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Abstract

This paper is concerned with the death-birth updating process. This model is an
example of a spatial game in which players located on the d-dimensional integer
lattice are characterized by one of two possible strategies and update their strategy
at rate one by mimicking one of their neighbors chosen at random with a probability
proportional to the neighbor’s payoff. To understand the role of space in the form of
local interactions, the process is compared with its nonspatial deterministic counter-
part for well-mixing populations, which is described by the replicator equation. To
begin with, we prove that, provided the range of the interactions is sufficiently large,
both strategies coexist on the lattice for a parameter region where the replicator
equation also exhibits coexistence. Then, we identify parameter regions in which
there is a dominant strategy that always wins on the lattice whereas the replicator
equation displays either coexistence or bistability. Finally, we show that, for the
one-dimensional nearest neighbor system and in the parameter region corresponding
to the prisoner’s dilemma game, cooperators can win on the lattice whereas defectors
always win in well-mixing populations, thus showing that space favors cooperation.
In particular, several parameter regions where the spatial and nonspatial models
disagree are identified.
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1 Introduction

This paper is concerned with a closely related version of the death-birth updating
process in evolutionary game theory introduced in [20]. This model is an example of a
spatial evolutionary game based on the framework of interacting particle systems. The
concept of evolutionary game theory is an extension of traditional game theory that
has been proposed by [18] to describe the dynamics of populations in which fitness is
frequency dependent: individuals are viewed as players who are characterized by their
strategy and receive a certain payoff through their interactions with other individuals.
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Death-birth updating process

The payoff is then interpreted as fitness so that players with a larger payoff have a higher
reproductive success. One of the most popular models in evolutionary game theory
is the replicator equation [13] which assumes that the population is well-mixing. In
contrast, the death-birth updating process includes a spatial structure in the form of local
interactions: players are located on the set of vertices of a connected graph and interact
with a finite set of neighbors, meaning that they update their strategy based on these
neighbors. See [19, chapter 9] for a general definition and a brief review of such models.
The model in [20] assumes that the updates are neutral with high probability and based
on the payoff of the neighbors with small probability, which we refer respectively as
voter and game steps. In contrast, the model considered in this paper only accounts for
game steps, so the duality techniques [8] developed for voter model perturbations are no
longer available tools to study the process. Instead, our analysis is based on comparisons
with oriented site percolation, coupling arguments, and martingale techniques. The
main objective is to study the limiting behavior of the spatial stochastic process and
confront our results with the limiting behavior of the replicator equation in order to
understand the effects of the inclusion of space.

Model description. The process studied in this paper, which we again refer to as
the death-birth updating process following the terminology in [20], is a spin system on
the d-dimensional integer lattice where each vertex is occupied by a player characterized
by one of two possible strategies, say strategy 1 and strategy 2. The state at time t is a
function

ξt : Zd → {1, 2} where ξt(x) = strategy at vertex x at time t.

The dynamics of this process or any other spatial game is defined in a couple of steps: we
first fix a payoff matrix, which allows us to turn every spatial configuration of strategies
into a so-called payoff landscape, which can then be used to define the transition rates
at each vertex. Since we focus on games with two strategies, the payoff matrix is a 2× 2

matrix A = (aij) whose coefficients are positive real numbers interpreted as

aij = payoff of a type i player interacting with a type j player.

In nonspatial evolutionary games, players interact equally with any other player in the
population, making their payoff a function of the global frequency of representatives of
each strategy. In contrast, spatial games assume that the payoff of a player depends
exclusively on the strategy of a finite set of neighbors, which is the key to designing
more realistic models with local interactions. Throughout this paper, the interaction
neighborhood of vertex x is the set

Nx := {y ∈ Zd : y 6= x and maxj=1,2,...,d |xj − yj | ≤M}

where the constant M is called the range of the interactions. Letting Nj(x, ξ) be
the number of neighbors of the player at vertex x following strategy j, every spatial
configuration ξ is then turned into a payoff landscape by attributing the payoff

φ(x, ξ) :=
∑
j aij Nj(x, ξ) where i = ξ(x) (1.1)

to the player at vertex x. In words, each type i player receives aij from each of her
neighbors following strategy j. The last step to define the dynamics of the process is
to follow [18] and interpret the payoff as fitness. The basic idea here is to write the
rate at which a player changes her strategy as a function of her payoff and the payoff of
her neighbors in such a way that players with a larger payoff are more likely to spread
their strategy. There are multiple options. For instance, the updating rules considered
in [11, 16] are as follows.
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Death-birth updating process

• Best-response dynamics [11]. Players update their strategy at rate one in order to
maximize their payoff, which depends on the strategy of their neighbors.

• Payoff affecting birth and death rates [16]. In this process, when a player has a
positive payoff, at rate this payoff, one of her neighbors chosen at random adopts
her strategy, whereas when her payoff is negative, at rate minus this payoff, she
adopts the strategy of one of her neighbors chosen at random. This updating rule
is inspired from [5].

The dynamics of the death-birth updating process is built using a similar approach: we
assume that players update their strategy at rate one by mimicking a random neighbor,
with each neighbor being chosen with a probability proportional to her payoff. More
precisely, letting ξ be the configuration of the system, the player at x switches her
strategy i→ j at rate

pi→j(x, ξ) :=

∑
y∈Nx

φ(y, ξ) 1{ξ(y) = j}∑
y∈Nx

φ(y, ξ)
for {i, j} = {1, 2}. (1.2)

Note that, when all four payoff coefficients are equal, the expression above is equal to the
fraction of type j neighbors, thus showing that, in this particular case, the death-birth
updating process reduces to the voter model introduced independently in [7, 14]. The
model described by the two transition rates in (1.2), or to be more specific, a closely
related version of this model, has been introduced and studied heuristically in [20]
while [6, 8] give rigorous results. The process considered in these works can be seen as
the weak selection approximation of the model described by (1.2). Players again update
their strategy at rate one but, at the time of the update,

• with probability 1−ε, the player mimics the strategy of a neighbor chosen uniformly
at random, just like in the voter model [7, 14], while

• with probability ε, the player mimics a neighbor chosen at random according to
probabilities that are proportional to the neighbors’ payoff, as described by (1.2).

This model is studied in [6, 8, 20] when ε is small, in which case duality techniques
for voter model perturbations are available. For a general definition of duality for
interacting particle systems, we refer the reader to [17, Section II.3]. In contrast, we
study the process when ε = 1, in which case duality is not applicable, which leads to
more qualitative and less quantitative results.

The replicator equation. Before studying the spatial game, it is worth taking a quick
look at its nonspatial deterministic analog to later identify disagreements between both
models and thus understand the effect of the inclusion of space in the form of local
interactions. The nonspatial model is obtained by assuming that the population of
players is well-mixing, which results in a system of ordinary differential equations for the
frequency of each strategy. In the case of the death-birth process, this is a time-change
of the replicator equation:

u′1 = u1 u2 (φ1(u1, u2)− φ2(u1, u2)) (1.3)

where uj is the frequency of players following strategy j and

φ1(u1, u2) = a11u1 + a12u2 and φ2(u1, u2) = a21u1 + a22u2

are the common payoffs of all type 1 and all type 2 players, respectively. This can be
viewed as the nonspatial analog of the payoff landscape (1.1). Since each player follows
either strategy 1 or strategy 2, we always have u1 + u2 = 1, which implies that, in the
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Death-birth updating process

presence of two strategies, the replicator equation is only one-dimensional and easy to
analyze. As pointed out in [15], the limiting behavior can be conveniently described by
introducing the parameters

a1 := a11 − a21 and a2 := a22 − a12

and calling strategy i selfish whenever ai > 0 and altruistic whenever ai < 0. Then,
following the usual terminology by calling a strategy an evolutionary stable strategy
if it cannot be invaded by any alternative strategy starting at an infinitesimally small
frequency, some basic algebra shows that the behavior of the replicator equation (1.3) is
as follows:

• when a1 a2 < 0, the selfish strategy always outcompetes the altruistic strategy,
showing that the selfish strategy is the only evolutionary stable strategy,

• when a1, a2 > 0, there is an unstable interior fixed point so the system is bistable,
showing that the two (selfish) strategies are evolutionary stable,

• when a1, a2 < 0, there is a globally stable interior fixed point so both strategies
coexist and none of the two (altruistic) strategies is evolutionary stable.

In summary, the analysis of the replicator equation shows that, when the population is
well-mixing, a strategy is an evolutionary stable strategy if it is selfish but not if it is
altruistic.

Main results for the spatial game. In order to compare the spatial game with its
nonspatial analog, we assume that the process starts from a translation invariant product
measure in which the density of each of the two strategies is constant across the lattice.
Since the two configurations in which all players follow the same strategy are absorbing
states, we also assume, to avoid trivialities, that the density of each strategy is positive.
For the spatial game,

• strategy j wins when limt→∞ P (ξt(x) = j) = 1,

• strategy j survives when lim inft→∞ P (ξt(x) = j) > 0,

• both strategies coexist when lim inft→∞ P (ξt(x) 6= ξt(y)) > 0 for all x 6= y,

and a strategy is said to go extinct when it does not survive. Note that the probabilities
above do not depend on the choice of vertex x because both the initial distribution and
the evolution rules are translation invariant. From now on, we assume without loss of
generality that a21 > a12 > 0 and study the limiting behavior of the process as the other
two payoffs vary.

To begin with, we look at the parameter region where both strategies are altruistic. In
this case, coexistence occurs when the population is well-mixing, i.e., when the dynamics
is described by the replicator equation (1.3). Numerical simulations suggest that, except
in the one-dimensional nearest neighbor case, coexistence is again possible for the
spatial game though the coexistence region can be significantly reduced. The smaller
the spatial dimension and/or the range of the interactions, the smaller the coexistence
region. Our first two theorems show that coexistence is indeed possible and that the
coexistence region for the spatial game is indeed reduced. More precisely, Theorem 1.1
shows that, regardless of the spatial dimension, both strategies coexist when they are
sufficiently altruistic and the range of the interactions is sufficiently large.

Theorem 1.1. – Let a21 > a12 > 0. Then, there exist a > 0 and M0 <∞ which depends
on a such that the death-birth updating process coexists when

max (a11, a22) ≤ a and M > M0.
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Death-birth updating process

To prove that the coexistence region is reduced, and more generally identify pa-
rameter regions in which one strategy wins, we first observe that, when a11 = a12
and a22 = a21, the process is significantly simplified because the payoff of the players
only depends on their strategy but not on the strategy of their neighbors. Indeed, in this
case (1.1) reduces to

φ(x, ξ) =
∑
j aij Nj(x, ξ)1{ξ(x) = i} = aii ((2M + 1)d − 1)1{ξ(x) = i}

for i = 1, 2, therefore the transition rates become

pi→j(x, ξ) =

∑
y∈Nx

φ(y, ξ) 1{ξ(y) = j}∑
y∈Nx

φ(y, ξ)
=

ajj Nj(x, ξ)

aiiNi(x, ξ) + ajj Nj(x, ξ)

for {i, j} = {1, 2}. It follows that, under our general assumption a12 < a21, the set of
type 2 players dominates stochastically a certain biased voter model [3, 4], thus showing
that, in this very special case, strategy 2 wins. Elaborating on this idea but using
coupling arguments to compare the death-birth updating process with spin systems
which are more complicated than the biased voter model, we can prove much more, as
shown in the next theorem.

Theorem 1.2. – Let a21 > a12 and N := cardNx = (2M + 1)d − 1. Then,

(a) strategy 1 wins when min (a12 − a22, a11 − a21) > (N − 1)(a21 − a12),

(b) strategy 2 wins when (M,d) 6= (1, 1) and

(N2 −N − 1) max (a11 − a21, a12 − a22, a11 − a22) < a21 − a12.

Figure 1 shows the parameter regions in both parts of the theorem. Note that the
parameter region in the first part of the theorem is nonempty if and only if

a12 − (N − 1)(a21 − a12) > 0 if and only if a12 > (1− 1/N) a21.

The figure shows this region for N = 2, i.e., in the presence of one-dimensional nearest
neighbor interactions. In contrast, the parameter region in the second part of the
theorem is always nonempty and, more interestingly, it always overlaps the region where
both strategies are altruistic as well as the region where both strategies are selfish. This
shows that the inclusion of a spatial structure in the form of local interactions indeed
reduces the coexistence region, as mentioned above. This also shows that, in a subset of
the parameter region where the replicator equation is bistable, there is instead a strong
type for the spatial game that wins even starting at low density. The next theorem goes
a little bit further in this direction by showing that, no matter how selfish a strategy is,
the other strategy always wins if it is selfish enough.

Theorem 1.3. – For all a > 0 there is A <∞ such that strategy 1 wins when

max (a21, a22) ≤ a and a11 > A.

This theorem extends the parameter region where strategy 1 wins found before. In
addition, contrary to Theorem 1.2, this result does not assume that a12 < a21. Therefore
its dual statement obtained by exchanging the role of both strategies holds as well,
showing that Theorem 1.3 also extends the parameter region where strategy 2 wins
found before.

The results collected so far indicate interesting discrepancies between the death-birth
updating process and the replicator equation, showing the importance of local inter-
actions. The most interesting aspect suggested by spatial simulations is the existence
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Death-birth updating process

Figure 1: Phase diagram of the spatial game in the a11 − a22 plane. The thick dashed
lines represent the parameter regions covered by Theorems 1.1 and 1.2 as labeled in the
picture, while the dotted and solid lines are the lines where two of the payoff coefficients
are equal. The two solid lines recall the phase diagram of the replicator equation, which
also delimits the parameter regions where the strategies are selfish or altruistic. The
three points p, p+ and p− will be used later in the proof of Lemma 3.3 and are rigorously
defined in (3.16)–(3.18), respectively.

of a subset of the parameter region corresponding to the prisoner’s dilemma game in
which cooperators win on the lattice whereas they always lose when the population is
well-mixing. In this game, the police holds two prisoners for a minor crime but suspects
them of having committed a greater crime. The detective offers each, individually, a deal:
if one prisoner testifies against the other for the greater crime, then he will be acquitted
of the lesser charge, which leads to four possible payoffs. If both prisoners cooperate
by not testifying, they get the light sentence for the minor crime, the reward R. If they
both defect, they get the sentence for the greater crime, the punishment P. Finally, if one
prisoner defects and the other one cooperates, the defector goes free and receives the
largest possible payoff called the temptation T while the cooperator goes to jail for both
crimes and receives the smallest possible payoff called the sucker’s payoff S. Calling
cooperation strategy 1 and defection strategy 2, the prisoner’s dilemma game is thus
characterized by the following ordering the payoffs:

a12 = S < a22 = P < a11 = R < a21 = T.

Figure 2 shows the corresponding triangular region in solid lines. Players with strategy 1
are called cooperators while players with strategy 2 are called defectors. Because the
reward is not as good as the temptation, and the punishment is not as bad as the sucker’s
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Death-birth updating process

Figure 2: Phase diagram of the one-dimensional nearest neighbor spatial game
when a21/a12 = 2. The lower thick dashed curve is obtained from the conditions in
Theorem 1.4 and the upper curve from the conditions in (1.4). In particular, strategy 1
wins below the lower curve while strategy 2 wins above the upper curve. The triangle
in solid lines represents the parameter region corresponding to the prisoner’s dilemma
game.

payoff, cooperators are altruistic and defectors selfish, therefore defectors indeed win
when the population is well-mixing. In contrast, the heuristic arguments in [20] suggest
that there is a subset of the prisoner’s dilemma triangle in which cooperators are favored
over defectors on regular graphs. This has been proved in [6] for finite, connected,
simple graphs, and in [8] for integer lattices with d > 2. Their results, however, hold
in the weak selection case but not for the process (1.2). We now study the interactions
among cooperators and defectors in one dimension, the main difficulty being the lack
of attractiveness of the process. To state our last result, we introduce the following
quantities that will be interpreted later as drift of a certain interface:

D3 :=
a11 + a12

a11 + a12 + a21 + a22
− a21 + a22

2a11 + a21 + a22

D4 :=
a11 + a12

a11 + a12 + 2a22
− a21 + a22

2a11 + a21 + a22
.

Then, we have the following theorem.

Theorem 1.4. – Let M = d = 1. Then, strategy 1 wins when

(a22 < a21 and D3 +D4 > 0) or (a22 > a21 and D4 > 0).
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Note that the parameter region given by the theorem overlaps but is not restricted to
the prisoner’s dilemma triangle. To see that the theorem implies the existence of a subset
of the triangle in which cooperators win, observe that, when a11 = a21 > a22 = a12,

D3 +D4 =
1

2
+

a12 + a21
3a12 + a21

− 2× a12 + a21
a12 + 3a21

>
1

2
+

1

2
− 2× 1

2
= 0.

In particular, the first parameter region given by the theorem in which cooperators win
indeed overlap the prisoner’s dilemma triangle. The theorem also implies that strategy 2
wins in the parameter regions obtained by exchanging the role of the two strategies, i.e.,
letting

D̄3 :=
a22 + a21

a22 + a21 + a12 + a11
− a12 + a11

2a22 + a12 + a11

D̄4 :=
a22 + a21

a22 + a21 + 2a11
− a12 + a11

2a22 + a12 + a11
.

and again M = d = 1, strategy 2 wins when

(a11 < a12 and D̄3 + D̄4 > 0) or (a11 > a12 and D̄4 > 0). (1.4)

Finally, observing that D4 + D̄4 = 0, we deduce that

strategy 1 wins when a22 > a21 and D4 > 0

strategy 2 wins when a11 > a12 and D4 < 0

showing that, when min(a11, a22) > max(a12, a21), the condition is sharp. Figure 2 gives
a picture of the curves derived from the theorem when a21/a12 = 2.

2 Coexistence of altruistic strategies

This section is devoted to the proof of our coexistence result Theorem 1.1. To prove
this result, we think of the process as being generated from a graphical representa-
tion which, for the death-birth updating process, reduces to a countable collection
of independent Poisson processes and uniform random variables. More precisely, for
each (x, n) ∈ Zd ×N∗, let

Tn(x) := the nth arrival time of a Poisson process with intensity one

Un(x) := uniform random variable on the interval (0, 1).

Then, at time s := Tn(x), the strategy at x is set equal to

1 when Un(x) < p2→1(x, ξs−)

2 when Un(x) > p2→1(x, ξs−)

where pi→j(x, ξ) has been defined in (1.2). An argument due to Harris [12] implies that
the process starting from any initial configuration can indeed be constructed following
these rules.

In the proof of the coexistence result, we focus for simplicity on the two-dimensional
case but our approach easily extends to any spatial dimension. Specifically, we will prove
that both strategies coexist when the range of the interactions M is large and

max (a11, a22) ≤ 5−2 2−21 (c−)5 min (a12, a21) = 2−14 (c+)−1 min (a12, a21) (2.1)

where the two key constants c− and c+ are defined as

c− := 2−17 min (a12/a21, a21/a12) and c+ := 52 27(c−)−5. (2.2)
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Death-birth updating process

Let s := ln(2) and Kr := [−rM, rM)2 for all r > 0, and fix

A,B ⊂ K1/2 with card(A) = card(B) = 2−2M2.

The proofs of Lemmas 2.2–2.3 below hold for such general sets though they will be
applied ultimately to more specific space-time boxes. One key to the proof is to observe
that

maxj=1,2 |xj − yj | ≤M for all (x, y) ∈ A×B.
For all D ⊂ Z2 finite and i = 1, 2, we let

ζit(D) := card {x ∈ D : ξt(x) = i}

denote the number of type i players in the set D at time t. Throughout the proof, we will
use repeatedly the large deviation estimate

P (Binomial (K, p) ≤ K (p− z)) ≤ exp(−Kz2/2p) for all z ∈ (0, p) (2.3)

which follows from [1, Theorem 1] and the fact that, setting q = 1− p, we have

P (Binomial (K, p) ≤ K (p− z)) = P (Binomial (K, 1− p) ≥ K −K (p− z))
= P (Binomial (K, q) ≥ K (q + z)).

Keeping the players in a box – To begin with, we prove in the next lemma that, the
number of players of either type in a given spatial region does not decrease too fast.
The idea is to simply find a bound for the number of updates using the previous large
deviation estimates for the binomial random variable. This lemma will be used repeatedly
later.

Lemma 2.1. – Let D ⊂ Z2 be finite, K ≤ card(D) and n ∈ N. Then, for i = 1, 2,

P (ζit(D) ≤ 2−(n+1)K for some t ∈ (0, ns) | ζi0(D) ≥ K) ≤ exp(−2−(n+3)K).

Proof. To begin with, we let

ui(D) := card {x ∈ D : ξ0(x) = i and T1(x) < ns}

denote the total number of players in the set D who are initially of type i and update
their strategy at least once by time ns. Here and after, updates refer to the death-birth
events that occur at the times Tn(x). In particular, an update does not necessarily induce
a change of strategy. Now, recalling that the random variables T1(x) are the first arrival
times of the independent rate one Poisson processes used to construct the process and
therefore are independent and exponentially distributed with rate one, our choice of s
implies that

ui(D) = Binomial (ζi0(D), 1− e−ns) = Binomial (ζi0(D), 1− 2−n). (2.4)

Note also that, since the initial number of type i players in D minus the number of those
players that have updated their strategy by time ns must exceed the number of type i
players in D at all times before time ns, we have for all t ∈ (0, ns)

{ζit(D) ≤ 2−(n+1)K} ∩ {ζi0(D) ≥ K} ⊂ {ui(D) ≥ (1− 2−(n+1))K}. (2.5)

Using (2.4)–(2.5) and (2.3) with p = 2−n and z = 2−(n+1), we get

P (ζit(D) ≤ 2−(n+1)K for some time t ∈ (0, ns) | ζi0(D) ≥ K)

≤ P (ui(D) ≥ (1− 2−(n+1))K | ζi0(D) ≥ K)

≤ P (Binomial (K, 1− 2−n) ≥ (1− 2−(n+1))K)

= P (Binomial (K, 2−n) ≤ 2−(n+1)K) ≤ exp(−2−(n+3)K).

This completes the proof of the lemma.
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Death-birth updating process

Moving the players around – We now prove that if the region A has a large number of
type 1 players then, regardless of the configuration around this region, we can “move”
a positive fraction of these players to the nearby region B in s units of time. The
constant c− defined in (2.2) will play the role of the fraction of players we can move.

Lemma 2.2. – Assume (2.1) and let c− as in (2.2) and a > 0. Then,

P (ζ1s (B) ≤ c−(aM) | ζ10 (A) ≥ aM) ≤ exp(−(aM)1/2) for all M large.

Proof. The proof of Lemma 2.1 with D = B, n = 1 and K = aM gives

P (ζ1s (B) ≤ c−(aM) | ζ10 (A) ≥ aM and ζ10 (B) ≥ aM)

≤ P (ζ1t (B) ≤ 2−2(aM) for some t ∈ (0, s) | ζ10 (A) ≥ aM and ζ10 (B) ≥ aM)

≤ exp(−2−4 aM) ≤ exp(−(aM)1/2)

for all M large. The first inequality follows from the fact that c− ≤ 2−17 < 2−2 while the
second inequality indeed follows from the proof of Lemma 2.1 since the estimates in this
proof only depend on the initial number of type 1 players in B and the number of sites in
this set which are updated before time s. To complete the proof, it remains to show that

P (ζ1s (B) ≤ c−(aM) | ζ10 (B) ≤ aM ≤ ζ10 (A)) ≤ exp(−(aM)1/2) (2.6)

for all M large. To lighten the notation, we let

P ∗(E) := P (E | ζ10 (B) ≤ aM ≤ ζ10 (A)) for any event E

and introduce the two events

A := {ζ1t (A) ≤ 2−2 aM for some time t ∈ (0, s)}
B := {ζ2t (B) ≤ 2−5M2 for some time t ∈ (0, s)}.

(2.7)

The proof of Lemma 2.1 with K = aM then K = 2−3M2 gives

P ∗(A) ≤ exp(−2−4 aM) and P ∗(B) ≤ exp(−2−7M2). (2.8)

As previously, this follows from the fact that the estimates in the proof of Lemma 2.1 only
depend on the initial number of players of a given type and the number of sites which
are updated in the set under consideration. Now, observe that, on the intersection of
the event that x ∈ A follows strategy 1 and the event Bc, the payoff of the player at x
satisfies

φ(x, ξt) ≥ a12 2−5M2 for all t ∈ (0, s).

It follows that, on the event (A∪B)c, each time a player in the set B updates her strategy,
she remains/becomes of type 1 with probability at least

p1 ≥ (a12 2−5M2)(2−2 aM)((a12 2−5M2)(2−2 aM) + (a21 + a22)(2M + 1)4)−1

≥ (a12 2−5M2)(2−2 aM)(a21 25M4)−1 ≥ 2−12 (a12/a21) aM−1

≥ 25 c−(aM−1)
(2.9)

for all M sufficiently large. Note that the the second inequality in (2.9) follows from (2.1)
while the last inequality follows from the choice of c− in (2.2). In particular, letting

Xu := card {x ∈ B : T1(x) < s}
X1 := card {x ∈ B : T1(x) < s and ξs(x) = 1}

(2.10)
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observing from (2.9) that 2−5M2 p1 ≥ c−(aM), and using (2.3), we deduce that

P (X1 ≤ c−(aM) | (A ∪B)c)

≤ P (Xu ≤ 2−4M2) + P (X1 ≤ c−(aM) | (A ∪B)c and Xu > 2−4M2)

≤ P (Binomial (M2/4, 1/2) ≤ 2−4M2) + P (Binomial (2−4M2, p1) ≤ c−(aM))

≤ P (Binomial (M2/4, 1/2) ≤ 2−4M2) + P (Binomial (2−4M2, p1) ≤ 2−5M2 p1)

≤ exp(−2−6M2) + exp(−2−7M2 p1) ≤ (1/2) exp(−(aM)1/2).
(2.11)

Using that X1 ≤ ζ1s (B) and combining (2.8) and (2.11), we conclude that

P ∗(ζ1s (B) ≤ c−(aM)) ≤ P ∗(A ∪B) + P (ζ1s (B) ≤ c−(aM) | (A ∪B)c)

≤ P ∗(A) + P ∗(B) + P (X1 ≤ c−(aM) | (A ∪B)c)

≤ exp(−2−4 aM) + exp(−2−7M2) + (1/2) exp(−(aM)1/2) ≤ exp(−(aM)1/2)

for all M large, which gives (2.6). Note that, for the first inequality above, we also use
the fact that the death-birth updating process ξt is Markov. This completes the proof.

Creating a pile of players – The next lemma improves the previous one by showing
that if the region A has a large number of type 1 players then the same amount of type 1
players can be created in the nearby region B. The idea is to first prove that, as long
as the number of type 1 players nearby is small, the number of such players can be
increased by a factor c+. Once this threshold is reached, one can find a small box with
a large number of type 1 players and apply the previous lemma repeatedly to move a
fraction of these players to the target set B.

Lemma 2.3. – Assume that (2.1) holds. Then,

P (ζ16s(B) ≤M | ζ10 (A) ≥M) ≤ exp(−M1/2) for all M large.

Proof. To keep track of the amount of type 1 and type 2 players in K5/2, which is the key
to controlling the payoff of the type 1 players in the set A, we set

K := {ζ1t (K5/2) ≥ c+M for some time t ∈ (0, s)}

where c+ has been defined in (2.2). The proof is divided into two steps.

Step 1 – First, we prove that, given ζ10 (A) ≥M , the event K occurs with high probability.
The idea is to show that the complement of this event confers a large payoff to the type 1
players in the set A, which results in a large production of such players, thus leading to
a contradiction. To make this argument precise, we observe that, with probability one,

(ζ2t (x+K1) ≥M2 for all x ∈ A and ζ1t (K5/2) ≤ c+M) for all t ∈ (0, s)

on the event Kc. Therefore,

on the event {ξt(x) = 1} ∩Kc,

φ(x, ξt) ≥ a12M2 for all x ∈ A

on the event {ξt(x) = 2} ∩Kc,

φ(x, ξt) ≤ a21 c+M + a22 (2M + 1)2 ≤ 23 a22M
2 for all x ∈ K3/2.

In particular, given (A′ ∪K)c where A′ is the first event (2.7) for a = 1, each time a
player in B updates her strategy, she remains/becomes of type 1 with probability at least

q1 ≥ (a12M
2)(2−2M)((a12M

2)(2−2M) + (23 a22M
2)(2M + 1)2)−1

≥ (a12M
2)(2−2M)((24 a22M

2)(2M + 1)2)−1

≥ 2−9 (a12/a22)M−1.

(2.12)
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Figure 3: Picture related to the proof of Lemma 2.3.

Defining Xu and X1 as in (2.10), observing that, by (2.1) and (2.12),

2−5M2 q1 ≥ 2−14 (a12/a22)M ≥ c+M

and using (2.3), we deduce that, for all M sufficiently large,

P (X1 ≤ c+M | (A′ ∪K)c)

≤ P (Xu ≤ 2−4M2) + P (X1 ≤ c+M | (A′ ∪K)c and Xu > 2−4M2)

≤ P (Binomial (M2/4, 1/2) ≤ 2−4M2) + P (Binomial (2−4M2, q1) ≤ c+M)

≤ P (Binomial (M2/4, 1/2) ≤ 2−4M2) + P (Binomial (2−4M2, q1) ≤ 2−5M2 q1)

≤ exp(−2−6M2) + exp(−2−7M2 q1) ≤ (1/4) exp(−M1/2).
(2.13)

Using again X1 ≤ ζ1s (B) and combining (2.8) with a = 1 and (2.13), we get

P (Kc | ζ10 (A) ≥M) = P (ζ1s (B) ≤ c+M and Kc | ζ10 (A) ≥M)

≤ P (A′ | ζ10 (A) ≥M) + P (ζ1s (B) ≤ c+M | (A′ ∪K)c)

≤ exp(−2−4M) + (1/4) exp(−M1/2)

≤ (1/2) exp(−M1/2)

(2.14)

for all dispersal range M sufficiently large. Note that, for the first inequality above, we
also use the fact that the death-birth updating process ξt is Markov.

Step 2 – Now, given K, there is a box with at least 5−2 c+M type 1 players. One can
move a fraction of these players to the target set B in at most five steps, applying
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Lemma 2.2. To begin with, we observe that some basic geometry implies that, given K,
there exist

B0, . . . , B5 ⊂ K5/2 and t0 ∈ (0, s)

such that the following three conditions hold:

(a) We have ζ1t0(B0) ≥ 5−2 c+M .

(b) For k = 0, . . . , 5, we have card(Bk) = 2−2M2 with B5 = B.

(c) For k = 0, . . . , 4, we have maxj=1,2 |xj − yj | ≤M for all (x, y) ∈ Bk ×Bk+1.

We refer to Figure 3 for an illustration of the worst case scenario where all the type 1
players are located in one of the corners of K5/2. Under these conditions, we can bring
type 1 players to our target set in at most five steps applying repeatedly Lemma 2.2.
Indeed,

P (ζ1t (B) ≤ 27M for all t ∈ (0, 6s) |K)

≤ P (ζ1t0+5s(B5) ≤ 27M | ζ1t0(B0) ≥ 5−2 c+M = 27(c−)−5M)

≤ 1−
∏
k=0,1,2,3,4 P (ζ1s (Bk+1) ≥ 27(c−)k−4M | ζ10 (Bk) ≥ 27(c−)k−5M)

≤ 1−
∏
k=0,1,2,3,4 (1− exp(−27/2 (c−)(k−5)/2M1/2))

≤ 1− (1− exp(−27/2M1/2))5

≤ 5× exp(−27/2M1/2) ≤ (1/4) exp(−M1/2)

(2.15)

for all dispersal range M sufficiently large.

Conclusion – Combining (2.14)–(2.15), we deduce that

P (ζ1t (B) ≤ 27M for all t ∈ (0, 6s) | ζ10 (A) ≥M)

≤ P (Kc | ζ10 (A) ≥M) + P (ζ1t (B) ≤ 27M for all t ∈ (0, 6s) |K)

≤ (1/2) exp(−M1/2) + (1/4) exp(−M1/2) = (3/4) exp(−M1/2)

which, applying Lemma 2.1 with n = 6 and K = 27M , implies that

P (ζ16s(B) ≤M | ζ10 (A) ≥M)

≤ P (ζ1t (B) ≤ 27M for all t ∈ (0, 6s) | ζ10 (A) ≥M)

+ P (ζ16s(B) ≤ 2−7 27M | ζ1t (B) ≥ 27M for some t ∈ (0, 6s))

≤ (3/4) exp(−M1/2) + exp(−2−2M) ≤ exp(−M1/2)

for all M large. This completes the proof.

Block construction – To deduce coexistence, we use Lemma 2.3 in combination with
some obvious symmetry and a block construction, a technique that has been introduced
in [2] and is reviewed in [10]. The idea is to define a coupling between the process
properly rescaled in space and time and supercritical percolation. More precisely, let H
be the directed graph with vertex set

H := {(z, n) ∈ Z2 ×Z+ : z1 + z2 + n is even}

and in which there is an oriented edge

(z, n)→ (z′, n′) if and only if (z′ = z ± e1 or z′ = z ± e2) and n′ = n+ 1

where ej is the jth unit vector. Then, we consider the 14 dependent oriented site
percolation process with density equal to 1− ε on this directed graph, i.e., we assume
that
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P ((zi, ni) is closed for i = 1, 2, . . . ,m) = εm

whenever |zi − zj | ∨ |ni − nj | > 14 for i 6= j. Then, we set

Bz := (M/2) z + [−M/4,M/4)2 for all z ∈ Z2 and T := 6s = 6 ln(2)

and declare site (z, n) ∈ H to be good whenever

ζinT (Bz) = card {x ∈ Bz : ξnT (x) = i} ≥M for i = 1, 2.

Finally, for all n ∈ N, we define

W ε
n := {z : (z, n) is wet} and Xn := {z : (z, n) is good}

where a site is said to be wet if it can be reached from a directed path of open sites
starting at level zero. The next lemma shows that, for all ε > 0, one can find a sufficiently
large dispersal range such that the set of good sites dominates stochastically the set
of wet sites. In view of the definition of a good site, this will imply coexistence of both
strategies.

Lemma 2.4. – Assume (2.1) and fix ε > 0. Then, for all M large,

P (z ∈W ε
n) ≤ P (z ∈ Xn) for all (z, n) ∈ H whenever W ε

0 ⊂ X0.

Proof. First, we define the collection of events

Bi(z, n) := {ζinT (Bz) ≥M} for all (z, n) ∈ H and i = 1, 2.

Then, since for j = 1, 2,

Bz, Bz±ej ⊂ ((M/2) z ± (M/4) ej) +K1/2 and card(Bz) = card(Bz±ej ) = 2−2M2

we can apply Lemma 2.3 to get

P (B1(z ± ej , n+ 1) for j = 1, 2 |B1(z, n))

= P (ζ1(n+1)T (Bz±ej ) ≥M for j = 1, 2 | ζ1nT (Bz) ≥M)

≥ 1− 4P (ζ1(n+1)T (Bz+e1) ≤M | ζ1nT (Bz) ≥M) ≥ 1− 4 exp(−M1/2)

≥ 1− ε/2

for all M large. Since all the estimates in the proof of Lemma 2.3 hold uniformly in all
possible initial configurations such that ζ10 (A) ≥M , we also have

P (B1(z ± ej , n+ 1) for j = 1, 2 |B1(z, n) ∩B2(z, n)) ≥ 1− ε/2.

By symmetry, the same holds for strategy 2, therefore

P (z ± ej ∈ Xn+1 for j = 1, 2 | z ∈ Xn)

= P (B1(z ± ej , n+ 1) ∩B2(z ± ej , n+ 1) for j = 1, 2 |B1(z, n) ∩B2(z, n))

≥ − 1 + P (B1(z ± ej , n+ 1) for j = 1, 2 |B1(z, n) ∩B2(z, n))

+ P (B2(z ± ej , n+ 1) for j = 1, 2 |B1(z, n) ∩B2(z, n))

≥ − 1 + 2 (1− ε/2) = 1− ε.
(2.16)

Now, for every (z, n) ∈ H, we let G(z, n) be the set of realizations of the graphical
representation restricted to the finite space-time box

R(z, n) := ((M/2)z, nT ) + (K7/2 × [0, T ])

EJP 21 (2016), paper 17.
Page 14/29

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP4380
http://www.imstat.org/ejp/


Death-birth updating process

and such that (z ± ej , n+ 1) are good whenever (z, n) is good and G(z, n) occurs. Since
all the estimates in Lemma 2.3 hold regardless of the configuration outside the spatial
region K5/2, it follows from (2.16) that the set of realizations G(z, n) has probability at
least 1− ε. In summary, we have a collection of events that satisfy the following three
properties:

(a) G(z, n) is measurable with respect to the graphical representation in R(z, n).

(b) For all M large, we have P (G(z, n)) ≥ 1− ε.

(c) We have the inclusion G(z, n) ∩ {z ∈ Xn} ⊂ {z ± ej ∈ Xn+1 for j = 1, 2}.

Observing also that

R(z, n) ∩R(z′, n′) = ∅ when |z − z′| ∨ |n− n′| ≥ 2× 7 = 14,

we deduce from [10, Theorem 4.3] the existence of a coupling between the long range
death-birth process and the oriented site percolation process such that

P (W ε
n ⊂ Xn) = 1 whenever W ε

0 ⊂ X0.

The lemma directly follows from the existence of this coupling.

Using the previous lemma, we can now prove Theorem 1.1. Fix ε > 0 small enough to
make the percolation process supercritical and M accordingly, and observe that

lim inft→∞ P (ξt(x) 6= ξt(y)) = lim inft→∞ P (ξt(0) 6= ξt(y − x))

≥ lim inft→∞ P (ξt(0) 6= ξt(y − x) | 0 ∈W ε
2bt/Tc)P (0 ∈W ε

2bt/Tc |W
ε
0 = X0)

(2.17)

for all x, y ∈ Z2. In view of the definition of a good site and the fact that, for the
coupling defined in the proof of Lemma 2.4, wet sites are also good, the range of the
interactions M being fixed, there exists a positive constant p > 0 that depends on M but
not on time t such that

P (ξt(0) 6= ξt(y − x) | 0 ∈W ε
2bt/Tc) ≥ p > 0 for all x 6= y. (2.18)

Now, starting from a product measure with a positive density of both strategies, the
number of good sites at level zero is almost surely infinite. Since in addition ε has been
fixed so that the percolation process is supercritical, we deduce that

lim infn→∞ P (0 ∈W ε
2n |W ε

0 = X0) > 0. (2.19)

Combining (2.17)–(2.19), we conclude that, for all M large,

lim inft→∞ P (ξt(x) 6= ξt(y)) ≥ p lim infn→∞ P (0 ∈W ε
2n |W ε

0 = X0) > 0

for all x 6= y. This completes the proof of Theorem 1.1.

3 Coupling with modified voter models

This section is devoted to the proof of Theorem 1.2. The common ingredient to prove
both parts of the theorem is to couple the process with the modified voter models ζ1t
and ζ2t whose transitions at vertex x are given by the following expressions

i → j at rate ci→j(x, ζ
i) := (1− ε) fj(x, ζi) + ε 1{fi(x, ζi) = 0}

j → i at rate cj→i(x, ζ
i) := (1− ε) fi(x, ζi) + ε 1{fi(x, ζi) 6= 0}.
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for {i, j} = {1, 2} and where

fj(x, ζ
i) = card {y ∈ Nx : ζi(x) = j}/ cardNx = (1/N)Nj(x, ζ

i)

denotes the fraction of neighbors of vertex x in state j. In words, the transition rates
indicate that particles are updated at rate one and that, at the time of an update,

• with probability 1 − ε > 0, the new type is chosen uniformly at random from the
interaction neighborhood just like in the voter model,

• with probability ε > 0, the new type is i unless all the neighbors are of type j.

The results of [15, section 3] show using duality that type i particles win for this process.
In particular, to prove that strategy 1 wins, it suffices to prove that the set of type 1
players in the death-birth process dominates stochastically its counterpart in ζ1t , which
follows from

ξ ≤ ζ1 and ξ(x) = ζ1(x) implies that

p1→2(x, ξ) ≤ c1→2(x, ζ1) and p2→1(x, ξ) ≥ c2→1(x, ζ1)

according to Theorem III.1.5 in [17]. Since in addition the transition rates of the modified
voter models are monotone with respect to the number of neighbors of each type, in
order to show that strategy 1 wins, it suffices to prove that the simplified implication

N1(x, ξ) = N1(x, ζ1) and ξ(x) = ζ1(x) implies that

p1→2(x, ξ) ≤ c1→2(x, ζ1) and p2→1(x, ξ) ≥ c2→1(x, ζ1)
(3.1)

holds for some ε > 0. By symmetry, strategy 2 wins if the implication

N2(x, ξ) = N2(x, ζ2) and ξ(x) = ζ2(x) implies that

p1→2(x, ξ) ≥ c1→2(x, ζ2) and p2→1(x, ξ) ≤ c2→1(x, ζ2)
(3.2)

holds for some ε > 0. Using (3.1), we now prove Theorem 1.2.a.

Lemma 3.1. – Recall that a21 > a12. Then, strategy 1 wins when

min (a12 − a22, a11 − a21) > (N − 1)(a21 − a12).

Proof. In view of the discussion above, it suffices to prove that (3.1) holds. First, we
observe that, when the fraction of type 1 neighbors of vertex x is equal to either zero
or one, the transition rates are the same for both processes so it remains to prove (3.1)
under the assumption

N1N2 6= 0 where Nj := Nj(x, ξ) = Nj(x, ζ
1) for j = 1, 2. (3.3)

The transition rate at vertex x depends on the payoff of its neighbors, and the main idea
is to express the transition rates by distinguishing between the part of the payoff coming
from x and the part of the payoff coming from the other neighbors’ neighbors. In order
to make this distinction, we introduce the following four weighting factors:

wij :=
∑
y∼x (1{ξ(y) = i}

∑
z∼y,z 6=x 1{ξ(z) = j}) for i, j = 1, 2.

That is, wij is the number of type j neighbors (excluding vertex x) of a type i neighbor of
vertex x counted with order of multiplicity. Note that, for i = 1, 2, we have

Ni +
∑
j=1,2 wij = NNi. (3.4)
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In addition, for i 6= j, the transition rates can be expressed as

pi→j(x, ξ) =
(Nj + wji) aji + wjj ajj

(Ni + wii) aii + wij aij + (Nj + wji) aji + wjj ajj
. (3.5)

Using (3.4)–(3.5), we now prove that (3.1) holds in the nontrivial case (3.3).

Transition 1→ 2 – Using (3.4) and a22 < a12 < a21, we get

(N2 + w21) a21 + w22 a22 ≤ (N2 + w21 + w22) a21 = NN2 a21

(N1 + w11) a11 + w12 a12 = (N1 + w11 + w12) a11 + w12 (a12 − a11)

= NN1 a11 + w12 (a12 − a11).

This, together with (3.5) for i = 1 and j = 2, implies that

p1→2(x, ξ) ≤ NN2 a21
NN1 a11 + w12 (a12 − a11) +NN2 a21

=
NN2 a21

NN1 (a11 − a21) + w12 (a12 − a11) +N2 a21
=

NN2 a21
N2a21 + ρ1

(3.6)

where, since a11 − a21 > (N − 1)(a21 − a12),

ρ1 := NN1 (a11 − a21) + w12 (a12 − a11)

= (NN1 − w12)(a11 − a21) + w12 (a12 − a21)

> (N − 1)(NN1 − w12)(a21 − a12) + w12 (a12 − a21)

= N ((N − 1)N1 − w12)(a21 − a12) = N w11 (a21 − a12) ≥ 0.

(3.7)

Note that the strict inequality holds because (3.3)–(3.4) imply that

NN1 − w12 = (N1 + w11 + w12)− w12 = N1 + w11 ≥ N1 > 0.

In view of (3.6)–(3.7), there exists ε1 > 0 small such that

p1→2(x, ξ) ≤ NN2 a21 (N2a21 + ρ1)−1 = N2 (N + (ρ1/Na21))−1

≤ (1− ε) f2(x, ξ) = (1− ε) f2(x, ζ1) = c1→2(x, ζ1)

whenever ε < ε1 and (3.3) holds.

Transition 2 → 1 – Since a11 > a21 > a12 and a22 − a12 < (N − 1)(a12 − a21), using the
previous estimates and obvious symmetry, we show that

p2→1(x, ξ) ≥ NN1 a12 (N2a12 + ρ2)−1 where ρ2 < N w22 (a12 − a21) ≤ 0.

In particular, there exists ε2 > 0 small such that

p2→1(x, ξ) ≥ N1 (N + (ρ2/Na12))−1

≥ (1− ε) f1(x, ξ) + ε = (1− ε) f1(x, ζ1) + ε = c2→1(x, ζ1)

whenever ε < ε2 and (3.3) holds.

In conclusion, the implication (3.1) holds for ε smaller than min (ε1, ε2) > 0, which shows
that strategy 1 wins under the assumptions of the lemma.

Repeating the proof of Lemma 3.1 step by step but exchanging the role of both
strategies only shows that strategy 2 wins under the strong assumption a11 < a12 <

a21 < a22. In fact, this sufficient condition for strategy 2 to win can be easily improved to

max (a11, a12) < min (a21, a22)
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by using a coupling between the death-birth process and a biased voter model with a
selective advantage for type 2 particles to show that the former dominates the latter. To
prove that strategy 2 wins in the larger region stated in Theorem 1.2.b, we couple the
death-birth process with the second modified voter model ζ2t but using techniques differ-
ent from the ones used to show the first part of the theorem. To explain the assumptions
of the theorem, we note that our approach requires the interaction neighborhood to
have a certain connectivity property which does not hold in the one-dimensional nearest
neighbor case. First, we introduce the payoff functions

φ1(z) := a11 (z/N) + a12 (1− z/N) = (a11 − a12)(z/N) + a12

φ2(z) := a22 (z/N) + a21 (1− z/N) = (a22 − a21)(z/N) + a21

for all z = 0, 1, . . . , N , and let a := max (a11, a12, a21, a22) and

M+ := maxz φ1(z) ≥ maxz 6=N φ1(z) =: M−

m− := minz φ2(z) ≤ minz 6=N φ2(z) =: m+.

The following lemma gives a sufficient condition on these minimum and maximum payoffs
for strategy 2 to win. This condition is made more explicit in the subsequent lemma.

Lemma 3.2. – Strategy 2 wins whenever (M,d) 6= (1, 1) and

(N − 1)m+ > (N − 2)M+ +M− and (N − 1)M− < (N − 2)m− +m+. (3.8)

Proof. Following as in the proof of Lemma 3.1, it suffices to show that (3.2) holds. This
is again trivial when the fraction of type 1 neighbors of vertex x is equal to either zero
or one so we focus from now on on the nontrivial case where

N1N2 6= 0 where Nj := Nj(x, ξ) = Nj(x, ζ
2) for j = 1, 2, (3.9)

indicating that x has two neighbors y∗ and z∗ with different strategies. Except in the
one-dimensional nearest neighbor case M = d = 1, one can find two vertices y∗ and z∗
such that

y∗, z∗ 6= x and y∗ ∈ Nx ∩Ny∗ and z∗ ∈ Nx ∩Nz∗ and y∗ ∈ Nz∗

and we may assume that y∗ and z∗ are neighbors of each other:

ξ(y∗) = 1 and ξ(z∗) = 2 and y∗, z∗ ∈ Nx and y∗ ∈ Nz∗ .

The rest of the proof is divided into two steps depending on the transition.

Transition 1→ 2 – Assume that ξ(x) = ζ2(x) = 1. Then, for all y ∈ Nx,

φ(y, ξ) ≤M+ when ξ(y) = 1 while φ(y, ξ) ≥ m+ when ξ(y) = 2.

In addition, we have φ(y∗, ξ) ≤M− therefore

p1→2(x, ξ) ≥ m+N2

(N1 − 1)M+ +M− +m+N2

=
m+N2

(m+ −M+)N2 + (N − 1)M+ +M−
.

(3.10)

Now, for all z ∈ [0, N ], we define the functions

g1(z) :=
m+ z

(m+ −M+) z + (N − 1)M+ +M−
and h1(z) :=

(1− ε) z
N

+ ε.
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Since (N − 1)m+ > (N − 2)M+ +M−,

g1(1) =
m+

m+ + (N − 2)M+ +M−
>

1

N
. (3.11)

We then distinguish two cases.

Case 1 – When M+ > m+, it follows from (3.11) that

g1(z) ≥ g1(1) z > z/N for all z ∈ [1, N − 1]

therefore g1(z) ≥ h1(z) for all ε > 0 small by continuity.

Case 2 – When M+ ≤ m+, the function g1 is concave. Moreover,

g1(1) ≥ 1

N
+

(
1− 1

N

)
ε = h1(1)

for all ε > 0 small according to (3.11), while

g1(N) =
Nm+

Nm+ −M+ +M−
≥ 1 = h1(N).

The previous two inequalities together with the fact that the function g1 is concave imply
that g1 dominates h1 for all ε > 0 small (see Figure 4 for a picture).

Recalling (3.10), we deduce that, in both cases and when (3.9) holds,

p1→2(x, ξ) ≥ g1(N2) ≥ h1(N2) = c1→2(x, ζ2)

which proves the first inequality in (3.2).

Transition 2→ 1 – Assume that ξ(x) = ζ2(x) = 2. Then, for all y ∈ Nx,

φ(y, ξ) ≤M− when ξ(y) = 1 while φ(y, ξ) ≥ m− when ξ(y) = 2.

In addition, we have φ(z∗, ξ) ≥ m+ therefore

p2→1(x, ξ) ≤ M−N1

M−N1 + (N2 − 1)m− +m+

=
M−N1

(M− −m−)N1 + (N − 1)m− +m+
.

(3.12)

Now, for all z ∈ [0, N ], we define the functions

g2(z) :=
M− z

(M− −m−) z + (N − 1)m− +m+
and h2(z) :=

(1− ε) z
N

.

Since (N − 1)M− < (N − 2)m− +m+ ≤ (N − 1)m+,

g2(1) =
M−

M− + (N − 2)m− +m+
<

1

N

g2(N − 1) =
(N − 1)M−

(N − 1)M− +m+
< 1− 1

N
.

(3.13)

As before, we distinguish two cases.

Case 1 – When M− > m−, it follows from (3.13) that

g2(z) ≤ g2(1) z < z/N for all z ∈ [1, N − 1]
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Figure 4: Picture related to the proof of Lemma 3.2.

therefore g2(z) ≤ h2(z) for all ε > 0 small by continuity.

Case 2 – When M− ≤ m−, the function g2 is convex. Moreover,

g2(N − 1) ≥ (1− 1/N)(1− ε) = h2(N − 1) for ε > 0 small

g2(0) = h2(0) = 0

where the first inequality follows from (3.13). This again implies that h2 dominates g2
for all ε > 0 small, and we refer to the right-hand side of Figure 4 for a picture.

Recalling (3.12), we deduce that, in both cases and when (3.9) holds,

p2→1(x, ξ) ≤ g2(N1) ≤ h2(N1) = c2→1(x, ζ2)

which proves the second inequality in (3.2).

This completes the proof.

To complete the proof of Theorem 1.2, the last step is to re-express the condition in
the previous lemma using the payoff coefficients.

Lemma 3.3. – Let a12 < a21 and (M,d) 6= (1, 1). Then (3.8) holds whenever

(N2 −N − 1) max (a11 − a21, a12 − a22, a11 − a22) < a21 − a12. (3.14)

Proof. We distinguish four cases depending on the sign of a11 − a12 and a22 − a21.

Case 1 – When a11 < a12 and a22 > a21, we have

M+ = M− = a12 and m− = m+ = a21

therefore (3.8) holds if and only if a12 < a21, which is true by assumption.

Case 2 – When a11 > a12 and a22 > a21, we have

M+ = a11, M− = a11 + (1/N)(a12 − a11), m− = m+ = a21.

Using some basic algebra, we deduce that (3.8) holds if and only if

(N2 −N − 1)(a11 − a21) < a21 − a12 and (N − 1)(a11 − a21) < a21 − a12
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therefore (3.8) holds if and only if (N2 −N − 1)(a11 − a21) < a21 − a12.

Case 3 – Assume that a11 < a12 and a22 < a21. This case can be deduced from the
previous one by symmetry exchanging the role of the two strategies, and we find that

(3.8) holds if and only if (N2 −N − 1)(a12 − a22) < a21 − a12.

Case 4 – When a11 > a12 and a22 < a21, it is easier to prove the result graphically and
we refer to the phase diagram of Figure 1 for an illustration of some of the arguments of
the proof. In this case, the minimum and maximum payoffs are given by

M+ = a11 and M− = a11 + (1/N)(a12 − a11)

m− = a22 and m+ = a22 + (1/N)(a21 − a22)

so the two inequalities in (3.8) are respectively equivalent to

(N − 1)2 a22 > (N2 −N − 1) a11 + a12 − (N − 1) a21

(N − 1)2 a11 < (N2 −N − 1) a22 + a21 − (N − 1) a12.
(3.15)

Since in addition a11 > a12 and a22 < a21, this specifies two triangles with two common
sides, one vertical side and one horizontal side that intersect at point

p := (a12, a21) in the a11 − a22 plane. (3.16)

For the first inequality in (3.15), the third side of the triangle is the segment line going
through point p+ and with slope s+ where

p+ := (a21 + (N2 −N − 1)−1 (a21 − a12), a21)

s+ := (N2 −N − 1)(N − 1)−2 = 1 + (N − 2)(N − 1)−2 > 1.
(3.17)

Using some obvious symmetry, one finds that the third side of the triangle specified by
the second inequality in (3.15) is characterized by the point and slope

p− := (a12, a12 − (N2 −N − 1)−1 (a21 − a12)) and s− = 1/s+ < 1. (3.18)

Since the segment line connecting p− and p+ has slope one, the triangle (p, p−, p+) is
contained in the intersection of the two triangles specified by (3.17)–(3.18). In particular,
whenever the payoff coefficients are in this triangle, which is equivalent to

a11 > a12 and a22 < a21 and (N2 −N − 1)(a11 − a22) < a21 − a12,

the two inequalities in (3.15) hold.

Since all four cases hold simultaneously when (3.14) holds, the proof is complete.

Theorem 1.2.b directly follows from Lemmas 3.2 and 3.3.

4 Coupling with a pure growth process

This section is devoted to the proof of Theorem 1.3 which states that, the other payoffs
being fixed, strategy 1 wins whenever the payoff coefficient a11 is sufficiently large. The
intuition behind this result, which is also the first step of the proof, is to observe that, in
the limit as a11 goes to infinity, type 1 players with at least one neighbor of their own
type never change their strategy. In particular, the set of type 1 players dominates a
Richardson model [21], i.e., a contact process with no death, which obviously implies
that strategy 1 wins. Using a block construction and the fact that the transition rates are
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continuous functions of the payoffs, we deduce that the process reaches an equilibrium
with a density of type 1 close to one when a11 is finite but large. The rest of the proof
consists in showing that we can indeed convert the remaining type 2 players, which
directly follows from percolation results already established in [9, 15].

To turn our sketch into a rigorous proof, we let ζt be the d-dimensional Richardson
model with parameter µ. In this spin system, each vertex of the d-dimensional integer
lattice is either empty or occupied by a particle. Each particle produces a new particle
which is then sent to a neighbor chosen uniformly at random at rate µ. This results in
either an empty site becoming occupied or two particles coalescing in case the target
site is already occupied. In addition, occupied sites remain occupied forever. More
formally, using the usual notation 0 for empty and 1 for occupied, the transition rates of
the process at vertex x are given by

c0→1(x, ζ) = µ f1(x, ζ) and c1→0(x, ζ) = 0.

In order to compare the process properly rescaled in space and time with oriented site
percolation, we also introduce the space-time regions

BK := [−K,K]d and BK(z) := Kz +BK for all z ∈ Zd.

Then, we have the following lemma, where the processes under consideration have been
identified to the set of vertices in state 1 to lighten the expressions.

Lemma 4.1. – For all a, ε > 0 there exist A,K, c <∞ such that

P (B2K 6⊂ ξt for some t ∈ (cK, 2cK) |BK ⊂ ξ0) ≤ ε

whenever max (a21, a22) ≤ a and a11 > A.

Proof. Note that, even in the limit as a11 →∞, a type 1 player can change her strategy
if all her neighbors follow strategy 2. However, since we have

φ(x, ξ) ≥ a11N1(x, ξ) ≥ a11 when x ∈ ξ and f1(x, ξ) 6= 0

φ(x, ξ) ≤ (2M + 1)d max (a21, a22) when x /∈ ξ,

the rate at which each of two type 1 players located in the same interaction neighborhood
changes her strategy goes to zero in the limit as a11 → ∞. In addition, each type 2
player in the neighborhood of one of these two type 1 players changes her strategy with
probability converging to one at the next update, which gives the following limits:

p1→2(x, ξ) → 0 when f1(x, ξ) 6= 0

p2→1(x, ξ) → 1 when f1(x, ξ) f1(y, ξ) 6= 0 for some y ∈ Nx.
(4.1)

Also, since a type 2 player can change her strategy only if she has a type 1 neighbor,

x ∈ ξt implies that f1(x, ξt) 6= 0 for all times t

provided this holds at time zero. In particular, the transition rates in (4.1) indeed
describe the death-birth process in the limit as a11 →∞ whenever each type 1 player
has initially at least one type 1 neighbor. Note that the same property holds for the
Richardson model: because there is no death and because each particle newly created
must be in the neighborhood of its parent, the set of occupied sites satisfies the following
connectivity property:

x ∈ ζt implies that f1(x, ζt) 6= 0 for all times t (4.2)
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provided this holds at time zero. Combining (4.1)–(4.2) and using that the set BK is
connected, we deduce that the death-birth process can be coupled with the Richardson
model with parameter one in such a way that, for all fixed K, c ∈ (0,∞),

P (B2K ∩ ζt 6⊂ B2K ∩ ξt for some t ∈ (cK, 2cK) | ζ0 = ξ0 = BK)→ 0 (4.3)

as a11 → ∞. Note that the death-birth process dominates the Richardson model with
a probability that goes to one only in finite space-time regions. In particular, the limit
in (4.3) only holds for finite c and K. In other respects, it directly follows from the shape
theorem [21] for the Richardson model that there exists a positive constant c > 0 such
that

P (B2K 6⊂ ζt for some t ∈ (cK, 2cK) | BK ⊂ ζ0)

= P (B2K 6⊂ ζcK | BK ⊂ ζ0) ≤ P (B2K 6⊂ ζcK | ζ0 = {0}) ≤ ε/2
(4.4)

for all K large. Now, fix K, c > 0 such that (4.4) holds. Since the transition rates of the
death-birth updating process are continuous with respect to the payoff coefficients and
since the space-time region in the event in (4.3) is finite, there is A <∞ such that

P (B2K ∩ ζt 6⊂ B2K ∩ ξt for some t ∈ (cK, 2cK) | ζ0 = ξ0 = BK) ≤ ε/2 (4.5)

for all a11 > A. Combining (4.4)–(4.5), we conclude that

P (B2K 6⊂ ξt for some t ∈ (cK, 2cK) |BK ⊂ ξ0)

≤ P (B2K 6⊂ ζt for some t ∈ (cK, 2cK) | BK ⊂ ζ0)

+ P (B2K ∩ ζt 6⊂ B2K ∩ ξt for some t ∈ (cK, 2cK) | ζ0 = ξ0 = BK)

≤ ε/2 + ε/2 = ε

for all a11 > A. This completes the proof.

From the lemma, we deduce that, starting from a product measure with a positive
density of type 1 players, the density of type 1 at equilibrium is close to one when a11 is
large. To prove this, we consider as previously the directed graph H with vertex set

H := {(z, n) ∈ Zd ×Z+ : z1 + z2 + · · ·+ zd + n is even}

and in which there is an edge (z, n)→ (z′, n′) if and only if

z′ = z ± ej for some j = 1, 2, . . . , d and n′ = n+ 1.

Then, calling (z, n) ∈ H an occupied site when

BK(z) ⊂ ξt for all t ∈ cnK + (0, cK)

it follows from Lemma 4.1 that, for all ε > 0, one can choose a11 large enough so that
the set of occupied sites dominates stochastically the set of wet sites in the percolation
process where sites are closed with probability ε. Since the probability ε can be made
arbitrarily small, the density of type 1 players at equilibrium can be made arbitrarily
close to one.

The last step is to turn the remaining type 2 players into type 1 players. To do
this, the basic idea is to rely on the lack of percolation of the dry (not wet) sites for a
certain oriented site percolation process where sites are closed with a sufficiently small
probability ε. The fact that the set of dry sites does not percolate for small positive ε is
proved in [9, section 3] for the percolation process described above. This result, however,
is not sufficient to conclude because the lack of percolation of the dry sites for this
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percolation process does not imply extinction of strategy 2. To solve the problem, we
consider oriented site percolation on a directed graph H+ that has the same vertex set
as before but additional arrows, namely

(z, n)→ (z′, n′) if and only if

z′ = z ± ej for some j = 1, 2, . . . , d and n′ = n+ 1

or z′ = z ± 2ej for some j = 1, 2, . . . , d and n′ = n.

The process on H+ has the following two key properties:

1. As for the process on H , the dry sites do not percolate if sites are closed with a
small enough probability ε > 0. This is proved in [15, section 3] following the ideas
in [9].

2. Recalling that the death-birth process and the percolation process on H are
coupled in such a way that the set of occupied sites dominates the set of wet sites,
if

ξt(x) = 2 for some (x, t) ∈ BK(z)× (cnK, c(n+ 1)K)

then site (z, n) can be reached by a directed path of dry sites embedded in H+.
This second property is also established in [15, section 3]. Even though the proof
applies to another model, it easily extends to the death-birth process because it
only relies on the fact that a type 2 player can only appear in the neighborhood of
a type 2 player.

To deduce extinction of strategy 2, we first fix ε > 0 small such that the set of dry sites
does not percolate for the percolation process on the directed graph H+. Then, we
take a11 large enough so that the set of occupied sites dominates the set of wet sites in
the percolation process on the smaller directed graph H . Finally, it follows from the
second property above that, because the dry sites do not percolate, the type 2 players
do not survive.

5 The prisoner’s dilemma in one dimension

This section is devoted to the proof of Theorem 1.4 which focuses on the one-
dimensional death-birth process with nearest neighbor interactions. First, we explain
where the mysterious expressions for D3 and D4 in the statement of the theorem come
from. To do so, we let

pi(n1, n2) := the rate at which a type i player with
one type 1 neighbor that has n1 type 1 neighbors and
one type 2 neighbor that has n2 type 2 neighbors
update her strategy

for i = 1, 2 and n1, n2 = 0, 1, 2, and note that

p1(n1, n2) =
(2− n2) a21 + n2 a22

n1 a11 + (2− n1) a12 + (2− n2) a21 + n2 a22

p2(n1, n2) =
n1 a11 + (2− n1) a12

n1 a11 + (2− n1) a12 + (2− n2) a21 + n2 a22
.

Now, for the process starting with only 1s to the left of the origin, we let

Xt := inf {x ∈ Z : ξt(x) = 2} − 1 and Kt := inf {x > 0 : ξt(x+Xt) = 1}
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be the position of the rightmost type 1 player with only type 1 players to her left and
the distance between this type 1 player and the closest type 1 player to her right. Then,
letting

Dj(ξt) := limh→ 0 h
−1E (Xt+h −Xt | ξt and Kt = j)

we have the following almost sure estimates

1 1 1 2 1· · · • • • ◦ • × × D2(ξt) = D2 = 2− p1(2, 0)
1 1 1 2 2 1· · · • • • ◦ ◦ • × D3(ξt) = D3 = p2(1, 1)− p1(2, 1)
1 1 1 2 2 2· · · • • • ◦ ◦ ◦ × Dj(ξt) = D4 = p2(1, 2)− p1(2, 1)

for all j > 3 and where × means type 1 or type 2. In particular, D3 and D4 are possible
drifts of the interface at Xt depending on the distance to the next type 1 player. Also,
plugging the expression of the rates pi(n1, n2) above into D3 and D4, we obtain

D3 =
a11 + a12

a11 + a12 + a21 + a22
− a21 + a22

2a11 + a21 + a22

D4 =
a11 + a12

a11 + a12 + 2a22
− a21 + a22

2a11 + a21 + a22
.

which are exactly the expressions given before the statement of Theorem 1.4. Before
studying the process starting from general initial configurations, we look at the process
starting from configurations that have a finite interval of type 1 players, only type 2
players to the left of this interval and infinitely many players of each type to the right. In
picture, this looks like

2 2 2 2 1 1 1 1 1 2· · · ◦ ◦ ◦ ◦ • • • • • ◦ × × × · · ·

For the process starting from this configuration, we let

Z−t := inf {x ∈ Z : ξt(x) = 1} and Mt := inf {x > 0 : ξt(x+ Z−t ) = 2}

be the position of the leftmost type 1 player and the distance between this type 1 player
and the closest type 2 player to her right. Then, we have the following result.

Lemma 5.1. – Assume that a22 < a21 and D3 +D4 > 0. Then,

P (Mt > 3 for all t > 0 and Mt →∞|M0 > 3) ≥ c for some c > 0.

Proof. To begin with, we let Zt := e−aMt where a > 0 and

Z+
t := Z−t +Mt − 1 and Kt := inf {x > 0 : ξt(x+ Z+

t ) = 1}

be the right boundary of the type 1 interval starting at Z−t and the distance between this
type 1 player and the closest type 1 player to her right. Then, we have

limh→ 0 h
−1 P (Z+

t+h = Z+
t + 1 | ξt and Mt > 3 and Kt = 3) = p2(1, 1)

limh→ 0 h
−1 P (Z+

t+h = Z+
t − 1 | ξt and Mt > 3 and Kt = 3) = p1(2, 1)

(5.1)

with probability one, while for the left boundary Z−t ,

limh→ 0 h
−1 P (Z−t+h = Z−t + 1 | ξt and Mt > 3) = p1(2, 1)

limh→ 0 h
−1 P (Z−t+h = Z−t − 1 | ξt and Mt > 3) = p2(1, 2).

(5.2)

Now, for every integer j > 1, we define

Φj(a) := limh→ 0 h
−1E (Zt+h − Zt | ξt and Mt > 3 and Kt = j).
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Since Mt = Z+
t − Z−t + 1, it follows from (5.1)–(5.2) that

Φ3(a) := limh→ 0 h
−1E (Zt+h − Zt | ξt and Mt > 3 and Kt = 3)

= Zt (e−a − 1) limh→ 0 h
−1 P (Mt+h −Mt = 1 |Mt > 3 and Kt = 3)

+ Zt (ea − 1) limh→ 0 h
−1 P (Mt+h −Mt = −1 |Mt > 3 and Kt = 3)

= (e−a − 1)(p2(1, 1) + p2(1, 2))Zt + 2 (ea − 1) p1(2, 1)Zt

therefore, taking the derivative at a = 0, we get

Φ′3(0) = −(p2(1, 1) + p2(1, 2))Zt + 2 p1(2, 1)Zt = −(D3 +D4)Zt.

Using the same approach, we prove in general that

Φ′j(0) = −(Dj∧4 +D4)Zt ≤ −(D3 +D4)Zt < 0 for all j > 1

since D3 < D4 < D2 when a22 < a21. In particular,

Φj(b) ≤ Φj(0) = 0 for some b > 0 fixed from now on

showing that, as long as Mt > 3, the process Zt is a supermartingale with respect to
the natural filtration of the death-birth process. To conclude, we now apply the optional
stopping theorem to this supermartingale using the stopping times

τ3 := inf {t : Mt ≤ 3} and τn := inf {t : Mt ≥ n} for all n > 3.

Since Tn := min(τ3, τn) is finite, whenever M0 > 3,

e−4b ≥ E (Z0) ≥ E (ZTn)

≥ E (ZTn |Tn = τ3)P (Tn = τ3) + E (ZTn |Tn = τn)P (Tn = τn)

≥ e−3b (1− P (Tn = τn)) + e−nb P (Tn = τn).

(5.3)

Since the event {Tn = τn} is nonincreasing with respect to n for the inclusion, we also
deduce from the monotone convergence theorem that

P (Mt > 3 for all t > 0 and Mt →∞)

≥ P (Tn = τn for all n > 3) = limn→∞ P (Tn = τn).
(5.4)

Combining (5.3)–(5.4), we deduce that

P (Mt > 3 for all t > 0 and Mt →∞|M0 > 3)

≥ limn→∞ P (Tn = τn) ≥ limn→∞ (e−3b − e−4b)(e−3b − e−nb)−1

≥ (e−3b − e−4b) e3b = 1− e−b

therefore the lemma holds for c := 1− e−b > 0.

To deal with the process starting from product measures, we note that every real-
ization induces a partition of the space-time universe into type 1 and type 2 connected
components. More precisely, assuming that there is initially a type 2 at the origin, we
define the type 2 connected component starting at the origin as

C0 := {(x, t) ∈ Z×R+ : there is a path (0, 0)→2 (x, t) going forward}

where (0, 0)→2 (x, t) means that there are times and vertices

0 = t1 < t2 < · · · < tn+1 = t and 0 = x1, x2, . . . , xn = x

such that the following condition is satisfied:

(ξs(xj) = 2 for all tj ≤ s ≤ tj+1) holds for j = 1, 2, . . . , n.

Then, we have the following lemma.
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Figure 5: Picture related to the proof of Lemma 5.2.

Lemma 5.2. – Assume that a22 < a21 and D3 +D4 > 0. Then,

T := inf {t > 0 : C0 ∩ (Z× (t,∞)) = ∅} <∞ with probability one.

Proof. We proceed by contradiction, showing that when A := {T = ∞} occurs, its
complement occurs with probability one. To begin with, note that

• on the event A, the type 2 connected component C0 is unbounded and

• since there are infinitely many type 1 players on both sides of the origin at time
zero, this property remains true at all times.

From these two observations, we deduce that

0 < card {x ∈ Z : (x, t) ∈ C0} <∞ for all t ∈ (0,∞)

which, in turn, implies that the left boundary lt and right boundary rt of the type 2
connected component satisfy the following properties at all times:

−∞ < lt := inf {x ∈ Z : (x, t) ∈ C0}
≤ sup {x ∈ Z : (x, t) ∈ C0} =: rt <∞.

We also observe that

M−t := inf {x > 0 : ξt(lt − x) = 2} > 1

M+
t := inf {x > 0 : ξt(rt + x) = 2} > 1.

(5.5)

Figure 5 gives an illustration of these processes. Now, the evolution rules of the death-
birth updating process clearly imply that there exist c1, c2 > 0 such that

P (min (M−t+1,M
+
t+1) > 3 | min (M−t ,M

+
t ) > 1) ≥ c1

P (T < t+ 1 | rt − lt ≤ 3) ≥ c2
(5.6)
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while it follows from Lemma 5.1 that

P (inf {t > s : min (M−t ,M
+
t ) ≤ 3}

≥ inf {t > s : rt − lt ≤ 3} | min (M−s ,M
+
s ) > 3) ≥ c2 > 0.

(5.7)

Combining (5.5)–(5.7), we conclude that

A = {T =∞} occurs implies that min (M−t ,M
+
t ) > 1 at all times

implies that min (M−t ,M
+
t ) > 3 infinitely often

implies that rt − lt ≤ 3 infinitely often

implies that T <∞ with probability one.

This completes the proof.

Lemma 5.3. – Assume that a22 > a21 and D4 > 0. Then,

T := inf {t > 0 : C0 ∩ (Z× (t,∞)) = ∅} <∞ with probability one.

Proof. First, we note that the conclusion of Lemma 5.1 holds as well under the assump-
tions of the present lemma, since whenever a22 > a21 we have

D4 < D3 < D2 and Dj∧4 +D4 ≥ 2D4 for all j > 1.

In particular, the lemma follows by repeating the proof of Lemma 5.2.

Finally, under the assumptions of Theorem 1.4 and conditional on the origin being
initially occupied by a type 2 player, it follows from Lemmas 5.2–5.3 that the type 2
connected component starting at the origin is bounded with probability one. Since in
addition the number of players is countable, for every vertex x ∈ Z, we have

lim inft→∞ P (ξt(x) = 1) = 1− lim supt→∞ P (ξt(x) = 2)

≥ 1− P (ξ0(y) = 2 and Ty =∞ for some y ∈ Z)

≥ 1−
∑
y:ξ0(y)=2 P (Ty =∞) = 1

where Ty denotes the time at which the connected component starting at vertex y dies
out, as defined in the statement of Lemmas 5.2–5.3. This proves Theorem 1.4.
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