V-mmm spaces which admit a mark
function is denoted by

(1.5)

Note that MY depends both on the set V and the metric 7y since the latter defines
the sets on which the measure must be finite.

Marked metric measure spaces were introduced in [DGP11], which extends the
notion of metric measure spaces studied earlier in [GPW09]. Definition 1.1 is exactly the
analogue of [DGP11, Def. 2.1], where p is a probability measure. The basic interpretation
in our context is that: X is the space of individuals; r(z1, 22) measures the genealogical
distance between two individuals x; and z5 in X; the measure ;1 is a measure on the
individuals and the marks they carry (which can be spatial location as well as type, or
even ancestral paths up to now), allowing us to draw samples from individuals with
marks in a bounded set.

To define a topology on MY that makes it a Polish space, we will make use of the
marked Gromov-weak topology introduced in [DGP11, Def. 2.4] for V-mmm spaces
equipped with probability measures. In this topology a sequence converges iff we can
embedd the involved metric spaces isometrically into one metric space such that the
images of the “sampling” measures converges weakly. The basic idea to extend this to
MV is that, given our assumption on y in Definition 1.1.1.(ii), we can localize y to finite
balls in V to reduce u to a finite measure. We can then apply the marked Gromov-weak
topology (which also applies to finite measures instead of probability measures) to
require convergence for each such localized version of the V-mmm spaces. We will call
such a topology V-marked Gromov-weak™ topology, replacing weak by weak”, following
the terminology in [DV]J03, Section A2.6] for the convergence of measures that are
bounded on bounded subsets of a complete separable metric space. Note that vague
convergence is for measures that are finite on compact rather than bounded subsets.
Both notions agree on Heine-Borel spaces (compare, [ALW16]).
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Definition 1.2 (V-marked Gromov-weak” Topology). Fix a sequence of continuous func-
tions ¢y : V — [0,1], k € N, such that ¢, = 1 on the ball B, (k) centered at o € V of radius
k, and ¢y, = 0 on BS(k +1). Let x := (X, r, p) and xp, := (Xp,7n, tin), n € N, be elements
of M. Let 1, - u be the measure on X x V defined by (v, - ) (d(z,v)) := ¥ (v)u(d(x, v)),
and let vy, - 1, be defined similarly. We say that x, n:}o X in the V-marked Gromov-weak?

topology if and only if:

(X, o, Yk - i) = (X, 7,9 - ) in the Gromov-weak topology for each k € IN. (1.6)
n—oo

When V = R?, we may choose v to be infinitely differentiable.

Remark 1.3 (Dependence on o and (¢ )ren). Note that the V-marked Gromov-weak”
topology does not depend on the choice o € V and the sequence (¢ )ren, as long as
has bounded support and Ay := {v : ¢, (v) = 1} increases to V as k — oc.

Remark 1.4 (M as a subspace of (]M}’)H\I). Let ]M}/ denote the space of (equivalent
classes of) V-mmm spaces with finite measures, equipped with the V-marked Gromov-
weak topology as introduced in [DGP11, Def. 2.4]. Then it is a well-known fact that each
element (X,r, ) € MY can be identified with a sequence ((X,r, 11 - u), (X, 7,02 - ), ...)
in the product space (]M}/)]N, equipped with the product topology. This identification
allows us to easily deduce many properties of M"Y from properties of IM}/ that were
established in [DGP11]. In particular, we can metrize the V-marked Gromov-weak? topol-
ogy on MV by introducing a metric (which can be called V-marked Gromov-Prohorov#
metric)

= d X1, r, U, - 1), (Xa, ro, by, - Al
dyviapr ((X1,71, p1), (X2, 72, p12)) :Z mop((n, 11, s ), Xz, 72, G - 2))

2k ’

(1.7)
where dy;gp is the marked Gromov-Prohorov metric on IM}/ which was introduced
in [DGP11, Def. 3.1] and metrizes the marked Gromov-weak topology.

k=1

The proof of the following result is in Appendix A.

Theorem 1.5 (Polish space). The space MY, equipped with the V-marked Gromov-
weak topology, is a Polish space.

Points in MV, as well as weak convergence of MY -valued random variables, can be
determined by the so-called polynomials on IM", which are defined via sampling a finite
subset on the VV-mmm space.

Definition 1.6 (Polynomials). Let n € IN. Let g € Cy,(V™, R), the space of real-valued
bounded continuous function on V" with bounded support. For k € IN U {0,000}, let

¢ € C’f (R%) ,R), the space of k-times continuously differentiable real-valued functions

on Rgf) with bounded derivatives up to order k. We call the function %9 : MV — R
defined by

M9 (X, r, 1)) / /¢ p&™(d(z,v)), (1.8)

a monomial of order n, where x := (21,...,2y,), I = g(g) = (r(@i, @) 1<icj<n, UV =
(v1,...,v,), and p®"(d(z,v)) denotes the n-fold product measure of ;i on (X x V)™.

(@) Let ITF := {®™%9 : ¢ € Cf(IE{Ef/),]R),g € Cw(V™,R)}, which we call the space
of monomials of order n (with differentiability of order k). Let II§ be the set of
constant functions. We then denote by

" := Upen, IT7

the set of all monomials (with differentiability of order k).
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(b) ForV =R% and k,l € NU {0, <}, we define

= {0707 g € CERE ). g € Cly(vrm R,
and I := U, e, TEL
(c) We call the linear spaces
I** generated by II**, (1.9)
the polynomials (with differentiability of ¢, resp. g, of order k, resp. £).

Remark 1.7. Note that the polynomials form an algebra of bounded continuous func-
tions since the product of two monomials can be seen as a new monomial as defined in
(1.8). However, the sum of two monomials in general is not a monomial.

Throughout the paper we are often interested in the following sub-space of MY
(compare, e.g., Definition 1.34 of so-called regular space of states). Let b be a measurable
function on R, and write

MYV=0 = L(X, ) € MY ¢ (X x By(0)) < b(r)}. (1.10)
If 5 is a measure on B(V') which is finite on bounded subsets, and
MYA) =X, p) e MY ¢ (X x -) = B}, (1.11)

then obviously IM(V+%) is a closed subspace of M(V><%) with b(r) := 3(B,(0)).

Theorem 1.8 (Convergence determining class). Fix a measurable function : Ry — R.
We have the following properties for I1¥, for each k € N U {0, 00} :

(i) * is convergence determining in M('<Y). Namely, (X, 7, tn) — (X,7, 1) in

M(>=Y) if and only if ®((X,,, 7, fin)) — ®((X,r, 1)) @s n — oo for all & € II*.

(i) II* is also convergence determining in Ml(]M(V’Sb)), the space of probability

measures on M=), Namely, a sequence of M(V:=b).valued random variables
(X,)nen converges weakly to a M(Y'<) .valued random variable X if and only if
E[®(X,)] — E[®(X)] asn — oo for all ® € TT*.

(ili) For V = R? and each k,l € N U {0,}, II*! is also convergence determining in
MV:<b) and /\/ll(IM(V’Sb)).

We defer the proof of Theorems 1.5 and 1.8, as well as some additional properties of
V-mmm spaces, to Appendix A.

Remark 1.9. For the models we consider, the genealogies lie in certain particular
Polish spaces which arise as closed subspaces of MY . Note that the current population
alive corresponds to the leaves of a genealogical tree, and the associated V-mmm space
is ultrametric. We will denote the space of V-marked ultrametric measure spaces by UV .
They form a closed subspace of MY and hence UV is Polish. The same holds for M(V-#),
for some Borel measure $ on V which is finite on bounded subsets.

Remark 1.10. Recall M}/, from Definition 1.1, and notice that M}, is not closed, and
that we therefore choose the bigger space MY as the state space. The space M" allows
an individual z € X to carry a set of marks, equipped with the conditional measure of p
on V given =z € X. If each individual carries only a single mark which we can identify
via a mark function x : X — V, the corresponding marked metric measure space is an
element of M}/, . This will be the case for the interacting Fleming-Viot process that we

will study.
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It can be shown that every element in M}/, is an element of the closed space

My = | () {Xrp) eM”

A bdd >0
Iy € Mp(X x A) gt < p(-x A), |1 = (- x A)|lrv < ha(9),
(ILL14)®2{T'(IL’1,ZL’2) < 5, d(’l}l,vg) > hA(5>} = O},

(1.12)

for some hy4 € H, where
H:={h:Ry — Ry U{co}: his continuous and increasing, and ~(0) =0}  (1.13)

([KL15, Lemma 2.8]).

1.3 Interacting Fleming-Viot (IFV) genealogy processes

We now study the genealogies of the measure-valued interacting Fleming-Viot (IFV)
processes on a countable geographic space and with allelic types, typically taken from
the type space [0, 1] (see [DGV95] for details on IFV), which is motivated by the following
individual-based model, the so-called Moran model.

Consider a population of individuals, X, with locations indexed by a countable additive
group V (for us this later will be Z). The individuals migrate independently according to
rate one continuous time random walks with transition probability kernel a(-,-),

a(vy,vg) = a(0,vy — v1) for all vy,vy € V. (1.14)
We denote the transition kernel of the time reversed random walks by
a(vy,vg) := a(ve,v1) = a(0,v1 — vy). (1.15)

Individuals furthermore reproduce by resampling, where every pair of individuals at
the same site dies together at exponential rate v > 0, and with equal probability, one
of the two individuals is chosen to give birth to two new individuals at the same site
with the same type as the parent. This naturally induces a genealogical structure. The
genealogical distance, r, of two individuals at time ¢ is 2 min{¢, 7'} plus the distance of the
ancestors at time 0, where T is the time it takes to go back to the most recent common
ancestor. Imposing the Haar measure (here the counting measure), u, on the population
with each individual carrying its location as a mark, we obtain a V-mmm space and its
equivalence class is the state of the genealogy process.

Letting now the number of individuals per site tend to infinity and normalizing the
measure such that each site carries population mass of order one, we obtain a diffusion
model, the interacting Fleming-Viot (IFV) genealogy process with state space

Uy .=, (1.16)

where n denotes the Haar measure on the countable geographic space V, the 1 indicating
that the measure restricted to each colony is a probability measure. This (see Remark
1.9) is again a Polish space. (For the diffusion limit in the case of a finite geographic
space V, see [GPW13], [DGP12]).

Remark 1.11. If we introduce as marks (besides locations from a countable geo-
graphic space G) also allelic types from some set IK (typically taken as a closed subset of
[0,1]), then the type is inherited at reproduction and V = K x G is the product of type
space and geographic space. In this case the localization procedure in Definition 1.2
applies to the geographic space, since K is compact.
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1.3.1 The genealogical IFV martingale problem

We now define the interacting Fleming-Viot (IFV) genealogy process via a martingale
problem for a linear operator LY on C, (U}, R), acting on polynomials. For simplicity
we first leave out allelic types, which we introduce later in Remark 1.13.

The linear operator L¥Y on C,(U},R), with domain I1*? as introduced in Defini-
tion 1.6 (b) with d = 1, consists of three terms, corresponding respectively to aging,
migration, and reproduction by resampling. With X = (X, r, ) and ® = ®™%9 ¢ 1119,

n 0
LFV<I>(X) = 2 / #® (d(z,v)) g(v) Z 5 ¢(£)
Tkt
(XxV)n 1<k<t<n
+ / 'u® Z Z UJ? u w9 — g)( ) (1.17)
(XxV)m j=1lv'eVv
+ 27y / pEM(A(2,0) 90) D Tu=u (06 — 0)(1),
(XxV)n 1<k<t<n
where z = (21, ,Zn), v = (V1,- -+ ,Vn), 1= ("k0)1<k<t<n = (r(Th, T¢)1<k<e<n), and
(My, 00 g) (V1 s 0n) i= g(v1, - 051,001, 5 0p) (1.18)

encodes the replacement by migration of the j-th sampled individual corresponding to a
jump from location v; to v/, while ) , encodes the replacement of the ¢-th individual by
the k-th individual (both at the same site). More precisely,

T(Iivxj) lea] # 67
(Or,00)(r) := ¢(Ok,er), with (O er)i; = r(zi,2k) ifj =4, (1.19)
(X, ;) ifi="¢.

The first result states that there is a unique U} -valued diffusion process associated
with this operator.

Theorem 1.12 (Martingale problem characterization of IVF Genealogy processes). For
any Xy = (Xo,70, to) € U}, we have:

(i) The (LFV,1I%°, §4,)-martingale problem is well-posed, i.e. there exists a U -valued
process X¥V := (XFV),>, unique in its distribution, which has initial condition Xj
and cadlag path, such that for all ® € IT1''° and w.r.t. the natural filtration generated

by (XtFV)tZO;

t
(@(XEV) BAFV) - / (LFV)(XFV) ds) __ is a martingale. (1.20)
>0
0

(ii) The solutions (for varying initial conditions) define a strong Markov with continuous
path. This Markov process has the Feller property, i.e., the one-dimensional
distributions depend continuously on the initial distribution.

(iii) If the initial state admits a mark function, then so does the path almost surely.

Remark 1.13. Ifwe add the type of an individual as an additional mark, i.e., V := GxK
with geographic and type space respectively, then the same result holds if we modify
as follows. We require the states to satisfy the constraint that the projection of i on
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the geographic space V is still the counting measure. The test functions ¢ should be
modified so that we multiply g : G — R, acting on the locations of the n sampled
individuals, by another bounded, continuous factor gy, : K® — R, acting on the types of
the individuals. The generator L¥Y should be modified accordingly, so that gtyp Changes
at resampling from giyp, to giyp © ék,z, with gk,l replacing the ¢-th sampled individual by
the k-th one, see [DGP12]).

Remark 1.14. The process XfV = (X;,r:, ;) has the property that the measure-
valued process X, given by the collection {u:(X; x {i} x -),i € G}, is the IFV process on
(M1 (K))C.

Remark 1.15. From Section 1.4 onward, we will choose V = Z. However in the
subsequent analysis, it is important to observe that we can embed Z into R and view U%
as a closed subspace of UR, and view the IFV genealogy process as UR-valued process.

1.3.2 Duality

The IFV genealogy process XV can be characterized by a dual process, the spatial
coalescent. The formulation given here can also incorporate mutation and selection (see
[DGP12]).

For each n € NN, let S,, denote the space of partitions of the set {1,...,n}, i.e.,
T ={p;p €7} € S, is a collection of disjoint subsets p C {1,...,n}, referred to as
partition elements (or blocks), such that Wye,p = {1,...,n}. Moreover, let g){ denote
the space of marked partitions of the set {1,...,n} with mark space V, i.e., we regard
{(p,vp); m={p; p €7} €8,,v, € V} €SY as a partition of {1, ...,n} where each partition
element is assigned a mark in V. Finally, let 5, := Sﬁ,‘f X ]R(f) denote the space of
historical marked partitions of the set {1, ...,n} with mark space V. That is, we regard
({(p,vp); p € 7}, (1i5)1<i<j<n) € S, as consisting of a marked partition and a matrix of
mutual distances.

The dual process (K;):>o will take valuesin $ := UnelN $,, with the following dynamics:
given a finite historical marked partition, independently every pair of partition elements
with the same mark in V merges at rate . Until a pair of partition elements merges, the
marks migrate independently of each other on V according to a continuous time random
walk with transition kernel a. After merging the marks of the two involved partition
elements will move together forever. At time ¢, we define the genealogical distance
r+(i,7) of i and j in {1,2,...,n} as 2min{¢,T; ;}, where T} ; is the first time that ¢ and j
belong to the same partition element.

For each n, ¢ € OZ;’O(IREFQ),R), and g € Cy(V™ R), we define a duality function
H:UY x 8, — R with

H(X,K) := /(X . lu®'”'(d(Ly))1{1),,:5;,;\7.9@} -g@M)p(r" (z) + 1), (1.21)

where X = (X,r,u) € UY, and K = ({(p,&,); p € 7},1/) € 8y, and v™ = (vp(5))i=1,....ns
and 17 (z) := (r(Tp(), Tp(s)))1<i<j<n, With p(i) being the partition element of 7 containing
ie€{l,..,n}.
Remark 1.16. Note that {H(-,K): K €$,,¢ € Ol;’o(Rgf),R),g € Cpp(V™, R),n € N} is
law-determining and convergence-determining on U} .

The IFV genealogy process (XfV);>q is dual to the coalescent (K;)¢>0, and its law
and behavior as ¢ — oo can be determined as follows.

Theorem 1.17 (Duality and longtime behaviour). The following properties hold for the
IFV genealogy process (XfV);>o:

EJP 21 (2016), paper 58. http://www.imstat.org/ejp/
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(a) For every XFV € UY and Ky € $, we have
E[H(XFY,Ko)] = E[H(XFY,K)], t>0. (1.22)
(b) Ifa(-,-) = i(a(-,-) +a(-,-)) is recurrent, then

LIXV]=T € M (UY), (1.23)

t— o0
where I is the unique invariant measure of the process X*V on UY .

Remark 1.18. Ifa is transient, then we can decompose X[V = (X;,r, ;) in such a
way that X, is the countable union of disjoint sets X/, 4 is the sum of measures !,
and {(X{, 7¢|x;.xs, #1) }iew are V-mmm spaces such that for z € X}, 2’ € X7 with i # j,
r¢(z,z") diverges in probability as t — oo, and each (X}, 7¢|x;x x;, 4;) converges in law to
a limiting V-mmm space. Alternatively we can transform distances r: r — 1 — e~ " and
obtain a unique equilibrium in that case. See also [GM].

Remark 1.19 (Strong duality). As the interacting Fleming-Viot process is a population
model, its evolving genealogy (Uy, r¢, 1 )1>0 can be represented by a V-marked R-tree
(X,r). That is, we can find a 0-hyperbolic metric space (with distances possibly equal
to oo0) (X,r) such that any two z,y € X of finite distance are connected by a path,
and isometries (¢;)i>0 with ¢, : Uy — X such that for all z € X there is a ¢ > 0 with
@7 (z) € supp(u(- x V). We won’t write down this R-tree representation explicitly
here but it can be derived from the look-down construction presented in [GLWO05] in a
straightforward way.

We would like to point out that this representation by an R-tree allows to define the
ancestor AT of = at time 7" back at time 7 — s, and the above duality relation can actually
be stated in a strong sense. That is, we can construct for each 7' > 0 our model together
with a dual process K7 on the same probability space such that for all X’ C Uy with

#X/ ! !
#X' <o0, ¢ € C;jo(Rgr 2 )JR), and g € O, (V#X' R), and H = H#X %9 from (1.21), for
all s € [0, 7], ) )

H(Ur—s,KT) = HUr,KJ), almost surely. (1.24)

Notice that whenever a duality relation holds almost surely rather than in expectation,
one refers to it as a strong form of duality.

Indeed, define for fixed T > 0 and any finite subset X’ := {z1, ..., x4 x/} C Ur the map
KT .= (KT := (({(r &) p e ﬂgﬂ},r;’T))se[o’T] which sends U := (U := (U, 14, 1) )i>0 to @
path with values in the space of historical marked partitions $.x- defined by

r1(0,9) = r(pr(@), or(@) AT =), (125

forall 1 <i < j < #X’, amarked partition of {1, 2, ...,n} defined through the equivalence
relation
i=Lg iff r.T(i, ) < (T —s), (1.26)

and a family of position functions on ¢ (supp(pur (- x V))) such that

&T(p) = kr—s (07t ,(p))- (1.27)

By construction, K7 is the dual spatial coalescent. Moreover, for all s € [0,7], and
(z,v) € (Xr x V)lml,

e (AT(@) + T = o) + oy (1.28)
and sk7_s(AT (x)) has under 7 the same distribution as types under ur_,. This together
implies the strong form of duality as stated in (1.24). |
EJP 21 (2016), paper 58. http://www.imstat.org/ejp/
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As a further consequence of relation (1.22) we can specify the finite dimensional
distributions of (XFV);>o completely in terms of the spatial coalescent as follows. Fix
a time horizon 7' > 0. The finite dimensional distributions are determined by the
expectation of all test functions ® : C([0, 00), M") of the following form:

(A V)iz0) = T_ @y (X)), (1.29)

forsome L e N, 0 < t; <ty < .. <ty =t and &, = &"9% ¢ [I'Y of order n; € NN,
o) € C,;’O(]Rs_zk),R), and gi € Cpp(V™,R), foreach k =1, ..., ¢.

The dual is the spatial coalescent with frozen particles (IES)SG[QT] , for which the
time index s € [0, 7] runs in the opposite direction from the time index of X FV_ Namely,
looking backward from time 7, for each 1 < k < /, we start n; particles at time T — ¢,
at locations &}, := (¢}, ;,...,&}, ,,) € V"*, each forming its own partition element in the
partition 7 € S,, n:=ni+..+ns. The particles perform the usual dynamics of the spatial
coalescent with the restriction that all particles starting at time 7' — ¢;, were kept frozen
before time T — t;. At time s, the genealogical distance (i, j) between two individuals 4
and j, started respectively at times T' — ¢; and T' — ¢, is defined to be

2min{s, T; ;} — min{s, (T —t;)} — min{s, (T —t;)}, (1.30)

where T; ; is the first time the two individuals coalesce.

Denote this new spatial coalescent process with frozen particles by (/Et)tzo. The
state space 3 is once more the space of historical marked partitions. We then define the
duality function H : U x $ — R which determines the finite dimensional distributions
of X for varying K as in (1.21) but now with

4 L
¢(£) = H (bk((ri7j)ﬂ1+"'+nk71<i<j§n1+'”+7lk) and g(yﬂ) = H 9k (tkaﬁﬂ—k)v (1.31)
k=1 k=1

where 7, are the partition elements started at time ¢.
The following space-time duality is an immediate consequence of the Markov property
and the duality applied successively to the time intervals [ty_1,te], [te—2,te—-1], .., [0, t1].

Corollary 1.20 (Space-time duality). Let A5V € U}, and Ko € § with t,, < T for all
1 <k </{. Let ® be defined as above (1.30). Then
E[®((XY)sciom)] = B[H (XY, Kr)]. (1.32)
In words, the genealogical distances among the n = ny + - - - + ny individuals sampled
from (Xst)se[o,T], with n, individuals sampled at time ¢;, at specified locations, can be
recovered by letting these individuals evolve backward in time as a spatial coalescent
until time 0, at which point we sample from X}V according to the location of each
partition element in the spatial coalescent.

1.4 Genealogies of continuum-sites stepping stone model (CSSM) on R

If we rescale space and time diffusively, the measure-valued interacting Fleming-
Viot process on Z converges to a continuum space limit, the so-called continuum-sites
stepping stone model (CSSM). Formally, CSSM is a measure-valued process v := (1;);>0
on R x [0, 1], where R is the geographical space and [0, 1] is the type space. We might
think of individuals in the population which undergo independent Brownian motions, and
whenever two individuals meet, one of the two individuals is chosen with equal probability
and switches its type to that of the second individual. Provided that vy (- x [0,1]) is the
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Lebesgue measure on R, CSSM was rigorously constructed in [EF96, Eva97, DEF00,
Zho03] via a moment duality with coalescing Brownian motions. In particular, v (- x [0, 1])
is the Lebesgue measure on R, for all ¢ > 0.

In this subsection we will construct the evolving genealogies of the CSSM based
on duality to the (dual) Brownian web, and establish properties (Proposition 1.25,
Theorem 1.27).

For the voter model on Z, the joint genealogy lines of individuals at all space-time
points in Z x [0, c0) are distributed as a collection of coalescing random walks evolving
backward in time (see [Lig85]). Analogously, for the CSSM on R, when n individuals are
sampled from the population at possibly different times, their joint genealogy lines evolve
backward in time as coalescing Brownian motions. Upon reaching time 0, each surviving
genealogy line then independently selects an ancestral type by sampling according to
the conditional distribution of vy on the type space [0, 1], conditioned on the spatial
location of the genealogy line. Furthermore the joint genealogy lines of individuals at all
space-time points in R x [0, 00) are distributed as a collection of coalescing Brownian
motions evolving backward in time. Therefore the CSSM on R is exactly the continuum
analogue of the interacting Fleming-Viot process (as well as the voter model) on Z.

Although having an uncountable number (starting from every space-time point in
R x [0,00)) of coalescing Brownian motions seems problematic, this object has been
constructed rigorously and is now known as the (dual) Brownian web VYV [FINRO04,
FINROG], dual to a forward Brownian web VW constructed on the same probability space.
The (dual) Brownian web is essentially a collection of coalescing Brownian motions on R,
starting from every point in the space-time plane R x RR.

In [FINRO4], the Brownian web W is constructed as a random variable where each
realization of

W is a closed subset of II := UgerC([s, 00), R), (1.33)

the space of continuous paths in R with any starting time s € R. In [FINRO4], the
topology is defined by first compactifying the space R? suitably, and then by choosing for
II the topology of local uniform convergence and requiring the initial times to be close if
paths are close. For each z := (z,t) € R, we will let W(z) := W(z,t) denote the subset
of paths in W with starting position x and starting time ¢. We can construct W by first
fixing a countable dense subset P C R?, and then construct a collection of coalescing
Brownian motions {W(z) : z € D}, with one Brownian motion starting from each z € D.
The Brownian web W is then obtained by taking a suitable closure of {W(z) : z € D} in
II, which gives rise to a set of paths starting from every point in the space-time plane R2.
It can be shown that the law of V' does not depend on the choice of D (see Theorem B.1
in Appendix B).

The Brownian web W has a graphical dual called the dual Brownian web, which we
denote by W. Formally,

W is a random closed subset of II := UserC ((—o0, s], R), (1.34)

the space of continuous paths in R starting at any time s € R and running backward in
time as coalescing Brownian motions.

The joint El\istribution of Wand W is uniquely determined by the requirement that
the paths of W never cross paths of VW (see, Theorem B.3 in Appendix B). Thus, jointly,
the Brownian web and its dual is a random variable taking values in a Polish space, with

(W, W) € II x 11. (1.35)

Interpreting coalescing Brownian motions in the (dual) Brownian web as ancestral
lines specifying the genealogies, we can then give an almost sure graphical construction

EJP 21 (2016), paper 58. http://www.imstat.org/ejp/
Page 14/64


http://dx.doi.org/10.1214/16-EJP4514
http://www.imstat.org/ejp/

Continuum space limit of interacting FV genealogies

of the CSSM, instead of relying on moment duality relations as in [EF96, Eva97, DEFT00,

Zho03], which nevertheless we get as corollary of the graphical construction. The

classical measure-valued CSSM process can be recovered from (X,“%),>¢ by projecting

the sampling measure (utcs)tzo to the mark space V, if V is chosen to be the product of

geographical space R and type space [0,1]. In what follows, we will take V' to be only

the geographical space R, since types have no influence on the evolution of genealogies.
We next explicitly construct a version of the CSSM genealogy process

X8 = (Xtcs)tzm Xtcs = (XtCS’TtCS,'utCS)7 t >0, (1.36)

as a functional of the (dual) Brownian web (W, 17\/\).
To avoid a disruption of the flow of presentation, background details on the (dual)
Brownian web we will need are collected in Appendix B.

We proceed in three steps:

Step 1 (Initial states). Assume that X belongs to the following closed subspace of
UR;
UR .= {(X,r,u) € UR: u(X x .) is the Lebesgue measure on R}. (1.37)

In other words, UR is the set of R-marked ultrametric measure spaces where the
projection of the measure on the mark space (geographic space) R is the Lebesgue
measure. This is necessary for the duality between CSSM and coalescing Brownian
motions. We will see that almost surely X5 € UR for all ¢ > 0.

Step 2 (The time-t genealogy as a metric space). To define (X5, 75%) for every

t > 0, let us fix a realization of (W, W), (see the Appendix B for more details). For each
t>0,let

Ay={veR: W(v, t) contains a single path f(v,t)}, E; := R\ A4;. (1.38)

By Lemma B.4 on the classification of points in R? w.r.t. W and )7\/\ almost surely, F; is a
countable set for each ¢ > 0. For each v € A;, we interpret f(v,t) as the genealogy line
of the individual at the space-time coordinate (v,t). Genealogy lines of individuals at
different space-time coordinates evolve backward in time and coalesce with each other.
At time 0, each genealogy line traces back to exactly one spatial location in the set

E= {f(v75)(0) veR,s>0,f¢€ 17\/\}, (1.39)

where we note that F is almost surely a countable set, because by Theorem B.1 and
Lemma B.2, paths in W can be approximated in a strong sense by a countable subset
of paths in W. For each v € E, we then identify a common ancestor £(v) for all
the individuals whose genealogy lines trace back to spatial location v at time 0, by
sampling an individual £(v) € X§® according to the conditional distribution of xS® on
X§3, conditioned on the spatial mark in the product space X§® x R being equal to v.

We next characterize individuals by points in space. Note that there is a natural
genealogical distance between points in A;. For individuals =,y € A, if f(m) and f(y,t)
coalesce at time 7 < t, then denoting u := f(x,t)(()) and v := f(y,t) (0), we define the
distance between x and y by

B 2t — %) if 7 >0, (1.40)
r(z,y) = 2% + rgs(g(u)7£(v)) if 7 < 0. .

First define (X5, rC%) as the closure of A; w.r.t. the metric r, defined in (1.40). Note
that (X5, 7C%) is ultrametric, and by construction Polish.
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Remark 1.21. We may even extend the distance r; to a distance r between (z,t) with
x € Ayand t > 0, and (y, s) with y € A, and s > 0. More precisely, let

r((z,t),(y,8)) == s +t+rgs(§(u)7f(v)) if 7 <0. .

Step 3 (Adding the sampling measure). We now define X5 := (X5,r%S u¢9). For
that purpose, we will represent next X; CS as an enr1ched copy of R (see (1 42) below).

By identifying each = € A, with the path f, ;) € W, we can also identify XS with the
closure of {f(m) EW:zc€ A} in II, because a sequence x, € A; is a Cauchy sequence
w.r.t. the metric r; if and only if the sequence of paths f(mmt) is a Cauchy sequence
when the distance between two paths is measured by the time to coalescence, which by
Lemma B.2, is also equivalent to (f(zmt))nem being a Cauchy sequence in II.

When we take the closure of {f(x,t) eEW:ze A} in 11, only a countable number of

paths in W are added, which are precisely the leftmost and rightmost paths in )7\/\(,@7 t),
when W(x,t) contains more than one path.

Namely for each z € E; (recall from (1.38)), let 27,2z~ denote the two copies of
x obtained by taking limits of =, € A; with either =, | = or =, T x in R, and let
Ef := {a* : 2 € E,}. We can then take

XS = A,UEFUE], (1.42)

equipped with a metric r5, which is the extension of r; from A4, to its closure X5,

giving a Polish space (X5, r&9).

Next to get a sampling measure, note that each finite ball in (X5, with radius
less than t can be identified with an interval in R (modulo a subset of E; U E;f U E;),
and hence can be assigned the Lebesgue measure of this interval. That is, we define the
Borel measure i on (X9, r&S) by

CS)

({2’ e X5 r8(2! x) < 0}) := R(x,8) — L(z,0), §<t,xe X5 (1.43)

if {2/ € X5 : rP8(a’,2) < 6} = (L(w,0), R(z,5)) C R (Note that as we have identified
balls with intervals on R modulo a subset of E; U E;” U E;”, we are free to think of these
intervals as open). We then define the sampling measure ;' on B((XFS,r89) x (R, deua))
by

pE9(dzdv) = g% (dz)d, (dv). (1.44)

This completes our construction of the CSSM genealogy process (Xtcs)tzo.

Remark 1.22 (Notational simplification). In the sequel we will apply the existence of
a mark function and the embedding of the basic set in the enriched reals to simplify
notation. Namely, we will write integrals w.r.t. the sampling measure over X x V
as an integral w.r.t. the Lebesgue measure over R. For example, we will write
Jre 9(@1, 22)d(|x1 — x2|)da 2o Tather than [ - g(v1, v2)d(r(z1, 22))u®?(d((2,v)).

A key feature is again duality. We can replace in the Definition of the process (K;);>¢
from Subsubsection 1.3.2 the random walks by Brownian motions to obtain (KP");>o,
which is dual to the process (X,“5),>¢ by construction:

Corollary 1.23. (H-duality) The tree-valued CS-process and marked tree-valued coa-
lescing Brownian motions are in H-duality, i.e., for each H of the form (1.21),

E[H (XSS, K] = BIH(XSS, KP)). (1.45)
Furthermore by the above construction strong duality holds. (]
EJP 21 (2016), paper 58. http://www.imstat.org/ejp/
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Remark 1.24. Note in the continuum case the function ®™9(-, xB") is not a polyno-
mial since we fix the locations we consider. In order to get a polynomial we need to
consider a function g on mark space with g € C,?b(IE{7 R) over which we integrate w.r.t.
the sampling measure.

We collect below some basic properties for the CSSM genealogy processes that we
just constructed.
Proposition 1.25 (Regularity of states). Let XS := (X¥5),>( be the CSSM genealogy
process constructed from the dual Brownian web W, with XS € UR. Then almost surely,
for everyt > 0:

(a) There exists a continuous (mark) function k; : X% — R, i.e., u&®(dzdv) = p&S(dx x
R)(Sm (z) (d’U);

(b) For each ( € (0,t), X is the disjoint union of balls (Bf);cz of radius (. Further-
more, there exists a locally finite set Ef :={v; }iez C R withv,_1 <wv; foralli € Z,
such that {x(x) : * € B!} = [v;_1,v;] and uSS(BY) = v; — v;_1. We can identify Ef
from W by

Ef ={x € Ey: f(t, 0 and f(; " coalesce at some time s <t — (}, (1.46)

where f(z " and f(; 4 are respectively the rightmost and leftmost path in 1//\/\(95, t);

(€) X8 = (XT3 7S uSS) € UR, i.e., u5(XFS x -) is the Lebesgue measure on R.

Remark 1.26. Using the duality between the Brownian web W and W as characterized
in Appendix B, it is easily seen that we can also write

El={f(t): f € W(x,t — s) for some 2 € R, s > I}. (1.47)

Theorem 1.27 (Markov property, path continuity, Feller property). Let XS be as in
Proposition 1.25. Then

(@) (XF9);>0 is a UR-valued Markov process;
(b) Almost surely, X5 is continuous in t > 0;

(c) For each m € W, let X°S:(™) be a CSSM genealogy process with X_ =™ ¢ UR,
If XOCS’("’) — X% in UR, then for any sequence t,, — t > 0, we have weak

. . cs,
convergence in law, i.e. X, m) XFS, asm — .

(d) For each initial state in UR, L[X“5] converges weakly to the unique equilibrium
distribution on U¥ as t — oo.

Remark 1.28. Notice that this equilibrium state can be represented in terms of a
functional of the Brownian web.

Remark 1.29. We note that if we allow types as well, we enlarge the mark space
from R to R x [0, 1], where each individual carries a type in [0, 1] that is inherited upon
resampling. Theorem 1.27 still holds in this case. We will consider such an extended
mark space in Theorem 1.32 below.

Remark 1.30. Proposition 1.25 shows that even though X{® can be any state in UR,
for t > 0, XS can only take on a small subset of the state space UR. This introduces
complications in establishing the continuity of the process at ¢ = 0, and it will also be an
important point when we discuss the generator of the associated martingale problem.
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1.5 Convergence of rescaled IFV genealogies

In this subsection, we establish the convergence of the interacting Fleming-Viot
genealogy processes on Z to that of the CSSM, where we view the states as elements
of UR (see Remark 1.15). We assume that the transition probability kernel a(-,-) in the
definition of the IFV process satisfies

Z a(0,z)x =0 and o°:= Z a(0,z)x? = Z a(0,z)z* € (0,00). (1.48)

T€EZ TE€Z T€EZ

For each € > 0, we then define a scaling map S. = S? : Uk - Uk (depending on o) as

follows. Let X = (X, r, ) € UR. Then
SeX = (X, Ser, Sep), (1.49)

where (S.r)(z,y) := €*r(z,y) for all z,y € X, and S.p is the measure on X x R induced
by p and the map (z,v) € X x R — (x,e0v), and then the mass rescaled by a factor of
eo~!. More precisely,

(Sep)(F) = eo 'p{(x,e tov) : (x,v) € F}  for all measurable F' C X x R.  (1.50)

We have the following convergence result for rescaled IFV genealogy processes.

Theorem 1.31 (Convergence of Rescaled IFV Genealogies). Let XFVoe .= (XtFV"e)tZO be
an IFV genealogy process on Z with initial condition XOFV’E € U%, indexed by ¢ > 0.
Assume that a(-, -) satisfies (1.48), and S. X, ' — XS for some XS € UR as e — 0.

Then (SEXSF_\QQE),&ZO converges as C([0, o), UR)-valued random variable weakly to the
CSSM genealogy process XS := (X5);5¢ as € — 0.

To prove Theorem 1.31, we will need an auxiliary result of interest in its own on the
convergence of rescaled measure-valued IFV processes to the measure-valued CSSM.
The IFV process with mark space R x [0, 1] is a measure-valued process (P?tFV)tZO, where
)?th is a measure on R x [0, 1], and its projection on R is the counting measure on Z.
Similarly, the CSSM with mark space R x [0, 1] is a measure-valued process (XAtCS)tzo,
where )?tcs is a measure on R x [0, 1], and its projection on R is the Lebesgue measure
on R. Define XV and XS respectively as the projection of the measure component of
XFV and X“S, projected onto the mark space R x [0, 1]. We then have

Theorem 1.32 (Convergence of Rescaled IFV Processes). Let XV-¢ := (X[V“),>( be a
measure-valued IFV process on Z, indexed by € > 0. Assume that a(-,-) satisfies (1.48),
and S. Xy V¢ converges to X8 w.rt. the vague topology for some XS as e — 0. Then
(Sez’?f_vgf)tzo converges as C([0,0), M(R x [0, 1]))-valued random variable weakly to the
CSSM process X5 := (X5);50 as € — 0.

A similar convergence result has previously been established for the voter model
in [AS11].

Remark 1.33. As can be seen from the above convergence results and the regularity
properties of the limit process in Proposition 1.25, on a macroscopic scale, there are only
locally finitely many individuals with descendants surviving for a macroscopic time of §
or more. This phenomenon leads in the continuum limit to a dynamic driven by a thin
subset of hotspots only. For similar effects in other population models, see for example
[DEFT02b, DEF+02al].

1.6 Martingale problem for CSSM genealogy processes

In this section, we show that the CSSM genealogy processes solves a martingale
problem with a singular generator. To identify the generator L®S for the CSSM genealogy
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process (X,°5);>9, we note that for all t > 0, XS satisfies the regularity properties
established in Proposition 1.25. We will see that L®® is only well-defined on & < II'2
evaluated at points X € UR with suitable regularity properties for ® and X.

We now formalize the subset of regular points in U} as follows, which satisfies exactly
the properties in Proposition 1.25.

Definition 1.34 (Regular class of states UY). Let UR denote the set of X = (X,r,u) € UR
which satisfies the following regularity properties:

(@) X € UR, ie., u(X x -) is the Lebesgue measure on R;
(b) there exists a mark function x : X — R, with p(dzdv) = p(dz x R)d, (g (dv);

(c) there exists § > 0 such that for eachl € (0,6), X is the disjoint union of balls (B!);cz
of radius |. Furthermore, there exists a locally finite set E' := {v;};cz C R with
vi_1 < v; for alli € Z, such that {x(z) : x € B!} = [v;_1,v;] and u(B!) = v; — v;_1.

By Proposition 1.25, U is closed under the dynamics of XS (i.e., XS® € UR implies
that Xtcs IS IU]rR for all t > 0), separable, metric measurable subset of the Polish space
UR. However, it is not complete. Note that the first requirement gives rise to a closed
set, the second requirement is known to generate a measurable set [KL15], and it is not
hard to see that the third requirement also generates a measurable set.

Remark 1.35. Similar to the discussion leading to (1.42), for X € UR, we can give
a representation on an enriched copy of R as follows. Property (c) in Definition 1.34
implies that any two disjoint balls in X are mapped by « to two intervals, which overlap
at at most a single point in E' for some [ > 0. Therefore x~!(x) must contain a single
point for all z € R with x not in

E = U;soE', (1.51)

and x~!(x) containing two or more points implies that z is in x(B;) N x(Ba) for two
disjoint balls in X. By the same reasoning, for each x € E, x~!(x) must contain exactly
two points, which we denote by z*, where z* is a limit point of {x~!}(w) : w > z}
and z~ is a limit point of {x~!(w) : w < z}. Similar to (1.42), we can then identify X
with (R\F) U E* U E~, where E* := {2* : x € E}. With this identification and with
(1.44), we can simplify our notation (with a slight abuse) and let i be the measure on
(R\E)U E* U E~, which assigns no mass to E* and is equal to the Lebesgue measure
on R\E.

We now introduce a regular subset of II':? needed to define the generator L°S.
Definition 1.36 (Regular class of functions I1}?). Let I1}'? denote the set of regular test
functions ®™%9 € I1'2, defined as in (1.8), with the property that:

¢
8Ti7j

36 >0 s.t.Vi #] S {1,2, s ,TL}, ((Tk,l)1§k<l§n) =0 V?“iﬁj c [0,5] (1.52)

We can now specify the action of the generator L°® on regular ® evaluated at regular
points, namely L®(X) exists for ® = ®™%9 € [112 and X = (X,r,u) € UR. By Remark
1.35, we can identify X with (R\F) U E* U E~, while y is identified with the Lebesgue

measure on R\ E. The generator L°® is given by
LX) := L{S®(X) + L5®(X) + LBd(X), (1.53)
with the component for the massflow (migration) of the population on R given by

LP(X) = % . ¢(r)Ag(z) da, (1.54)
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and the component for aging of individuals given by

0
LES®(X) = 2/ g(z) E ¢ (r) dz. (1.55)
n — Bri_j -
1<i<j<n ’
These operators are linear operators on the space of bounded continuous functions,
Cy(UR, R), with domain IT"2, and maps polynomials to polynomials of the same order.

The component for resampling is, with 6 ;¢ defined as in (1.19), given by

LX) = > /Xn Lo =r(an)y 9(&) Ona¢ — ¢)(r) p* (dzy)p* (dzy) [] dai, (1.56)

1<k#£1< 1<i<n
<k#I<n 1;&1k,1n

with effective resampling measure and mark functions

P= Y G Y Gum (1.57)

reER el

n(xi) =g forx e F, (1.58)

where E, and z* for « € E, are defined as in Remark 1.35.

Remark 1.37. Note that LSS is singular. First because the effective resampling measure
w* is supported on a countable subset of X and is singular w.r.t. the sampling measure p
on X. Secondly, u* is locally infinite because E N (a,b) contains infinitely many points
for any a < b. Therefore the r.h.s. of (1.56) is now in principle a sum of countably many
monomials of order n — 2.

Indeed, as we partition X = (R\E) U ET U E~ into balls of radius /, with [ | 0, the
balls must correspond to smaller and smaller intervals on R so as not to contradict the
fact that each point in X is assigned one value in R. Nevertheless, LSSCI)(X) in (1.56)
is well-defined at least on UR because by our assumption that ® < IT}'? and condition
(1.52) on ¢, we have 0, ;¢ = ¢ if the resampling is carried out between two individuals
2zt and z~ for some z € E, with r(z*,27) < 6. Thus only resampling involving =z € £
with r(z*,27) > ¢ remains in the integration w.r.t. u*, and such z are contained in the
locally finite set EY introduced in Definition 1.34 (c). Together with the assumption that
g has bounded support, this implies that the integral in (1.56) is finite.

Remark 1.38. The operator LSS, defined on functions in II}'? evaluated at regular
states in UR C UR, is still a linear operator, mapping polynomials to generalized poly-
nomials of degree reduced by two and with domain IT!'2. Here, generalized polynomial
means that they are no longer bounded and continuous, and are only measurable func-
tions defined on the subset of points UF C UR. Hence LS differs significantly from
generators associated with Feller semigroups on Polish spaces.

For LES®(X) to be well-defined for any ® € 112, instead of ® € I1}'?, we need to place
further regularity assumption on the point X at which we evaluate ®. These assumptions
are satisfied by typical realizations of the CSSM at a fixed time, as we shall see below.

Definition 1.39 (Regular subclass of states UR). Let UR be the set of X = (X,r, u) € UR
with the further property that

Z r(zt,27) <oo  foralln € IN, (1.59)

z€EEN[—n,n]

where we have identified X with (R\E) U E* U E~ as in Remark 1.35.

Theorem 1.40 (Martingale problem for CSSM genealogy processes).
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(i) If X, € UR, then the (LCS, 2, dx,)-martingale problem has a solution, i.e., there
exists a process X := (X;);>o with initial state X,, with almost surely continuous
sample path and with X; € UR for every t > 0, such that for all ® € 11*2, and w.r.t.
the natural filtration,

t
(<I>(Xt) — (X)) — / (LCS<I>)(XS)ds)t>O is a martingale. (1.60)
0 =

(ii) The CSSM genealogy process XS constructed in Sec. 1.4 is a solution to the above
martingale problem. Apart from the properties established in Prop. 1.25, for each
t > 0, almost surely X5 € UR,

Remark 1.41. Whether almost surely, X5 € UR for all ¢+ > 0, remains open.

Remark 1.42. Note that different from the usual martingale or local martingale
problems, as for example in [EK86], the test functions here are only defined on a
(topologically not closed, only dynamically closed) subset of the state space.

We conjecture that the martingale problems above are in fact well-posed. A proof
could be attempted by using the duality between the CSSM genealogy process and the
Brownian web. There are however subtle technical complications due to the fact that the
generator of the martingale problem is highly singular. We leave this for a future paper.

1.7 Outline

We provide here an outline of the rest of the paper. In Section 2 we prove the results
on the IFV genealogy processes. In Section 3 we construct the CSSM genealogy process,
and establish in Section 4 the convergence of the IFV genealogies to those of the CSSM,
and in Section 5 results on the martingale problem for the CSSM genealogy processes.
In Appendix A, we collect further facts and proofs concerning marked metric measure
spaces. In Appendix B, we recall the construction of the Brownian web and its dual, and
collect some basic properties of the Brownian web and coalescing Brownian motions.
In Appendix C we prove some results on coalescing Brownian motions needed in our
estimates to derive the martingale problem for the CSSM.

2 Proof of Theorems 1.12 and 1.17

In this section we present the proof of the results on the evolving genealogies for the
interacting Fleming-Viot diffusions. This model is a special case of evolving genealogies
for the interacting A-Fleming-Viot diffusions which are studied in [GKW].

Proof of Theorem 1.12. We will proceed in five steps: (1) We show the result on the
martingale problem and the duality for finite geographic spaces V. (2) To prepare for the
general case where V is countable, we define an approximation procedure with specific
finite geographic space dynamics. (3) We then show the convergence in path space,
as the finite spaces approach V. (4) We verify the claimed properties of the solution
for general V by a direct argument based on the duality and an explicit look-down
construction. (5) Finally, we show that the process admits a mark function.

We will use several known facts on measure-valued Fleming-Viot diffusions. For that
we refer to [Daw93, Chapter 5] for the non-spatial case and to [DGV95] for the spatial
case.

Step 1 (V finite) The case where V is finite is very similar to the non-spatial case. We

therefore just have to modify the arguments of the proof of Theorem 1 in [GPW13] or
Theorem 1 in [DGP12].
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As usual we will conclude uniqueness of the solution of the martingale problem from
a duality relation. Note that in contrast to the (non-spatial) interacting Fleming-Viot
model with mutation considered in [DGP12], in our spatial interacting Fleming-Viot
model, resampling takes place only locally, that is, for individuals at the same site. The
tree-valued dual will therefore be based on the spatial coalescent considered in [GLWO05].
As the calculations to verify the duality relation are the same as in [GPW13] and in
[DGP12], we omit them here.

As for existence of a solution of the martingale problem we consider the martingale
problems for the evolving genealogies of the approximating spatial Moran models. By
consistency of the spatial coalescent, we get the uniform convergence of generators for
free. Thus we only have to show the compact containment condition. Here we can rely
on the general criterion for population dynamics given in Proposition 2.22 in [GPW13].
As V is finite, all arguments given in [GPW13] to verify this criterion simply go through
here as well.

Step 2 (A coupled family of approximating finite systems) Let now V be countable,
and consider a sequence (V,,),en of finite sets with V,, C V, and V,, 1 V. Put for each
n € N, and for all vy,v, € V,

a(v1,v2)1lv, x v, (v1,02) .
an(v1,02) i= | Segevaotiay o LU E Va, 2.1)
5(’01,1}2), if (% ¢ Vn

Denote then by XFV:V» a solution of the martingale problem associated with the operator
(restricted to V,,)

LFV,Vn(I)(X) — 2/ 12 (d(z,v)) g(v) Z

(Xxv)n 1<k<t<n Orkye

G CCIEE) 99 DENCRGILTORTE) [ Rk

+ 27/(X><V)n pEM(A(2,0) 90) D Lop=u Ored — ) (1),

1<k<t<n

and K"~ the spatial coalescent on V,, with migration rate a,(, ) rather than a(-,-).

Notice that a,, is not necessarily double stochastic anymore, which turns the duality
with the spatial coalescent into a Feynman-Kac duality where the Feynman-Kac term
converges to 1, as n — oo, on every finite time horizon. The Feynman-Kac duality reads
as follows (compare, for example, [Seil4, Proposition 3.11]): for all X € IUY,

t
E[HXY V" KCY)] = B[H (X, K™ ) exp ( / A(KY)ds)], (2.3)
0

where

A((ﬂ',f’,g)) = Z ( Z a,(v', &) — 1). (2.4)

em v'eV

which is bounded along the path by |7|- Const, for all ¢ > 0.
Establishing the Feynman-Kac duality requires to check that (compare, Section 4.4 in
[EK86, Theorem 4.4.11]):

LFVH (-, K))(X) = L™ H(X,-)(K) + AK) - H(X,K). (2.5)

This can be immediately verified by explicit calculation (compare, [GPW13, Section 4]
for the generator calculation for the resampling part, and [Seil4, Proposition 3.11] for
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the generator calculation for Markov chains - here migration - whose transition matrix is
not double stochastic).

As for given n € IN, our dynamics consists of independent components outside V,,, we
can apply Step 1, here with the Feynman-Kac duality, to conclude the well-posedness of
the martingale problem with respect to LFV-V».

Step 3 (V countable) Fix &, € UY. In this step we want to show that the family
{XFV:Vai n € IN} is tight, and that every limit satisfies the (L¥V, 1'%, § 4, )-martingale
problem.

Observe first that the family of laws of the projection of the measures on mark
space are tight since the localized state w.r.t. a fixed finite subset A of V' has only
finitely many marks and weight |A| (uniformly in n). We therefore will here ignore
the marks and show tightness in Gromov-weak#-topology. For that we want to apply
[EK86, Corollary 4.5.2]. Since a,,(v1,v2) — a(v1,v2) for all v1,v, € V, we clearly have
that L¥V-V»® converges uniformly to L¥V®, as V,, 1 V, i.e., supycyv [LFVV"@(X) —
L¥V®(X)| — 0, for ® depending only on finitely many sites, it remains to verify the
compact containment condition, i.e., to show that for every 7" > 0, and € > 0 we can find
a compact set Kr . C UV such that for all n € IV,

P(xXfV" € Kr.; forallt € [0,T]) >1—e. (2.6)

For that purpose we will once more rely on the criterion for the compact containment
condition which was developed in [GPW13, Proposition 2.22] for population dynamics.
To see first that the criterion applies, notice that the evolving genealogies of interacting
Fleming-Viot diffusions can be read off as a functional of the look-down construction given
in [GLWO05]. Thus the countable representation of the look-down defines a population
dynamics. In particular, for each ¢ > 0, we can read off a representative (X, r, u:) of
XFV in the look-down graph such that ancestor-descendant relationship is well-defined.
Denote forall¢t > 0, s € [0,t] and = € X; by A;(z,s) € X;_s the ancestor of z € X, back
at time s, and for 7 C X, by D:(7, s) C X; the set of descendants of a point in 7 at time
t.

In the following we refer for each finite A C V to

XEV.A (2.7)

as the restriction of X¥V> to marks in A4, i.e., obtained by considering the sampling
measure u” (dzdv) := 1 apu(dzdv). Fix T > 0. We then have two show that the following
properties are true forall A C V,

» Tightness of number of ancestors. For all ¢ € [0,7] and ¢ € (0,t), the family
{8y (Xy,re, pe); n € IN} is tight, where Sy (X, r,, ;) denotes the minimal number
of balls of radius 2¢ needed to cover X; up to a set of y;-measure «.

» Bad sets can be controlled. For all ¢ € (0,7, there exists a 6 = d(¢) > 0 such
that for all s € [0,7), n € N and o(XFV:V»; u € [0, s])-measurable random subsets
TV C X x Awith ug(JV) <6,

limsupP( sup i (D,Y" (jv", s) X A) > e) <e. (2.8)
nelN te(s,T)

(i) Fix t € [0, T]. W.l.o.g. we assume that V,, is a subgroup of V" with addition +, for
each n € IN. We consider for each n € IN another spatial coalescent K" on V,, with
migration kernel a, (-, -) rather than a, (-, -) where

an(v,0) = Y alv,y), (2.9)

yeViy~nv’
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where ~, denotes equivalence modulo +,. Further, denote by X¥V:V» the evolving
genealogies of the interacting Fleming-Viot diffusions whose migration kernel is a,,(-, )
rather than a,(-,-). We prefer to work with KV». For this spatial coalescent it was
verified in the proof of Proposition 3.4 in [GLWO05] that for any time ¢ > 0 the total
number of partition elements of K" which are located in A is stochastically bounded
uniformly in n € IN. As the kernel a,,(-, -) is double stochastic, X*V:V» and K"~ are dual
(without a Feynman-Kac potential), and as dgp«(XFVV», XFV:Va) 5 0, as n — oo, the
claim follows.

(ii) Fix T > 0, A C V finite, € € (0,7), s € [0,T), n € N and a o(XFV:V»; u € [0, s])-
measurable random subset JV» C X, x A. From the generator characterization of
XFV:Va we can conclude that the process {u (D (7", s)); t > s} is a V-indexed system
of interacting (measure-valued) Fisher-Wright diffusions. We have to find § = §(¢) such
that (2.8) holds if s (J"") < 6.

Notice that {y (D) (J"",s) x A); t > s} is a semi-martingale and given by a martin-
gale with continuous paths due to resampling plus a deterministic flow in and out of the
set A due to migration. Therefore we have to control the fluctuation of the martingale
part and the maximal flow out of the set A over a time interval of length ¢ — s.

The martingale part is estimated from below with Doob’s maximum inequality (the
quadratic variation is bounded uniformly in the state and in n by a constant -|A|, details
are left to the reader). The deterministic out flow occurs at most at a finite rate ¢ x |A|
since the total mass of every site is one. This estimate is uniform in the parameter n
(recall the random walk kernel is perturbed by restricting it to V,,). Similarly the flow
into A can be bounded by ¢ - |A| independently of n but the flow out of the set A occurs
with a maximal rate ¢ independently of n with n > ny(A), and

=2- ! ! . 2.10
o=z max{, et o000, at o) 210
Step 4 (Feller property). We next prove that XV has the Feller property. From
here it is standard to conclude that XV satisfies the strong Markov property (see,
for example, [EK86, Theorem 4.2.7]). Consider a sequence (Xé"))nem in UY such that
X — X,, Gromov-weak*#ly, for some &, € U}. Denote by XFVA™ and XFV-X0 the

n— oo

evolving genealogies of the interacting Fleming-Viot diffusions started in Xé”) and Ap,
respectively, and let I be our tree-valued dual spatial coalescent, and H as in (1.21).
Then for each given t > 0,

E[H (X", K:)|IC:] — E[H (X0, Ki) K], a.s. (2.11)
Thus, by our duality relation,
(n) n
E[HX " Ko)] = BE[H(X™,K1)]
— E[H (X, K)] = E[H (XY, Ko)].

n— oo

(2.12)

Recall from Remark R:gs6 that the family {H™?(-,K); n € IN,¢ € Cb(IREf)); KeS,}is
(n)
convergence determining. Thus it follows that XtFV’X" = XtFV’X‘), forallt > 0.

Step 5 (Mark function) Fix 7 >0, and X, € UY,.

For the proof we will rely once more on the approximation of the solution of the
(LFV, 1119, 5, )-martingale problem by U}, -valued evolving genealogies of Moran models,
XMr where p > 0 is the local intensity of individuals. By the look-down construction
given in [GLWO5], we can define the family {*™*; p > 0} on one and the same probability
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space. Moreover, as the solution of the (LFV,TI1:?, §y,)-martingale problem has continu-
ous paths, due to Skorohod representation theorem we may assume that XtM”’ — XFVY,
as p — oo, uniformly for all ¢ € [0, T], almost surely.

We will rely on Theorem 3.9 in [KL15]. That is, as the solutions of the (LFV, TI1:0, 6, )-
martingale problem have continuous paths almost surely, we have to construct for each
finite A C V, for each t € [0,T], and ¢, d, p > 0 a function h; . 4 € H (recall from (1.13))
and a random measurable set th)e,é,A C X/ such that

lim sup lim sup P{;(X? \ Y/ 5 4) < hye a(6), VE € [0,T]} > 1 —e. (2.13)
510 poo oo

Assume first that the geographic space V is finite. For the construction of such a
function h. v = h. € H and a random measurable set Ypf sV = Y;’ s © X/f, we can proceed
exactly as in the proof of Theorem 4.3 of [KL15] where the statement is shown with
mutation rather than migration in the non-spatial rather than the finite geographic space.

Let now V be countable, and consider a sequence (V,,),en of finite sets with V,, CV
and V,, T V. Consider for each n € N a solution, X¥V:V», of the (LFV:V» TI%C §y,)-
martingale problem with LFV:V» as defined in (2.2). As we have seen above, X, V""" €
U}é{ for all ¢ > 0, almost surely. Moreover, we have shown in Step 3 that each solution
XEV of the (L¥V, 1'% §,)-martingale problem on V can be obtained as the limit of
XFV:Vi asn — oo. To conclude from here that also XFV € UY, for all ¢ > 0, almost surely,
fix a finite set A C V. As done before we denote by X¥V:-VmA = (X, 7)™ ™ (- x (\NA)))¢0
and X*V'A = (X, 7y, i (- x (- x A)))s>0 the restrictions of XFV:V» and ATV, respectively,
to marks in A (compare (2.7)).

For each m > n we couple X*V:V» and X¥V:Y» through the graphical lookdown
construction by using the same Poisson point processes and marking every path which
leaves V,, in the V,,, dynamics by a 1. Moreover, we impose the rule that the 1 is inherited
upon lookdown in the sense that both new particles carry type 1. The sampling measure
of types then follows an interacting Fleming-Viot (in fact two-type Fisher-Wright) diffusion
with selection. The corresponding Moran models are coupled and converge in the many
particle per site limit to a limit evolution, which is the coupling on the finite geographic
spaces and the additional types act upon resampling as under selection.

By construction, if z, 2" € supp(u:(- x A)), their distance is the same in and
XFV:Vm if both carry type 0. Thus for suitably large n (depending on e > 0) such that
A C V, at any location in A the relative frequencies of types 1 at time ¢ can be made less
than any given € > 0 with probability > 1 — ¢ by simple random walk estimates. Namely,
if (Z?)>0 is a a(-, -)-random walk starting in b € V,, C V;, and b’ € CV,,,

XFV,VT,,

P(Z! ¢ V,, for some t € [0,T], Z% € A) (2.14)
+P(z! €V, for some t € [0,T], Z% € A) <6, - 0asn — ooV m > n.

Then the expected frequency of type 1 in locations in A is bounded by F(4,,) with
F(6) — 0as § — 0, which follows from the properties of the Fisher-Wright diffusion with
selection easily via duality.

As a consequence the supremum along the path of the difference in variational norm
of the distance-mark distributions for the V,, and the V,,,-evolution for types in the set A
can be bounded by a sequence converging to 0 as n, m — oo.

Therefore also the limit dynamics on countable V' has a mark function. |

Proof of Theorem 1.17. Let X¥V be the evolving genealogies of interacting Fleming-Viot
diffusions where we have assumed that the symmetrized migration is recurrent. In order
to prove ergodicity we proceed in two steps: (1) We start with constructing the limiting
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object which is tree-valued spatial coalescent. (2) We then prove convergence of XV
to this tree-valued spatial coalescent, at ¢ — oo, for any initial state & € IUY. This
immediately implies uniqueness of the invariant distribution.

Step 1 (Tree-valued spatial coalescent) Recall from [GLWO05] the spatial coalescent
started with infinitely many partition elements per site and with migration mechanism
a(v,v’). If the symmetrized migration is recurrent, we can assign to each realization
a marked ultrametric space, £ = (K,r), which admits a mark function. In order to
equip it with a locally finite measure on the leaves, we consider a coupled family of
sub-coalescents {K¢, p > 0} such that the number of points of a given mark is Poisson
with intensity p. If we now assign each point in K* mass p~!, then it follows from [GLWO05,
Theorem 3] that there exist a measure p on K xV such that foreachv € V, u(K x{v}) = 1.
This reflects the spatial dust-free property. Thus, we can use the same arguments used in
[GPWO09, Theorem 4] to show that the family {(K?, p~! E(z,v)emxv d(z,0)} is tight, and
in fact has exactly one limit point,

K¥ = (K, r%, pb) (2.15)

Step 2 (Convergence into the tree-valued spatial coalescent) For all X, € U} and
Ko € 8, by our duality relation, using the functions H = H™? from (1.21),

E[H (XY, Ko)] =E[H (X, K:)]
— B [¢((rH (4, ) )1<i<j<n)] (2.16)

t— oo

=E[H (K% Ko)].

Once more, as the family {H™?(- K);n € IN,¢ € Obb(IRgf)),IC € $} is convergence
determining by Theorem 1.8(i), we can conclude that for all initial conditions, XFV
converges Gromov-#-weakly to the tree-valued spatial coalescent. |

3 Proofs of the properties of CSSM genealogy processes

In this section, we prove Proposition 1.25 and Theorem 1.27 by using properties of
the double Brownian web (W, W), which was used to construct the CSSM genealogy
process X°S in Section 1.4.

Proof of Prop. 1.25. (a): The existence of a mark function « : XtCS — R follows by
construction (recall (1.44) where the mark is explicitly given). The continuity of s follows
from the property of the dual Brownian web W. More precisely, if z,, —  in (X5 res),
then identifying z,, and x with points on R, it follows that f(mmt) — f(m) in TI for some

path f(%“t) € W(xn, t) and f(m) € )7\/\(3:, t), which implies that x,, — z in R.

(b): By (1.42), we identify XtCS with R, where a countable subset F; is duplicated.
The distance between z,y € X ° is defined to be twice of the time to coalescence
between the dual Brownian web paths f(x,t) € W(z,t) and f(y,t) € W(y,t), if the two
paths coalesce above time 0. Therefore for [ € (0,¢), each ball Bf» of radius [ correspond
to a maximal interval [v;_1,v;] C R, where all paths in {f(x,t) € W(x,t) cx € (vi—1,v;)}
coalesce into a single path by time ¢t — [. The collections of such maximal intervals
(vi_1,v;) form a partition of R\E!, where E! = {v; : i € Z} is exactly the set defined in
(1.46).

(c): Fix an [ € (0,¢). By construction, for each ball B! of radius I, k(B!) = [v;_1,v;] is
assigned the Lebesgue measure on R. Together with (b), it implies that uS (XS x ) is
the Lebesgue measure on R. |
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Proof of Theorem 1.27. Let us fix a realization of the Brownian web }V and its dual )7\/\
and let XS be constructed from W as just before Proposition 1.25. By (1.42), for each
t > 0, we can identify XS with A, U E;t U E;, where A, and E, are defined as in (1.38).
To simplify notation, we will drop the superscript CS in the remainder of the proof.

(a): The Markov property of (X;);>o follows from the Markov property of W and W.
More precisely, if we denote by f|% the restriction of a path f € II to the time interval
[s,t], and K[} := {f[, : f € K} for a set of paths K C II, then W|§ is independent of W|°
for each s > 0. The same is true for W since W|§ and W|O a.s. uniquely determine each
other by Theorem B.3. The Markov process (X;);>o is time homogeneous because W}, is
equally distributed with W|$*¢, apart from a time shift.

(b): Let X, € UR. We first prove that (&;);>0 is a.s. continuous in ¢t > 0. To accomplish
this, since 112 is convergence determining in UR as shown in Theorem 1.8, it suffices to
show that for any ® := ®%%9 ¢ II''2, the evaluated polynomial

(X)) = | ¢(ro)g(z)dz (3.1)
]R‘n. -
is continuous in ¢, where z = (z1,...,2,), 7t = (r(z;, 2;))1<i<j<n, and given the
identification between X; and A; U E;f U E;” and the definition of », we have replaced
integration w.r.t. u; on X; x R by integration w.r.t. the Lebesgure measure on R. By
(1.40), for Lebesgue a.e. x;, z; € R, we have

| N 2(75*72) lf’f'ZO, 3.2
) gt el bw) it <0, o

where 7 is the time of coalescence between f(myt) and f(yyt), f(myt) (0) = u, and f(z’t) (0) = v.
By Lemma B.4, for each ¢ > 0, W(x, t) contains a single path for all but a countgble
number of z € R. For such z, by Lemma B.2, the time of coalescence between f, .
and f(m) tends to ¢ as s — ¢, and hence lim,_,; 7((x, s), (x,t)) = 0, where r((z, s), (z,t)) is
defined in (1.41) and extends the definition of r;(x, y) to individuals at different times.
Since

rs(@i, z5) — (@i, z5)| < (@4, 8), (23, 8) + (25, 9), (25, 1)), (3.3)

it follows that when ¢ > 0, for Lebesgue a.e. z;,z; € R, 1 <14 < j < n, we have
ll_}H% re(xi, i) = 1re(T4, ;). (3.4)

We can then apply the dominated convergence theorem in (3.1) to deduce that, for each
t >0, a.s.
lim ®(X;) = &(X). (3.5)

s—t

This verifies that (X;);>0 is a.s. continuous in ¢ > 0.

Proving the a.s. continuity of (X});>0 at ¢t = 0 poses new difficulties because Xj can
be any state in UF, while for any ¢ > 0, &X; is a regular state as shown in Proposition 1.25.
We get around this by showing that X admits a cadlag version. More precisely, we invoke
a part of the proof of the convergence Theorem 1.31 that is independent of the current
proof. Note that for any X, € UR, we can find a sequence X, ' “ € UZ%, indexed by ¢ > 0,
such that SGXOF Ve Xy. Indeed, we only need to approximate the mark space R by €¢Z
in order to construct S. X(F V'€ from Xp. In the proof of Theorem 1.31, it is shown that
the corresponding sequence of interacting Fleming-Viot genealogy process (.S, x¥ _2 ; V>0
is a tight family of D([0, 00), UR)-valued random variables, where D(]0, o), UR) denotes
the space of cadlag paths on UR equipped with the Skorohod topology. Furthermore,
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(SeXf_\gf)tZO converges in finite-dimensional distribution to the CSSM genealogy process
(Xi)i>0. Therefore, (X;);>o must admit a version which is a.s. cadlag, with X; — A} as
t | 0. Since we have just shown that the version of (X;),;>¢ constructed in Sec. 1.4 is a.s.
continuous in ¢ > 0, it follows that the same version must also be a.s. cadlag, and hence
continuous at ¢ = 0, which concludes the proof of part (b).

(c): To prove the Feller property, let Xo(m) — Xp in UR, and let ¢,,, — ¢t > 0. To show
Xt(TT) = X;, by Theorem 1.8, it suffices to show

lim E[@X™)] = E[@(X,)] V&=aom%9cIlh? (3.6)

m—o0

We claim that the convergence in

lim E[®(X;)] = E[®(X;)] is uniform w.r.t. the initial condition Xj. (3.7)

s—t

In particular, as m — oo,
E[®(x{™)] - B[@(x™)] - 0.

To prove (3.6), it then suffices to show that

lim E[@(X™)] = E[®(X;)). (3.8)

m—r00
We prove (3.7) and (3.8) next.
Proof of (3.7). By the Markov property of X, it suffices to show thatas ¢ | 0,

|E[®(X;)] — E[®(Xy)]] — 0 uniformly in X;. (3.9)

Note that we can write

E[@(Xo)]:/ g(@) Elp({ro(&(z:), £(75)) h<icj<n)] dz, (3.10)

n

where for each z € R, £{(z) € X, is sampled according to the conditional distribution of
o on X, conditioned on the spatial coordinate in Xy x R being equal to x. On the other
hand,

E[®(X)] = /Rn 9(@)E[d({r(zi, 2)) }hi<icj<n)] da. (3.11)

Let F'(z,t) denote the event that the dual Brownian web paths f(mht), e f(mmt) do not
coalesce during the time interval [0,¢]. We can then partition E[¢({r:(z;, z;) hi<i<j<n)]
into expectation restricted to F(z,t) and F°(x,t) respectively. On the event F(z,t), we
can replace f(zm), 1 < i < n, by independent Brownian motions (z;(s))s<¢, 1 < i < n,
starting respectively at z; at time ¢t and running backward in time. Then

re(i, 25) = 2t +10(€(2:(0)), €(25(0)))- (3.12)

Let F(z,t) denote the event that (zi(s))s<t, 1 <i < n, do not intersect during the time
interval [0, ¢]. Then using (3.12), we can rewrite (3.11) as

E[®(X;)]

— [ S@El6( rel o+ [ g@BLO(2t + rol€(z:(0)): e (O hisicsen)] d

n

~ [ o@Blo({2e+ 1o(€(@:(0). (5O hisicsen) g ) da
(3.13)
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Note that for Lebesgue a.e. z1, ..., z,, P(F°(z,t)) = P(F(z,t)) — 0 as ¢ | 0. Therefore
by the bounded convergence theorem, the first and third term on the right hand side of
(3.13) converges to 0 as t | 0, uniformly in &,. For the second term on the right hand
side of (3.13), we can make the change of variable y; := x;(0), y;(s) := x;(s), to rewrite it
as

[ Elgn (@ om®) 902+ 1ol ) hsisenl dy. G20

For each y € R", clearly the quantity inside the expectation converges a.s. to the
analogue in (3.10) as ¢ J} 0, and the speed of convergence does not depend on A&j.
Therefore the expectation in (3.14) also converges, uniformly in Xy. Using the fact that
g has bounded support, while g and ¢ are both bounded, we can easily dominate the
integrand in (3.14) w.r.t. dy by an integrable function as ¢ | 0; (3.9), and hence (3.7)
follows.

Proof of (3.8). For each x; € R, 1 < i <, let us denote f(xi,t) € W(mi,t) by f;. Then

E@(x")] = [ g@Blo(™ Jdz, (3.15)

where rt(m = {rt (xl,xj)}1<1<]<n depends on the realization of (f1)1<z<n Let 7 be

the smallest time in [0,¢] when a coalescence occurs among the paths (fi)lgign. Let
I,...,I; denote the partition of {1,...,n}, where all fl with ¢ in the same partition
element I, have coalesced into a single path at time 7. Conditioned on ( f,»)lgign on the
time interval [7, ¢], the distribution of the remaining & coalescing Brownian motions on
the time interval [0, 7] is then given by the distribution of k¥ Brownian motions conditioned
not to intersect on the time interval [0, 7], and their positions at time 0 has a probability
density in R*, which we denote by gfj(vl, ...,u;). Note that conditioned on (fi)lgign

on the time interval [7, ¢| and their positions vy, ..., v; at time 0, d)({r,fm)(mi, zj) M<i<j<n)
only depends on {r(()m) (&(vs),€(v5)) hi<i<j<k, cf. (3.2). We can therefore write

®; (X5™) = Blo(d™) | (fi(5)1<icn sefra]
(m) (3.16)
= [ 75001 0Bl (600, 0 i o))
where given the realization of (fi(s))lgign,se[‘i—,t] and {f;(0)}1<i<n = {v1,..., 0},
67 - ({rd™ (€W, 60 h<icizn) = ¢({ri™ (@i, 7)) h<ici<n). (3.17)

Note that ¢ ir is a polynomial of order k£ on UR, defined from the bounded continuous
functions g I and ¢ j .+, €xcept that g is does not have bounded support. Nevertheless,
9j 7 is integrable and can be approximated by continuous functions with bounded support.
Therefore from the assumption X\™ — X, in UR, we deduce that (I>f~_+(X0(m)) — @5 (X))

for Lebesgue a.e. x1,...,x, and a.e. realization of (fi(S)hgign,se[%,ty It then follows from
the bounded convergence theorem that

Ele(x") = [ glBle (Aldr — [ g@Bos, (@lds = Bp@), @.18)

m—r o0 R

which concludes the proof of the Feller property.

(d): This follows readily from the construction of the CSSM genealogy process X;°5.
For any N > 0, the genealogical distances among individuals with spatial locations in
[N, N] are determined by coalescing Brownian motions in the dual Brownian web W.
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The initial condition XOCS affects the genealogical distances only on the event that the
backward coalescing Brownian motions starting from [— N, N] at time ¢ do not coalesce
into a single path by time 0. As t — oo, the probability of this event tends to 0, and
therefore (th—ss)SZO converges in distribution to the CSSM genealogy process constructed

from W as in Section 1.4, with initial condition being at time —oo. |

4 Proof of convergence of rescaled IFV genealogies

In this section, we prove Theorem 1.31, that under diffusive scaling of space and
time as well as rescaling of measure, the genealogies of the interacting Fleming-Viot
process converges to those of a CSSM. In Section 4.1 we prove f.d.d.-convergence, and
in Section 4.2 tightness in path space. In Section 4.3, we prove Theorem 1.32 on the
measure-valued process, which is needed to prove tightness in Section 4.2.

As in Theorem 1.31, let (X[ V)50 = (X; 1y % up V%), be the family of IFV
genealogy processes on Z indexed by ¢ > 0, such that S.Xj *© — X5 € UR ase — 0, and
let (X5)i>0 = (X5, 785, u8®),~,, be the CSSM genealogy process with initial condition
P

4.1 Convergence of finite-dimensional distributions

In this subsection we prove the convergence (Se)ci‘;’;)tzo = (X 5);>0 in finite-
dimensional distribution, i.e.,

(SeX0e . SXFV%Z)G = (X5, A5 Vo<t <ty<--<ty, (4.1)

where = denotes weak convergence of (UR)’“—Valued random variables. By [EK86,
Prop. 3.4.6] on convergence determining class for product spaces, it suffices to show
that for any ®; := ®"#%:9: ¢ [I12, 1 < ¢ < k, we have (recall (1.8))

{H@ (S XY }TSIEHE[@(XSS)}. 4.2)
i=1

For notational convenience we assume first that the initial tree is the trivial one (all
distances are zero) and we shall see at the end of the argument that this easily general-
izes. We will first rewrite both sides of this convergence relation in terms of the dual
coalescents and then apply the invariance principle for coalescing random walks.

Step 1 (Claim rephrased in terms of coalescents). We can by the definition of the
polynomial in (3.1) rewrite the left hand side of (4.2) as

B[ [ oi(sxr)]
k 4.3)
= E[H(ea—l)f” D gileo ™ (@h)1<axn, ) di (€2 (r5y (&, ())&, (ﬂfi)))lga@gm)}v

FV,e

where for each time ¢;, we sample n; individuals in X __, e

(7%)1<a<n,, With

at respective spatial positions

&;.(x,) being sampled from XF,\g; according to /ngzti (‘|xa), (4.4)

FV,e OnXFVe

the conditional distribution of y__, s 2},

equal to z, € Z.

conditioned on the spatial mark being
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By the space-time duality relation (1.32) for the IFV genealogy processes, every
summand of the R.H.S. of (4.3) can be calculated in terms of coalescing random walks.
Namely, the joint law of the space-time genealogies of the sampled individuals &;, (xi) e
XEF_\Q; 1 <a<n;and 1 <1 <k, is equal to that of a collection of coalescing random
walks (27 (s))s<c-2;, (recall here time s runs backwards), starting respectively at z/,
at time ¢~?¢;, where each walk evolves backward in time as rate 1 continuous time
random walk on Z with transition probability kernel a, and two walks at the same
location coalesce at rate v. From the duality relation we get the following the stochastic
representation:

PEVLE ) 2(s = 7) if7 >0, 4.5
: (’y)'_{2s+r§“<5<>50< ) <o, *:5)

where 7 denotes the time of coalescence between the two coalescing walks starting at
x,y € Z at time s, while u, v are the positions of the two walks at time 0.

We observe next that the continuum population is represented by A; U E:r UE, which
is a version of R marked on F; by +, —, the geographic marks are the reals and since the
sampling measure is Lebesgue measure, we can write polynomials based on integration
over R instead of X x V as:

[ [ e iswiet@) = [ 2 @gwe(w) (4.6)
XV R

We can rewrite using the duality of Corollary 1.23, see also (1.41), the R.H.S. of (4.2)
in the same form as in (4.3):

k

B[] e:(x) = E[f[ | ai(@incasn) n( 0S50k v ncocin)by]. @)

i=1

where at each time ¢;, we sample n; individuals from X; Cs according to ey, CS (which is
Lebesgue measure on R) at positions (y’)1<q<n,, and thelr joint space-time genealogy
lines are by construction distributed as a collection of coalescing Brownian motions
(y%(s))s<t,, evolving backward in time.

To link (4.3) with (4.7), we note that in (4.3), we can regard

k

[Tco™)™ > gileo™ (@h)1<asn,)us -+~ 0ai, (4.8)

i=1 zi,..., xj,l €7

as a finite signed sampling measure (recall that g has bounded support), which is easily
seen to converge weakly to the finite signed sampling measure appearing in (4.7), namely

k
119 (Wi 1<asn,)dyt - dys,. 4.9)

i=1

To prove (4.2), it then suffices to show that (having (4.8)-(4.9) in mind): If for each
1<a<n;and1<i<k 2%°€Zandeo t2i¢ — 4 as e — 0, then

[H@ (%5 (6, (05, &, (o5 D)1 cacozn) | = [H@ 5 (0 U1 za<hzns) -

(4.10)
Step 2 (Invariance principle for coalescents). We next prove (4.10) by means of
an invariance principle for coalescing random walks.
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This invariance principle reads as follows. Given a collection of backward coalescing
random walks starting at e-dependent positions z%¢ € Z at time ¢ %t;, 1 < a < ny,
1 <i <k, such that eoc 125 — 4% as € — 0, the collection of coalescing random walks
(25°(8)) s<e—21,, Tescaled diffusively as (eo~'z%(e72s))s<y,, converges in distribution to
the collection of coalescing Brownian motions (y5(s))s<¢, evolving backward in time.
Furthermore, the times of coalescence between the coalescing random walks, scaled
by €2, converge in distribution to the times of coalescence between the corresponding
Brownian motions. The proof of such an invariance principle can be easily adapted from
[NRSO05, Section 5], which considered discrete time random walks with instantaneous
coalescence. We will omit the details.

Let § > 0 be small. Note that the collection of rescaled coalescing random walks
(ec~ 1zt (e725)) restricted to the time interval s € [§,1;], together with their times of
coalescence, converge in joint distribution to the collection of coalescing Brownian
motions (y!(s)) restricted to the time interval s € [§,tx], together with their times
of coalescence. Using Skorohod’s representation theorem (see e.g. [Bil89]), we can
couple (eo'ak(e725)) (5, and (yL(s))seqs,t,] such that the paths and their times of
coalescence converge almost surely. Let us assume such a coupling from now on.

By the same argument as in the proof of Theorem 1.27 (c), we can rewrite the
expectations in (4.10) in terms of the backward coalescing random walks xff € Z and
coalescing Brownian motions y’. Furthermore, we can condition on the coalescing
random walks z%¢(s) on the time interval [§e~2, ¢~ 2t;] and condition on the coalescing
Brownian motions ¥ (s) on the time interval [d, ¢;], coupled as above.

Given the locations u{,...,u; € Z of the remaining coalescing random walks at
time §e~2, we now make an approximation and replace them by independent random
walks on the remaining time interval [0, ¢~ 2], and make a similar replacement for the
coalescing Brownian motions. Note that the error we introduce to the two sides of (4.10)
is bounded by a constant (determined only by |¢;|~, 1 < i < k) times the probability that
there is a coalescence among the random walks (resp. Brownian motions) in the time
interval [0, e 2] (resp. [0, §]), which tends to 0 as § | 0 uniformly in € by the properties of
Brownian motion and the invariance principle. Therefore to prove (4.10), it suffices to
prove its analogue where we make such an approximation for a fixed § > 0, replacing
coalescing random walks (resp. Brownian motions) on the time interval [0, Je 2] (resp.
[0, d]) by independent ones. Let us fix such a § > 0 from now on.

By conditioning on the coalescing random walks and the coalescing Brownian motions
on the macroscopic time interval [d, tx] and using the a.s. coupling between them, we
note that the analogue of (4.10) discussed above follows readily if we show:

Lemma 4.1. If u{,...,u; € Z satisfy ec tué — wu; as € — 0, then for any bounded
1
continuous function 1) : IR(2) — R, we have

> gs(@ s m) Bl ((Erg €S (), 6(@5))i<ici<t)]

T1,...,C1EZ

— ]Rlgé(ylw-~,yl)E[w((rgs(E(yi)aE(yj)))ISKjSl)]dyv

(4.11)

e—0

where ¢§(z) is the probability mass function of | independent random walks at time de~2,
starting at ug, ...,uj; while gs(y) is the probability density function of | independent

Brownian motions at time 0, starting at uy, ..., u;.

Proof. If we can replace g§(z1,...,7;) in (4.11) by (0 1)lgs(ec a1, ..., e071a;), then
(4.11) follows immediately by applying the polynomial ®"¥:9 to the states SeXOF Ve
and X5, using the assumption S, X} V* — XS, The only problem is that gs; does
not have bounded support as we require for a polynomial. However, it is continuous
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and integrable, and hence can be approximated by continuous functions with bounded
support. Therefore the above reasoning is still valid.

To see why we can replace g§(z) by (ec~!)!gs(ec~1z), note that by the Iocal central
limit theorem (see e.g. [Spi76]),

(™)) 'g5(Te " oyl) — s(y) (4.12)
uniformly in y € [~L, L]’ for any L > 0. Therefore when we restrict the summation in
411 tozx € [:6_1.[/7 e_lL]l, the replacement induces an error that tends to 0 as ¢ — 0. By
the central limit theorem, the contribution to the sum in (4.11) from z ¢ [—e 'L, e ' L]
can be made arbitrarily small (uniformly in €) by choosing L large, and hence can be
safely neglected if we first let ¢ — 0 and then let L — oo. |

4.2 Tightness

In this subsection we prove the tightness of the family of rescaled IFV genealogy
processes, (S.XFV:€) ., regarded as C([0, o), UR)-valued random variables.

First we note that it is sufficient to prove the tightness of (S.X"V:€) . as random
variables taking values in the Skorohod space D([0,00), UR). Indeed, the tightness of
(S.XFV€) - in the Skorohod space, together with the convergence of S XFV:€ to X5
in finite-dimensional distributions, imply that S.x¥V:¢ = X5 as D(]0, ), UR)-valued
random variables. In particular, (X %);>0 admits a version which is a.s. cadlag. Together
with the fact that X is a.s. continuous in ¢ > 0, which was established in the proof of
Theorem 1.27 (b), it follows that Xtcs must be a.s. continuous in ¢ > 0. Note that this
concludes the proof of Theorem 1.27 (b).

Using Skorohod’s representation theorem (see e.g. [Bil89]) to couple (S X¥V:).~q
and X'“S such that the convergence in D([0, 00), UR) is almost sure, and using the a.s. con-
tinuity of (X%);>0, we can then easily conclude that S XTV¢ — XS a.s.in C([0, c0), UR),
which implies the tightness of (S.X¥V:¢) o as C([0, c0), UR)-valued random variables.

By Jakubowski’s criterion (see e.g. [Daw93, Theorem 3.6.4]), to show that (S.XFV:€) .
is a tight family of random variables in the Skorohod space D([0, 00), UR), it suffices to
show that the following two conditions are satisfied:

(J1) (Compact Containment) For each T > 0 and § > 0, there exists a compact set
K15 C UR such that for all € > 0,
P(SX™ € KrsV0<t<T)>1-6; (4.13)

t

(J2) (Tightness of Evaluations) For each f € I1':2, (f(SeXeF_\;f))tZO, indexed by € > 0, is
a tight family of D([0, ), R)-valued random variables.

Note that II*2 (recall from (1.9)) separates points in UR by Theorem 1.8, and is closed
under addition.

We first prove (J2), following an approach used in [AS11], where a family of rescaled
measure-valued processes induced by the voter model on Z is shown to be tight and
converge weakly to the measure-valued CSSM as ¢ — 0. We will verify (J2) via Aldous’
tightness criterion (see e.g. [Daw93, Theorem 3.6.5]), reducing (J2) to the following
conditions:

(A1) For each rational ¢t > 0, {f (SEX::;\;;)}€>O is a tight family of R-valued random

variables.
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(A2) Given T > 0 and any stopping time 7. < T, if §. | 0 as € | 0, then for each n > 0,

ljﬁ}]Pﬂf (SeXNE ) = F(SXTN0) > ) = 0. (4.14)

Proof of (J2) via (A1)-(A2). Note that each f € II'2 can be written as f = Zle c;®

for finitely many ®; € IT"'2 and ¢; € R. It then follows by the triangle inequality that
to verify (A1)-(A2), it suffices to consider f = ® € II'2. We abbreviate for ® € II'2,
D5 = B(S. XY,

(A1). Note that for ® = &™%9 ¢ I1*2, (®$).~¢ is uniformly bounded, because ¢ is
bounded, g is bounded with bounded support, and the projection of S, /,LF,VQt6 on the mark
space R converges to the Lebesgue measure as ¢ | 0, giving (A1).

(A2). We will use the duality between interacting Fleming-Viot processes and coalesc-
ing random walks (see Theorem 1.17 and Corollary 1.20). Recall that ®§ = @(SCX?,;;).
First, we bound

P07 5. — 9%, [ > 1)

< nﬂE[(@ﬁ - 957
= LEIBI(®;, 5, — 0,7 2] .
< EVar(®, 5 | X00)] + E[(E® | X0 - 05)%),

where in the second inequality, we added and subtracted E[®] , 5 [ A~ Fv, 2} ] from @¢ o

¢ and used (a + b)? < 2a? + 2b2. We treat the two terms on the r.h.s. separately.
First term in (4.15). We bound this term by bounding Var(®¢ 5 | X." FVoe ) uniformly

in X FV ¢ . First note that XFV:€ is a strong Markov process by Theorem 1.12. Therefore

XFV(ET .s.) can be seen as the IFV genealogy process XFV:€ at time e 26, with initial

FVE

condition X__,°. In particular, it suffices to bound Var(®§ ) uniformly in the initial

condition A V ¢, which we can assume to be deterministic.

Let ® = <I>”¢9 and denote z := (21,...,%,) € Z", y := (y1,-..,Yn) € Z". Then by the
definition of the scaling map S, in (1.49), we have
Var(®§,)
n FV,E € €
= Var (8" *9(S. X255 ) = E[(®5,)°] — E[®§ ]

= (0 ')*" Y gleo'a)g(eo™y) Cov(g(r 5 (), ¢(Er 5 (1)),

T,YyeL™

(4.16)

where _2 5. ¢ (z) denotes the distance matrix rF_VQ ; (&(z4),&(x))1<i<j<n of n individuals

&(x1), ... ,&(x,) sampled independently from XF 2; at positions z1, ..., z, respectively.

In order to evaluate the r.h.s. of (4.16) we represent the quantity using the duality in
terms of a collection of coalescing random walks as follows.

Let (X;")1<i<n and (X}")1<i<n denote a family of rate 1 continuous time random
walks on Z with transition kernel @ as in (1.15), and every pair of walks at the same site
coalesce at rate v. The coalescence gives a partition of the set of coalescing random
walks at time ¢72§,, and independently for each partition element, say at position
z € Z, we sample an individual from XFV ‘ at position 2. Let Tgv E(Xizé ) denote
the distance matrix of the collection of sampled individuals associated with the walks
erz(; Ve ,Xm,% at time €24, and let TFV E(Xi% ) be defined similarly. We can further
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construct (XY*)1<i<n, a copy of (XY*)1<i<n, which coincides with (X?*);<;<, up to time
€25, on the event

Ge-25.(z,y) = {none of (X*);<;<, coalesces with any (X¥);<;<, before time "4},

such that ()N(yi)1<i<n is independent of (X;")i1<;<,. Let rgv E(X*_Qé

distance matrix, which is independent of rg v, 6(X ~.5 ). By the duality relation (see
Theorem 1.17), we have )

Cov(p(erl s (2)), ¢l s (1))

= Cov(g(e?rg " (XE.5)), dle?rg " (X2E15)))

=E[p(e*rg " (XE.5))o(e2rg (XL 25))] — Blo(ery (X205 )] E[o(?rg V(XL 25))]
= B[g(e*rg " (XEo5 V{015 (X ag) — (g (X a5 )}

< 2(¢2P(Ge2s, (2,9)°)

<2l D Plray, <€ %),

1<i,j<n

) be the associated

(4.17)
where 7,, ,,, denotes the time it takes for the two walks X% and X"’ to meet. Note that
this bound is uniform w.r.t. XOF Voe, Substituting it into (4.16) then gives

Var(®§ )

<lgl2 > (60‘1)2" gleo ™ z)g(eo y)P(Te, y, < €26c)
1<i,j<n yezn (4.18)

= |¢|go Z Z ( ) ( )g(g)IP(Tefla.fcj,eflnyj < 6_26e)a

1<i,j<n z,ycec 1zmn

where Z := eo 'z and § := eoc " 'y.

We claim that the r.h.s. of (4.18) tends to 0 as € | 0. Indeed, the measure

(o™ 1) Y- Y 05.05,9@)(@)

1<i,j<n &,§€eo—12Zn

converges weakly to the finite measure g(Z)g(y)dZdy on R2" as ¢ | 0. By Donsker’s
invariance principle and the fact that . — 0 as ¢ | 0, we note that for any A > 0,

-2
P(Teflaii,eflayj <e 66) 3 0

uniformly in Z; and g; with |Z; — g;| > A. It follows that when restricted to #; and g,
with |Z; — g;| > A, the inner sum in (4.18) tends to 0 as € | 0. On the other hand, when
restricted to #; and y; with |Z; — gjj| < ), the inner sum in (4.18) can be bounded from
above by replacing P(-) with 1, which then converges to the integral of the finite measure
9(Z)g(y)dzdy over the subset of R*" with |Z; — ¢;| < A, and can be made arbitrarily small
by choiosingi)\ > (0 small.

This proves that Var((bge) tends to 0 uniformly in Xg Vi€ as e J 0, and hence the first
term in (4.15) tends to O as € | 0.

Second term in (4.15). By the strong Markov property of X¥V-, it suffices to bound
|E[®§ ] — ®§| uniformly in the (deterministic) initial condition Xy ¥

Let (X;")1<i<n, rgv E(Xizé ), and rfv “(z) be defined as before (4.17). Let (X’fi)lgign
be a collection of independent random walks, such that ()N(fi)lgign coincides with
(X{")1<i<n up to time e~ 24, on the event

G.-2;,(z) := {no coalescence has taken place among (X**);<;<, before time ¢ 25 }.
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Then we have

|E[®5,] — @5

= wo | Y sl DB @)] - Y gleo pBlo(r W)
zEZ™ yezr

= (o7 D gleo ' )B[p(Prg (KXo )] = D 9(60‘1y)1E[</>(627‘§V’6(g))]‘
z€Zn yezr

< (@] T gler B[O (RE L )] - Y sleo B[S @)
zELZ™ yeZ"

+ (o) 3 gter B [{olerd (K, ) = ol (R ) e, 0] |

zEZ™

Note that the second term in the bound above tends to 0 as € | 0 by the same argument
as the one showing that the bound for Var(@gs) in (4.18) tends to 0 as € | 0. To bound the
first term in the bound above, we decompose according to the positions of the random
walks and rewrite it as follows, where p; (z) denotes the transition probability kernel of
XP:

()"

> g(za) Bl (X )] = Y 9(=p)B[s(er )]

zeZn yezn
Hpgg(yi —zi)g(£z)E[g(’rg ()] — > g(ig)E[Qﬁ(EQTgve(g))H
yEZ" z€Zn i=1 yezn
<léloe D () pg%(yi —2:)(9(5z) —g(iy))‘
yezn z€Zn i=1
=lele > (5 psy (0 — w){ £ (e y. Vo(50)
yezn zezni=1 °

+ e~y Vg (Sulz ) (@ - ) ||

n

n+2
< C|¢‘oo|v2.g|00 Z H fg T xz 1{ £zesupp(g)} + 1{§g€supp(g)}) Z(yl - xi)Z
z,yeZn i=1 i=1

< 20CBloel V2loe (£)" D Lyeo—tyesupp(on) G
yeZ™

(4.19)
where C is a constant depending only on n. In the derivation above, we Taylor expanded
g(ec~'z) around eoc 'y when either eo~ 'z or eo 'y is not in the support of g, Vg and Vg
denote the first and second derivatives of g, and u(z, y) is some point on the line segment
connecting z and y. Lastly, we used the fact that 3°__, zp:(2) = 0 and 3, 2%pi(z) = to>.
Since g has bounded support, the bound we obtained above is bounded by C’§, for some

C" depending only on n, ¢ and g, and hence tends to 0 as € | 0.
This verifies that the second term in (4.15) also tends to 0 as € | 0, which concludes
the proof of (A2). [ |

We have verified (J2) above and hence to conclude the proof of tightness of
(S.XFV€) ¢ as a family of random variables in the Skorohod space D([0,c0), UR), it only
remains to verify the compact containment condition (J1). Some technical difficulties
arise. Because the geographical space is unbounded, truncation in space is needed. We
also need to control how the sizes of different families fluctuate over time, as well as how
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the population flux across the truncation boundaries affect the family sizes. Our strategy
is to enlarge the mark space by assigning types to different families. Using a weaker
convergence result, Theorem 1.32, for measure-valued IFV processes with types (but
no genealogies), we can control the evolution of family sizes as well as their dispersion
in space, which can then be strengthened to control the genealogical structure of the
population. As we will point out later, Theorem 1.32 can be proved by adapting what we
have done so far, because condition (J1) is trivial in that context. Therefore invoking
Theorem 1.32 to prove (J1) for the genealogy processes is justified.

Proof of (J1). As noted in Remark 1.4, we can regard U® as a subset of (U'f)N, endowed
with the product R-marked Gromov-weak topology. Since the product of compact sets
gives a compact set in the product space (U]}{)IN, to prove (J1), it suffices to show that
for each k € NN, the restriction of (SEXEF,\gf)tZO,oo to the subset of marks (—k, k) C R,
ie.,

S X = (XN Sert o L jujemy Sept s (dzdv)), £ >0,€> 0,

€ e 2t 27,5
satisfies the compact containment condition (4.13). More precisely, it suffices to show
that for each 7' > 0 (which we will assume to be 1 for simplicity), and for each § > 0,
there exists a compact K5 C UR, such that for all € > 0 sufficiently small,
P(SHXTc e KsVo<t<1)>1-4, (4.20)

t

where k € IN will be fixed for the rest of the proof.
We will construct K}, K2, K3 ¢ U%, which satisfy respectively conditions (i)-(iii)
in Theorem A.1 for the relative compactness of subsets of IU]}‘. We can then take

K; := K} N K} N K3, which is a compact subset of IU]}‘. To prove (4.20), it then suffices
to prove the same inequality but with K replaced by K for each 1 < ¢ < 3, which we do
in (1)-(3) below.

Later when we construct K? and Kj, we will keep track of the mass of different
individuals having some specified properties. The way to do this is to introduce additional
marks. We will enlarge the mark space from R to R x [0, 1], where [0, 1] is the space of
the additional types, and XtFV"C and XS then become random variables taking values
in the space UR*[01 For each (X,r,u) € UR*%U, (dzdvdr) is then a measure on
X x R x [0,1]. The types of individuals in X; ** and XS will be assigned later as we see
fit.

(1) First let K; be the subset of U}, such that for each (X, r,u) € Kj, u(X x -) is
supported on [—k, k|, with total mass bounded by 4k. Since the family of measures on
[—k, k], with total mass bounded by 4k, is relatively compact w.r.t. the weak topology, K}
satisfies condition (i) in Theorem A.1. We further note that a.s., Sgk)XeF,\;f S Kg for all
t > 0, and hence (4.20) holds with K replaced by Kg.

(2) For each n € IN, we will find below L(n) such that if K(?’" denotes the subset of
U]ﬁ‘ with

1 Y5 Y n
// Lir(z,y)>Ln)yp(dedu)u(dydv) < —  for each (X,r, u) € Kg’ , (4.21)
(X xR)? n

then uniformly in € > 0 sufficiently small, we will have

1)
P(SH X ¢ K" for some 0 <t <1) < o = On- (4.22)
We can then take K7 := ﬂne]NKg’", which clearly satisfies condition (ii) in Theorem A.1,

while (4.22) implies that (4.20) holds with K replaced by K(?.
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In order to find L(n), we proceed in two steps. First we find an analogue of L(n) for
the limiting CSSM genealogies, and then in a second step, we use the convergence of
the measure-valued IFV to obtain L(n).

Fix n € IN. To find L(n) such that (4.22) holds, we first prove an analogue of (4.22)
for the continuum limit X“S by utilizing the types of the individuals. Given 1 > 0 and
v € [0,1], let

Gy = {(X, 7 ) € U 2 (X x [~k K] x [0,7]) < 7} (4.23)

We claim that we can find A sufficiently large, such that if all individuals in XS with
spatial mark outside [—A, A] are assigned type 0, and all other individuals are assigned
type 1, then

On

P(X5B €GooV0<t<1)>1— 1 (4.24)

In other words, with probability at least 1 — §,,/4, the following event occurs: for all
0 <t <1, no individual in X°® with spatial mark in [k, k] can trace its genealogy back
to some individual at time 0 with spatial mark outside [—A, A]. This will allow us to
restrict our attention to descendants of the population in [—A, A] at time 0.

Indeed, by the construction of the CSSM (Section 1.4) using the Brownian web, the
measure-valued process XS, which is the measure S8 projected on the geographic and
type space, is given by

Xtcs (dvdr) = do(d7) (1{U>f<A,u)(t)} + 1{U<f(—A,U)(t)})dv + 01 (dT)l{f(—A,o)(t)SvSf(A‘o)(t)}dU7
(4.25)
where f(14,0)(-) are the two coalescing Brownian motions in the Brownian web W,
starting respectively at (£A,0). The event in (4.24) occurs if f(4 4 o) do not enter [k, k]
before time 1, the probability of which can be made arbitrarily close to 1 by choosing A
large.

Let A > 0 be chosen such that (4.24) holds. Since XS = (X§5,r§5, u§%) € URX0:1,
the population in X§® with spatial marks in [~ A, A] can be partitioned into a countable
collection of disjoint balls of radius %. Let us label these balls by By, 1, By 2,... C X§® in
decreasing order of their total measure, and all individuals in B; is given type % €[0,1],
while all individuals with spatial mark outside [—A, A] are given type 0. Note that by
choosing M large, the total measure of individuals in X with types in (0, £;] can be
made arbitrarily small. It then follows by the Feller continuity of the measure-valued
process X©S stated in Remark 1.29, that as M — oo, the total measure of individuals in
X8, t € [0,1], with spatial marks in [k, k] and types in (0, 1;], converge in probability
to the stochastic process which is identically 0 on the time interval [0, 1]. Combined with
(4.24), this implies that we can choose M large, such that

On
P(X ¢ G 1 forsome 0 <t<1)< 5 (4.26)
Let Z(n) denote the maximal distance between the balls B, 1,..., B, ». Note that on

the event that {X"® € G_1_ . forall 0 <t <1}, for each t € [0,1], the set of individuals

in X5 with spatial marks in [k, k] and types in [0, ;7] have total measure at most 4-;
while the rest of the population with spatial marks in [—k, k| trace their genealogies back
at time 0 to B, 1, ..., By v, and their mutual distance is bounded by Z(n) + 2. Letting
L(n) = L(n) + 3 in (4.21) then readily implies that (XC5, 755, 17, <y u&S (dzdv)) € K"
on the event X5 ¢ G_1 1, and (4.26) implies that

5

P((XCS,rCS, 1<y pSS(dadv)) ¢ K3" for some 0 < ¢t < 1) < 5” (4.27)
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which is the analogue of (4.22) for X°S.

Next we turn to X¥V:¢ and we will deduce (4.22) from (4.27) by exploiting Theo-
rem 1.32 on the convergence of the measure-valued processes S, XFVie o XOS, Let A
be the same as above. Let individuals in X{® be assigned types in {0} U {1 11 € N} as
before (4.26), where f( ) denotes the maximal distance between any pair of individuals
in XCS with types in [4;,1]. The assumption that S, ' converges to XS in UR as
e | 0 allows a coupling between S, X '*“ and X§5, such that for most of the individuals in
SeX, "V-¢ with spatial marks in [—A A], their genealogical distances and spatial marks are
close to their counterparts in X0 We can then assign types to individuals in S, X, FVse
in such a way that: individuals with spatial marks outside [—A, A] are assigned type 0
while those with spatial marks in [ A, A] are assigned types in {1 : i € IN}. The distance

between any pair of individuals with types in [47, 1] is bounded by L(n) + 1, and the
measure on geographic and type space, S, , converges vaguely to )?003 as €l 0. By
Theorem 1.32, (S, XF i Jo<t<1 converges weakly to (Xtcs)ogtgl as random variables in
c([o,1], M(R x [0, 1])) Applymg this weak convergence result to (4.26) then implies that

for € > 0 sufficiently small, we have the following analogue of (4.26):

XFV ,€

P(S. XFV ‘¢ G 1 4 forsome0 <t < 1) <6, (4.28)

Note that on the event S, XFV’G S G Y forall0 <t <1, foreach 0 <t <1, the

set of individuals in SeX FV  with spat1a1 marks in [—k, k] and types in [0, 4;] have total

measure at most 5 k ; wh11e the rest of the population with spatial marks in [k, k| trace
their genealogies back to an individual at time 0 with type in [ M, 1], and hence their
pairwise distance is bounded by L(n) = L(n) + 3. It follows that St FV ‘e Ky 2™ on the
event SeXEF,\g’; € Gﬁﬁ Together with (4.28), this implies (4.22).

(3) Our procedure for constructing K3 is similar to that of K?. For each n € IN, we
will find M = M (n) such that if Kf;”” denotes the subset of IU]JE{ with the property that
for each (X,r,u) € Kf;””, we can find M balls of radius % in X, say By,..., By with
B = Uij‘ilBl-, such that u(X\B x R) < % then uniformly in ¢ > 0 sufficiently small, we
have

1
P(S®XTYC ¢ KP™ for some 0 <t < 1) < on = On. (4.29)

We can then take K ;;3 = Npen K g” which clearly satisfies condition (iii) in Theorem A.1,
while (4.29) implies that (4.20) holds with K; replaced by K3.

To find M (n) such that (4.29) holds, we partition the time interval [0,1] into [5-}, 5-]
for 1 <4 < 2n. It then suffices to show that for each 1 < i < 2n, we can find M;(n) such

that if Kg’" is defined using M;, then uniformly in € > 0 small,

On _
on  2n2n’

1 .
P(S®H X ¢ K™ for some W <t< L) <

o (4.30)

Again we first determine M (n) for CSSM and then use the convergence of measure-
valued IFV to measure-valued CSSM. We now prove an analogue of (4.30) for XS,
Since X¢5 e UBX0:1 glmost surely, we can condition on its realization and partition

2n
the population in X csl with spatial marks in [-A, A] into disjoint balls of radius 3-,

Bi, By, ..., as we did i 1n the argument leading to (4.26). Repeating the same argument
there and assigning type i to individuals in Bj;, we readily obtain the following analogue
of (4.26): we can choose M, large enough such that

cs i—1 i On,
P(x > ¢ Gﬁﬁ for some 5 <t< —n) < e (4.31)
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Note that on the event X5 € G 1 forall Sl <t < i, foreach t € [}, 5], the set of

individuals in XS with spatial marks in [k, k] and types in [0, 1) have total measure at
most 5-; while the rest of the individuals in X,°® with spatial marks in [k, k| trace their
genealogies back to an individual at time i;l inB;UBy---UB Mu and hence they are
contained in M; balls of radius - +¢ < Therefore (X5, rS, Lo <k ps® (dzdv)) €
Kf;’ ", and the analogue of (4.30) holds for XCS.

To establish (4.30) uniformly in small € > 0, we again apply the convergence result in

Theorem 1.32. Note that by the f.d.d. convergence established in Section 4.1, S. X F}; f o

converges in distribution to X 5 as € | 0. Following the same argument as those leadmg

Fv, 5 i1 such that the associated

2n

to (4.28), we can then assign types to individuals in S, X

PFV,e PCSy .
measure-valued process, (S.X. ) )171 <t<, converges weakly to (X, )%Stéﬁ' and

individuals in S X" FV.€ | with spatial marks in [~ A, A] and types in [+, 1] are contained
2n

M;’

in M, balls with radius at most 1 . Applying this convergence result to (4.31) then
implies that for € > 0 sufficiently small, we have the following analogue of (4.31):

1 On
<t< —) < —. 4.32
- _Qn)_Qn ( )

p— 1
P(S.x Ve ¢ G o for some
i 277,
This is then easily seen to imply (4.30).
Combining parts (1)-(3) concludes the proof of (4.20) and hence establishes the
compact containment condition (J1). |

4.3 Proof of convergence of rescaled IFV processes (Theorem 1.32)

In [AS11, Theorem 1.1], a convergence result similar to Theorem 1.32 was proved for
the voter model on Z, where the type space consists of only {0, 1}, and a special initial
condition was considered, where the population to the left of the origin all have type
1, and the rest of the population have type 0. The proof consists of two parts: proof of
tightness, and convergence of finite-dimensional distribution.

In [AS11], the proof of tightness for the voter model does not depend on the initial
condition, and is based on the verification of Jakubowski’s criterion and Aldous’ criterion
as we have done in Sections 4.1 and 4.2 for the genealogical process. Because the IFV
process ignores the genealogical distances, the verification of the compact containment
condition (J1) in Jakubowski’s criterion is trivial, as in the case for the voter model.
Using the duality between the IFV process and coalescing random walks with delayed co-
alescence, Aldous’ criterion on the tightness of evaluations can be verified by exactly the
same calculations as that for the voter model in [AS11], which uses the duality between
the voter model and coalescing random walks with instantaneous coalescence. Recall
here that in the rescaling the difference between instantaneous and delayed coalescence
disappears because of recurrence of the difference walk. Lastly, the convergence of the
finite-dimensional distribution for rescaled IFV process follows the same calculations as
in Section 4.1, where we can simply enlarge the mark space to R x [0, 1] and suppress
the genealogical distances by choosing ¢; = 1. |

5 Martingale problem for CSSM genealogy processes

In this section, we show that the CSSM genealogy process constructed in Section
1.4 solves the martingale problem formulated in Theorem 1.40. We will first identify the
generator action on regular test functions evaluated at regular states, and then extend
it to more general test functions and verify the martingale property. Complications
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arise mainly from the singular nature of the resampling component of the generator,
which are only well-defined a priori on regular test functions evaluated at regular states.
Fortunately by Proposition 1.25, the CSSM genealogy process enters these regular states
as soon as t > 0, even though the initial state may not be regular.

5.1 Generator action on regular test functions

In this section, we identify the generator of the CSSM genealogy process X5, acting
on @ € I1}2 and evaluated at X5 € UR, where 112 and UY are introduced in Section 1.6.
The advantage of working with such regular ® and X;“® is that, the relevant resamplings
only occur at the boundary points of balls of radius at least §, which is a locally finite
set. In Section 5.2, we will extend it to the case ® € IT':2, where we need to consider the
boundaries of all balls in X5, which is a locally infinite set.

Proposition 5.1. [Generator action on regular test functions]

Let X©S := (X %);>¢ be the CSSM genealogy process with XSS € UR. Let ® = ¢™%9
I1}2, defined as in Definition 1.36. Let L°® = LSS + LS + LSS be defined as in (1.53)-
(1.56). Then we have

E[Q(X)] — ®(X5®)

. _ 1CS Cs
ltlﬁ)l ; = L™0(X57). (5.1)
Furthermore, .
E[@(XSS)}:@(X(?S)JF/ E[LCS®(xE%)]ds, (5.2)
0

where E[L®S®(X )] is continuous int > 0.

The proof is fairly long and technical and will be broken into parts, with (5.1) and
(5.2) proved respectively in Sections 5.1.1 and 5.1.2.

5.1.1 Proof of (5.1) in Proposition 5.1

For each t > 0, denote X°S = (X5, 7SS, uC%). Let L > 0 be chosen such that the support
of g(z) is contained in (—L,L)". Let § > 0 be determined by ¢ as in (1.52), so that
&((ri,j)1<i<j<n) is constant when any coordinate r; ; varies on the interval r; ; € [0, d].

We proceed in five steps, first giving a suitable representation of ®(X{®) and ®(X %),
and then calculating actions that lead to the different parts of the generator.

Step 1 (Representation of ®(X{%)). We derive here a representation of ®(X§®)
by partitioning XOCS into disjoint balls of radius at least §/4 and utilizing the fact that
o e I112.

Since XS € UR, by Remark 1.35 and (1.42), we can identify XS for each t > 0 with

R; == |J {z" 27} R\E), (5.3)

z€E,
where 27 and x~ are duplicates of the point z in
E, = Uso By, (5.4)

where E! is the set of points in R that lie at the boundary of two disjoint balls of radius [
in XS, which is consistent with the definition in (1.46).
Denote s
{yi <y2 <+ <ym}:=EjN[-2L,2L], (5.5)

s
and let yo, resp. y,,+1, be the point in F; adjacent to y;, resp. y,,. Note that the intervals

it yiia) == Wi, yi+1) U {y;", ¥, } form disjoint open balls of radius ¢ in X§®. Therefore
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for all z; € [y, y;,,] and x5 € [y, y;,,] with i # j, d¥ = r$8(x1,29) is constant, and
do = (dg Jo<i<j<m forms a distance matrix, where we set di := 0 for 0 < i < m. We can

then write

(X5 =omt(x = N g(dg™) Gly. k), (5.6)
ke{0,--- ,m}n
_ kxk . . . . kxk  kikj . .
where y = (yo, " ,Ym+1), dy ~ is the distance matrix with dyij =dy 7, 1<i<j<m,

and
G(y,k) = // g9(z) dz. (5.7)

Yy <Ti<Yk,;+1
1<i<n

Step 2 (Representation of ®(X °)). We next write ®(XS), for ¢t > 0, in terms
of coalescing Brownian motions running forward in time (in contrast to the spatial
genealogies which run backward in time), which determine the evolution of boundaries
between disjoint balls in XS,

Let {y; + B;}o<i<m+1 be independent Brownian motions starting from {y; }o<i<m+1,
from which we construct a family of coalescing Brownian motions {y; + Ei}ogigryn_l,_l.
Namely, let yg + By == yo + By for all time, and let y; + El(s) := y1 + Bi(s) until the first
time i+ Bs(s) hits yo + Eo. From that time onward, define y; + El to coincide with
Yo + Bo. In the same way, we successively define {y; + E}QﬁgmH from {y; + B¢}2§¢§m+1
by adding one path at a time. Without loss of generality, we may assume that y; + B; is
the a.s. unique path in the Brownian web W starting from (y;, 0).

To write ®(X %) in terms of the forward coalescing Brownian motions B, we observe
that

m—+1
- - - (6
E2 0 [yo + Bo(s), yms1 + Bumra () € | {ws + Bi(s)} V0 < s <min {z,t}, (5.8)
=0

since by our construction of XS in Section 1.4, (y; + B;(s))o<i<m+1 are boundaries of
disjoint balls in X8, and [(y; + B;(s))", (yis1 + Bit1(s))"], 0 < i < m, consists of either
empty sets if y; + B;(s) = yi+1 + Bi+1(s), or disjoint open balls of radius 2 + s in X&5.

Let {meet}, denote the event that either y, + By(s) reaches level —L before time ¢, or
Ym+1+ Bm+1(s) reaches level L before time ¢, or one of the pair (y; + B;($), yi+1+ Bit+1($))
meet before time ¢. On the complementary event {meet}¢, B; = B, for all i. Therefore,
forall0 <t < g, we can write

(ﬁ(XtCS) = 1{meet}tq)(XtCS) + l{meet}fas()(tcs) (5.9)
with
QXS = N 6@ ") Gly+ B(), k), (5.10)
EE{O,"' am}n
where thXE is the distance matrix with dfixf = dgik] +2t(1 — 0p, x,) for 1 <i < j <n, and
B(t) = (Bo(t), -+, Bmy(t))-
Since
‘(I)(Xtcs) - (I)(Xtcs)| = 1{mcct}t|q)(XtCS) - (P(Xtcs)‘ < C<I>1{1ncct}t (511)

for some Cy depending on ®, and the probability of the event {meet}; decays
exponentially in ¢t~! by elementary estimates for Brownian motions, we have

Ccs b CS ~
lim,_,o L& BRI _ o Thyus, we may replace ®(XLF5) by ®(X5) up to error
o(t) ast — 0.
EJP 21 (2016), paper 58. http://www.imstat.org/ejp/
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By (5.6) and (5.10), we can write

(XS — (X (5.12)
= 3" (0(dF) — o(dg™™)) Gly + B(1), k) + > é(dy™*) (Gy + B(t), k) — G(y, k).

k{0, ,m}n Ee{o m)n

Step 3 (Aging). We first identify the aging term LS® in the generator, defined in (1.55).
For each term in the first sum in (5.12), by Taylor expanding qﬁ(dfxﬁ) in ¢, it is easy to
see that

lim 1 B(6(275) — 0(d™) Gy + By k) =2 Y 2 SRS ICONCCRE)

t—0

1<7,<]<n

where we note that %(d%xﬁ) = 0if k; = k;, since in this case the ij-th argument of
]

o, d’gikj, is less than §. Summing the above limit over k& € {0,--- ,m}" and using the
definition of G, we find

Y B[ - 6 G+ B0),b)
k€{0,- ,m}n
(5.14)

=2/n9(£) > ;q_b_(g)dz,

r
1<i<j<n = Y
h — (»CS( .. . . hi 3 h 3 LCS
where 1 := (ry”(2;,2;))1<i,j<n- This gives the aging term L;>.

Step 4 (Resampling). We next identify the resampling term LSS, defined in (1.56).
For the second sum in (5.12), we need to compute

Jim ~ Y GldyMEG(y + B(t). k) — Gy, k)]

EE{O,“' 7m}n
1 (5.15)
= > oldg™) lim o E[G(y + B(t).k) — G(y. k).
EG{O»"' ’m}n

For each k € {0,--- ,m}",

G(y+B(t),k) — G(y, k) / (Hl[yk +Br, (8), 41+ Bk, 41(0)] (T2) Hl[ykl,yk H](ﬂh))dl’

1=1 =
(5.16)
We can rewrite the difference of the product of indicators as

n
H (1[ykiayki+1](x ) 1[yk \Yk,; + B, (1)] (ml) + 1[1/k +1,Yk; +1+ B, +1(1)] xl H 1[yk Yk +1] J)

= (5.17)
We can expand the first product above and sort the result into three groups of terms,
(Gy), (G2) and (G3s), depending on whether each term contains one, two, or more factors
of the form 1y, .4 5, ;) for some 0 < i < m + 1. If h(z) denotes a term in (Gs), then
necessarily [, g(z)h(z) < Cy4|B;, (t)B;,(t)B;,(t)| for some C, depending only on g and
some iy,is,i3 € {0,--- ,m + 1}. Since E|B;, (t)B,(t)Bs,(t)] < ct2, terms in (G3) do not
contribute to the limit in (5.15).
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Each term in (Gy) is of the following form, where 1 < i # j <n,

e e+ B0, 01 @) Ly w480 01@5) T L v a1 (@),
1<r<n
T,

1[yki+1;yki+1+Bki+1(t)](Ii)l[ykj+17ykj+1+Bkj+1(t)](‘rj) |I 1[ykf,ykT+1](xT)7
1<7<n
i

(5.18)
_1[yki+lvyki+1+Bki+1(t)](xi)]'[ykj7ykJ+Bkj(t)](xj) H 1[yk7731k7+1](x7')7

1<7<n
TH#i,j

_1[yki 'Yk + B, (1)] (xi)l[ykj+1,ykj+1+3kj +1(1)] (‘Z’J> H 1[%, Yk +1] (z7).
1<r<n
T

Denote the four terms in (5.18) respectively by hgjl)(g) hg)(g) hl(-?) (z) and hg) (z). Then

Yk, + Bk, (t) k; +Br; (t)

/n h(‘ (2)g(z / / / / (9(z1, -+ s Yhsr - > Ukys - ) + 0(1))da,

Ykr <T;<% T+l Ti=Yk; Zj=Yk;
(5.19)
where we replaced g(z) by g(«1,--- ,Yx;, " s Yk;, " »Tn), With an error of o(1) as ¢ | 0.
Therefore
_ (1)
}LI;I%;]E |:/nhij (ﬁ)g(&)dﬁ :6ki,k" g(l’l;"' s Ykiy " 7ykj7"'xn) 1<r[<’ de'
Yk, <:;Z<;Jk 41 F;Zf,j”
(5.20)
We obtain similar results for hg) hl(?) and hgj).

For a fixed pair i # j, when we sum over k and all contributions from h%) in (5.15), we
obtain an integral for ¢(r)g(z), where x,, T # i, j, are still integrated over R", however
the integration for z; and x; are replaced by summation over {Yo }1<o<m. Contributions
only come from x; = z;, and is positive when k; = k;, and negative when k; = k; + 1 or
k; = k; + 1. Writing everything in terms of X5, we easily verify that the contribution of
terms in (G-2) to the limit in (5.15) is exactly

Z /]R"—2 Z 1{fi:m.f}g(x)( ij® — ¢ H dz-, (5.21)

1<i#j<n zi,x€{yd y5 :1<o<m} 1;25;’

where 0;;¢ is defined as in (1.19), and r := (7§’ (2, %;))1<i j<n. This gives the resampling
term LSS defined in (1.56).

Step 5 (Migration). Lastly we identify the diffusion (migration) term L§®, defined in
(1.54). We note that each term in group (G;) is of the following form, where 1 < j <n,

~Liys, e, +Bi, (01 (F5) | | R C)

1<i<n
i#j
’ (5.22)
1[ykj+17ykj+1+3kj+1(t)] (x]) H 1[yki7yki+1] (i),
1<i<n
i#]
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Denote the two terms respectively by hg )( ) and h(2)( ). Then

(1)
h;(z)g(z)dz
Rn
Yk ; +Br; (1)
- [ (sCel,,_y )+ (a5 =)o (el . ) +olles — i, )
. . gfg”f:y’“j 37 Yk Oxj ' *i=Yk, 37 Yk =
Yy STi<Yk;+1  Tj=Yk;
i#j
(5.23)
Therefore,

1 1 0
lim B U h§1)(x)9(x)dx] =5 / 85 i — ) I das. (5.24)

n
1<i<n
Yk <Ti<Uk;+1 vy

]

)

A similar result holds for h§-2 . Combining the two, we see that

lim %IE [ R7L(h§1)@) + 1P (2))g(z ] / / 32%

yk < <Yk, +1

H dz;. (5.25)

1<i<n

Therefore, the contribution from terms in (G;) to the limit in (5.15) gives precisely the
migration term L{® defined in (1.54). This establishes the generator formula (5.1). &

5.1.2 Proof of (5.2) in Proposition 5.1

The complications in proving (5.2) arise from trying to prove uniform integrability for
various quantities. We proceed in three steps. First we show that, for each ¢ > 0,

oy ELR(ES)] — E[2(X)
}}fol h

= E[LPo(X%)]. (5.26)

By the Markov property of (X 5);>0,

E[® (XS E[®(XCS
i [@(X35,)] — E[@(X)] CLWE
hl0 h h10

E[‘P(Xfish)V(;jS] — B(X) , (5.27)

E[‘D(X +h)\XCS] G

Since X“S € UFR a.s. by Proposition 1.25, limy,| = LOS®(XLP)
almost surely. Therefore, the first step is to 1nterchange 11m1t and expectation in (5.27)
and to deduce (5.26). We need to show that

is uniformly integrable for A > 0 small, (5.28)

(E[Q(thrsh”)(tcs] - (I)(Xtcs))
h>0

h

say 0 < h < 24°.
Once the umform integrability has been verified, in Step 2 we prove that E[L“S® (X))
is continuous in ¢, and then in Step 3 we put things together and prove (5.2).

Step 1 (Uniform integrability). This step constitutes the bulk of the proof of (5.2).
Let us fix XC° and examine the error terms in our earlier calculation of the generator
formula (5.1) with XS replaced by XS. Instead of partitioning X into disjoint open
balls of radius §/4 as done in (5.5), we set

SAt

{1 <+ <ym,}:=E* N[-2L,2L), (5.29)
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which is determined by the dual Brownian web )7\7 as seen from the definition in (1.46).
This choice of partitioning of X° removes the dependence of y = (y1,...,¥m,) on the
initial condition X{S. Note that m; depends on XS, B

Let IE;[] denote the conditional expectation E[-|XC5]. Following the arguments
leading to (5.11),

BB @A) — (XS]
= W BRXS) - B + h BB, - o]

IN

W B [Lmeety | 2(X55) — (X)) + A7 [E[(XT,) — 2(X7)]

. (5.30)

where {meet}; is the event that either yy + Bo(s) hits level —L before time h, or y,,,+1 +
B,,,+1(s) hits level L before time h, or one of the pair (y; + B;(s), yi+1+ Bit+1(s)) coalesces
before time h. We now estimate the two terms in (5.30).

(i) We start with the second term in (5.30). Based on the decomposition (5.12),
B(XC5,) — ®(XCS) = H(h, B(h)) for some function H(h, 2o, , zn,+1) which is continu-
ously differentiable in i and three times continuously differentiable in zy, ..., zpy,+1 with
uniformly bounded derivatives. Since the generator formula (5.1) is derived by Taylor
expanding H (h, B(h)), it is not hard to see that uniformly in & € (0, %Y%),

BBV - @A) — RLSR(X)| = Bl (h, B0~ RS
< Cyolmi+3)h |

for some C, 4, depending on g and ¢, and where m; + 3 denotes the number of variables
in H(h, 2o, ..., 2m,+1). Therefore

W HER(XS,) — R(X75)]] < Cp(my +3) + [ L5B(X)| (5.32)

uniformly for / € (0, 2%). From the definition of L®S®, we note that
LD (X 5)| < Oy p(1+my) < 00 (5.33)
aL

INt

implies the uniform integrability of the second term in (5.30) for A € (0, %).

By the definition of m; in (5.29) and by Lemma B.5, we have E[m;] < < 0o. This

3
>

~+

(ii) We now consider the first term in (5.30). For 0 <4 < my, let 7 ;41 be the first
hitting time between y; + B;(s) and y;+1 + Bi+1(s). Let 7 be the first hitting time of level
—L by yo + Bo(s), and 7y, +1 the first hitting time of level L by y,,,+1 + Bm,+1(s). Then

hilEt [1{meet}h |©(Xt(ish) _&)(Xtcjrsh) |]

< 201k B[ <y H L i)+ BB Y Lo [T - B ]
o (5.34)
Since yo < —2L and y,,,+1 > 2L, the probability of the events {7y < h} and {7,,,41 < h}
decay exponentially fast in h~! and the events are independent of X°S. Therefore the
first term in (5.34) is uniformly bounded in h > 0.

Bounding the second term in (5.34) is more delicate, because it remains of order 1
as h } 0. We will need to use negative correlation inequalities for coalescing Brownian
motions established in Appendix C.

Let us recall the definition of 5(2\?&%) from (5.10), where we replace the pair {0, ¢}
by {t,t + h}. By integrating over the population at time ¢ + h, we note that both @(Xtash)

and %(XSFS,L) can be written as integrals of g(z)¢(r(z)) integrated over z = (z1,--- ,z,) €
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(=L, L)", except that: for a given z, the distance matrix r(z) may be different for ®

and @, and for ®, the same point z may be integrated over several times with different
distance matrix r(z) due to the fact that {y; + B;(h)}o<i<m,+1 may not have the same
order as {y; }o<i<m+1. However, for z not in

D = {gE]R":xi € U {ijrBj(s)}forsomelgignandogjgmtJrl}, (5.35)
s€[0,h]

z is integrated over exactly once in ®, and the associated distance matrix r(z) is the same
for both ® and ®. Therefore, contributions from z ¢ D cancel out in |<I>(XS§,) @(Xfﬁshﬂ
Since g has compact support, the contribution from z € D to |®(XS5)) — ®(XSS,)], i

ing multiple integrations over the same z by ®, is at most Cy ,1|g|oo|¢loe o7 " Ri(R),
where R;(h) := (supg<s<p, Bi(s) — info<s<n Bi(s)). Therefore,

BB L | (S5 -S|

i=0
my+1
<Cn¢gh EB[Zl{TL7+1<h} Z R }
=0 7=0
m¢ me+1 (536)
1 1
< Chg,gh 12 Z Pp(7iit1 < h)? Q[Rj(h)z}"’
=0 75=0
<y gh 2 (mi+2) Y Pplniin < h)?,
i=0
where Ep denotes expectation w.r.t. the Brownian motions B = (By, ..., Bm,+1), and we

applied Holder inequality and the fact that E[Rj(h)Q]% = ¢v/h for some ¢ > 0. It only
remains to prove the uniform integrability of the r.h.s. of (5.36) w.r.t. the law of X5 for

0<h< 2t
Note that the r.h.s. of (5.36) depends on yo and y,,+1, which lie outside [—2L, 2L]. To
control the dependence on yo and y,,,, +1, we enlarge the interval and let {z1, - , zpr41} :=

SAt
E,* N(—2L—1,2L + 1) as in (5.29), which contains {y1, - ,¥m, } as a subset. Denote

1/)(%17\/%%) = P(riie1 < h)? = (Q/M e_édx)g’

Vah
we can then replace the r.h.s. of (5.36) by

Fi(X°S) : (L5 (5.37)
because C,, , th(XtCS) dominates the r.h.s. of (5.36) except for possible missing terms
ﬁw(“\/ﬁyo)(mt + 2), resp. ﬁw(%ﬁ_ymt)(mt +2), on the event yo < —2L — 1, resp.

Ym.+1 > 2L 4+ 1. Since y; > —2L and y,,,, < 2L by definition, both missing terms are
bounded by Cym; + C5 uniformly for h > 0, and is thus uniformly integrable.

It only remains to prove the uniform integrability of F, (X,“%) uniformly in 0 < h <
We achieve this by bounding its second moment. Note that by Cauchy-Schwarz,

(v Zi)ﬂ

5/\t

E[F (XS] =+ F
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M
Zidl — Zi\2
< fE[MSZw(’“T) | (5.38)
M+1
S

B[ Y ZW““ Bt _Zuy?),

Zl 22 13 1’L4 1

Note that the above summation can be seen as a summation of x; := z;,, 22 1= 2;,, %3 1=
zis in {z1,...,2pr41} and x4 := z;, in {z1,..., z5s}. By integrating over x1, x5, x3, x4 OVer
[-2L — 1,2L + 1] and the position =5 := z;,+1 € (24,2L + 1), we can rewrite the rh.s.
of (5.38) in terms of the correlation functions of the translation invariant simple point

process § := E, o C R. More precisely, it can be written as
1 _
/ / E¢($5\/{4)2K;5(x1,x2,x3, 24, v5)dzydzodrsdzades,  (5.39)

xy<xp
1], lz2l; 23], leq], |z5] <2L+1

where

Kj,g)(xl, cee L x5) 1= 1iﬁ)1€75IP([$j,l‘j +eNEADPV1<j <5 (mg,25)NE= @) (5.40)
is the density of finding a point at z; for each 1 < ¢ < 5, with no point in (24, z5). By
the deﬁnltlon of El in (1.46) and the duality between the forward and dual Brownian
web (W, W) we see that ¢ is the point process generated on R at time ¢ by coalescing

Brownian motions in the Brownian web W starting from every point in R at time ¢t — %
By the negative correlation inequality in Lemma C.3, we can bound

KZ5(I17 e ;I5)
< hlrge P([zj 2+ e NEFD, §=1,2,3)P([zj,z; + €] NEA#D,5 =4,5 (z4,25) NE=0)

= K(O)SKC(QM, 335),
where by Lemma B.5,

2
K(0) =lime 'P([z,z + €N 0) = —— forall z € R,
() QLOE ([ 6] 5# ) \/m

and
K°(x,y) =leiigle_2IP([w,x+6]ﬂf#@,(fﬂre,y)ﬂ£=®, [y,y+eNE#D) forz <y.

By Lemma C.6, for z < y,
K (z,y) < Csi(y—z) A1

for some C5; > 0 depending only on ¢ and ¢. Substituting the above bounds into (5.39),
using the definition of v, and separating the integration into two regions depending on
whether 0 < z5 — 24 < Vh or x5 — x4 > V/h, it is easily seen that the integral in (5.39) is

uniformly bounded for 0 < h < ‘Mt . This implies the uniform integrability of F}, (X C°) for

cs cs
0<h< 5“ , and hence that of Etm){“h}z] X))

Step 2 (Continuity of E[L°S®(X5)]). Recall from (1.53)-(1.56) that L = L{5+ LS+
LSS, We will prove the continuity for each component of the generator.

|LSS®|,, < O < oo. It was shown in (3.4)
that for any ¢ > 0, for Lebesgue a.e. z = (1, -+ ,z,) € R", the distance matrix 755 (z;, z;)
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converges a.s. to 75 (z;, 7;) as s — t, and this conclusion is also easily seen to hold for
t = 0 by the assumption X§*5 € UR. Therefore, almost surely w.r.t. (X<5);>0,

1in%L§S<I>(x§’S):L§Sq>(XtCS) and 1in%L§Sq>(xSS):L§S<I>(XtCS). (5.41)
S— S—

Therefore E[LJS®(X5)] and E[L{S®(X,“®)] are continuous in ¢ > 0 by the bounded
convergence theorem.
We now turn to the continuity of E[LSS®(X,“5)]. We first prove the continuity at ¢ = 0

S
and later point out how it extends to t > 0. Let F§ C R be defined from X as in (1.46),
which are the boundaries of balls of radius % in X{5. Let us follow paths in the Brownian
S
web W starting from points in £ C R at time 0, which determine the evolution of these
S
boundaries, and denote the point set on R generated at time s > 0 by EJ (s). Then

s S 3 . . . .
EIT C E§ (s). By our regularity assumption on ¢, only resampling at the boundaries of
balls of radius § or more has an effect on ®(X%). Therefore for s € (0,/4), we have

e = > [ > lemays@ 00 - 0@ [ o,

5/4 1<r<
1<i#j<n wia €{yt y— e B (s)} i

(5.42)
where 6;;¢ is defined as in (1.19), and r := (r cs(x“ Zj))1<i,j<n- By our assumptions on g
and ¢, the fact XC5 € UR, and our construction of X in terms of the (dual) Brownian
web, it is then easily seen by dominated convergence that

lifg L,®(XS®) = L,®(XS®) almost surely. (5.43)

To prove the continuity of E[L“S®(XS)] at t = 0, it only remains to verify the uniform
integrability of LE5® (X S) for s close to 0, say s € [0,5/4]. We will achieve this by
showing that LE5® (X S) has uniformly bounded second moments.

Note that because g is assumed to be supported on [—L, L]", we have

[LESD(XES)] < Crg 6| B (5) N (—L, L), (5.44)
By Lemma C.2, Eg/ 4(s) is negatively correlated, and hence by Lemma C.5, we have
2
IE[|E3/4(5) N (—L,L)ﬂ < 21[«:[|E‘V4 (—L,L)” + [E;Eg/4<s> N (—L,L)” . (5.45)

Thus it suffices to bound E[|E)/*(s) N (—L, L)|] uniformly in s € [0,5/4].
Since Eg/ %(s) is obtained by evolving coalescing Brownian motions starting from
Eg/4, we can bound

B[ By (s) N (~L, D)[] < |E* n[-2L,2L]| +2 Y B[P0 n(-L,1)]], (5.46)
i>2L

where 5?’“”“0} C R is the point set generated at time s by coalescing Brownian
motions in the Brownian web W starting from everywhere in [i,i + 1] at time 0.

Note that the first term in (5.46) is finite and independent of s > 0. We now treat the
second term. For each i > 2L, let us denote gE’””X{O} N(—L,L) by g;',L, which is also a
point process on (—L, L) satisfying negative correlation. In particular,

oo oo oo
. 12 n
Elle =S P(lg | > n) L1 < ( / e—‘z*sdx) (5.47)
[|£S,L|] nzz:l ( L‘ 1;1 ) nzz:l \/% i ’
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where we used Lemma C.4 and the observation that, fz ; 7 0 implies that the Brownian

motion starting at (¢,0) in the Brownian web must be to the left of L at time s. Since
,02

L is fixed and large, ﬁ J.=, e % dx < a for some o € (0,1) uniformly in ¢ > 2L and

s € [0,0/4], and hence

o _a? > =%
fi_Le 25 dx :f%e 7 dx (5 48)
(1—a)V2rs (1 —a)V2r .

E[l€;, .

] <

It is then clear that ), ,; E[|¢! ;|| tends to 0 as s | 0 and is uniformly bounded for
s € [0,6/4], which concludes the proof of the uniform integrability of L,®(XCS) for
s € [0,6/4]. Therefore E[LES®(X )] is continuous at t = 0.

The continuity of E[LES®(X, )] at t > 0 can be proved similarly. For s € [t — %L ¢ +
%], we can use the same representation as in (5.42) by treating t — % as the starting
time 0 in (5.42). The a.s. convergence lim,_,; L,®(X*S) = L, ®(X %) then follows as
before. The uniform integrability of L,®(X %) follows easily from the density estimate,
Lemma B.5, if we restrict to s € [t — %ﬂf + %], since only resampling at locations
occupied at time s by Brownian web paths starting from R at time ¢ — % has an effect
on ®(XE9).

Step 3 (Proof of (5.2)). We have thus far shown that E[®(X,°®)] has a continuous right
derivative E[LCS® (X ®)] on [0,00). Note that E[®(X5)] is also continuous on [0, o)
since (XSCS)SZO has a.s. continuous sample paths by Theorem 1.27. Equation (5.2) then
follows from a variant of the fundamental theorem of calculus, formulated as Lemma 5.2
below. This finally completes the proof of (5.2) and that of Prop. 5.1. |

Lemma 5.2. [Fundamental Theorem of Calculus]
Let f : R — R be a continuous function with a continuous right derivative D7 f(x) :=
limpyo +(f(z + h) — f(z)). Then

f(z) = f(0)+ /Ox DY f(y)dy  forallx € R.

Proof. Let g(z) := f(0) + [, D f(y)dy, which is clearly differentiable with continuous
right derivative D" f. Then h := f — g is continuous with h(0) = 0 and right derivative
D*h = 0. It suffices to show that h = 0.

For ¢ > 0, let he(x) = h(x) + exz. Then DTh, = ¢ > 0. This implies that h, is non-
decreasing on R, since otherwise if h.(z) > h.(y) for some = < y, then at the point
zo € [x,y] where h. achieves its maximum on [z, y|, we have D h.(z¢) < 0, contradicting
D%th. = e. Letting € | 0, the monotonicity of k. then implies that h is also non-decreasing.
Applying the same argument to —h shows that h is also non-increasing. Thus h=0. 1

5.2 Generator action on general test functions

In this section, we extend the validity of the integral equation (5.2) in Prop. 5.1 to
general ® ¢ I1"2, assuming XOCS € UR. The complication is that the generator identified
in (5.1), which acts on regular test functions ® € I} and evaluated at regular states
XFS € UR, can only be extended to general test functions ® € II1'2 provided that
we restrict to the regular subclass of states X5 € UR introduced in Definition 1.39.
Fortunately for each ¢ > 0, almost surely X € UR, which makes it possible to extend

from ® € I1}2 to ® € 1112,

Proposition 5.3. [Generator action on general test functions]
Let X©S be the CSSM genealogy process with X5 € UR, and let ® = ®™%9 ¢ 112, Then
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(a) The integral equation (5.2) still holds, and E[L®S® (X S)] is continuous in t > 0.
(b) IfX(?S € UR, defined as in Definition 1.39, then the generator equation (5.1) still

rr’/

holds, and E[L“S®(X )] is continuous in t > 0.

Proof. We will approximate ® = ®™%:9 ¢ TI:2 by ®; € II12 as follows. Let p : [0,00) — R
be continuously differentiable with p(z) = 0 for = € [0,2], p'(z) > 0 for = € (2, 3], and
p(x) = z for z € [3,00). For each [ > 0, denote p;(x) = lp(x/l). Then p; is a smooth
truncation with sup,~¢|pi(z) — | — 0 and pj(z) — 1 for each z > 0 as [ | 0. Given
¢ = o((rij)i<i<j<n)s let ¢, := ¢ o p;. We then define the truncated version of & by
P, = o9,

It is easily seen that ®; € I11'2, and hence Proposition 5.1 can be applied. We will
then deduce Proposition 5.3 by taking the limit [ | 0.

(a) We will take the limit [ | 0 in the integral equation (5.2). In Step 1, we will show
that (5.2) also holds for ®. In Step 2, we will prove the continuity of E[LS® (X 5)]
in ¢ > 0. Note that without assuming ® € I1}2 or X%® € UR, L0 (X®) may not be
well-defined.

Step 1 First note that |®; — ®|,, — 0 as ! ] 0 by our assumption on g and ¢ and the fact
that sup, ¢ |pi(7) — 2| — 0 as [ ] 0. Therefore,

111$E[@l(xtcs)}:E[@(XES)} and hmfI)l(XOCS) D(XS5). (5.49)

Recall the decomposition of L = L§® + LES + LS in Prop. 5.1. Note that |L{5®|..,
|LGS®| oo, |[LS5®| o0, |LSS®)|o are all uniformly bounded by some Cg < oo independent
of [. Also, by our assumptions on g, ¢ and p;, for each s > 0 and a.s. every realization of
XS, we have

L0, (xE%) — LEP®(x ) and LT3, (XS5) — L5®(XP) as i | 0. (5.50)

Therefore, by the bounded convergence theorem,

t t
1liir(r)1 E[(L5®, + LI%®;)(xE5)])ds = / E[(L5® + LE5®)(X5)]ds. (5.51)
0 0
For the resampling generator L?S, note that for any s > 0 and a.s. every realization
of X5,
|LCS(I) XCS | < Z / 1{wl—a:1}|g | | LJ¢ (Z) H dz,
1<i#j<n z; mJG{z+ xx€ES} 1;;;;

< Cn,g,qb Z dz A 17

z€(—M,M)NE;

(5.52)
where F; is defined as in (§.\4), which is the subset of R that are points of multiplicity
in the dual Brwonian web W, d, = r&5 (2%, 27) is the distance between the two points
in X©S with the same spatial location as = € E,, M > 0 is chosen such that supp(g) C
(=M, M)™, and we used the assumption that ¢ has bounded derivative. Such a bound
holds for ¢, uniformly in I > 0. If 37 . ,/ ynap, de A1 < oo, then by dominated
convergence, we have

111%1 LES®;(XE8) = L (x°9). (5.53)
To prove the analogue of (5.51) for L°5®, by dominated convergence, it only remains to
show .
/ E[ 3 dw/\l]ds<oo. (5.54)
0 z€(—M,M)NE,
EJP 21 (2016), paper 58. http://www.imstat.org/ejp/

Page 51/64


http://dx.doi.org/10.1214/16-EJP4514
http://www.imstat.org/ejp/

Continuum space limit of interacting FV genealogies

Note that for each s € (0,1),

E[ 3 dI/\l}

z€(—M,M)NE;

1 1

E[ Z / 1{de1>u}dU} = / IEH{x e(—M,M)NEs:d, > u}Hdu
2€(—M,M)NE, V0 0

2sA1 1

/EH{J;E(—M,M)QES:dw>u}Hdu+ / EH{Q:G(—M,M)OES:dw>25}Hdu
0 2sA1

2sA1 1
:/ ]EHQRX{S‘“N}ﬂ(—M7M)Hdu+/
0 2

_oMVas AT+ oIz 2Nt

IN

]E{ ‘gljx{O} N (=M, M)‘ }du

sA1

7S CM(1+ ),
(5.55)

where ¢ denotes the point set on R generated at time s by the collection of paths in the

Brownian web W starting from the space time set A C R2, and we used E[ |57

[a,b]|] = i’/;% by Lemma B.5. Inequality (5.54) then follows. To summarize, we have thus

shown that (5.2) is also valid for a general polynomial ® € IT'2,

Step 2 To prove the continuity of E[L“S®(X%)] in t > 0, we again decompose L“® into
its three summands. First note that the continuity of E[L®®(XC%)] and E[LSS® (X))
on [0, 00) follow by the same arguments as that for E[L§5® (X 5)] and E[LSS® (X)) in
the proof of Prop. 5.1.

To prove the continuity of E[LE5®(X5)] int > 0, we fix t > 0 and a truncation param-
eter e € (0,t). For each s € (t — ¢,t + ¢), we decompose LE5®(XES) into LEers—tp(XCS)
and LZT~t®(XCS), where both Lt 0 (X %) and L2t ®(XC9) are defined as in
(5.42), except that resampling therein is carried out by summing over

> Ua,=nyy for LIT'0(XS),
zg,me{yt,y=yeBT T
> l(y;—a,y for LEH7to(xS9),

zi,0€{yT,y" WEENEST T}

(5.56)

where F, and Eg are defined as in (5.4).
The same argument as in the proof of the continuity of E[LES®(X,%)] in Prop. 5.1
shows that

lim E[| Lz~ 1®(x08) — L2~ to (X 5)|] = 0. (5.57)
s—

On the other hand, for s € [t — §,t + 5], by the same calculations as those leading to
(5.55), we have

E[|LFt (X)) < cn,g,@E[ ) dz/\l]
2€(—M,M)NE\EST
nooB| 30 danl] < CMVETs=E< OMVE (559)

ze(—M,M)NEg
dp <2(eds—t)

Since € > 0 can be chosen arbitrarily small, (5.57) and (5.58) together imply that

lim E[L5®(XxS%)]) = BE[LS®(XS)]  whent > 0.

s—t
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(b) We now verify the continuity of E[LS5®(X5)] (and hence of E[LS®(X%)]) at
t = 0 under the additional assumption that XS € UR. Together with (5.2), this also
implies that the generator equation (5.1) holds for a general polynomial ® € IT':2.

As before, we separate LE5®(XC%) into L2 ®(X %) and L~ ®(XCS), where the
truncation parameter ¢ > 0 is fixed and small. Equation (5.57) also holds with ¢t = 0
by the same argument as that for the continuity of E[LE5®(X, )] at t = 0, when & €
112, Indeed, in both cases, only resampling between individuals with sufficiently large
genealogical distance contribute to the generator action on &.

It remains to show that

sup B[LEH (XS] — 0. (5.59)
0<s<e/2 €l0

For 0 < s < €/2, we can separate the resampling terms according to whether the
genealogies of the two resampled individuals merge above or below time 0, and write

EILEH0AS)) < Crg Bl Y d]

ze(—M,M)NEs

dg <2(e+s)
—CagoB| Y.t > d]
n,g,¢ z z (560)
z€(—M,M)NEg z€(—M,M)NEg
dy €(0,25] dg €(25,2(e+s))

< CrgoMVs+Crgo Bl Y di]-

z€(—M,M)NEg

dg €(25,2(e+s))
It remains to bound the expectation on the r.h.s. above, which originate from resampling
between individuals whose genealogical distance depend on the distance of their ances-
tors in X{S at time 0. Let é([)_M’M]X{S} be the point set on R generated by the collection
of paths in the dual Brownian web W starting from the space-time set [-M, M] x {s}.
Let us order the points in é([)_M’M]X{S} and denote them by z; < 22+ < zp,41, With a
total of M, + 1 points. Then by our construction of XS, we have

M
E[ Z dx] - E[Zl{rgs(zi,zz’+1)<26} (23—|—T€S(Zi,zi+1))}
=1

z€(—M,M)NEg
dg €(25,2(e+s))

Ms
< OMVEHE[Y Lpgecomca§5m)] . 66D
i=1
where we used E[M;] = \2/% because by duality between the Brownian web and its

dual, M, is exactly the number of points in the interval [—M, M] occupied at time s by
Brownian web paths starting from R at time 0, and hence Lemma B.5 can be applied.
For each pair (z;, z;11) with 7§5(2;, zi11) < 2¢, by the properties of XS, there must exist
ay; € By with z; < y; < z;41 such that rgs(zi, Zi+1) = dyl Note that the y;, 1 < i < M,
are all distinct with d,, < 2¢. We can now separate the contribution to the second term
in (5.61) into two groups.

The first group consists of contributions from pairs (z;, z;11) with —2M < z; < z;41 <
2M. The total contribution from these terms is uniformly dominated by > z€(-20,2M]n By dg,

which tends to 0 as € | 0 by the assumption X$S € UE.

The second group consists of contributions from pairs (z;, z;11) with either z; < —2M
or z;+1 > 2M. We bound these terms by 2¢ times the expected cardinality of such pairs.
By the duality between W and W, the cardinality of such pairs of (z;, z;41) is bounded by

the cardinality of ¢{*€®1#122M>{0) o (_ 77 A1), the point set on (—M, M) generated at
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time s by paths in W starting from the space-time set{x € R : |z| > 2M} x {0}. As shown
in (5.47), the expected cardinality of gs{‘r/e}R:‘leQM}X{o} N (=M, M) is uniformly bounded
in s € [0,!] for any ! > 0. Therefore, uniformly for s € [0, /2], the second term in (5.61) is
also bounded by a function of ¢, which tends to 0 as € | 0. This concludes the proof of
(5.59) and Proposition 5.3. [ |

5.3 Proof of Theorem 1.40

We now prove Theorem 1.40. Note that the various path properties listed in The-
orem 1.40 has been verified for the CSSM genealogy process X°S in Prop. 1.25 and
Theorem 1.27, except for the claim that for each ¢ > 0, X5 € UR almost surely. To verify
this last claim, we need to show that a.s.,

Z r8(xt,27) < oo  foreach M > 0. (5.62)
w€E,N(—M,M)

where E; is defined as in (5.4). Since for each ¢ > 0, the set {zx € E; N (-M, M) :
rCS(xt,27) > €} is a finite set because X5 € UR, (5.62) is reduced to showing that a.s.,

Z 1,05+ o)<yt (@T,27) < oo for each M > 0.
z€EN(—M,M)

The L.h.s. above has been shown in (5.55) to have finite expectation, and hence is finite
a.s. Therefore X5 € UR a.s.

To conclude the proof of Theorem 1.40, it only remains to verify the martingale
property, namely that given ® € I1*2 and X® € UE, for each 0 < s < ¢, we have a.s.

t
E @(XES)—@(XSS)—/ (LS®) (X5 du | (X5%)o<u<s| = 0. (5.63)

Consider first the case s > 0. Then a.s. X € UR. We can use the Markov property
of X“5 and apply the integral equation (5.2) for ® € II*? and initial state X5, as
established in Prop. 5.3. Equation (5.63) then follows provided that we can apply
Fubini’s Theorem to interchange the integral with expectation in

E[ / t(LC%)(XgS)du} - / tE[(LCSQJ)(XfS)]du. (5.64)

As in the proof of Prop. 5.3, we can decompose LS as LSS + L{® + LS. The aging and

diffusion part of the generator action on ¢ can be uniformly bounded in time and in Xucs'

while the resampling part can be bounded as in (5.52), which is shown to be integrable

w.r.t. E[fot -] in (5.54). Therefore Fubini can be applied, and (5.63) holds for s > 0 a.s.
To treat the case s = 0, we take expectation in (5.63) for s > 0, i.e.,

E[o(x) - o) - [ (L) (X%)du] —0,

and then let s | 0. By the a.s. continuity of XS in s > 0, we have E[®(X5)] — &(X$9).
The convergence of

mathbbE { JHLOS®)(XF5)du] as s | 0 follows by dominated convergence, using the same

argument as that for (5.64). Therefore (5.63) also holds for s = 0, which proves the
desired martingale property. |
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A Proofs on marked metric measure spaces

In this section, we prove Theorems 1.5 and 1.8, derive a relative compactness
condition for subsets of MV, and a tightness criterion for laws on MV. Furthermore
we formally treat pasting of trees. Our starting point for the first of these points is
Remark 1.4, that M" can be identified as a subspace of (M})", endowed with the
product V-marked Gromov-weak topology.

Proof of Theorem 1.5. As noted in Remark 1.4, we can identify MY as a subspace
of (IMfV)]N, endowed with the product V-marked Gromov-weak topology. Furthermore,
under this identification, M" is a closed subspace of (M} ). It was shown in [DGP11,
Theorem 2] that MY, the space of V-mmm spaces with probability measures, equipped
with the V-marked Gromov-weak topology, is a Polish space. The same conclusion is
easily seen to hold for ]M}/ Therefore (]M}/)]N is also Polish, which implies that any closed
subspace, including MY, is also Polish. n

Proof of Theorem 1.8. For each k € INU {0, o}, let

I = Upew, 11 1= Unen, {®™7 : ¢ € CF(RY R « V" R)},
where C’“(Rgf) x V"™ R) is the space of bounded continuous real-valued functions on
Rgf) x V™ that are k times continuously differentiable in the first (%) coordinates, and
O™ ((X, 7, 1)) / /¢rv ®n(d(z,v))  foreach (X,r,u) € My,

with 2 = (T‘(,’Ei, xj))1§i<j§n and V= (’Ul, . ,’Un).

We use once more Remark 1.4 to now identify M(V:<%) as a subspace of [, .y MY, ,
endowed with the product V-marked Gromov-weak topology. Here IMZC denotes the
space of V-mmm spaces with a measure of total mass at most ¢, and e.g. ¢ := ||¢ | 0ob(7)
for any r > 0 with supp(¢x) C B,-(0).

By [DGP11, Theorem 5], IT* := U,,II* is convergence determining in MY and M, (IMY),
and hence also in MY _ and M;(IMY_). We now want to argue that this holds as well
for |J,, II* C |, TI*. This follows immediately from [EK86, Prop. 3.4.6] for measures on
product spaces. |

The following relative compactness criterion for subsets of M"Y follow easily from
the identification of IM" as a subspace of (]M}/)IN, and the relative compactness criterion

formulated for subsets of ]Mio} in [GPW13, Prop. 6.1], for subsets of ]MY in [DGP11,
Thm. 3] and for subsets in M{°} [ALW16, Corollary 4.3].

Theorem A.1 (Relative compactness of subsets of MVY). LetT ¢ MV, and let o be any
point in V. For each k € IN, let By (o) denote the open ball of radius k centered at o. Then
I' is relatively compact w.r.t. the V-marked Gromov-weak” topology if for each k € N,
{(X, 7, e, (oyyp(dadv)) : (X, 7, u) € T'} is a relatively compact subset of]l\d"/, ie.,

(i) The family of finite measures on 'V,

Ak = {/,[,(X X dU)l{veBk(o)} : m € F}’

is relatively compact w.r.t. the weak topology:;
(ii) For each e > 0, there exists L > 0 such that uniformly in (X,r,u) € T,

//(X vy 1{r(a:,y)>L}1{u,v€Bk(o)}u(dxdu)u(dydv) <e
X
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(iii) For each € > 0, there exists M € IN such that uniformly in (X,r,u) € T, we can
find M balls of radius € in X, say B. 1,. .., B- »y C X with B=UM, B, ;, such that
p((X\B) x Bi(0)) < e.

By the tightness criteria formulated for random variables with values in ]Mio}

in [GPW13, Theorem 3], with values in IMY in [DGP11, Theorem 4] and with values
in M{°} in [ALW16, Corollary 4.6], we obtain the following tightness criteria for MV -
valued random variables.

Theorem A.2 (Tightness of MY -valued random variables). Let o be any point in V, and
let By,(0) denote the open ball of radius k centered at o. A family of MY -valued random
variables {X; = (X, 7, jus) }icr is tight if for each k € IN, { Xy, 74, 1{ye B, (o)} i (d2dv) }ics is
a tight family of]M}f—va]ued random variables, i.e.,

(1) {1{veBy(0)y1i(X x dv)}ies is a tight family of random variables taking values in the
space of finite measures on V (equipped with the weak topology);

(ii) {X;,r, pi(de x Bg(0))}ier is a tight family of random variables taking values in the
space of metric measure spaces (equipped with the Gromov-weak topology).

Using the characterization of relatively compact sets in IM" given in Theorem A.1, one
can also formulate more concrete conditions for the tightness of a family of M" -valued
random variables, using concrete conditions for the tightness of a family of random
metric measure spaces formulated in [GPW09, Thm. 3].

B The Brownian web

In this section, we recall the construction and basic properties of the Brownian
web. For a recent comprehenswe survey, see [SSS15]. Recall from Subsection 1.4 the
random variable (W, W) as constructed in [FINRO4 FINROG] and in particular from
(1.33)-(1.35), the state spaces of II of W and T of W. It has been shown [FINROA4,
Theorem 2.1] that the Brownian web }V can be characterized as follows:

Theorem B.1 (Characterization of the Brownian web). The Brownian web )V is a random
closed subset of II, whose law is uniquely determined by the following properties:

(i) For every z € R?, almost surely W(z) contains a unique path.
(i) For every finite n and deterministic points zy, - ,z, € R?, {W(z;) :i=1,--- ,n}
are distributed as n coalescing Brownian motions starting from z1,--- , z,.

(iii) For every deterministic countable dense subset D C R2, W is almost surely the
closure of {W(z);z € D} inIl.

The following result shows that every path in WV can be approximated by the countable
set of paths {W(z);z € D} in a very strong sense (see e.g. [SS08, Lemma 3.4]).
Lemma B.2 (Convergence of Paths in W). Almost surely, if (f,)nen and f are paths in
W, starting respectively at times (s, )nen and s, and f, — f inII, then sup{t : f,(t) #
f(#®)} — sasn— .

The dual Brownian web V/\7 can be characterized as follows [FINR0O6, Theorem 3.7]:
Theorem B.3 (Characterization of the dual Brownian web) Let VW be a Brownian web

Then there exists an almost surely uniquely determined TI-valued random variable W
defined on the same probability space as W, called the dual Brownian web, such that:

(i) Almost surely, paths in W anAd W do not cross, ie., there exist no f € W andf eW
and s # t such that (f(s) — f(s))(f(t) — f(t)) <0;
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(ii) RVA\//}las the same law as VW, where R denotes the reflection map that maps each
f €W toan f € Il such that the graph of f in R? is the reflection of the graph of f
with respect to the origin.

Below we collect some basic properties of the Brownain web which we will use.
For further details, see [FINRO4,/EINRO6, SS08]. The first property concerns the
configuration of paths in W and W entering and leaving a point z € R2. For each
2z = (x,t) € R?, let mou (2) denote the cardinality of W(z). We will let m;,(2) denote the
number of equivalence classes of paths in W entering z, where a path f € W is said to
enter z if it starts before time ¢ and f(¢) = z, while two paths f,g € W entering z are
called equivalent if they coalesce before time ¢. Note that mi,(z) = 2 if and only if 2
is a point of coalescence between two paths in ). Similarly, we can define min(z) and
Mout(2), based on the configuration of paths in W. The pair (miy,, mout) is called the type
of zin W.

We cite the following result from [TW98, Prop. 2.4] and [FINRO6, Thm. 3.11-3.14].

Lemma B.4 (Special points for the Brownian web). Let VW and Wbe a Brownian web and
its dual. Almost surely:

(1) The set of = € R? with (min(2), Mouw(2)) = (Min(2), Mout(2)) = (0,1) has full
Lebesgue measure on R?.

(2) Foreacht € R, the set of z = (2/,t') € R x {t} with m.u(z) > 2 is a countable set,
with m;,(z) > 1 for each such z, i.e., z lies on the graph of some path in W starting
before time't.

Next we cite a result on the decay of the density of coalescing paths started at time 0.

Lemma B.5 (Density for the Brownian web). For t > 0, let fiRX{O} = {f@t) : f €
UzerW(x,0)} denote the point set on R generated at time t by the collection of co-
alescing paths in the Brownian web WV started at time 0. Then for any a < b,

y b
E[¢ % N [a, ][] = \/77? (B.1)

This result can be easily derived by using the duality between W and V/\7 namely
that fiRX{O} N (z,z + €) # 0 if and only if the two paths in W starting from (z,t) and
(x + €,t) do not collide on the time interval [0, ¢]. See e.g. [SS08, Prop. 1.12], where such
a density calculation is carried out for a generalization of the Brownian web known as
the Brownian net, which in addition allows branching of paths.

C Correlation inequalities for coalescing Brownian motions

In this section, we prove some negative correlation inequalities for a collection of
coalescing Brownian motions, which are used in Section 5. Similar inequalities have
previously been established in [MRTZ06], see also [NRS05, Remark 7.5]. Here we
deduce more general negative correlation inequalities from Reimer’s inequality applied
to coalescing random walks.

In van den Berg and Kesten [vdBK02], Reimer’s inequality was applied to continuous
time coalescing random walks with a generalized coalescing rule. Since we are interested
in coalescing Brownian motions, discrete space-time coalescing random walks with
instantaneous coalescing already provide an adequate approximation, and Reimer’s
inequality can be applied without any complication to the latter.

First we recall Reimer’s inequality [Rei00]. For each i € [ := {1,--- ,n}, let S; be a
finite set with a probability measure p; on S;. Let Q@ = S1 xS -+ xS, and pp = g X -+ X .-
For K C I and w = (w;);er, define the cylinder set C(K,w) :=={w' € Q:w] =w; Vi e K}.
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Given two events A, B C (), we say A and B occur disjointly for a configuration w € )
if there exists K C I such that C(K,w) C A and C(I\K,w) C B. The set of w € Q for
which A and B occur disjointly, which we call the disjoint intersection of A and B, is
denoted by

AOB :={weQ:3K C st C(K,w)C Aand C(I\K,w) C B}.
Then Reimer’s inequality asserts that, for any two events A, B C (),
n(AOB) < p(A)u(B). (C.1)

Now we apply this inequality to coalescing random walks. We recall first the con-
struction of discrete space-time coalescing random walks. Let Z2 ., = {(z,t) € Z* :
z+tis even}. Let {w.}.czz  beii.d. random variables taking values in {£1}. A directed
edge is drawn from each z = (z,t) € Z2,, which ends at (v + 1,¢t + 1) if w, = 1, and
ends at (z — 1,t + 1) if w, = —1. This provides a graphical construction of a collection of
coalescing random walks, where the random walk path starting from each z € Z2,, is

even

constructed by following the directed edges in Z2, ,, drawn according to w.
To illustrate how Reimer’s inequality is applied, let (XJ(»Ii’ti))thi, 1 <i<n, be
a collection of coalescing random walks constructed as above with starting points
(z4,t;) € 72, and assume for simplicity t; < 0 forall 1 < i < n. Fort € N, let
&G={r€eZ z= Xt(xi’ti) for some 1 < i < n}. Let Oy, -+, Oy be disjoint subsets of Z,
and let A; = {w : & N O; # 0}. The crucial observation is that, if the events (A4;)i1<i<n
occur simultaneously, then they must occur disjointly w.r.t. (wz)zezgm because of the

coalescence. Namely,

k
ﬂ A; = A0A, - DA, (C.2)
=1

Reimer’s inequality (C.1) then gives the negative correlation inequality

k k

P([4)

i=1 =

IN

P(A). (C.3)
1

The same reasoning allows us to choose each A; to be an increasing event of the occupa-
tion configuration & N O, i.e., given w and w’ with respective occupation configurations
&NO; CENO,;, ifw e A;, then also w’ € A;. Note that Reimer’s inequality may even be
applied to the disjoint occurence of the event A; with itself, which we use later in the
proof of Lemma C.6.

Using Reimer’s inequality as illustrated above, together with the invariance principle
for coalescing random walks, we will deduce a host of negative correlation inequalities
for coalescing Brownian motions, which we formulate next.

Definition C.1 (Negatively correlated point processes). We say a simple point process &
on R is negatively correlated, if for any n € IN and any disjoint open intervals O+, -- ,0O,,
we have P(N?_,{¢N O, # 0}) <[, P(ENO; #0).

Lemma C.2 (Negative correlation for colaescing Brownian motions). Let A C R x (—o0, 0],
and let ¢ denote the point set on R generated at time t > 0 by the collection of
coalescing Brownian motions in the Brownian web W starting from A. Then & is
negatively correlated.

Proof. By monotone convergence, it suffices to consider the case when A consists of
a finite number of points {z;, -, z,}. The fact that & is negatively correlated then
follows directly from the negative correlation inequality (C.3) for coalescing random
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walks, and the distributional convergence of coalescing random walks to coalescing
Brownian motions in the local uniform topology (see e.g. [NRS05, Section 5]). |

Lemma C.3 (Decoupling of correlation functions). Let {fg“ be as in Lemma C.2. Let
a1 <by <ay<by---<ay,<b,. Thenforanyl <j<n-—1,

(m{gt aisbi) # 0} NHEH N (b, a501) = 0})

< JP(@ (aj,b5) # 0,61 0 (g az41) = 0,6 1 (a1, b541) # 0) T P& N (i) #0).
i
(C.4)
Proof. As before, this follows from approximation by discrete space-time coalescing
random walks and Reimer’s inequality. Note that for the discrete analogue of the events

in the second line of (C.4), if they all occur, then they must occur disjointly. |

Lemma C.4 (Negative correlation for occupation number). Let §tA be as in Lemma C.2,
and let B C R have finite Lebesgue measure. Then for any k € NN,

P(|& N B| > k) < P(|& N B| > 1)*. (C.5)

Proof. By monotone convergence and approximation by open sets, it suffices to consider
the case when A C R x (—o0, 0] consists of a finite number of points, and B is the finite
union of disjoint open intervals. In fact, the argument is the same if B is a bounded open
interval, say (0, 1).

We proceed by discrete approximation. Let (Z;);cn be the subset of Z occupied
at time ¢t € IN by a collection of coalescing random walks on Z2 . starting from z; =
(w1,t1), s 2n = (X, ty) € Z2,,, witht; <0 forall 1 <i <n. Given O C Z and for k € NN,
let Ay ={weQ:|Z;N0O| >k}, where w = (w.).eczz  are the iid. {+1}-valued random
variables underlying the graphical construction of the coalescing random walks. We note

that
k

—

Indeed, if A; occurs, then we can find %k disjoint random walk paths, each of which
occupies a distinct site in O at time ¢. Reimer’s inequality (C.1) then implies P(4) <
P(A;)*. Inequality (C.5) then follows by the distributional convergence of coalescing
random walks to coalescing Brownian motions in the local uniform topology. |

Lemma C.5 (Moment bounds for occupation number). Let £ be a simple point process on
R with a locally finite intensity measure u, which is absolutely continuous w.r.t. Lebesgue
measure on R. If ¢ is negatively correlated, then for any Lebesgue measurable B C R
with (B) < oo, and for any k € IN, we have

"k
k k—m m
]E{|§QB| ] < mz::l (m)m w(B)™. (C.7)
Proof. Let B be an open interval, say (0,1). Forn € N, let D,, = {i27" : 0 < i < 2"},
and let D = |J,, . D». By our assumption that the intensity measure y is absolutely
continuous w.r.t. Lebesgue measure, { N D = () almost surely. For 1 < ¢ < 27, let
IZ.(") (§) = Lien((i—1)2-n,i2-n)20}- By the assumption that ¢ is a simple point process, and
by monotone convergence,

Bl 0.4 =E{ i (3 )] i B[( 7)) = 3 B[T147]

1<i<2n 1<i<2n 1<iq, g <2n j=1
(C.8)
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Note that 4(0,1) = E[€ N (0,1)]] = limy e Y0y BII{"]. Given i := (i1, ,ix) €

{1,---,2"}* let m(i) = |{i1,--- ,ix}|, and denote the m(7) distinct indices in {iy,- - - i}
by 01(i) < --- < o (). Then by the negative correlation assumption,

> eIl

1<y, i <27

k m
S SR NI SR SRR | I R

e ip<2n j=1 m=11<01 < <opm <27 j=1

k k
<3 FUm)(BUM) T o 3 fkm)n(0.1)"

where f(k,m)m! = [{(iy,--- ,ix) € {1,---,2"}* : {iy,--- ,ir} = {01, -+ ,0m}}|, which is
easily seen to be independent of the choice of 1 <oy < --- < 7,,, < 2". By first picking m
indices out of {iy,--- ,i;} and assign them values oy < --- < o, respectively, we easily
verify that f(k,m) < (,y’fl)mk*m, which proves (C.7) for B = (0, 1). By the same argument,
(C.7) holds for finite unions of disjoint open intervals, and by monotone convergence, for
open sets as well. Since any Lebesgue measurable set can be approximated from outside
by open sets, again by monotone convergence and the fact { N E = () a.s. for a given
FE C R with zero Lebesgue measure, (C.7) also holds for any Lebesgue measurable 5. i

We also need the following estimate on the constrained two-point correlation function
for the Brownian web.
Lemma C.6 (Constrained two point function for the Brownian web). Let gf‘X{O} be as in
Lemma B.5. Lett > 0. For a < b, let I, ;) denote the event that ERx40} M [a,b] # 0. Then
for any x1 < xo with A := x5 — x1, we have

Ae_%2
2/wt2

Proof. By translation invariance of ¢8%{%}, we may assume z; = 0, and let 2y — 2; =
A > 0. Let W), W5y, WA, and wia4s4) be the dual coalescing Brownian motions
in W starting at respectively (0,t), (6,t), (A,¢) and (A + 0,t). Let 7, be the time of
coalescence between w, s and W, ;). Then by the duality between W and )7\7 almost
surely, the event Iy 5) N I[5 o] occurs if and only if 75 s < 0 and 75 Ao < 0, and the event
Ijo,5) N Its,a44) occurs if and only if 755 < 0 and 75 a4 < 0. Since Ij5 o) C Ij5,a44 and
Iis, a6\ 1s,a] = 15 o) NV L(a,a+5), We have

c ¢ o1 .
Ki{(x1,22) := K;(A) = lim — IP[I[ZIJIJF(;] NI 16,20] ﬂl[zz,“ﬂ;ﬂ =

i O (C.10)

P [I[I1,$1+5] N I[CI1+5,w2] N I[:Eg,m2+6]]

_ IPBl’B2’BS B1,B2,B3

(C.11)
0.6.A (To,5 > t,Ts,a46 > t) — IPO,E,A+6 (10,5 > t,T5,A > 1),

where we have reversed time and replaced w, 4 for a = 0,9, A, A + § by independent
standard Brownian motions By, By and Bs starting from 0, J§, and A (or A + ), and 7,
is the first hitting time between the two Brownian motions starting from a and b.

By the Karlin-McGregor formula [KM59], the transition density for three Brownian mo-
tions Bi, By and Bj starting from z; < 5 < x3 to end at locations y; < y2 < ys at time ¢

without ever intersecting along the way is given by the determinant Det(p;(z;,y;)1<i,j<3),
(y==)?

where p;(z,y) = % Therefore we define

B1,Bs,B Bi1,Bs,B
D = Po,g,Aﬁ *(10,6 > t,Ts,a45 > 1) — ]P0737Ai53(70’5 > 1,750 > t). (C.12)
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The r.h.s. can be written as

pe(0,y1) (6, y2) pe(0,y3) |—|pe(dy1)  pe(0,y2)  pe(dys) |dY.
1Sy DA +6,11) p(A+0,y2) pe(A+0,y3)| [pe(Asy1) (A y2) pe(A+,ys)
(C.13)
After some elementary manipulation, we obtain that D is given by the expression:

/// p:(0,91) pt(0,92) p:(0,3) pe(0,31)  pe(0,2)  pe(0,y3)

yl +y2+y +62+A2 1 1 1

27Tt Ayl A A

y1<y2<y3 ( Y1, 0, A) € f(t 2,90, A) € f t,ys3,9, A)
(C.14)
v —=2)5-52 .
where f(t,y;,0,A) = =5 1. We then Taylor expand in §, and note that the factor

2
e~ Ly allows us to take DJ~2 and pass the limit 6 | 0 inside the integral to obtain

v1+y2+y3+A2 1 1 1
K (A) = hm /// Y1 Yo Y3 dy.
5L0 2 CeniE | su Ayy Ays
y1<y2<ys o et (11 —A) e a (y2—A) e o (y3 —A)

(C.15)
Expanding the determinant and performing the change of variable y; = z;1/t and
A = A/t gives Kf = ((27r)2t) (11 + I, + I3), where

(e1—A)2+02 402 _
/// e (1 — A) (23 — 22)d7,

z1<z2<T3

/// e 7 (r2 — A) (21 — 23)d7, (C.16)

z1<z2<T3

22422+ (v3—A)2 _
I = /// o~ TS (4~ A) (g — 11)dAE

1 <z2<T3

We then have

_ a3 +(zg—A)%+a2 71:%4»1:%4»(3:275)2
Il + Ig = — e 2 (Ig — IQ)dZ‘QdIg + e 2 (172 — I’l)dl’ldl’g

ro<I3 x1<T2
23 +e3+(@a—4)2 T - _ A2
= // e~ 2 (xg — x1)dzidrg = —=Ae™ 1,
R2 V2
(C.17)
and o} +a3 (@1 —2)% (z3—-48)2
I = // e T2 (e* 7 —e 2 )(xl — x3)dz1dxs
x1<x3
= e 2 T1 — T3)axr1dr3 = —= 4
f
R2
_a?
Together, they give K¢ = 2L n
g Y g t ay/mid
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