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Abstract

We study first-passage percolation where edges in the left and right half-planes are
assigned values according to different distributions. We show that the asymptotic
growth of the resulting inhomogeneous first-passage process obeys a shape theorem,
and we express the limiting shape in terms of the limiting shapes for the homogeneous
processes for the two weight distributions. We further show that there exist pairs of
distributions for which the rate of growth in the vertical direction is strictly larger than
the rate of growth of the homogeneous process with either of the two distributions,
and that this corresponds to the creation of a defect along the vertical axis in the form
of a ‘pyramid’.
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1 Introduction

First-passage percolation is a stochastic model for spatial growth that has been
widely studied by mathematicians and physicists (see e.g. [19, 16, 10]). Since the
pioneering work of Eden [7], both communities have benefited from intense activity
connected to first-passage percolation, resulting in a rigorous theory for subadditive
ergodic processes [18], and far reaching predictions of KPZ-theory [14]. Typically one
assigns nonnegative i.i.d. weights to the edges of the usual integer lattice in two or more
dimensions, and studies the pseudo-metric T induced by the resulting weighted graph.
In this paper we introduce an inhomogeneous version in which edges in the left and
right half-planes of the Z2 lattice are assigned weights according to distributions F−
and F+. The first fundamental question is then whether the Shape Theorem still holds;
that is, does the rescaled ball Bt = {x : T (0, x) ≤ t} obey a law of large numbers as in
the usual model, and if so, what does the limiting shape for Bt/t look like?
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Inhomogeneous first-passage percolation

Unlike in the homogeneous case, when F− = F+, we cannot rely on the usual ergodic
theory for subadditive processes due to the lack of horizontal translation invariance.
To establish existence of radial limits, a precursor to the Shape Theorem, we instead
complement the classical approach using large deviation estimates for half-plane passage
times explored in [1]. A notable feature of our method is that it also shows how the
asymptotic shape of Bt/t can be described in terms of the shapes for homogeneous
first-passage percolation with F− or F+. More precisely, if either of F− and F+ dominates
the other (in a concave stochastic ordering), then the asymptotic shape is the convex
hull of the restriction to respective half-planes of the asymptotic shapes for F− and F+.
When no such relation is present, the asymptotic shape equals the convex hull of the two
half-shapes and a potentially wider additional line segment along the vertical axis (see
Figure 1, page 5).

The behavior of first-passage percolation along the boundary of two regions with
different passage times has attracted much attention due to its physical relevance and
mathematical challenge. In [5] it was shown that if passage times with distribution
F are replaced throughout the graph by others, distributed according to F ′, which is
strictly smaller than F in a stochastic sense, then the time constant changes strictly. But
how would the passage time change, for example, in the first coordinate direction e1 if
passage times are modified only along edges lying on the e1-axis? Will an arbitrarily small
modification be detectable on a macroscopic scale? This is the well-known ‘columnar
defect’ problem, which has been studied in many forms both numerically and rigorously;
see for instance [21, 13, 20]. There is no satisfactory theory which would explain why
some models are ‘sensitive’ to any arbitrarily small perturbation and others are not; this
is determined by competition between localized reinforcement, induced by an impurity,
and bulk fluctuations, which in many cases are difficult to analyze. Perhaps the most
prominent example is the one-dimensional totally asymmetric simple exclusion process
with a ‘slow bond’ at the origin and particle density ρ = 1/2 [11, 12], which for some
initial conditions can be represented either in terms of last-passage percolation with
a columnar defect or the so-called Poly-Nuclear Growth model (PNG), for which it is
believed that any perturbation will be reflected at the macroscopic level in the change of
the current. In line with the terminology of this article, this would mean the creation
of a defect in form of a ‘pyramid’. A theory of propagation of influence of impurities
was proposed in [3] and later used to show that for a randomized PNG model with a
columnar defect, only modifications above a certain threshold result in a ‘spike’ on the
macroscopic profile [4].

The effect of adding a line of defects has also been addressed in the context of bond
percolation. In [22] it was found that, on Z2, no matter the strength of the defect, it is
unable to create an infinite component in an otherwise critical environment. However, a
result more suggestive for the current context was obtained in [8], where the authors
proved that in the subcritical regime any reinforcement along a line of defects is sufficient
in order to produce a change in the rate of decay of the two-point function.

The inhomogeneous model introduced in this paper is rich enough to display defects
at a macroscopic scale: We show in Theorem 1.6 that there are pairs of distributions
(F−, F+) for which the speed of growth along the vertical axis is faster than it would be
for homogeneous first-passage percolation with either of F− and F+. Due to subadditivity
in the model, the enhanced speed in the vertical direction does not create a ‘spike’ on
the limiting shape (as in randomized polynuclear growth), but instead a ‘pyramid’ (see
Theorem 1.4). As in pinning phenomena for polymers, the formation of a pyramid
indicates that minimizing paths in the vertical direction are ‘attracted’ to the vertical
axis, benefiting from low-weight edges in both half-planes. Moreover, our approach
extends to the more general situation where edges in the left and right half-planes are
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Inhomogeneous first-passage percolation

assigned weights according to F− and F+ respectively, but edges on the vertical axis are
assigned weights according to a third distribution F0 (see Remark 3.5). This covers, in
particular, the above mentioned case of a columnar defect.

We conclude by mentioning two open problems. First, for which pairs of distributions
(F−, F+) is a pyramid formed on the limiting shape in the vertical direction? We give
natural necessary conditions, but provide mere examples for when the phenomena
indeed occurs. Second, in the case of a columnar defect, meaning F+ = F−, which
distributions F0 result in a pyramid on the limiting shape? Although we have no answer
to this question, in Section 7, we introduce a related construction, with defects appearing
in each column independently at random. For this model we show (see Theorem 7.1) that
at all intensities, the contribution of the defects to the time constant prevails, resulting
in a strict change.

1.1 Convergence towards an asymptotic shape

Let F− and F+ denote distribution functions of two probability measures supported
on [0,∞). For each edge e in the set of nearest-neighbour edges E of Z2, assign a
random variable τe, according to F− if at least one endpoint of e lies within the left
half-plane (contained in {(x1, x2) ∈ R2 : x1 < 0}), and according to F+ otherwise. For
each nearest-neighbour path Γ in Z2 we let T (Γ) :=

∑
e∈Γ τe. Distances in the induced

random pseudo-metric we refer to as passage times, defined for u, v ∈ Z2 as

T (u, v) := inf{T (Γ) : Γ is a path from u to v} .

To describe our results on radial convergence and the shape theorem we introduce two
variables:

Y− = min{τ (1)
− , . . . , τ

(4)
− } and Y+ = min{τ (1)

+ , . . . , τ
(4)
+ } ,

where the τ (i)
− ’s are i.i.d. with distribution F− and the τ (i)

+ ’s are i.i.d. with distribution F+.
Extend the function T (x, y) to the full space R2 by identifying T (x, y) = T (x′, y′) when
x, y ∈ R2 and x′, y′ ∈ Z2 satisfy x ∈ x′ + [− 1

2 ,
1
2 )2 and y ∈ y′ + [− 1

2 ,
1
2 )2.

Theorem 1.1. For any F− and F+ with EY− <∞ and EY+ <∞, there exists a function
µ̄ : R2 → [0,∞) such that for each x ∈ R2,

T (0, nx)

n
→ µ̄(x) almost surely and in L1. (1.1)

The shape theorem that we will prove describes how the setWt ⊂ R2, given by

Wt := {x ∈ R2 : T (0, x) ≤ t} ,

compares asymptotically to the set

W := {x ∈ R2 : µ̄(x) ≤ 1} .

We write | · | for Euclidean distance on R2.

Theorem 1.2. Assuming that EY 2
− <∞ and EY 2

+ <∞,

lim sup
z∈Z2: |z|→∞

|T (0, z)− µ̄(z)|
|z|

= 0 almost surely . (1.2)

If, in addition, max{F−(0), F+(0)} < pc, the critical probability for bond percolation on
Z2, then the setW is convex and compact with non-empty interior, and for every ε > 0,
almost surely,

(1− ε)W ⊂ 1
tWt ⊂ (1 + ε)W for large enough t .
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Inhomogeneous first-passage percolation

Remark 1.3. As in the homogeneous case, if either Y− or Y+ has infinite mean, then the
almost sure and L1-convergence in (1.1) fails for all x in the interior of the respective half-
plane. However, for arbitrary F+ and F−, the convergence in (1.1) holds in probability. A
similar weakening holds also for (1.2): For arbitrary F− and F+

lim sup
z∈Z2: |z|→∞

P
(
|T (0, z)− µ̄(z)| > ε|z|

)
= 0 .

We omit the argument, but mention that a proof would follow along the lines of Cox and
Durrett [6, Theorem 1]. One defines approximate passage times T̂ (x, y) between circuits
of low-weight edges encircling each of x and y, and shows that {T (x, y)− T̂ (x, y) : x, y ∈
Z2} is tight.

1.2 Properties of the asymptotic shape

Below, we characterize the ‘time constant’ µ̄ in terms of time constants for homoge-
neous environments, and this gives a representation for the asymptotic shape. Generally,
the shape W is the closed convex hull of the two homogeneous shapes (restricted to
their respective half-planes) and a symmetric interval on the e2-axis of width 2µ̄(e2)−1,
where ei denotes the ith coordinate vector. Define

H− := {(x1, x2) ∈ R2 : x1 ≤ 0} and H+ := {(x1, x2) ∈ R2 : x1 ≥ 0} ,
W− := {x ∈ H− : µ−(x) ≤ 1} and W+ := {x ∈ H+ : µ+(x) ≤ 1} ,

where µ− and µ+ denotes the time constants corresponding to homogeneous first-
passage percolation with i.i.d. weights assigned by F− and F+, respectively.

Theorem 1.4. Assume that EY− and EY+ are finite. The function µ̄ : R2 → [0,∞) is
described by the formula

µ̄(x) =


min
a∈R

[µ̄(ae2) + µ−(x− ae2)] for x ∈ H− ,

min
a∈R

[µ̄(ae2) + µ+(x− ae2)] for x ∈ H+ .
(1.3)

Further, µ̄ is sub-additive and positive homogeneous, andW equals the closed convex
hull

W = convex hull
[
W− ∪ W+ ∪ {0}×

[
−µ̄(e2)−1, µ̄(e2)−1

] ]
. (1.4)

Also, (1.4) shows that if F+(0) ≥ pc but F−(0) < pc, then limit shape is a half-plane.
The interval on the e2-axis described in the last theorem gives the possibility of an

additional ‘pyramid’ in the coordinate direction forW. In this case, optimal paths in the
e2-direction are able to benefit from low-weight edges in both half-planes better than if
they were to remain in one of them, and will thus feel an ‘attraction’ towards the e2-axis.
However, we will see below that if one of F− and F+ dominates the other (in a certain
concave ordering), then µ̄(e2) equals either µ−(e2) or µ+(e2), and the statement in (1.4)
is reduced to

W = convex hull
[
W− ∪ W+

]
,

with no additional pyramid. We do not completely understand the mechanism that
determines whether strict inequality holds.

For the statement of the next theorem, we say that F1 if more variable than F2 if∫
φ(x) dF1(x) ≤

∫
φ(x) dF2(x)

for every concave non-decreasing function φ : R→ R for which the two integrals above
converge absolutely. In this case we write F1 ≺ F2. This terminology was introduced to
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Inhomogeneous first-passage percolation

Figure 1: Schematic exhibiting the structure of the asymptotic shape W. The left
picture is known to be the case when F+ is more variable than F−.

first-passage percolation by van den Berg and Kesten [5, Definition 2.1], who used it to
prove inequalities between time constants for different distributions. Note, in particular,
that if F− stochastically dominates F+ (that is F−(x) ≤ F+(x) for all x), then F+ is more
variable than F−.

Theorem 1.5. Assuming that EY− and EY+ are finite,

µ̄(e2) ≤ min{µ−(e2), µ+(e2)} ,

where equality holds if either of F− and F+ is more variable than the other.

If strict inequality holds above, thenW has a pyramid in the coordinate direction e2.
The final theorem we state here shows that there are examples that display this behavior.

Theorem 1.6. There exist non-degenerate weight distributions F− and F+ such that

µ̄(e2) < min{µ−(e2), µ+(e2)} .

In Section 7 we will prove a related result for the homogeneous model with edge-
weights given by F and columnar defects given by F0 introduced at random locations:
For a large class of distributions F it suffices that F0 ≺ F and F0 6= F for the time
constant in the vertical direction to be strictly smaller than µF , regardless of the density
at which defects are introduced.

2 Preliminaries

To derive properties of the inhomogeneous model, we will when possible rely on
known facts about the homogeneous case. Some of these facts are recalled here.

Let F be a distribution function for a probability measure supported on [0,∞) and
let YF denote the minimum of 4 independent random variables distributed as F . Let TF
denote travel times on Z2 in an homogeneous i.i.d. environment generated by F . A small
extension of the arguments in [6, Theorem 4] (also see Sections 2.2 and A of [2]) show
that for every F there is a function µF : R2 → [0,∞) such that for every x ∈ R2

lim
n→∞

TF (0, nx)

n
= µF (x) in probability . (2.1)

If EYF <∞, then the convergence also holds almost surely and in L1, as a consequence
of the Subadditive Ergodic Theorem of [17]. Kesten [15, Theorem 6.1] identified the
condition for µF to be non-degenerate:

µF (x) 6= 0 for some x 6= 0 ⇔ µF (x) 6= 0 for all x 6= 0 ⇔ F (0) < pc , (2.2)
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Inhomogeneous first-passage percolation

where pc = 1/2 denotes the critical threshold for bond percolation on the lattice Z2. µF
is a semi-norm on R2, so for x = (x1, x2) ∈ R2, µF (x) ≤ |x1|µF (e1) + |x2|µF (e2), and thus

|µF (x)− µF (y)| ≤ µF (x− y) ≤ µF (e1)‖x− y‖1 for x, y ∈ R2 , (2.3)

where we use ‖ · ‖1 to denote `1-distance.
At times we will couple the homogeneous and inhomogeneous models. Given the

distribution function F , define the right-continuous inverse

F−1(u) := min{x ∈ R : F (x) ≥ u} .

If ξ is uniformly distributed on the interval [0, 1], then F−1(ξ) is distributed according
to F . The inhomogeneous collection {τe}e∈E of edge-weights of the lattice can thus
be obtained by setting τe = F−1

− (ξe) for edges with an endpoint in the interior of H−,
and F−1

+ (ξe) for all other edges, where {ξe}e∈E is a collection of independent random
variables uniform on [0, 1]. This implies

F−1
sub(ξe) ≤ τe ≤ F−1

dom(ξe) for every e ∈ E , (2.4)

where Fsub := max{F−, F+} and Fdom := min{F−, F+}. The inequalities for the pointwise
coupling in (2.4) carry over to passage times between sites:

TFsub(x, y) ≤ T (x, y) ≤ TFdom(x, y) for all x, y ∈ R2 .

Note, in particular, that if F− dominates F+ (meaning F−(x) ≤ F+(x) for all x ≥ 0), then
Fdom = F− and Fsub = F+.

In addition, (2.4) gives rise to a comparison of means.

Lemma 2.1. Let Ydom denote the minimum of 4 independent random variables dis-
tributed according to Fdom. For any α > 0

max{EY α− ,EY α+ } ≤ EY αdom ≤ 8 (EY α− + EY α+ ) .

In particular, for every α > 0 and z ∈ R2, ET (0, z)α is finite if both EY α− and EY α+ are.

Proof. The first inequality holds by max{Y−, Y+} ≤ Ydom. The next is from

P(Ydom ≥ x) = P
(
F−1

dom(ξ) > x
)4 ≤ (

P(F−1
− (ξ) > x) + P(F−1

+ (ξ) > x)
)4

≤ 8
(
P(F−1

− (ξ) > x)4 + P(F−1
+ (ξ) > x)4

)
= 8

(
P(Y− ≥ x) + P(Y+ ≥ x)

)
.

The proof of the last statement consists of constructing 4 edge-disjoint paths from 0 to x
and arguing as in [6, Lemma 3.1].

The last result we mention here will be used to bound tail probabilities while deriving
both radial convergence and the shape theorem (Theorems 1.1 and 1.2). Many results
of this kind are available, and we work with the following one as it allows us to derive
our result under weakest possible moment assumptions. We remark that under finite
exponential moments the conclusions of Theorems 1.1 and 1.2 may be obtained through
somewhat simpler arguments.

Here and below we let T+ denote the passage time over paths restricted to H+ and
not including edges along the e2-axis.

Proposition 2.2. For every ε > 0 there exist M = M(ε) <∞ and γ = γ(ε) > 0 such that
for every x ∈ R2 and t ≥ |x|

P
(
TF (0, x)− µF (x) < −εt

)
≤ Me−γt . (2.5)
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Inhomogeneous first-passage percolation

Moreover, if EY+ <∞, x ∈ H+ and q ≥ 1, then M = M(ε, q) can be chosen so that

P
(
|T+(2e1, 2e1 + x)− µ+(x)| > εt

)
≤ M P(Y+ > t/M) +

M

tq
. (2.6)

The former statement in Proposition 2.2 was obtained in [9, (1.4)] for x = ne1, and
extended to general directions in [2, Theorem 3]. The latter statement is proven in [1,
Theorem 9] (see [2, Theorem 4] for the corresponding statement for the whole lattice).
We remark that the moment condition in the latter part can be replaced by the condition
that EY α+ <∞ for some α > 0, but we will not need to use that. The reason for the ‘2e2’
in (2.6) is to guarantee 2d disjoint paths to between the end points. We further remark
that (2.5) and (2.6) imply that

∑
n≥1P

(
|TF (0, nx) − µF (x)| > εn

)
< ∞ for every ε > 0,

under the condition EYF < ∞. This fact has certain relevance for the results of this
paper (in particular Theorem 1.1) to be obtained under minimal assumptions.

3 Radial convergence – Proof of Theorem 1.1

In this section we prove Theorem 1.1, and assume throughout that EY− and EY+ are
finite. By Lemma 2.1, ET (me2, ne2) <∞ for all m,n ∈ Z.

Claim 3.1. There exists a constant ν ∈ [0,∞) such that for every λ ∈ R

µ̄(λe2) := lim
n→∞

T (0, nλe2)

n
= |λ|ν almost surely and in L1 .

Proof. Due to translation ergodicity of the environment along the e2-axis, a standard
application of the Subadditive Ergodic Theorem shows

∞ > ν := lim
n→∞

T (0,±ne2)

n
exists almost surely and in L1 .

This proves the claim for λ = ±1, for which the limits coincide due to symmetry. More
generally, for λ > 0 and n ∈ N,

1

n
T (0, nλe2) =

1

n

(
T (0, nλe2)− T (0, bnλce2)

)
+
bnλc
n

1

bnλc
T (0, bnλce2) .

The second term converges almost surely and in L1 to λν. The other term converges to
zero almost surely via Borel-Cantelli: for each ε > 0,

∞∑
n=1

P
(
|T (0, ne2)− T (0, (n− 1)e2)| > εn

)
≤
∞∑
n=1

P
(
T (0, e2) > εn

)
≤ 1

ε
ET (0, e2) , (3.1)

which is finite. This proves almost sure convergence for λ > 0. L1 convergence follows
since E

∣∣T (0, nλe2)− T (0, bnλce2)
∣∣ is bounded. The case of λ < 0 is similar.

A key observation used in the rest of the proof of Theorem 1.1 is that

T (0, z) = inf
k∈Z

[
T (0, ke2) + T+(ke2, z)

]
for all z ∈ H+ . (3.2)

(Recall that T+ is the passage time among paths using edges with at least one endpoint
in the interior of H+.) To prove this, let ε > 0 and choose a path Γ from 0 to z such
that T (Γ) (the sum of edge-weights for edges in Γ) is no bigger than T (0, z) + ε. Γ has a
terminal segment Γt contained in the open right half-plane (except its initial and possibly
its final vertex) from some ke2 to z. Write Γi for the initial segment of Γ up to ke2. Then

T (0, ke2) + T+(ke2, z) ≤ T (Γi) + T+(Γt) = T (Γ) ≤ T (0, z) + ε .
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Taking infimum over k and sending ε→ 0 gives one inequality of (3.2). For the other, let
k ∈ Z and choose paths Γ1 from 0 to ke2 and Γ2, contained in the interior of H+ except
its initial and possibly its final vertex, from ke2 to z such that T (Γ1) ≤ T (0, ke2) + ε/2

and T+(Γ2) ≤ T+(ke2, z) + ε/2. The concatenation of Γ1 and Γ2, written Γ, is a path from
0 to z, so

T (0, z) ≤ T (Γ) = T (Γ1) + T+(Γ2) ≤ T (0, ke2) + T+(ke2, z) + ε .

This is true for all k and ε > 0, so it proves the other inequality.
Returning to the proof of radial convergence, for x = (x1, x2) ∈ R2 with x1 > 0 set

ν(x) := inf
a∈R

[
µ̄(ae2) + µ+(x− ae2)

]
, (3.3)

where µ̄(ae2) is defined via Claim 3.1. In view of (3.2) one may guess that ν ought to
describe the correct limiting behaviour, and this will be confirmed.

Claim 3.2. For every x = (x1, x2) ∈ R2 with x1 > 0,

lim sup
n→∞

T (0, nx)

n
≤ ν(x) almost surely .

Proof. Let a ∈ R and δ > 0. By subadditivity, an upper bound on T (0, nx) is given by

T (0, ane2) + T (ane2, ane2 + 2e1) + T+(ane2 + 2e1, nx+ 2e1) + T (nx+ 2e1, nx) . (3.4)

Just as in (3.1), both 1
nT (ane2, ane2 + 2e1) and 1

nT (nx + 2e1, nx) vanish almost surely
as n → ∞, so almost sure convergence of 1

nT (0, ane2) to µ̄(ae2) reduces the proof of
Claim 3.2 to showing

lim sup
n→∞

T+(ane2 + 2e1, nx+ 2e1)

n
≤ µ+(x− ae2) almost surely .

To do this, we use the latter part of Proposition 2.2. Let y = x− ae2, and take ε = δ/|y|
and let q = 2 so that the proposition gives a constant M = M(ε) such that

P
(
T+(2e1, 2e1 + ny) > n(µ+(y) + δ)

)
≤ M P(Y+ ≥ |y|n/M) +

M

|y|2n2
.

Since |y| = |x − ae2| ≥ x1 > 0 and Y+ has finite mean, the sum over n ∈ N converges.
So, Borel-Cantelli shows that 1

nT+(ane2 + 2e1, nx + 2e1) > µ+(x − ae2) + δ for at most
finitely many n, almost surely and proves Claim 3.2.

Before proving a lower bound matching Claim 3.2, we separate a consequence of
Proposition 2.2 that we will use.

Claim 3.3. For every ε > 0 and x = (x1, x2) ∈ R2 with x1 > 0,

P
(
T+(ke2, nx) < µ+(nx− ke2)− ε|nx− ke2| for infinitely many (n, k) ∈ N×Z

)
= 0 .

Proof. Note that T+(ke2, nx) equals T+(0, nx − ke2) in distribution. Pick ε > 0 and let
M = M(ε) and γ = γ(ε) be given as in the first part of Proposition 2.2. Then,

P
(
T+(0, nx− ke2)− µ+(nx− ke2) < −ε|nx− ke2|

)
≤ Me−γ|nx−ke2|

for all n ∈ N and k ∈ Z. Since x1 > 0, as n and k ranges over N and Z, respectively,
nx− ke2 will be in each unit square z + [0, 1)2 at most a finite number (say K) of times,
for each z ∈ Z2. Replacing nx− ke2 by a corner of the unit square in which it is in, we
find that∑

n∈N, k∈Z

P
(
T+(0, nx− ke2)− µ+(nx− ke2) < −ε|nx− ke2|

)
≤

∑
z∈N×Z

2KMe−γ|z| ,

which is finite. The claim thus follows by Borel-Cantelli.
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Claim 3.4. For every x = (x1, x2) ∈ R2 with x1 > 0,

lim inf
n→∞

T (0, nx)

n
≥ ν(x) almost surely .

Proof. The proof will proceed through a few different cases. If ν(x) = 0 there is nothing
to prove, so we may assume that ν(x) > 0. This guarantees that µ+ 6≡ 0, because
otherwise we could take a = 0 in the definition of ν; however, µ̄(e2) may still be zero.
First assume that µ+ 6≡ 0 and µ̄(e2) = 0. Then for every a ∈ R, symmetry and convexity
of µ+ gives

µ+(x− ae2) = 1
2

[
µ+(x1e1 + (x2 − a)e2) + µ+(x1e1 − (x2 − a)e2)

]
≥ µ+(x1e1) .

In particular ν(x) = µ+(x1e1) > 0 and µ+(nx1e1) ≤ µ+(nx − ke2), so by (3.2), for any
δ > 0, we have

P
(
T (0, nx) < (1− δ)nν(x) for infinitely many n

)
≤ P

(
inf
k∈Z

T+(ke2, nx) < (1− δ)µ+(nx1e1) for infinitely many n
)

≤ P
(
T+(ke2, nx) < (1− δ)µ+(nx− ke2) for infinitely many (n, k) ∈ N×Z

)
.

Since µ+(nx − ke2) ≥ inf{µ+(y) : |y| = 1}|nx − ke2|, we may apply Claim 3.3 (with
ε = δ · inf{µ+(y) : |y| = 1} > 0) to find that the above probability equals zero, thus
proving Claim 3.4 when µ+ 6≡ 0 but µ̄(e2) = 0.

To complete the proof of Claim 3.4, it remains to verify the case µ+ 6≡ 0 and µ̄(e2) > 0.
We will use (3.2) and we first bound its right side for large k. So, fix b > 0 such that

b · µ̄(e2) > ν(x) .

By convergence along the e2-axis, almost surely, for all large n ∈ N, and k ∈ Z for which
|k| > bn

T (0, ke2)

n
> b

T (0, ke2)

|k|
≥ ν(x) ,

giving

P

(
inf
|k|>bn

T (0, ke2)

n
≥ ν(x) for all large n

)
= 1 . (3.5)

Next we show that given ε > 0, almost surely there exists N ∈ N such that for all
n ≥ N

T (0, ke2) ≥ µ̄(ke2)− εn/2 for all k ∈ Z with |k| ≤ bn (3.6)

and
T+(ke2, nx) ≥ µ+(nx− ke2)− εn/2 for all k ∈ Z with |k| ≤ bn . (3.7)

Combining (3.6) and (3.7), we will then have for n ≥ N ,

T (0, ke2) + T+(ke2, nx) ≥ µ̄(ke2) + µ+(nx− ke2)− εn for |k| ≤ bn .

By the definition of ν as an infimum,

T (0, ke2) + T+(ke2, nx) ≥ ν(nx)− εn for n ≥ N and |k| ≤ bn .

On the other hand, (3.5) gives N ′ ≥ N such that if n ≥ N ′ then

T (0, ke2) + T+(ke2, nx) ≥ T (0, ke2) ≥ ν(nx)− εn for |k| > bn .
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By (3.2), we would have T (0, nx) ≥ ν(nx)− εn for n ≥ N ′, completing the proof.
So, to complete the proof of Claim 3.4, it remains to prove (3.6) and (3.7). Fix δ with

0 < δ <
ε

2(|x|+ b)
. (3.8)

For (3.6), we use convergence along the e2-axis to, with probability 1, find K such that

T (0, ke2) ≥ µ̄(ke2)− |k|δ whenever |k| ≥ K .

For |k| ≤ bn, the choice of δ ensures that |k|δ < εn/2, so T (0, ke2) ≥ µ̄(ke2) − εn/2

whenever K ≤ |k| ≤ bn. For |k| < K, simply choose N1 ≥ 2Kµ̄(e2)/ε. Then if n ≥ N1, we
have µ̄(ke2) ≤ εn/2, so (3.6) holds for all n ≥ N1.

For (3.7), use Claim 3.3 to find N2 ≥ N1 such that if n ≥ N2 then

T+(ke2, nx) ≥ µ+(nx− ke2)− δ|nx− ke2| for all k ∈ Z .

Again, for |k| ≤ bn, the choice of δ in (3.8) gives

δ|nx− ke2| ≤ δn(|x|+ |k|/n) ≤ δn(|x|+ b) < εn/2 ,

and so (3.7) holds for n ≥ N2, and the proof of Claim 3.4 is complete.

We have now shown almost sure convergence of 1
nT (0, nx) when x1 ≥ 0. The case

x1 < 0 is similar, and the only modifications necessary are to replace T+ with T−, the
passage time for paths using only edges with at least one endpoint in the interior of H−,
as well as equation (3.2) with its obvious analogue and µ+ with µ−.

To complete the proof of Theorem 1.1, we must prove L1-convergence. (This was
already remarked when x1 = 0 in Claim 3.1.) We use dominated convergence, bounding
T (0, nx) above by Tdom(0, nx), where Tdom is the passage time in the homogeneous
environment with edge-weights distributed as Fdom. By Lemma 2.1, the assumption
max{EY−,EY+} <∞ implies that EYdom <∞, where Ydom is as in Lemma 2.1. Therefore
L1-convergence in homogeneous environments (mentioned below (2.1)) completes the
proof of Theorem 1.1.

Remark 3.5. The reader may verify that the above proof goes through, essentially word
for word, if edges in the left and right half-planes are assigned weights according to F−
and F+, respectively, but edges on the vertical axis are assigned weights according to a
distribution F0. In this case, one may require, for example, that EY−,EY+ and EY0 are
all finite.

4 The time constant and the asymptotic shape

We aim in this section to prove Theorem 1.4. Assume then that EY− and EY+ are
finite, so that the limit in Theorem 1.1 exists. We begin with a simple observation.

Lemma 4.1. The time constant satisfies

µ̄(x) ≤

{
µ−(x) for x ∈ H− ,
µ+(x) for x ∈ H+ .

In particular, µ̄(e2) ≤ min{µ−(e2), µ+(e2)}.

Proof. First note that for x ∈ H+ the subadditive property gives that

T (0, nx) ≤ T (0, 2e1) + T+(2e1, 2e1 + nx) + T (2e1 + nx, nx) . (4.1)
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We now apply Proposition 2.2 to find that P
(
|T+(2e1, 2e1 + nx)− µ+(nx)| > εn

)
→ 0 as

n → ∞. Together with (3.1), dividing by n and sending n → ∞ in (4.1), the right side
converges in probability to µ+(x). Since the left side, after division by n, converges to
µ̄(x), we find µ̄(x) ≤ µ+(x). A similar argument shows µ̄(x) ≤ µ−(x) when x ∈ H−, and
the statement follows.

We now begin the proof of Theorem 1.4, starting with formula (1.3).

Proof of (1.3). By Claims 3.2 and 3.4 in the proof of Theorem 1.1, formula (1.3) holds
(with minimum replaced by infimum) when x is not a multiple of e2. If x = λe2 for some
λ ∈ R, then

µ̄(λe2) = µ̄(λe2) + µ±(λe2 − λe2) ≥ inf
a∈R

[µ̄(ae2) + µ±(λe2 − ae2)] .

On the other hand, by Lemma 4.1 and the scaling µ̄(λe2) = |λ|µ̄(e2),

µ̄(ae2) + µ±(λe2 − ae2) ≥ |a|µ̄(e2) + |λ− a|µ̄(e2) ≥ µ̄(λe2) for all a ∈ R .

We conclude that µ̄(x) = infa∈R
[
µ̄(ae2) + µ±(x− ae2)

]
for all x ∈ H±.

Last we must show that the infimum is actually attained. So without loss in generality,
let x ∈ H+ and consider the continuous function a 7→ µ̄(ae2) + µ+(x− ae2). If µ̄(e2) 6= 0

or both µ+ 6≡ 0 and x = (x1, x2) has x1 > 0 then this function approaches∞ as |a| → ∞
and so has a minimum. Otherwise, the minimum (zero) is attained at any a.

We next show that the function µ̄ retains some properties of a semi-norm. In particular,
semi-norms are convex, which thus is the case for both µ− and µ+.

Proposition 4.2. The time constant satisfies the following properties.

a) µ̄(λx) = λ µ̄(x) for λ ≥ 0 and x ∈ R2.

b) µ̄(x+ y) ≤ µ̄(x) + µ̄(y) for x, y ∈ R2.

c) |µ̄(x)− µ̄(y)| ≤ max{µ−(e2), µ+(e2)}‖x− y‖1 for x, y ∈ R2.

d) µ̄(e2) 6= 0 ⇔ µ̄(x) 6= 0 for every x 6= 0 ⇔ max{F−(0), F+(0)} < pc.

Moreover, for x = e2, part a) extends to µ̄(λe2) = |λ|µ̄(e2) for all λ ∈ R.

Proof. The first three properties follow from formula (1.3). First, for λ ∈ R, Claim 3.1
shows that µ̄(λe2) = |λ|µ̄(e2). Next, for any λ ≥ 0 and x ∈ H+ we have from (1.3) that

µ̄(λx) = min
a∈R

[
µ̄(ae2) + µ+(λx− ae2)

]
= λmin

a∈R

[
µ̄((a/λ)e2) + µ+(x− (a/λ)e2)

]
= λ µ̄(x) .

The case x ∈ H− is analogous, so this proves part a).
For part b), assume first that x, y ∈ H+. For a, b ∈ R we have by (1.3) that

µ̄(x+ y) ≤ µ̄((a+ b)e2) + µ+(x+ y − (a+ b)e2) .

Claim 3.1 gives µ̄((a + b)e2) = |a + b|µ̄(e2) ≤ µ̄(ae2) + µ̄(be2), and subadditivity of µ+

implies

µ̄(x+ y) ≤ µ̄(ae2) + µ+(x− ae2) + µ̄(be2) + µ+(y − be2) .

Taking minimum of both a and b over R proves b) for x, y ∈ H+; the case x, y ∈ H−
is analogous. For the general case, let x = (x1, x2) ∈ H− and y = (y1, y2) ∈ H+,
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and assume that x + y ∈ H+ (the case x + y ∈ H− is again analogous). Writing
x+ y = (0, x2) + (x1 + y1, y2) we find that

µ̄(x+ y) ≤ µ̄(0, x2) + µ̄(x1 + y1, y2) ,

so it suffices to show that µ̄(0, x2) ≤ µ̄(x) and µ̄(x1 + y1, y2) ≤ µ̄(y). By convexity of µ±,
for (z1, z2) ∈ R2, µ±(0, z2) ≤ 1

2

[
µ±(z1, z2) + µ±(−z1, z2)

]
= µ±(z1, z2). So by (1.3), for

some a ∈ R,
µ̄(x) = µ̄(ae2) + µ−(x− ae2) ≥ µ̄(0, a) + µ−(0, x2 − a)

≥ µ̄(0, a) + µ̄(0, x2 − a) ≥ µ̄(0, x2) ,

where the second inequality uses Lemma 4.1. Using convexity of µ+, for t ∈ [0, 1],

µ+(ty1, y2) = µ+

(
t(y1, y2) + (1− t)(0, y2)

)
≤ tµ+(y1, y2) + (1− t)µ+(0, y2) ≤ µ+(y1, y2) .

Via (1.3), since 0 ≤ x1 + y1 ≤ y1 by assumption, we now conclude that for every a ∈ R

µ̄(x1 + y1, y2) ≤ µ̄(ae2) + µ+(x1 + y1, y2 − a) ≤ µ̄(ae2) + µ+(y − ae2) .

Minimizing over a ∈ R gives us µ̄(x1 + y1, y2) ≤ µ̄(y), completing the proof of part b).
Part c) is obtained from repeated use of part b) : for x, y ∈ R2,

|µ̄(x)− µ̄(y)| ≤ µ̄(x− y) ≤ µ̄((x1 − y1)e1) + µ̄((x2 − y2)e2) ,

which by part a) and Lemma 4.1 is at most max{µ−(e2), µ+(e2)}‖x− y‖1.
It remains to prove part d). If µ̄(x) 6= 0 for every x 6= 0, then so is the case for x = e2.

We therefore show that µ̄(e2) 6= 0 implies max{F−(0), F+(0)} < pc, and that this in turn
implies µ̄(x) 6= 0 for every x 6= 0. If µ̄(e2) 6= 0 then µ−(e2) and µ+(e2) are nonzero;
otherwise, this would contradict Lemma 4.1. By (2.2), F−(0) < pc and F+(0) < pc, which
proves the first implication. If we instead assume that max{F−(0), F+(0)} < pc, (2.2)
implies that the time constant µsub with respect to a homogeneous environment with
edge-weights distributed as Fsub (defined below (2.4)) is nonzero for all x 6= 0. However,
by (2.4), µ̄(x) ≥ µsub(x), which completes the proof of part d).

Based on the characterization of µ̄ and its subsequent properties, we next prove
some properties of the asymptotic shapeW = {x ∈ R2 : µ̄(x) ≤ 1}, and end the proof of
Theorem 1.4 by verifying the formula (1.4).

Proposition 4.3. The asymptotic shape satisfies the following properties.

a) W is a closed convex set with non-empty interior.

b) W is compact if and only if max{F−(0), F+(0)} < pc.

c) W equals the closed convex hull of the union ofW− andW+, and the straight line
segment {0} ×

[
− µ̄(e2)−1, µ̄(e2)−1

]
.

Proof. We first show thatW is a closed convex set with non-empty interior. These are all
easy consequences of the derived properties of µ̄. By part c) of Proposition 4.2, µ̄ is a
continuous function on R2, and soW = {x ∈ R2 : µ̄(x) ≤ 1} is closed. By parts a) and b)
of Proposition 4.2,

µ̄(tx+ (1− t)y) ≤ tµ̄(x) + (1− t)µ̄(y) for all x, y ∈ R2 and t ∈ [0, 1] .

Thus if x, y ∈ W, then also tx+ (1− t)y ∈ W, proving convexity. Finally, by Lemma 4.1
and (2.3),

µ̄(x) ≤ max{µ−(x), µ+(x)} ≤ max{µ−(e2), µ+(e2)}‖x‖1 ,
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showing thatW contains {x ∈ R2 : ‖x‖1 ≤ r} for small values of r > 0. This means that
W has nonempty interior.

We continue with part b), which we will derive from part d) of Proposition 4.2. If
either F−(0) ≥ pc or F+(0) ≥ pc, then µ̄(e2) = 0 and therefore λe2 ∈ W for every
λ ∈ R, so W is unbounded. Suppose conversely that max{F−(0), F+(0)} < pc. Since µ̄
is continuous, it attains its infimum on the unit circle {x ∈ R2 : |x| = 1}, which has to
be positive; otherwise would contradict part d) of Proposition 4.2. Consequently, for
|x| > sup|y|=1[µ̄(y)]−1, we have µ̄(x) = |x|µ̄(x/|x|) > 1 andW is bounded, hence compact.

It remains to prove part c) and we first show that W contains W−, W+ and {0}×[
− µ̄(e2)−1, µ̄(e2)−1

]
. Containment ofW− andW+ inW follows from Lemma 4.1 in that

µ̄(x) ≤ µ±(x) ≤ 1 for every x ∈ W±, so x ∈ W. Containment of the interval follows from
scaling: µ̄(λe2) = |λ|µ̄(e2) ≤ 1 for each λ ∈

[
− µ̄(e2)−1, µ̄(e2)−1

]
.

Conversely, we show that W is a subset of the closed convex hull. Without loss in
generality, let x ∈ W∩H+ and let ax be such that µ̄(x) = µ̄(axe2)+µ+(x−axe2). If µ+ ≡ 0,
then µ+(x) = 0, so x ∈ W+. Assume instead that both µ+ 6≡ 0 and µ̄(e2) 6= 0. To begin, if
ax = 0 then µ+(x) = µ̄(x) ≤ 1, so x ∈ W+. If instead x = axe2, then |x| = |ax| ≤ µ̄(e2)−1

and x ∈ {0}×[−µ̄(e2)−1, µ̄(e2)−1]. If neither ax = 0 nor x − axe2 = 0, then µ̄(axe2) and
µ+(x− axe2) are both nonzero, and

x =
µ̄(axe2)

µ̄(x)

[
µ̄(x)

µ̄(axe2)
axe2

]
+
µ+(x− axe2)

µ̄(x)

[
µ̄(x)

µ+(x− axe2)
(x− axe2)

]
,

which is a convex combination of a point in {0}×[−µ̄(e2)−1, µ̄(e2)−1] (the first bracketed
term) and one inW+ (the second).

The last possibility is µ+ 6≡ 0 but µ̄(e2) = 0. In this case we show that x is a limit of
convex combinations: For n ∈ N, let xn = 1

n (naxe2) + (1 − 1
n )(x − axe2). Since µ+(x −

axe2) = µ̄(x) ≤ 1, this is a convex combination of an element of {0}×[−µ̄(e2)−1, µ̄(e2)−1]

and an element ofW+. As n→∞, xn → x, showing that x lies in the closed convex hull
of these sets.

The proof of Theorem 1.4 is now complete by virtue of (1.3) and Proposition 4.3.

5 Simultaneous convergence – Proof of Theorem 1.2

We proceed at this point with a proof of Theorem 1.2 – the shape theorem for
inhomogeneous environments. It will follow from now standard arguments. We assume
throughout that EY 2

− and EY 2
+ are finite, and first prove (1.2). If either EY 2

− or EY 2
+ is

infinite, then (1.2) cannot hold since T (0, z) is bounded below by the minimum of the
four weights of edges adjacent to z, each of which is distributed as F+ when z ∈ Z+ ×Z.
Then we apply Borel-Cantelli with∑

z∈Z2

P
(
T (0, z) > µ̄(z) + ε|z|

)
≥

∑
z∈Z±×Z

P(Y± > ε|z|) = ∞ .

Proof of (1.2). We first need to show that T (0, z) may not be ‘too large’ for more than
a finite number of points in Z2. To quantify ‘large’, we will fix a constant M already
at this stage: Recall that Tdom denotes passage times in a homogeneous environment
distributed as Fdom. By the latter part of Proposition 2.2 (for ε = 1 and q = 3) there is a
finite constant M , only depending on Fdom, such that for every x ∈ R2 and t ≥ |x|

P
(
Tdom(0, x) > Mt

)
≤ M P(Ydom > t/M) +Mt−3 . (5.1)

(We here use that passage times in a half-plane dominate those in the whole plane.)
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To argue for (1.2), let ε > 0 and fix δ such that

0 < δ <
ε

6
min

{
µ−(e1)−1, µ+(e1)−1, 2, (2M)−1

}
.

Choose a finite set of unit vectors u1, . . . , uN such that every u ∈ R2 with |u| = 1 satisfies
|u− ui| < δ for some i. For each z ∈ Z2 and i = 1, 2, . . . , N ,

|T (0, z)− µ̄(z)| ≤ |T (0, |z|ui)− µ̄(|z|ui)|+ |µ̄(|z|ui)− µ̄(z)|+ T (|z|ui, z) . (5.2)

According to Theorem 1.1 there is an almost surely finite constant K1 such that for all
i = 1, . . . , N and |z| ≥ K1 we have |T (0, |z|ui)− |z|µ̄(ui)| < δ|z| < ε|z|/3. For every z ∈ Z2

there is at least one i for which |z − |z|ui| ≤ δ|z|, and therefore

|µ̄(|z|ui)− µ̄(z)| ≤ ‖|z|ui − z‖1 max{µ−(e1), µ+(e1)} ,

due to part c) of Proposition 4.2. Comparing `1 and `2 norms leaves

|µ̄(|z|ui)− µ̄(z)| ≤ 2δ|z|max{µ−(e1), µ+(e1)} ≤ ε|z|/3 .

Last, if we only show that ∑
z∈Z2

P
(
T (|z|ui, z) > ε|z|/3

)
<∞ , (5.3)

for i chosen so that |z − |z|ui| < δ|z|, Borel-Cantelli would give a random, but almost
surely finite, constant K2 such that if |z| ≥ K2 then T (|z|ui, z) ≤ ε|z|/3. Along with the
other bounds through (5.2), |T (0, z) − µ̄(z)| ≤ ε|z| for |z| ≥ max{K1,K2} and complete
be the proof of (1.2).

To verify (5.3), recall that T (x, y) ≤ Tdom(x, y) for every x, y ∈ R2 by (2.4). Since the
choice of δ ensures that ε|z|/3 > Mδ|z| and δ|z| ≥ |z − |z|ui|, using (5.1) we arrive at∑

z∈Z2

P
(
T (|z|ui, z) > ε|z|/3

)
≤
∑
z∈Z2

P
(
Tdom(|z|ui, z) > Mδ|z|

)
≤
∑
z∈Z2

[
M P(Ydom > δ|z|/M) +M(δ|z|)−3

]
≤
∑
n∈N

∑
‖z‖1=n

[
M P(Ydom > δn/(2M)) +M(δn/2)−3

]
,

where we also use that ‖z‖1 ≤ 2|z|. Since the number of points in Z2 with `1-norm n

is 4n, the above sum is finite when EY 2
dom is. By Lemma 2.1, the latter coincides with

finiteness of EY 2
− and EY 2

+. As this was assumed, (5.3) follows and therewith (1.2).

We proceed with the second statement of Theorem 1.2, and assume for that, in
addition, max{F−(0), F+(0)} < pc. That W in this case is convex, compact and has
non-empty interior was seen in Proposition 4.3. It remains to prove the concluding
inclusion formula of Theorem 1.2, which will follow from (1.2) via a straightforward
inversion argument. In a first step, we prove a discretized inclusion formula.

Claim 5.1. With probability 1, for every ε > 0 and sufficiently large t

{z ∈ Z2 : µ̄(z) ≤ (1− ε)t} ⊂ {z ∈ Z2 : T (0, z) ≤ t} ⊂ {z ∈ Z2 : µ̄(z) ≤ (1 + ε)t} . (5.4)

Proof. Let ε > 0, and introduce the set Zε :=
{
z ∈ Z2 : 1

1+ε µ̄(z) ≤ T (0, z) ≤ 1
1−ε µ̄(z)

}
.

Given z ∈ Zε, note that µ̄(z) ≤ (1− ε)t implies that T (0, z) ≤ t, which in turn would imply
that µ̄(z) ≤ (1 + ε)t. In other words, the restriction of (5.4) to Zε holds for all t ≥ 0, and
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only points not contained in Zε may cause (5.4) to fail. So we will use (1.2) to show that
Z2 \ Zε is almost surely finite.

Under the assumption max{F−(0), F+(0)} < pc, the function µ̄ is bounded away from
both zero and infinity on the unit circle {x ∈ R2 : |x| = 1}. If follows that µ̄ is equivalent
to the Euclidean metric on R2. Using (1.2) we find an almost surely finite constant K
such that (

1− ε
1+ε

)
µ̄(z) ≤ T (0, z) ≤

(
1 + ε

1−ε
)
µ̄(z) for all |z| ≥ K ,

which is equivalent to inclusion in Zε.

To go from (5.4) to the inclusion formula of Theorem 1.2, it suffices to appeal to
Lipschitz continuity of µ̄: If z ∈ Z2 and x ∈ [0, 1)2, then |µ̄(z + x)− µ̄(z)| is bounded by
2 max{µ−(e2), µ+(e2)}. So, if (5.4) holds for some ε > 0 and all large enough t, then

(1− 2ε)W ⊂ 1
tWt ⊂ (1 + 2ε)W for all large enough t .

This ends the proof of Theorem 1.2.

6 Comparisons between time constants in the vertical direction

We first aim to prove Theorem 1.5, and so we recall some notation. As in Section 2,
let {ξe}e∈E be a collection of random variables independent and uniform on [0, 1], and
let F−1(x) = min{y ∈ R : F (y) ≥ x}. Set τ±e = F−1

± (ξe) for each e ∈ E , and let τe equal
τ−e or τ+

e depending on whether e has at least one endpoint in the interior of H− or not.
This construction produces a coupling between three environments, two homogeneous
in which each edge-weight is distributed as F±, and one inhomogeneous.

Proof of Theorem 1.5. Assume that EY− and EY+ are both finite. The upper bound
µ̄(e2) ≤ min{µ−(e2), µ+(e2)} was already proved in Lemma 4.1. So we will assume F+ ≺
F− and prove µ̄(e2) ≥ min{µ−(e2), µ+(e2)}, arguing similarly to [5, Theorem 2.9(a)].

Given an integer N ≥ 1, let EN denote the set of edges with both endpoints in
[−N,N ]2. For a set of edge weights σ = {σe}e∈EN

and path Γ ⊂ EN , let Tσ(Γ) =
∑
e∈Γ σe

and define TNσ (x, y) as the minimum of Tσ(Γ) over all such Γ connecting x and y. Fix an
enumeration e1, e2, . . . , e|EN | of EN which goes through the edges of the right half-plane
first. For each j = 0, . . . , |EN |, let σj = {σje}e∈EN

be the family given by σjei = τ+
ei for

i ≤ j and τ−ei otherwise. Last, let σj,t = {σj,te }e∈EN
equal {σje} except σj,tej = t, and let

gj(t) = TNσj,t(x, y). As a function of t, gj is the minimum of increasing linear functions, so
it is non-decreasing and concave.

For N ≥ ‖x‖1 + ‖y‖1 + 1, ETNσj (x, y) is finite from Lemma 2.1. Therefore, by Fubini’s
theorem, for almost every realization of {(τ+

e , τ
−
e )}e∈EN

, the integrals
∫
gj(t) dF+(t) and∫

gj(t) dF−(t) are finite. So using the definition of more variable,

ETNσj−1(x, y) = E gj(τ
−
ej ) ≥ E gj(τ

+
ej ) = ETNσj (x, y) for j = 1, . . . , |EN | .

In particular,

ETNF−
(x, y) ≥ ETN (x, y) ≥ ETNF+

(x, y) ,

where TN and TNF are the restrictions of T and TF to [−N,N ]2 as above. By monotone
convergence, ET (x, y) ≥ ETF+

(x, y). Choosing x = 0 and y = ne2,

1
n ET (0, ne2) ≥ 1

n ETF+(0, ne2) .

Taking limits, µ̄(e2) ≥ µ+(e2), and this proves the theorem.
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Remark 6.1. The same argument applies in the case of a columnar defect, i.e., when
edges along the vertical axis are assigned weights according to F0 while remaining
edges are assigned weights according to F− = F+. Assuming that EY± and EY0 are
finite, this shows that µ̄(e2) = µ−(e2) = µ+(e2) as long as F− = F+ ≺ F0.

Proof of Theorem 1.6. There are distributions such that in the second-coordinate
direction µ̄ < min{µ−, µ+}, as seen in the following example. Let F+ be an arbitrary
non-degenerate distribution with µ+ = 1, and let F− be the degenerate distribution δ1.
From [15, Theorem 6.4], we can find y < µ+ = 1 such that F+(y) > 0. Now choose any
integer K > 2y/(1− y) and note that

(K + 2)y < K . (6.1)

Next, define the event A that the edges in the set

K =
{
{(−1, 0), (0, 0)}, {(−1,K), (0,K)} ∪ {(−1, k), (−1, k + 1)} : k = 0, . . . ,K − 1

}
have weight at most y. We now build a random path γ from the origin along the e2 axis
in a configuration {τe}e∈E as a concatenation of paths (γi)i≥0 defined to have edge sets

E(γi) =

{
TiKe2K if TiKe2A occurs ,

{{(0, iK + j), (0, iK + j + 1)} : j = 0, . . . ,K − 1} otherwise ,

where TiKe2
is the operator that translates the point iKe2 to the origin. In words, the

path γi follows the edges in the translate TiKe2
K of K (from (0, iK) to (0, (i + 1)K)) if

they all have weight at most y and follows the e2-axis otherwise.
We can now compute the passage time of γ up to its intersection with (0, jK) as

T ((γi)i≤j−1) = K(j −N) + (K + 2)Ny ,

where N is the random number of occurrences of translates of A:

N :=

j−1∑
i=0

1TiKe2A
({τe}e∈E) .

This is an upper bound for the minimal passage time, so

T (0, jKe2)

jK
≤ 1 +

N

j
· (K + 2)y −K

K
.

As j → ∞ the left side converges to µ̄(e2) almost surely. The law of large numbers
implies that the right side converges almost surely to 1 + P(A) (K+2)y−K

K , which by (6.1)
is strictly less than 1.

This does not yet prove Theorem 1.6, since F− is degenerate, so we do a limiting

argument. Let F (m)
− = (1 − 1

m )δ1 + 1
mδ2. Let T denote passage time with respect to

F− and F+, and T (m) with respect to F (m)
− and F+. Last, let µ̄m be the time constant

for the time T (m). Choose ε > 0 and n such that 1
n E[T (0, ne2)] < 1 − 2ε. By Monotone

Convergence Theorem, for large m, 1
n E[T (m)(0, ne2)] < 1− ε. Since µ̄m(e2) is obtained

as an infimum over n, it is strictly less than 1. Thus the theorem holds with the pair
(F+, F

(m)
− ), when m is large.

Remark 6.2. The above argument can be generalized in some simple ways. By scaling,
the restriction µ+ = 1 can be removed. Further, (F

(m)
− ) can be chosen as any sequence

converging weakly to a delta mass, thus allowing for examples using continuous distri-
butions and distributions with unbounded support.
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7 Randomly introduced columnar defects

We finish by returning to the effect of columnar defects. We will show that for every
ε > 0, if we introduce a defect independently with probability ε for each column {n} ×Z,
then the time constant will change in the vertical direction.

Equip {0, 1}Z with product measure Pε whose marginal assigns weight ε ∈ (0, 1) to
1. Let ξ = {ξe}e∈E be an independent family uniform on [0, 1], and let F and F0 be two
distribution functions supported on [0,∞). As before, let the law for ξ be denoted by P.
Given η ∈ {0, 1}Z, assign to each vertical edge e = {(x, y), (x, y + 1)}

τe =

{
F−1(ξe) if ηx = 0 ,

F−1
0 (ξe) if ηx = 1 .

Each horizontal edge e = {(x, y), (x + 1, y)} is assigned weight F−1
0 (ξe) in case ηx =

ηx+1 = 1, and F−1(ξe) otherwise. We have thus created two layers of randomness, given
by η ∼ Pε and ξ ∼ P, which respectively determines where columnar defects will occur,
and the actual edge weights. Write Tη for the passage time in the environment (η, (τe)).
We will prove the following.

Theorem 7.1. Let ε > 0, F0 ≺ F , and assume that EYF and EYF0
are finite. Then

lim
n→∞

Tη(0, ne2)

n
= µF0(e2) with (Pε×P)-probability one .

Together with the characterization of [5, Theorem 2.9(b)], Theorem 7.1 gives a weak
criterion for randomly introduced columnar defects to result in a strictly smaller time
constant: Let λ = inf supp(F ) and let ~pc denote the critical probability for oriented bond
percolation on Z2. If F satisfies F (0) < pc and F (λ) < ~pc, then µF0

< µF for any F0 6= F

which is more variable than F .

Proof. Let F and F0 be given, and fix δ > 0. First note that the argument used to
prove Theorem 1.5 also shows that, for every η ∈ {0, 1}Z, lim infn→∞ Tη(0, ne2)/n ≥ µF0

P-almost surely. So, it suffices to prove the remaining upper bound.
Let Tη,K denote the restriction of Tη to paths contained in the cylinder given by

|x| ≤ K. The limit limn→∞
1
nTη,K(0, ne2) exists almost surely by the Subadditive Ergodic

Theorem. Moreover, there is K = K(δ) such that for every η with ηx = 1 for all |x| ≤ K,
the limit is bounded by µF0(e2) + δ (see e.g. [1, Proposition 8]). In particular,

lim sup
n→∞

Tη(0, ne2)

n
≤ µF0

(e2) + δ with P-probability 1 . (7.1)

By Borel-Cantelli, {ηx+m = 1 for all |x| ≤ K} occurs for some m ≥ 0 for Pε-almost every
η. Let M <∞ denote the least positive integer m for which it does. By subadditivity

Tη(0, ne2) ≤ Tη(0,Me1) + Tη(Me1,Me1 + ne2) + Tη(Me2 + ne2, ne2) ,

so division by n and taking limits we obtain from (7.1) that

(Pε×P)
(

lim sup
n→∞

Tη(0, ne2)

n
≤ µF0

(e2) + δ
)

= 1 .

Since δ > 0 was arbitrary, this concludes the proof.

Remark 7.2. One may define various versions of the above defected model. For example,
we could take all edge-weights for horizontal edges to be distributed as F (with defects
only present on vertical edges) and the limit in this case would be the time constant for
the lattice with horizontal weights assigned from F and vertical ones from F0.
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Remark 7.3. We have in Theorem 7.1 assumed that F0 is more variable than F . We were
asked, by an anonymous referee, what limit to expect when no such relation between F
and F0 is assumed. Also in this case the limit will exist and, for a similar reason as above,
the limit will be at most as large as the time constant given by the inhomogeneous model
when one half-plane has weights assigned by F and the other by F0, regardless of the
density of defect lines. However, we believe that the limit, for some pairs (F, F0), in fact
may be even smaller than so.
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