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Abstract

Aging is a prevalent phenomenon in physics, chemistry and many other fields. In
this paper we consider the aging process of uncoupled Continuous Time Random
Walk Limits (CTRWLs) which are Levy processes time changed by the inverse stable
subordinator of index 0 < α < 1. We apply a recent method developed by Meerscheart
and Straka of finding the finite dimensional distributions of CTRWL, to obtaining the
aging process’s finite dimensional distributions, self-similarity-like property, asymp-
totic behavior and its Fractional Fokker-Planck equation(FFPE).
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1 Introduction

Continuous time random walks (CTRW) are widely used in physics and mathematical
finance to model a random walk for which the waiting times between jumps are random
which in many cases better describes phenomena in these fields. CTRWLs are used to
model anomalous diffusion, where the squared averaged distance of the process from
the origin is no longer proportional to the time index t. A related concept and widely
studied ([36, 32]) in statistical physics, is aging. Suppose the CTRW Xt starts at t = 0

and evolves until time t0 > 0 when we then start to measure it. One can consider the
varying dynamics of the new process Xt0

t = Xt+t0 − Xt0 as t0 varies and the process
ages. In [26] Monthus and Bouchaud studied a CTRW with aging properties. In [6]
Barkai and Cheng considered the Aging Continuous Time Random Walk (ACTRW) which
is an uncoupled CTRW with iid power law waiting times, that started at t = 0 and is
observed at t = t0. They found the one dimensional distribution of the process Xt0

t which
they referred to as the ACTRW, for t0 and t large. In [5], Barkai found the Fractional
Fokker-Planck Equation (FFPE) for the unnormalized pdf of the process Xt0

t for t0 and t
large.

In this paper we wish to give analogous results to the ones given in [6, 5] as well
as new ones for a large class of CTRWLs which hopefully will lay the foundation for
further study of their aging. We consider the class that consists of all processes of the
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Aging uncoupled continuous time random walk limits

form Yt = AEt where At is a Levy process that is time changed by the inverse of an
independent stable subordinator of index 0 < α < 1 ; we denote this class by S. We
denote the aging process by Y t0t = Yt+t0−Yt0 = AEt+t0−AEt0 (note that Y 0

t = Yt). Section
2 is devoted to a brief review of the theory and method introduced by Meerschaert and
Straka in [25] and [23] upon which we base our results. In Section 3 we give the main
result of this paper, that the finite dimensional distributions of the process Y t0t can be
obtained by a convolution in time of the finite dimensional distributions of Yt and a
generalized beta prime distribution. The self-similarity-like property of the process Y t0t
is obtained in Section 4. In Section 5 we obtain results on the asymptotic behavior of
the distribution of Y t0t when t0 is far from the origin as well as when α → 1 and the
governing equation of Y t0t .

One example for a process that lies in S is the Fractional Poisson Process(FPP) which
we denote by Nα

t . The FPP is a renewal process with interarrival times Wn such that
P (W1 > t) = Eα (−λtα) where

Eα (z) =

∞∑
k=0

zk

Γ (αk + 1)

is the Mittag-Leffler function. Since the interarrival times are not exponentially dis-
tributed the process Nα

t = sup {k : Tk ≤ t}, where Tk =
∑k
i=1Wi are the arrival times,

is not Markovian and the calculation of the finite dimensional distributions of Nα
t is no

longer straightforward. The FPP was first studied in [16],[13] and [17, 18]. In [8] an
integral representation of the one dimensional distribution of the FPP was given and
was used in [28] to find and simulate the finite dimensional distributions of the FPP. In
[19], it was shown that Nα

t = NEt where Nt is a Poisson process and Et is the inverse of
a standard stable subordinator of index 0 < α < 1 independent of Nt.

Since the distribution of the increments (and therefore the aging process) of the
CTRWL is closely related to the two dimensional distributions, their study is quite
cumbersome. In a recent paper ([25]), Meerscheart and Straka found a way of embedding
CTRWLs in a larger state space that renders these processes Markovian. We use this
method to find the finite dimensional distributions of the process Y t0t , its asymptotic
behavior, self-similarity-like property and its FFPE.

2 Finite dimensional distribution of CTRWL

CTRWL are usually not Markovian, a fact that makes the calculation of their finite
dimensional distributions quite difficult. It is therefore that the distribution of the
increments (which can be obtained by the finite dimensional distributions) of the CTRWL
is not well understood.

Although the method in [25] is very general we focus only on uncoupled CTRWLs
which are Levy processes time changed by the inverse of an independent stable sub-
ordinator. In order to facilitate reading of this section and referring to the original
paper we retain most of the notation in [25]. The uncoupled CTRW we consider con-
sist of two independent sequences of iid r.vs, {W c

n} and {Jcn}. The parameter c is the
convergence parameter as in [20] which allows us to construct infinitesimal triangular
arrays. Here, {Jcn} represents the size of the jumps of a particle in space, while {W c

n}
represents the waiting times between jumps. Hence, the time elapsed by the particle’s
k’th jump is T ck = Dc

0 +
∑k
i=1W

c
i and the position of the particle is Sck = Ac0 +

∑k
i=1 J

c
i .

Let Lct = sup{k : T ck ≤ t} be the number of jumps until time t, then the CTRW Y ct is

Y ct = Ac0 +

Lct∑
i=1

Jci .
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Assume we have

(
Sc[cu], T

c
[cu]

)
= (Ac0, D

c
0) +

[cu]∑
i=1

(Jci ,W
c
i )⇒ (Au, Du) (2.1)

where⇒ denotes convergence in the Skorokhod J1 topology. In this paper we assume Du

is a stable subordinator of index 0 < α < 1 starting fromD0, i.e, E
(
e−s(Du−D0)

)
= e−uCs

α

,

where C is a constant. This can be achieved by assuming W c
i = c−

1
αWi where {Wi} are

independent random variables that are in the strict domain of attraction of D1 − D0.
Note that At − A0 is a Lévy process as it is the limit of a triangular array. Now, let
Et = inf{s : Ds > t} be the first hitting time of Dt, also called the inverse of Dt. By [34,
Theorem 2.4.3] applied to the case of independent space and time jumps we have

Y ct ⇒ Yt = AEt , (2.2)

as c → ∞ where convergence is in the Skorokhod J1 topology, see also [35, theorem
3.6] and [14, Theorem 3.1]. Since (Sck, T

c
k ) is a Markov chain for all c > 0 it follows that

the CTRWL Yt is a semi-Markov process and it is possible to embed it in a process of
larger state space that includes the time to regeneration, the remaining life time process
Rt. More precisely, let D

(
[0,∞),R2

)
be the space of cádlág functions f : [0,∞) → R2

with the J1 Skorokhod topology which is endowed with transition operators Tu, u > 0

and hence a probability measure Pχ,τ such that trajectories start at point (χ, τ) with

probability one. Thus, we have a stochastic basis
(

Ω,F∞, (Fu)u≥0 , P
χ,τ
)

, where each

element of Ω is in D
(
[0,∞),R2

)
, Fu = σ ((Au (ω) , Du (ω))) and F∞ = ∨u>0Fu. The

process (A,D)t has a generator of the form

A (f) (x, t) = b
∂f(x, t)

∂x
− 1

2
a
∂2f(x, t)

∂x2

+

ˆ

R2

(
f (x+ y, t+ w)− f (x, t)− y ∂f(x, t)

∂x
1{|(y,w)|<1}

)
K (dy, dw) , (2.3)

where a > 0 and b ∈ R and K (dy, dw) is a Lévy measure. The occupation time measure
of the process (A,D)t is the average time spent by the process in a given Borel set in R2,
i.e ˆ

f (x, t)Uχ,τ (dx, dt) = Eχ,τ
(ˆ ∞

0

f (Au, Du) du

)
=

∞̂

0

Tuf (χ, τ) du.

Let us now define the remaining life time process Rt

Rt = DEt − t,

which is the time left for the process Yt to leave its current state. It was proven in [25,
Theorem 2.3] that

Eχ,τ (f (Yt, Rt)) =ˆ

x∈R

ˆ

s∈[τ,t]

Uχ,τ (dx, ds)

ˆ

y∈R

ˆ

w∈[t−s,∞)

K (dy, dw) f (x+ y, w − (t− s)) . (2.4)

In [25], a more general CTRWL is considered and hence a more general form of (2.3)
where the coefficients a and b as well as the Lévy measure K (dy, dw) are allowed to be
dependent on the position of the CTRWL in space and time, that is, we have b (x, t) , a (x, t)
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and K (x, t; dy, dw). As was noted in [25, section 4], when these coefficients do not
depend on t (as in our case), the process (Yt, Rt) is a homogeneous Markov process.
More precisely, we define

Qt [f ] (y, 0) = Ey,0 (f (Yt, Rt)) (2.5)

Qt [f ] (y, r) = 1{0≤t<r}f (y, r − t) + 1{0≤r≤t}Qt−r [f ] (y, 0) r > 0, (2.6)

for every f bounded and measurable on R× [0,∞). Qt is the transition operator of the
Markov process (Yt, Rt) starting at χ, τ , i.e

Eχ,τ (f (Yt+h, Rt+h) | σ ((Yr, Rr) , t ≥ r ≥ 0)) = Qh [f ] (Yt, Rt) . (2.7)

One can use the Chapman-Kolmogorov’s equation to obtain the finite dimensional dis-
tributions of the process Yt. For example, suppose (Y0, R0) = (0, 0) a.s, then for the two
dimensional distribution of the process Yt at times t1 < t2 we have

P (Yt1 ∈ B1, Yt2 ∈ B2)

= P ((Yt1 ∈ B1, Rt1 ∈ [0,∞)) , (Yt2 ∈ B2, Rt2 ∈ [0,∞)))

= Qt1
[
1{B1×R} (y1, r1)Qt2−t1

[
1{B2×R} (y2, r2)

]
(y1, r1)

]
(0, 0) , (2.8)

where B1, B2 ∈ B (R) are Borel sets.

Remark 1. In [25] a result stronger than (2.7) was shown. Indeed, the process (Yt, Rt)

is a strong Markov process with respect to a filtration larger than the natural filtration.
For the sake of brevity and the fact that the Markov property is adequate for our work
we brought the result in a weaker form.

3 Aging

Let us assume (2.1) holds with χ = τ = 0 so At is a Levy process with CDF Pt (x) =

P (At ∈ (−∞, x]) and with Levy triplet (µ,A, φ), i.e

E
(
eiuAt

)
= exp

t
iµu− 1

2
Au2 +

ˆ

R

(
eiuy − 1− iuy1{|y|<1}

)
φ (dy)

 .
Also assume Dt is a stable subordinator of index 0 < α < 1 with Laplace transform (LT)
E
(
e−uDt

)
= e−tcu

α

independent of At. Then (2.3) holds with b = µ, a = A and (see [7,
Corollary 2.3])

K (dy, dw) = φ (dy) δ0 (dw) + δ0 (dy)
cα

Γ (1− α)
w−1−α1{w>0}dw. (3.1)

Next, we wish to find the occupation measure of the process (A,D)t. We have for
f (y, w) = 1{(−∞,x]×(−∞,t]} (y, w)

ˆ
f (y, w)Uχ,τ (dy, dw) = Eχ,τ

 ∞̂

0

f (Au, Du) du


=

∞̂

0

Tuf (χ, τ) du =

∞̂

0

Tu1{(−∞,x]×(−∞,t]} (χ, τ) du

=

∞̂

0

ˆ

w∈R

ˆ

y∈R

1{(−∞,x]×(−∞,t]} (y + χ,w + τ) qu(dy, dw)du,
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where qt is the distribution of the process (A,D)t cf. [1, Eq. 3.11]. By independence of
At and Dt we have

ˆ
f (x, t)Uχ,τ (dx, dt) =

∞̂

0

P (Au ∈ (−∞, x− χ])P (Du ∈ (−∞, t− τ ]) du

=

∞̂

0

Pu (x− χ)

t−τˆ

−∞

g (w, u) dwdu, (3.2)

where g (x, t) is the pdf of Dt, i.e g (x, t) dx = P (Dt ∈ dx) and is known to be absolutely
continuous with respect to the Lebesgue measure [38, Section 2.4].

Since (A,D)t is a Levy process the coefficients in (2.3) are independent of t and
therefore the process (A,D)t is a Markov additive process [25, Section 4] and the
occupation measure is of the form

Uy (dx, dt) =

∞̂

0

Pu (dx− y) g (t, u) dudt. (3.3)

Furthermore, one may choose τ = 0 and plug (3.1) and (3.3) in (2.4) to obtain

Eχ,0 (f (Yt, Rt)) (3.4)

=

ˆ

x∈R

ˆ

s∈[0,t]

 ˆ

u∈R+

Pu (dx− χ) g (s, u) du


×
ˆ

y∈R

ˆ

w∈[t−s,∞)

(
φ (dy) δ0 (dw) + δ0 (dy)

cα

Γ (1− α)
w−1−αdw

)
f (x+ y, w − (t− s)) ds

=

ˆ

x∈R

ˆ

s∈[0,t]

 ˆ

u∈R+

Pu (dx− χ) g (s, u) du


×

ˆ

w∈[t−s,∞)

f (x,w − (t− s)) cα

Γ (1− α)
w−1−αdwds,

for Yt ∈ S and its time to regeneration Rt.
We say that the r.v X has beta distribution with parameters µ, ν > 0 if it has pdf of

the form

f (x, µ, ν) =
xµ−1 (1− x)

ν−1

B [µ, ν]
x ∈ (0, 1)

where B [µ, ν] = Γ(µ)Γ(ν)
Γ(µ+ν) is the Beta function and we write X ∼ B (µ, ν) . We say that the

r.v X has beta prime distribution with parameters µ, ν > 0 if it has pdf of the form

f (x, µ, ν) =
xµ−1 (1 + x)

−µ−ν

B [µ, ν]
x > 0 (3.5)

and we write X ∼ B′ (µ, ν). It was noted in [12, II.4] that if X ∼ B (µ, ν) then X
1−X ∼

B′ (µ, ν). The distribution (3.5) can be further generalized to the so called generalized
Beta prime distribution also known as the general Beta of the second kind distribution
whose pdf is

f (x, µ, ν, h) =

(
x
h

)µ−1 (
1 + x

h

)−µ−ν
h ·B [µ, ν]

x > 0 (3.6)
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with h, µ, ν > 0 . If X has generalized Beta prime distribution of the form (3.6) then we
write X ∼ GB2 (µ, ν, h).

Theorem 1. Let Y t0t = AEt+t0−AEt0 where t0 > 0 be the aging process. LetB1, B2, ..., Bk
be Borel sets such that 0 /∈ B1. Let pt0 (r) = f (r, 1− α, α, t0) be a generalized beta prime
distribution as in (3.6). Then we have for 0 < t1 < t2 < · · · < tk

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2, ..., Y

t0
tk
∈ Bk

)
=

t1ˆ

0

P (Yt1−r ∈ B1, Yt2−r ∈ B2, ..., Ytk−r ∈ Bk) pt0 (r) dr. (3.7)

Proof. For simplicity, we proof the result for k = 2 , the proof for k > 2 is similar. We
have

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2

)
= Qt0

[
1{R×R} (y0, r0)

× Qt1
[
1{B1+y0×R} (y1, r1)Qt2−t1

[
1{B2+y0×R} (y2, r2)

]
(y1, r1)

]
(y0, r0)

]
(0, 0) . (3.8)

It is easy to see that by (3.4) the semi-group operator Qt is translation invariant with
respect to the space variable when r = 0, i.e, Qt [f ] (y + a, 0) = Q [g] (y, 0) where g (y, r) =

f (y + a, r). Moreover,

Qt [f ] (y + a, r) = 1{0≤t<r}f (y + a, r − t) + 1{0≤r≤t}Qt−r [f ] (y + a, 0)

= 1{0≤t<r}g (y, r − t) + 1{0≤r≤t}Qt−r [g] (y, 0)

= Qt [g] (y, r) .

Hence, Qt is translation invariant with respect to the space variable. Consequently, since
0 /∈ B1, by (2.6) we have

Qt1
[
1{B1+y0×R} (y1, r1)Qt2−t1

[
1{B2+y0×R} (y2, r2)

]
(y1, r1)

]
(y0, r0)

= 1{0≤r0≤t1}Qt1−r0
[
1{B1+y0×R} (y1 + y0, r1)Qt2−t1

[
1{B2+y0×R} (y2, r2)

]
(y1 + y0, r1)

]
(0, 0)

= 1{0≤r0≤t1}Qt1−r0
[
1{B1×R} (y1, r1)Qt2−t1

[
1{B2+y0×R} (y2 + y0, r2)

]
(y1, r1)

]
(0, 0)

= 1{0≤r0≤t1}P (Yt1−r0 ∈ B1, Yt2−r0 ∈ B2) . (3.9)

For ease of notation we write P (Yt1−r0 ∈ B1, Yt2−r0 ∈ B2) = f (r0). Plug (3.9) in (3.8)
and use (3.4) to obtain,

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2

)
=

ˆ

s′∈[0,t0]

 ˆ

u′∈R+

g (s′, u′) du′

 (3.10)

×
ˆ

w′∈[t0−s′,∞)

cα

Γ (1− α)
w−1−αdwds′

×
[
1{0≤w′−(t0−s′)≤t1} × f (w′ − (t0 − s′))

]

=

ˆ

s′∈[0,t0]

 ˆ

u′∈R+

g (s′, u′) du′

× ˆ

w′∈[t0−s′,t1+t0−s′)

f (w′ − (t0 − s′))

× cα

Γ (1− α)
w′−1−αdw′ds′.
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By [31, Eq. 37.12] if Dt is a stable subordinator of index 0 < α < 1 with E
(
e−uXt

)
=

e−tcu
α

and probability distribution P (Dt ∈ dx) = g (x, t) dx then its potential density is
given by

v (s) =

ˆ

u∈R+

g (s, u) du =
1

cΓ (α)
sα−1 s > 0. (3.11)

Substitute (3.11) in (3.10) and apply the change of variables r = w′ + s′ − t0 to obtain

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2

)
=

t1ˆ

0

ˆ

s′∈[0,t0]

s′α−1

cΓ (α)
f (r)

cα

Γ (1− α)
(r − s′ + t0)

−1−α
ds′dr. (3.12)

Now apply the change of variables v = s′ (r − s′ + t0)
−1 to compute the integral with

respect to s′ and to obtain

P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2

)
=

t1ˆ

0

f (r)

(
r
t0

)−α (
1 + r

t0

)−1

t0 ·B [α, 1− α]
dr

=

t1ˆ

0

P (Yt1−r ∈ B1, Yt2−r ∈ B2) pt1 (r) dr.

Remark 2. It follows from Theorem 1 that

P
(
Y t0t = 0

)
=

∞̂

t

pt0 (r) dr +

tˆ

0

P (Yt−r = 0) pt0 (r) dr > 0. (3.13)

Therefore, the distribution of Y t0t has an atom at the origin for every t. More inter-
esting is the fact that if P (At = 0) = 0(this is true for all processes with pdf) then
P
(
Y t0t = 0

)
does not depend on the choice of the process At. On the other hand it

can be easily seen that for every t the process Y t0t has density on R \{0} given by

pt0 (x, t) =

tˆ

0

p (x, t− r) pt0 (r) dr whenever At has pdf p (x, t). Furthermore, note that

the finite dimensional distributions of the process Y t0 on Borel sets B1, ..., Bk such that
0 /∈ B1, determine completely the finite dimensional distributions of the process Y t0 . We
demonstrate this for k = 2; if B2 is a Borel set then

P
(
Y t0t1 = 0, Y t0t2 ∈ B2

)
= P

(
Y t0t2 ∈ B2

)
− P

(
Y t0t1 ∈ R/{0}, Y

t0
t2 ∈ B2

)
,

which by (3.13) determines the two dimensional distributions completely.

Remark 3. In [6], a result similar to Theorem 1 for the one dimensional distribution is
obtained for CTRW for large t0 and t. The proof in [6] sheds light on our result, as it
was derived from showing that the distribution of the first epoch τ1 of the aging CTRW
Xt0
t has beta prime distribution, i.e τ1 ∼ B′ (1− α, α, t0). This can be shown by a result

by Dynkin on renewal processes ([9, Theorem 8.6.3]). Interestingly, the distribution of
the first epoch τ1 does not scale out as we move to the limit and obtain the process Y t0t .
Indeed, one can show (similarly to the proof of Theorem 1) that the distribution of the
process Rt, the time left before the next regeneration at time t, is

fRt (r) =

(
r
t

)−α (
1 + r

t

)−1

t ·B [α, 1− α]
r > 0. (3.14)
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Since it was noted in [25] that the process Yt starts afresh at time Ht = DEt = t

depending only on the position of Yt, and by the fact that in our case the process
Yt is homogeneous in space, it follows that once the process Y t0t leaves the state
0 it behaves like the process Yt from that point on. Now, condition the probability
P
(
Y t0t1 ∈ B1, Y

t0
t2 ∈ B2, ..., Y

t0
tk
∈ Bk

)
on the event {Rt0 = r}and integrate with respect to

r to obtain (3.7). It should be clear now why 0 /∈ B1 as we would like to make sure that
the system is mobilized before time t1.

Remark 4. Let Xt be a renewal process with interarrival times {Wi} whose tail distribu-
tion 1− F (x) ∈ R (−α) for 0 < α < 1, namely, there exists a slowly varying function L (x)

such that 1− F (x) ∼ x−αL (x) when x→∞. Define the arrival times Tn =
∑n
i=1Wi and

let St = t− TXt be the age process, the time spent at the current state. It was shown in
[9, Theorem 8.6.3] that the distribution of St

t converges, as t→∞. The limit is the so
called Generalized Beta of the first kind distribution GB1 (1− α, α, 1) whose pdf equals
fV1

, where

fVt (v) =

(
v
t

)−α (
1− v

t

)α−1

tB [α, 1− α]
0 < v < t. (3.15)

In [25], the analogous process Vt = t − DEt− was defined to track the time that has
passed since the last regeneration of the process Yt. It can be easily shown, along similar
lines to the proof of Theorem 1, that the process Vt− has distribution GB1 (1− α, α, t).
Equations 3.14 and 3.15 explain the results of Jurlewicz et al in [14]. There it was proven
([14, Eq. 5.12]) that DEt has pdf

g (r) =
r−1

B [α, 1− α]

(
t

r − t

)α
r > t, (3.16)

and that DEt− has pdf ([14, Eq. 5.9])

h (v) =
vα−1 (t− v)

−α

B [α, 1− α]
0 < v < t. (3.17)

Equation 3.16 and 3.17 can be obtained by 3.14 and 3.15 respectively, by translation
and reflection.

4 Aging self similarity

Recall that a process Xt is called self-similar if for every a > 0 there exists b > 0 such
that the finite dimensional distributions of the time scaled process Xat equals that of
the process bXt. It is well known ([31, Section 13]) that if Xt is a Lévy process then it is
self-similar if and only if Xt is strictly stable, i.e for every a > 0 there exist b > 0 such
that E

(
eiuX1

)a
= E

(
eiubX1

)
. For self-similar non trivial processes that are stochastically

continuous at t = 0, b = aH ([10, Theorem 1.1.1]), where H > 0 if and only if Xt = 0 with
probability one. H is sometimes called the Hurst parameter. For example, for fractional
Brownian motion 0 < H < 1 while the Hurst parameter of the stable subordinator of
index 0 < α ≤ 2 is 1/α . For self-similar processes with stationary increments and finite
second moment the Hurst parameter (when it exists) determines long range dependence
([10, Section 3.2]). Throughout this section we consider the process Y t0t = AEt+t0 −AEt0
where At is a strictly stable process whose Hurst parameter we denote by 1/β and Et
is the inverse of a stable subordinator of index α. We wish to find whether Y t0t has the
property of self-similarity or a different property that resembles self-similarity to some
extent. From Theorem 1 it is only reasonable that any self-similarity-like property of Y t0t
should be strongly connected to the self-similarity of the process Yt.
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Aging uncoupled continuous time random walk limits

The next corollary states that although the aging process Y t0t is not self-similar
it exhibits a self-similar-like behavior. Intuitively it suggests that Y t0at behaves like a
“younger”(a > 1) scaled version of itself.

Corollary 1. Let Y t0t be an aging process and let Bi for 1 ≤ i ≤ k be Borel sets in R.
Then (

Y t0at1 , Y
t0
at2 , ..., Y

t0
atk

) d
=

(
a
α
β Y

t0
a
t1 , a

α
β Y

t0
a
t2 , ..., a

α
β Y

t0
a
tk

)
.

Proof. For simplicity we only prove the result for k = 2 as the proof for k > 2 is similar.
First assume that B1 ⊆ R does not contain zero . By Theorem 1 we have

P
(
Y t0at1 ∈ B1, Y

t0
at2 ∈ B2

)
=

at1ˆ

0

P (Yat1−r ∈ B1, Yat2−r ∈ B2) pt0 (r) dr.

Apply the change of variables r′ = r
a to obtain

P
(
Y t0at1 ∈ B1, Y

t0
at2 ∈ B2

)
=

t1ˆ

0

P
(
Ya(t1−r′) ∈ B1, Ya(t2−r′) ∈ B2

) ( r′at0 )−α (1 + r′a
t0

)−1

t0 ·B [α, 1− α]
adr′.

By [21, Corollary 4.1] Yt is self similar with Hurst parameter α
β . Therefore we have

P
(
Y t0at1 ∈ B1, Y

t0
at2 ∈ B2

)
=

t1ˆ

0

P
(
a
α
β Y(t1−r′) ∈ B1, a

α
β Y(t2−r′) ∈ B2

)
p t0
a

(r) dr (4.1)

= P

(
a
α
β Y

t0
a
t1 ∈ B1, a

α
β Y

t0
a
t2 ∈ B2

)
.

Now, by Remark 2 it follows that (4.1) holds for any Borel sets B1, B2 ⊆ R and the result
follows.

5 Asymptotic behavior and the Fractional Fokker-Planck equa-
tion

An easy yet important consequence of Theorem 1 is the following.

Corollary 2. LetB ⊆ R be a Borel measurable subset such that 0 /∈ B and P
(
Y t0t ∈ B

)
6=

0, then
P
(
Y t0t ∈ B

)
∼ Ctα−1

0 t0 →∞ (5.1)

where C = sin(πα)
π

tˆ

0

P (Yt−r ∈ B) r−αdr.

Proof. First note that by the continuity of P (Yt ∈ B) (see (1)) C 6= 0⇔ P
(
Y t0t ∈ B

)
6= 0.

By dominated convergence we then have,

lim
t0→∞

P
(
Y t0t ∈ B

)
Ctα−1

0

= lim
t0→∞

tα−1
0

sin(πα)
π

tˆ

0

P (Yt−r ∈ B) r−α
(

1 + r
t0

)−1

dr

tα−1
0

sin(πα)
π

tˆ

0

P (Yt−r ∈ B) r−αdr

= 1.
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Remark 5. When the process Yt is a renewal process (that is the case for the FPP)
the convergence of P

(
Y t0t ∈ B

)
to zero is expected by the Renewal Theorem ([12,

XI.1]) and the fact that the interarrival times have the Mittag-Leffer distribution with
infinite expectation. Interestingly, it was shown by Erickson in [11, Theorem 1], that
if Yt is a renewal process with interarrival times Wn with F (t) = P (W1 ≤ t) such that
1− F (t) ∈ R (−α) for 0 < α < 1, i.e 1− F (t) ∼ t−αL (t) as t→∞ where L (t) is a slowly
varying function and F is not arithmetic, then

E
(
Y t0t
)
∼ sin (πα)

π

t

L (t0)
tα−1
0 t0 →∞. (5.2)

We now show how (5.2) can be obtained for the FPP by Corollary 2. First note that by
similar arguments as in Corollary 2 we have

E
(
Y t0t
)
∼ tα−1

0

sin (πα)

π

tˆ

0

E (Yt−r) r
−αdr t0 →∞. (5.3)

Let Yt = Nα
t be the fractional Poisson process with intensity λ = 1. By [8, Eq. 2.7],

E (Yt−r) = (t−r)α
Γ(1+α) and so by (5.3) we have

E
(
Y t0t
)
∼ tα−1

0

sin (πα)

π

tˆ

0

(t− r)α

Γ (1 + α)
r−αdr

= tα−1
0

sin (πα)

π
tΓ (1− α) .

To see this, note that

tˆ

0

(t− r)α r−αdr = Γ(1−α)
(α+1) ∂

α
t

[
tα+11t≥0

]
= Γ (1− α) Γ (α+ 1) t,

where ∂αt is the Caputo derivative of index α (5.8). This agrees with (5.2). Indeed,
note that by [29] the asymptotic behavior of the Mittag-Leffler distribution pdf is
fα (t) ∼ t−1−αα

Γ(1−α) as t → ∞ (note that there is a typo there as α should be in the nu-
merator) and by the Karamata Tauberian Theorem ([9, Theorem 1.5.11]) we see that

Eα (−tα) =

∞̂

t

f (y) dy ∼ t−α

Γ(1−α) as t→∞ so (L (t))
−1

= Γ (1− α).

While it is known that generally CTRWL lose their stationarity property for 0 < α < 1

([21, Corollary 4.3]), Theorem 1 suggests a way of measuring the stationarity of a
process in the class S. The FPP for example has no stationary increments for 0 < α < 1,
however, for α = 1 we obtain the Poisson process which is of course stationary as being
a Levy process. We proceed with a useful lemma that states that the distribution of the
processes in S is continuous as a function of time.

Lemma 1. Let Yt ∈ S and C ⊂ R a Borel set, then the function t 7→ P (Yt ∈ C) is
continuous on (0,∞).

Proof. Since Yt = AEt , by a simple conditioning argument ([24, Eq. (2.7)]) we have

P (Yt ∈ C) =

∞̂

0

P (Ay ∈ C)h (y, t) dy,
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where h (x, t) is the pdf of the process Et. Then

lim sup
h→0

|P (Yt+h ∈ C)− P (Yt ∈ C)|

= lim sup
h→0

∣∣∣∣∣∣
∞̂

0

P (Ay ∈ C)h (y, t+ h) dy −
∞̂

0

P (Ay ∈ C)h (y, t) dy

∣∣∣∣∣∣
≤ lim sup

h→0

∞̂

0

|h (y, t+ h)− h (y, t)| dy.

It was proved in ([21, Corollary 3.1]) that

h (x, t) =
t

α
x−1− 1

α g
(
tx−

1
α

)
where g (x) is the pdf of a stable r.v. Since g (x) is smooth it follows that h (x, t) is
continuous on t, x > 0 . Trivially we have

lim
h→0

∞̂

0

h (y, t+ h) dy =

∞̂

0

h (y, t) dy = 1.

Hence, a basic result in analysis [30, Chapter 7, Theorem 7] implies that

lim
h→0

∞̂

0

|h (y, t+ h)− h (y, t)| dy = 0,

and the result follows.

The next result states that as α→ 1 the process Yt , in some sense, becomes more
stationary.

Proposition 1. Let Yt ∈ S, then for every t, t0 > 0

Y t0t = Yt+t0 − Yt0
d→ Yt α→ 1.

Proof. In [33, eq. 3.1.19] it was shown that

U (a, b, s) =
1

Γ (a)

∞̂

0

e−sxxa−1 (1 + x)
b−a−1

dx, (5.4)

where U (a, b, s) is a hypergeometric function that solves the confluent hypergeometric
equation, also known as Kummer’s equation

s
∂2U

∂2s
+ (b− s) ∂U

∂s
− aU = 0. (5.5)

By (5.4) and a simple change of variables we find that the Laplace transform of the
generalized Beta prime distribution is given by

p̂t0 (s) =
U (1− α, 1− α, st0)

Γ (α)
s > 0. (5.6)

Using the identity U (1− α, 1− α, x) = exΓ (α, x) where Γ (α, x) is the incomplete gamma

function defined by Γ (α, x) =

∞̂

x

tα−1e−tdt , we can write (5.6) in a more familiar notation

p̂t0 (s) =
est0Γ (α, st0)

Γ (α)
.
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Now, by dominated convergence

lim
α→1

p̂t0 (s) = lim
α→1

est0

∞̂

st0

rα−1e−rdr

Γ (α)

=
est0e−st0

1
= 1.

Therefore, by [15, Theorem 4.3] we have pt0
w→ δ as α → 1 where

w→ denotes weak
convergence of probability measures and δ is the Dirac delta measure. For a Borel set B
such that 0 /∈ B define

f (r) =

{
P (Yt−r ∈ B) 0 ≤ r ≤ t

0 t < r
,

and note that P (Y0 ∈ dx) = δ0 (dx) and therefore P (Yt−r ∈ B) = 0 at r = t. Consequently,
Lemma 1 suggests that f (r) is continuous. By the fact that

P
(
Y t0t ∈ B

)
=

∞̂

0

f (r) pt0 (r) dr

=

tˆ

0

P (Yt−r ∈ B) pt0 (r) dr → P (Yt ∈ B) ,

we also have P
(
Y t0t = 0

)
→ P (Yt = 0) and the proof is complete.

Remark 6. It was shown in [33, eq. 4.1.12] that U (a, b, s) ∼ Cs−a as s→∞. It follows
that

p̂t0 (s) ∼ C (st0)
α−1

t0 →∞ (5.7)

and therefore p̂t0 (s)→ 0 as t0 →∞. Hence, pt0
v→ 0 as t0 →∞ where

v→ denotes vague
convergence of distributions, and P

(
Y t0t ∈ dx

) w→ δ0 (dx), another proof for the fact that
P
(
Y t0t ∈ B

)
→ 0 as t0 →∞ for B such that 0 /∈ B. It is not hard to verify that p̂t0 → 0 as

α→ 0. Intuitively, this is expected since a small α suggests long waiting times between
jumps and that Yt is very subdiffusive.

Let p (dx, t) be a stochastic kernel, that is, for every t > 0 p (dx, t) is a probability
measure on σ (R) and for each Borel set B ⊆ R p (B, ·) is measureable. Denote the
Fourier transform of p (dx, t) by p̃ (k, t) =

´
R
e−ikxp (dx, t), and the Fourier-Laplace trans-

form (FLT) by p (k, s) =
´
R+

´
R
e−st−ikxp (dx, t) dt. Recall the definition of the Caputo

0 < α < 1 fractional derivative of a function f (t),

∂αt f =
1

Γ (1− α)

tˆ

0

(t− r)−α ∂f (r)

∂r
dr. (5.8)

For 0 < α < 1 the Laplace transform of ∂αt f is ([22, p. 39])

∂̂αt f = sαf̂ − sα−1f (0+) .

A closely related operator is the Riemann Liouville derivative Dαt for 0 < α < 1, which is
defined by

Dαt f =
1

Γ (1− α)

∂

∂t

tˆ

0

(t− r)−α f (r) dr. (5.9)

EJP 21 (2016), paper 7.
Page 12/17

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3802
http://www.imstat.org/ejp/


Aging uncoupled continuous time random walk limits

The LT of (5.9) can be shown to be D̂αt f = sαf̂ . It follows that

∂αt f = Dαt f − f (0+)
t−α

Γ (1− α)
. (5.10)

The following is a short summary of results in [3]. Let V ω = L1
ω (R×R+) be the space of

real valued measurable functions on R×R+ such that

‖f‖ω =

∞̂

0

ˆ

Rd

e−ωt |f (x, t)| dxdt <∞,

for some ω > 0. V ω is a Banach space w.r to ‖·‖ω. If (At, Dt) is a Lévy process
where Dt is a subordinator and s.t E

(
e−ikAt−sDt

)
= etη(−k,s), then the distribution

of (At, Dt) gives way to a semi group of operators whose infinitesimal generator L′

satisfies L′f = η (−k, s) f (k, s)(for ω ≤ s). In fact, f is in the domain of L′, D (L′), iff
g (k, s) = η (−k, s) f (k, s) where g (k, s) is the FLT of some g ∈ V ω. If the first and second
order spatial weak derivatives as well as the first order time weak derivative of f is
in V ω then f ∈ D (L′). Let pt0 (dx, t) be the probability measure of the process Y t0t ,
i.e. pt0 (dx, t) = P

(
Y t0t ∈ dx

)
. Suppose At has the symbol ψ (k) and the infinitesimal

generator L, and Dt is an independent standard stable subordinator. We then have
η (−k, s) = −sα + ψ (−k), and L′ = −Dαt + L (since f ∈ V ω, Lf should be understood as
f (·, t) ∈ D (A) for every t > 0). Note that by [4, Theorem 2.2] smooth functions on R are
contained in D (L). The FLT of p0 (dx, t) is well known([22, Eq. 4.43]) and given by

p0 (k, s) =
sα−1

−η (−k, s)
=

sα−1

sα − ψ (−k)
, (5.11)

which in turn implies that

∂αt p
0 (dx, t) = Lp0 (dx, t) (5.12)

p0 (dx, 0) = δ0 (dx) .

Equation (5.12) describes the dynamics of p0 (dx, t) and therefore is called the Frac-
tional Fokker Planck Equation(FFPE) of p0 (dx, t). Suppose that the process Y t0t starts
from the random point X0 with density p (x) ∈ C∞c (R), that is, smooth with compact
support and that X0 is independent of Y t0t . The distribution of Y t0t + X0 is C (x, t) =ˆ

R

p (x− y) pt0 (dy, t) which is again smooth. The next theorem obtains the governing

equation of C (x, t).

Theorem 2. Let Yt = AEt have probability measure p0 (dx, t) whose FLT is given by
(5.11) for 0 < α < 1. Let L be the generator of At. Then we have

∂αt C (x, t) = L

C (x, t)− p (x)

∞̂

t

pt0 (r) dr

 (5.13)

C (x, 0) = p (x) .

Proof. Let

p (x, t) = C (x, t)− p (x)

∞̂

t

pt0 (r) dr, (5.14)
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and note that the FLT of (5.14) is

p (k, s) = C (k, s)− p̃ (k)

(
1

s
− 1

s
p̂t0 (s)

)
. (5.15)

By Remark 2 we have

p (x, t) =

ˆ

R

p (x− y)

tˆ

0

p0 (dy, t− r) pt0 (r) dr. (5.16)

By a general version of Fubini’s Theorem [2, Theorem 2.6.4] we have

ˆ

R

e−ikx
tˆ

0

p0 (dx, t− r) pt0 (r) dr =

tˆ

0

p̃0 (k, t− r) pt0 (r) dr. (5.17)

Take the LT of both sides of equation (5.17) to obtain

ˆ

R+

ˆ

R

e−st−ikx
tˆ

0

p0 (dx, t− r) pt0 (r) dr = p0 (k, s) p̂t0 (s) .

It follows that
p (k, s) = p0 (k, s) p̂t0 (s) p̃ (k)

Since by (5.11) p0 (k, s) = sα−1

sα−ψ(−k) we have

p (k, s) =
sα−1

sα − ψ (−k)
p̂t0 (s) p̃ (k) . (5.18)

Substitute (5.15) in (5.18) to obtain

C (k, s) sα − C (k, s)ψ (−k)− p̃ (k)

(
1

s
− 1

s
p̂t0

)
sα + p̃ (k)

(
1

s
− 1

s
p̂t0

)
ψ (−k)

= sα−1p̂t0 (s) p̃ (k) ,

which can be rearranged to obtain

C (k, s) (sα − ψ (−k)) = p̃ (k) sα−1 −
(

1

s
− 1

s
p̂t0

)
p̃ (k)ψ (−k) . (5.19)

By the preceding discussion the right hand side of 5.19 inverts to a function in V ω, taking
the IFLT of (5.19) we have

Dαt C (x, t)− LC (x, t) = p (x)
t−α

Γ (1− α)
− Lp (x)

∞̂

t

pt0 (r) dr. (5.20)

Noting that C (x, 0+) = p (x) one can rewrite (5.20) by using (5.10) to arrive at (5.13).

Remark 7. Although Equation (5.13) is not an abstract Cauchy problem, one may adopt
the concept of a mild solution from [27, Chapter 4] and use it in our case. Let f ∈ L1 (R),

we say that a function C (x, t) = f ∗ pt0 (dx, t) =

ˆ

R

f (x− y) pt0 (dy, t) is a mild solution of

∂αt C (x, t) = L

C (x, t)− f (x)

∞̂

t

pt0 (r) dr

 (5.21)

C (x, 0) = f (x)
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if there exists a sequence φn ∈ D (L) s.t φn
L1

→ f (this implies that φn ∗ pt0 (dx, t)
L1

→
f ∗ pt0 (dx, t) uniformly in t on bounded sets as pt0 (dx, t) is a contraction for every t).
From Theorem 2 and the fact that C∞c (R) is dense in L1 (R), we conclude that every
f ∈ L1 (R) is a mild solution of (5.21). We then write for simplicity

∂αt p
t0 (dx, t) = L

pt0 (dx, t)− δ0 (dx)

∞̂

t

pt0 (r) dr

 (5.22)

pt0 (dx, 0) = δ0 (dx) .

Since (5.22) describes the dynamics of the probability kernel pt0 (dx, t) we call it its
FFPE.

Remark 8. Theorem 2 shows that the dynamics of pt0 (dx, t) are the same as those of
p0 (dx, t) on R/{0} × [0,∞). There is a nice intuitive interpretation to equation (5.22)
when At is a stable process. Equation (5.13) can be explained as the behavior of a plume
of particles by arguments of conservation of mass and Fick’s law ([22, Remark 2.3] and
[37, Section 16.1]). However, note that the portion of the mass of particles that does not
diffuse away from point x = 0 at time t (and therefore does not contribute to the change

in pt0 (dx, t) over time) is

∞̂

t

pt0 (r) dr by Remark 2 and the fact that stable processes have

pdf. This accounts for the difference between (5.22) and (5.12).

Remark 9. In [5], a deterministic system was modeled by a CTRW and its aging properties
were studied. There, the FFPE was given for the unnormalized distribution (5.14) of
the aging process when t0 and t are large. To see that the results agree, simply plug
ψ (−k) = −k2

2A in (5.18) and take the IFLT of both sides of the equation. Since p (k, s) sα is
the FLT of the fractional Riemann-Liouville α derivative we obtain [5, eq. 18].
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