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unfolding the condensate
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Abstract

Preferential attachment models with fitness are a substantial extension of the classical
preferential attachment model, where vertices have an independent fitness that has a
linear impact on its attractiveness in the network formation. As observed by Bianconi
and Barabási [4] such network models show different phases. In the condensation
phase a small number of exceptionally fit vertices collects a finite fraction of all new
links and hence forms a condensate. In this article, we analyse the formation of the
condensate for a variant of the model with deterministic normalisation. We consider
the regime where the fitness distribution is bounded and has polynomial tail behaviour
in its upper end. The central result is a law of large numbers for an appropriately
scaled version of the condensate. It follows that a Γ-distributed shape is formed
and, in particular, that the number of vertices contributing to the condensate rises to
infinity with increasing network size, in probability.
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1 Introduction

Since the late 90s one can observe a strong research activity in complex networks
driven by various fields of science and we mention the monographs [1, 12, 13, 15, 20]. A
driving force are on one hand their abundant presence in real life, for instances as social
networks, the world-wide-web. On the other hand they are themselves scientifically
intriguing objects showing diverse behaviours and phase transitions.

Formally complex networks are modelled as sequences of random graphs that are
built according to certain plausible rules. The preferential attachment network (PA
model) is an archetypical example that had a strong impetus [2]. Here the network is
formed dynamically. In each step, one vertex is added and connected randomly to a
deterministic or random number of old vertices with a preference to connect to vertices
with high degree. This building rule can be made precise in various ways and one
may therefore rather speak of the preferential attachment paradigm. As observed by
Barabási and Albert [2] a linear preference in the PA model (meaning that the conditional
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The condensate in preferential attachment models with fitness

probability for a vertex in the network to establish a new link in one evolution step is
proportional to its current degree) leads to empirical degree distributions following
power laws as seen in real world networks.

In this article we will deal with an extension of the preferential attachment model. In
the original preferential attachment model, vertices do not have an intrinsic attractivity.
Only the degree of a vertex effects the proceeding network formation which, for instance,
entails that vertices with high indices have typically no chance to overtake the ones that
entered first. A natural extension is the assignment of a nonnegative fitness to each
vertex which has a linear impact on its likeliness to establish new links. Formally this is
modelled by a sequence of independent and identically distributed, say µ-distributed,
random variables.

Such models were suggested and first analysed by [4]. A crucial quantity is the
distribution induced by the fitness attached to a randomly chosen half-edge, the degree-
weighted fitness distribution. It is believed that, in general, one can observe two regimes

• Fit-get-richer phase. The degree-weighted fitness distribution converges to a distri-
bution that is absolutely continuous with respect to µ. The density is monotonically
increasing in the fitness and it represents the relative strength of certain fitnesses.

• Condensation or innovation-pays-off phase. The degree-weighted fitness distri-
bution converges to a distribution that is not absolutely continuous with respect
to µ, but has a Dirac mass in the essential supremum of µ (possibly ∞). In the
degree-weighted fitness distribution a constant fraction of the total mass shifts to
the essential supremum of µ.

We mention that in the original work [4] a third regime is quoted which refers to the
original preferential attachment model without fitness. In the condensation phase, one
recovers the Bose statistic as limiting distribution when mapping fitness to energy in
an appropriate way. This explains the term Bose-Einstein phase used in [4] for the
condensation phase. A rigorous verification of the above classification was conducted
in [7] for the preferential attachement model with fitness introduced in [4] to which we
refer as the classical variant of preferential attachment with fitness. The crucial point
in the proofs is that the preferential attachment model is a time-changed Crump-Mode-
Jagers process and we mention [3] which contains a more direct proof based on a strong
law of large numbers for Crump-Mode-Jagers processes of [19]. In line with physicists’
intuition the condensation phenomenon is quite robust under the details of the model
specification and a robust analysis which covers several variants of the model can be
found in [11]. Beside complex networks, condensation phenomena appear at various
other places and we refer the reader to Section 1.3, where we relate our findings to the
ones made for related models.

Our research is focused on the dynamics of the degree-weighted fitness distribution
close to the essential supremum of µ in the condensation regime. In this regime there is a
small number of vertices which have exceptionally high degrees, to be called condensate,
and when choosing an edge in a large network uniformly at random then this is attached
with a certain probability strictly bigger than zero to a vertex of the condensate. The
aim of this article is to understand which vertices belong to the condensate and to
analyse the qualitative and quantitative behaviour of the condensate. One of the main
findings is a weak limit theorem for the age and fitness of the vertices constituting the
condensation phenomenon, see Theorem 1.4 below. In colloquial terms, we appropriately
unfold the condensate and obtain a nontrivial limit. We will see that typically the
number of vertices building the condensate tends to infinity (though very slowly) and
that individual vertices typically have a negligible share. This is contradictory to the
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claim made in [4] that typically there is one vertex which gets a strictly positive fraction
of all links. Unfortunately our research does not cover the classical variant of preferential
attachment with fitness since we rely on a deterministic normalisation in the model
specification. However we strongly believe that analogous results are true for the
classical and other variants as we will explain in Section 1.3 below. We stress that the
results proved in this article are new in the context of network models.

We proceed as follows. In Section 1.1 we introduce the main notation and, in
particular, the network model. In Section 1.2, we give the main results and outline the
structure of the remaining article. Section 1.3 contains a discussion of our finding in the
context of other related models.

1.1 The model

In the following, µ denotes a probability measure on the Borel sets of [0,∞) with
bounded support, the fitness distribution. Without loss of generality, we can and will
assume that the essential supremum of µ is one. Our aim is to analyse a sequence of
directed random (multi)graphs (Gn)n∈N whose formation is described in an informal way
as follows: G1 consists of a single vertex, labelled 1, which is assigned a µ-distributed
fitness F1. Given the network Gn, the network Gn+1 is formed by carrying out the
following two steps independently:

• Insertion of a vertex, labelled n+ 1, with an independent µ-distributed fitness Fn+1.

• Insertion of directed edges n+ 1→ m to old vertices m ∈ {1, . . . , n} with intensity
proportional to

Fm · impGn(m), (1.1)

where

impGn(m) :=

{
1 + indegree of m in Gn, if m 6 n

0, otherwise.

Note that this is not a unique description of the network formation since, in particular,
the term intensity is not specified. There are various ways to formalise the network
formation and in the classical variant of the model each new vertex n+ 1 connects to
precisely one old vertex, which is m with probability

Fm impGn(m)

n F̄n
,

where F̄n = 1
n

∑n
j=1 Fj impGn(j). The first rigorous verification of the condensation

phenomenon was obtained by Borgs et al. [7] for this variant. In general, the phenomenon
is quite robust and it prevails in various variants of the model, see [11]. Further, the
limit distribution does only depend on the (average) outdegree of new vertices, but not
on the specifics of the model specification.

The classical variants of preferential attachment with fitness feature random adaptive
normalisations F̄n. In general, adaptive normalisations induce severe complications in
the analysis of complex networks and the most studied models have either deterministic
normalisation (see, e.g., [6], [15]) or admit a representation as time changed Crump-
Mode-Jagers process (see, e.g., [21], [23],[7]). To bypass this difficulties we work in
a variant of the model with deterministic normalisation which is tuned in such a way
that it mimics models with adaptive normalisation and, in particular, shows the same
condensation phenomenon.

In the following, (F̄n)n∈N is a deterministic sequence and we denote by (Gn)n∈N the
complex network model with fitness where in each step n → n + 1, the new vertex
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establishes to each old vertex m ∈ {1, . . . , n} an independent Poisson-distributed number
of edges with intensity

Fm impGn(m)

n F̄n
.

So (Gn) is a sequence of random multigraphs. Alternatively, one might consider models
without multiple edges where each new vertex establishes an independent Bernoulli-
distributed number of edges to each old vertex using the same parameter as before
(provided that it is smaller or equal to one). Choosing a Poissonian number of edges
has the advantage that we do not need to distinguish the two cases where the latter
parameter is or is not less than or equal to one. Beyond that technical detail there is no
difference between the two variants and one can easily carry over our analysis to the
Bernoulli-model.

Clearly, the choice of (F̄n) has a severe influence on the behaviour of the network
and we will need to impose appropriate assumptions to mimic the behaviour of the
classical variant of the model. Here the main problem is to guarantee on one hand the
existence of a condensate and on the other hand that the total number of edges increases
proportionally in the number of vertices.

Exponential time scale

In the analysis of preferential attachment networks, the size of the network is often
not a good representative for the age of the network. Instead one uses a concept of
time, where the size n ∈ N of the network is associated with a time t = π(n) growing
logarithmically in n. In this case the network size grows exponentially in the time as
is automatically the case for branching process representations. Typically under the
new time concept, the evolution of the indegree of a vertex over time converges in
distribution to a pure birth Markov chain in continuous time, see for instance [9]. This
qualitative feature is also vital for our analysis.

We conceive the network model (Gn)n∈N as a dynamical process evolving in time. We
assign the network Gn with n ∈ N vertices the time

π(n) :=

n−1∑
j=1

1

j

and let T := π(N) denote the set of times at which new vertices are inserted. For
t ∈ [0,∞), we denote by N(t) ∈ N the number of vertices in the network at time t, i.e.,
N : [0,∞)→ N is the generalized right continuous inverse of π given by

N(t) = max{n ∈ N : π(n) ≤ t}.

In particular, one has N(π(n)) = n for n ∈ N. The number of vertices in the network
increases exponentially in the time t: there exists a constant CN > 0 such that

N(t) ∼ CN et,

see Lemma 5.1.
We consider all relevant quantities in the newly introduced concept of time and let

for s, t > 0, m = N(s) and n = N(t):

Gt = Gn, Ft = Fn, and F̄t = F̄n.

The time intervals at which the network changes decrease exponentially fast in the time t
and we let

∆t =
1

N(t)
=

1

n
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so that for t ∈ T, t+ ∆t is the successor of t in T. Further, we denote by

Z[s, t] = impGt(m) = impGn(m)

the impact of the vertex s (actually the vertex with label N(s)) at time t. We call for fixed
s ∈ T the process

Z[s, ·] = (Z[s, t] : t ∈ T, t > s)

impact evolution of s. By definition all impact evolutions are independent.
In general, we make use of the Landau symbols o and O and of asymptotic (in)equali-

ties. For two functions f and g, we write

f - g

if

lim sup
f

g
<∞.

Further we write f ≈ g, if f - g and g - f . We also make use of strong equivalence and
write

f . g and f ∼ g,

if lim sup f
g 6 1 and lim f

g = 1, respectively. The asymptotic inequalities will be either used
along a parameter send to infinity, likewise t→∞, or on countable sets of parameters
(with the obvious meaning).

1.2 Main results

In this article we do a detailed analysis of the vertices that form the condensate. New
vertices establish links to old vertices proportional to their impact and to understand the
network formation we consider the impact-weighted fitness distribution: we consider
for each t ∈ T the random measure

Ξt =
1

N(t)

∑
s∈T
s 6 t

Z[s, t] δFs =
1

N(t)

N(t)∑
m=1

impGN(t)
(m) δFm ,

which indicates how the overall impact is distributed over the fitnesses. In the classical
model each new vertex connects to exactly one old vertex. In that case the impact-
weighted fitness distribution equals the degree-weighted fitness distribution. However
in our model the impact-weighted fitness distribution differs from the degree-weighted
fitness distribution and we restrict attention to the former one since the impact is the
crucial quantity governing the dynamics of the network formation. We will also refer to
the impact-weighted fitness distribution as fitness profile or even shorter as profile. We
state a consequence of [11, Proposition 4.1]:

Theorem 1.1. If

lim
t→∞

F̄t = 1, (A0)

one has for [a, b) with 0 6 a < b < 1

lim
t→∞

Ξt([a, b)) =

∫
[a,b)

1

1− f
µ(df), almost surely.

Informally, we distinguish between vertices of the condensate and the bulk. Vertices
of the condensate have exceptionally high impact with fitness very close to the essential
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supremum of µ. They are responsible for the condensation phenomenon. Vertices
of the bulk have moderate impact and they rather contribute by their large numbers.
We mention that many vertices are asymptotically negligible and we do not assign
them to one of the two categories. Further whether vertices qualify for either of the
categories depends on the reference time t at which one looks at the network and a
clear classification is only possible in an asymptotic way. We stress that Theorem 1.1
is only a statement about the behaviour away from the essential supremum of µ so
it is a statement about the contribution of the bulk. In particular, it implies that the
contribution of the bulk coincides with that in models with adaptive normalisation as
long as F̄n tends to 1. Somehow the behaviour of the condensate is more subtle and we
need to impose stronger assumptions on the asymptotic behaviour of F̄n below.

In the condensation phase the impact profile accumulates mass in the essential
supremum of µ which we assumed to be one. The aim is to find an appropriate scaling
window which intuitively unfolds the contribution of the condensate in the sense that
non-degenerate limit theorems can be proved. In particular, we would like to understand
qualitative properties of the condensation phenomenon. Intuitively, one may expect that
one of the following two scenarios can be observed:

A. Travelling wave. The number of vertices that belong to the condensate converges to
infinity and the appropriately scaled impact profile Ξt converges to a deterministic
measure as the time t tends to infinity. In this case we call the limit (asymptotic)
wavefront.

B. Winner-takes-all. The number of vertices that belong to the condensate is of finite
order meaning that individual vertices of the condensate contribute a positive fraction
of the condensating mass in the fitness profile.

In [4] it is conjectured that in Bose-Einstein condensation configurations of the
’Winner-takes-all’ type appear. As we show in our research the ’travelling wave’ scenario
typically prevails. However, the number of vertices that constitute the wave increases
very slowly in the size of the network and it is not possible to see the wavefront in
simulations of moderate sizes.

In this article we restrict attention to the case where µ has polynomial tails at one.
We assume existence of α > 1 and a slowly varying function ` in zero with

µ([1− δ, 1]) = δα`(δ) (A1)

for δ ∈ (0, 1) and

F̄n = 1− α(log n)−1 + o((log n)−1) as n→∞. (A2)

In terms of the exponential time scale Assumption (A2) corresponds to

F̄t = 1− αt−1 + o(t−1) as n→∞. (A2)

Here we used that π(n) ∼ log n as n tends to infinity, see Lemma 5.1. We will see in the
discussion below that Assumption (A2) is natural and, in particular, the parameter α
appearing in both assumptions has to be the same in order to have the contributions of
the condensate and the steady mass of the same order.

In order to state the main results, we use t > 0 as representative for the time in the
network formation. It is associated to two parameters δ = δ(t) and T = T (t) via

δ =
1

t
∧ 1 and µ([1− δ, 1)) = e−T .
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We keep the notation for δ and T in the whole article. In particular, δ and T always
depend on t, although we mostly omit the identifier t, for ease of notation.

Further, we define, for 0 6 s 6 t,

Υ[s, t] :=

∫ t

s

(1− F̄v) dv.

In the rest of this section, we always assume Assumptions (A1) and (A2) without further
mentioning. By Lemma 5.3, one has for s, t→∞ with s 6 t

T ∼ α log t and Υ[s, t] ∼ α log
t

s
.

In the original variant of the model each vertex establishes exactly one new edge
and the adaptive normalisation F̄n has a stabilising effect. In our Poissonian model
with deterministic normalisation the choice of the normalisation F̄n is quite subtle and
nontrivial as the following theorem shows.

Theorem 1.2. Assume that the limit

w := lim
t→∞

T (t) eΥ[T (t),t]−T (t) ∈ [0,∞) (COEX)

exists. Then one has
lim
t→∞

Ξt = Ξ, in the weak topology,

in probability, where Ξ is the measure on the Borel sets of [0, 1] with

Ξ(df) =
1

1− f
µ(df) + α

α−1 Γ(α)w δ1(df)

and Γ(α) denotes the Gamma function with argument α.

We stress that the proof of this result differs significantly from the proofs of similar
results for models with adaptive normalisation F̄n. The main obstacle in the proof is the
analysis of the total impact in the system which is an almost trivial problem in the case
with adaptive normalisation.

Theorem 1.2 gives rise to the problem of constructing appropriate normalisations
with nontrivial limits in (COEX). Unfortunately, it seems to be not feasible to give an
appropriate normalisation (F̄t) in closed form for general µ. However, the converse
direction, i.e. to start with a normalisation and to construct an appropriate fitness
distribution, is feasible as the following remark illustrates.

Remark 1.3. Let α > 1 and w ∈ (0,∞). We start with a deterministic normalisation (F̄t)

such that we have a representation F̄t = 1− α 1
t + h(t) (t > 1) with h : [1,∞)→ R being

integrable and of order o(1/t). Then for 0 < s < t

Υ[s, t] = log
( t
s

)α
+ o(1)

as s, t→∞, see Lemma 5.3, and we conclude that

TeΥ[T,t]−T ∼ T
( t
T

)α
e−T = tα µ([1− δ, 1))

(
logµ([1− δ, 1))−1

)1−α
.

It is straight-forward to verify that for any fitness distributions µ with

µ([1− δ, 1)) ∼ wδα(log δ−α)α−1, as δ ↓ 0,

Assumption (COEX) is satisfied. In particular, δ 7→ µ([1− δ, 1)) is regularly varying with
index α and Assumption (A1) is satisfied.
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The central point of this article is the identification of the vertices with significant
contribution to the overall impact. We consider the extended fitness profile defined by

Ξ̄t =
1

N(t)

∑
s∈T
s 6 t

Z[s, t] δ(s,Fs)

for t ∈ T. As t tends to infinity the mass of Ξ̄t accumulates in two regions: The
codensating mass at a late time t is carried by vertices s born around time T ∼ α log t

with particularly high fitness, meaning that Fs = 1 − O(t−1). The mass in the bulk
is carried by the numerous young vertices. Technically we will prove two weak limit
theorems for appropriately scaled versions of Ξ̄t, one zooming into the region of the
vertices constituting the condensate and the second zooming into the region of the bulk,
see Figure 1 for an illustration of both regions. The mass outside these two regions will
be asymptotically negligible.

T (t) ∼ α log t

1− 1
t

1

fitness

≈ T (t)

≈ 1/t

≈ 1

timet

Figure 1: Illustration of the two windows that contribute to the overall impact.

The travelling wave

The condensate is mathematically represented by a family of finite measures (Γt : t ∈ T)

on R2, where the first marginal refers to the time of birth of the vertex scaled by 1/T

and the second marginal represents the fitness relative to the essential supremum one
of the fitness distribution µ scaled by t. We define the random measure Γt via

Γt =
1

N(t)

∑
s∈T
s 6 t

Z[s, t] δ(s/T (t),(1−Fs)t)

We call Γt the extended profile in the condensation window or briefly the condensation
profile.

Theorem 1.4. One has for any bounded and open interval K ⊂ R that

lim
t→∞

1

T (t) eΥ[T (t),t]−T (t)
Γt
∣∣
R×K = γα

∣∣
R×K , in the weak topology,

EJP 21 (2016), paper 3.
Page 8/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3801
http://www.imstat.org/ejp/


The condensate in preferential attachment models with fitness

in probability, where γα is the measure on the Borel sets of R2 with Lebesgue density

dγα
d`2

(s, f) = α 1l[1,∞)×[0,∞)(s, f) s−αfα−1e−f .

We note that Theorem 1.4 does not require that the limit in (COEX) exists. If
one projects the condensation profile onto the fitness component one retrieves a Γ-
distribution with parameter α which is the same shape appearing in the Kingman model
of selection and mutation, a corresponding mean field model, see [8].

Remark 1.5. The above theorem shows that the number of vertices in the condensate
tends to infinity and that typically the “Travelling wave scenario” prevails. A natural
question is whether the condensation profile also converges in the almost sure sense.
In forthcoming work we will show that this is not the case and that at rare times
exceptionally fit vertices are born that later will catch a significant amount of mass.

Next, we show that one has almost sure convergence when discarding vertices with
atypically high fitness, so called early birds: let γ ∈ (0, 1) and set

Eγ = {π(n) : n(log n)γµ([Fn, 1)) 6 1}.

That means Eγ contains the time of birth of every vertex that has a particular high
fitness relative to its peers. If µ is a continuous distribution, then µ([Fn, 1)) is uniformly
distributed on (0, 1) and by Borel-Cantelli, almost surely, the set Eγ contains infinitely
many vertices since γ < 1.

We consider an analogous version of Γt where we exclude the early birds: for t > 0

let Γ∗t denote the random measure on R2 with

Γ∗t =
1

N(t)

∑
s∈T∩Ecγ
s 6 t

Z[s, t] δ(s/T,(1−Fs)t)

Theorem 1.6. One has for any bounded and open interval K ⊂ R that

lim
t→∞

1

T (t) eΥ[T (t),t]−T (t)
Γ∗t
∣∣
R×K = γα

∣∣
R×K , in the weak topology,

almost surely.

The theorem shows that there is a tiny number of vertices that might be responsible
for the nonconvergence of (Γt) in the almost sure sense. This is indeed the case and the
detailed analysis of the early birds is the object of future research.

The steady mass/bulk

There is a second window where the steady mass/bulk concentrates: for t ∈ T consider
the random measure

Φt =
1

N(t)

∑
s∈T

Z[s, t] δ(t−s,Fs).

Theorem 1.7. For every κ ∈ (0, 1), one has almost surely weak convergence

lim
t→∞

Φt
∣∣
R×[0,κ)

= φ
∣∣
R×[0,κ)

,

where φ denotes the measure on [0,∞)× [0, 1) with

dφ(s, f) = e−(1−f)s dsdµ(f).
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Outline of the remaining article

The article is outlined as follows. In Section 2 we analyse individual and collections
of impact evolutions. Section 3 introduces a binning argument (similar vertices are
collected in bins). A strong law of large numbers is proved for the contribution of bins
and estimates are provided for the mass of Ξt in various areas of [0, t]× [0, 1]. Finally, we
combine in Section 4 the estimates from Section 3 to prove the main theorems. Technical
estimates are given in the appendix.

1.3 Outlook and relations to other models

Condensation phenomena have been addressed recently by several research groups.
The model which is closest to our model is the Kingman model of selection and mutation
[17]. It can be interpreted as a deterministic analogue of our model. The model
shows the same phase transition and when taking bounded fitness distributions with
polynomial tails, a Γ-distributed condensation wave is formed [8]. Further, [22] observed
a Gaussian condensation wave for certain unbounded fitness distributions. In the
stochastic model analysed here, exceptionally strong vertices are not in the system
right from the start. This causes a delay compared to the deterministic variant which is
responsible for the particular structure that has to be assumed for the normalisation,
see Assumption (COEX).

An extensive overview on condensation phenomena for conditioned Galton-Watson
processes and random allocations can be found in [16]. We will discuss one model in
detail and present [16, Thm. 7.1] in order to point out the similarities to our model.
Given a weight sequence (wk)k∈N0

of non-negative reals with w0, wk > 0 for a k > 2, we
give a rooted finite tree T the weight

w(T ) =
∏
v∈T

wd+(v),

where d+(v) denotes the number of children of the vertex v in T . For n ∈ N denote by In
the set of all ordered rooted trees (sometimes also referred to as rooted planar trees)
with n vertices and denote by Tn an In-valued random variables with

P(Tn = T ) =
w(T )

Zn
, for T ∈ In,

and Zn denoting the right normalisation. These random trees converge in distribution
for n → ∞ and one distinguishes two regimes. To understand this, we consider the
exponential family of distributions associated to (wk): for τ ∈ [0,∞) we denote by
πτ = (πτk)k∈N0 the distribution

πτk =
τk wk

Πτ

provided that there exists an appropriate normalisation Πρ ∈ (0,∞). To understand the
limit of the trees Tn, one looks for τ for which πτ induces a critical Galton-Watson process
(meaning with expectation 1). If such a τ exists, the limit is a particular branching process
that branches along a single spine with offspring distribution π̄τ := (kπτk)k∈N with all
other vertices branching with offspring distribution πτ . The condensation phase is the
case where such a τ does not exist. In this case one chooses τ as the maximal value
for which πτ is well-defined and notices that ν := 1−

∑∞
k=1 kπ

τ
k > 0. The limit of (Tn) is

a branching process with a spine of finite length branching with offspring distribution
1lN π̄

τ + 1l{∞} ν until it generates infinite offspring for the first time and with all other
vertices branching with offspring distribution πτ .
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The condensate in preferential attachment models with fitness

The preferential attachment model with fitness that is analysed in [7, 3] is a time
changed Crump-Mode-Jagers process having as branching prototype the point process

Π =

∞∑
k=1

δ(T1+...+Tk)/F ,

where F , T1, T2, . . . are independent random variables with F , resp. Tk, being µ-distribut-
ed, resp. exponentially distributed with parameter k. To understand the two regimes
one has to look for a Malthusian parameter, which is a solutions to

E
[∫

e−λx dΠ(x)
]

= 1.

If such a solution exists one is in the fit-get-richer regime, otherwise one is in the
condensation regime, in which case one chooses λ as essential supremum of µ. In that

case the mass in the condensate is ν := 1−E
[∫

e−λx dΠ(x)
]

in complete analogy to above.

That means that in particular a late vertex n connects to a vertex in the condensate with
probability ν and this vertex will have unbounded degree in the limit.

Random permutations with cycle weights appear in [14] as a very simplified model
for Bose-Einstein condensation. Given positive weights (wk)k∈N, we denote for n ∈ N by
Σn a random permutation of n elements satisfying

P(Σn = σ) =
1

Zn

∏
ζ cycle in σ

w`(ζ),

where `(ζ) denotes the length of the cycle ζ. As observed in [14] the model has different
phases and for particular choices of weights with polynomial growth one recovers again
the Γ-distribution as limit shape. As observed in [10], the appearance of the Γ-distribution
is robust in the sense that it appears whenever the weights are regularly varying.

We stress that the model analysed here is a random model that is built dynami-
cally. This distinguishes it from the other models that are either dynamically built but
deterministic or stochastic, but built completely afresh when increasing the system size.

2 Analysis of impact evolutions

By definition, the individual impact evolutions Z[s, ·] are independent. Furthermore,
given Fs, the process Z[s, ·] is a Markov process on T ∩ [s,∞) with T = π(N) denoting
the times when the network evolves. We associate a vertex with two further processes
A[s, ·] = (A[s, t])t∈T,t > s and M [s, ·] = (M [s, t])t∈T,t > s defined via

A[s, s] = 1 and A[s, t+ ∆t] =
(

1 +
Fs
F̄t

∆t
)
A[s, t] for t ∈ T with t > s (2.1)

and

Z[s, t] = A[s, t]M [s, t]. (2.2)

This section is devoted to the analysis of A[s, ·] and M [s, ·] conditioned on the fitness Fs.

2.1 Single impact evolutions

In the first subsection, we analyse single impact evolutions conditionally on {Fs = f}
for f ∈ [0, 1). Fix s ∈ T and f ∈ (0, 1] and let Z = Zf,s = (Zf,st )t∈T,t > s be the Markov
process whose distribution is specified by{

Zs = 1

L(Zt+∆t|Zt) = Zt + Pois
(
f
F̄t
Zt ∆t

)
.
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The condensate in preferential attachment models with fitness

We use a martingale representation for (Zt) which is a common tool in the analysis of
preferential attachment networks, see [6] and [18]. We denote by A = Af,s = (Af,st )t∈T
the deterministic process given by

At = Af,st =
∏

s 6 u<t
u∈T

(
1 +

f

F̄s
∆u
)
, (2.3)

(with the convention that At = 1 if t 6 s) and the process M = Mf,s = (Zt/At)t∈T,t > s.
Since A is deterministic, the process M is a (non-homogeneous) Markov process, too.

Lemma 2.1. Under Assumption (A0) there exists a constant C such that the following
hold. For f ∈ (0, 1] and s ∈ T, the process M = Mf,s is a convergent L2-martingale with

E
[

sup
t∈T
t > s

M2
t

]
6 C.

Proof. In the following, we will denote by C1, C2, . . . positive constants that do not
depend on f, s and t. Note that for t ∈ T

E[Zt+∆t|Zt] = Zt +
f

F̄t
Zt ∆t =

At+∆t

At
Zt

and, hence, M = Z/A is a martingale. Further one has for t ∈ T with t > s that

var(Mt+∆t|Mt) =
1

A2
t+∆t

f

F̄t
Zt ∆t.

As a consequence of Assumption (A0), there exist constants C1, C2 > 0 such that for all
u ∈ T, C−1

1 6 F̄u 6 C2. Hence, for all t > s

var(Mt+∆t|Mt) 6 C1
f Mt

At+∆t
∆t

By Lemma 5.2, there exists a constant C3 such that for all t

At > C−1
3 exp{fa[s, t]} > C−1

3 exp(f(t− s)/C2).

Since, further, E[Mt] = 1, we conclude that

E[(Mt+∆t −Mt)
2] 6 C1 C2 f e

−f(t+∆t)/C3∆t.

The result follows since∑
t∈T
t > s

E[(Mt+∆t −Mt)
2] 6 C1 C2 f

∫ ∞
s

e−f(t−s)/C3 dt = C1 C2 C3.

Remark 2.2. We assume Assumption (A0). For f ∈ (0, 1] and s ∈ T, one has

logAf,st =
∑

s 6 u<t
u∈T

log
(
1 +

f

F̄u
∆u
)
∼ ft,

as t → ∞. Hence, by Lemma 2.1, one has that, almost surely, logZf,s ∼ ft so that, in
particular,

lim
t→∞

Zf,st
N(t)

= 0, almost surely.
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2.2 Collections of impact evolutions

In the following, we turn to the analysis of a process being a prototype for the sum of
similar impact evolutions.

We fix f, p ∈ (0, 1] and s, s′ ∈ T with s < s′. For each u ∈ T, let Z(u) = (Z(u)

t )t∈T be an
independent Markov process whose distribution is specified by

Z(u)
v = 0, for v < u

L(Z(u)
u ) = Ber(p),

L(Z(u)

v+∆v|Z(u)
v ) = Z(u)

v + Pois( f
F̄v
Z(u)
v ∆v), for v > u.

We consider the process Z̄ = Z̄f,p,s,s
′

= (Z̄f,p,s,s
′

t )t∈T defined by

Z̄t =
∑

u∈T∩[s,s′)

Z(u)

t .

Further, we choose A = Af,s as before and set M̄ := M̄f,p,s,s′ := Z̄/A.

Proposition 2.3. We assume Assumption (A2). The process (M̄t)t∈T is a submartingale.
Further, there exists a constant C only depending on µ and (F̄t) such that for all
f, p ∈ (0, 1] and s, s′ ∈ T with s < s′, one has

E[M̄t] 6 C p es
∫ s′−s

0

exp{(1− f)u− f Υ[s, s+ u]} du

and

var(M̄t) 6 C p es
∫ s′−s

0

exp{(1− 2f)u− 2fΥ[s, s+ u]}du.

for all t ∈ T.

Proof. As in the proof of Lemma 2.1 one easily checks that M̄ is a submartingale.
1.) We start with proving the first moment estimate. It suffices to consider t > s′

since M̄ is a submartingale. Conditionally on {Z(u)
u = 1} the process Z(u) has the same

distribution as Zf,u from the last subsection. Hence,

E[M̄t] =
1

At

∑
u∈T∩[s,s′)

E[1l{Z(u)
u =1}Z

(u)

t ] =
p

At

∑
u∈T∩[s,s)

Af,ut = p
∑

u∈T∩[s,s′)

1

Au
,

where we used that At = AuA
f,u
t . By Lemmas 5.2 and 5.3, one has for 0 6 s 6 u

Au >
1

C1
exp{f (u− s) + f Υ[s, u]} (2.4)

where C1 is a constant not depending on s and u. We obtain that

E[M̄t] 6 C1 p
∑

u∈T∩[s,s′)

exp{−f(u− s)− f Υ[s, u]}.

Since 1 6 et∆t we arrive at

E[M̄t] 6 C1 p

∫ s′

s

exp{(1− f) ι(u)− f Υ[s, ι(u)]} du,

where ι(u) := supT ∩ [0, u] for u > 0. By definition Υ[ι(u), u] 6 1. Therefore, one has for
all t > s′ that

E[M̄t] 6 eC1 p

∫ s′

s

exp{(1− f)u− f Υ[s, u]}du.

EJP 21 (2016), paper 3.
Page 13/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3801
http://www.imstat.org/ejp/


The condensate in preferential attachment models with fitness

2.) We denote by C2, C3, . . . constants that may change from line to line and that do
not depend on the parameters f, p, s and s′. One has

var(M̄t) =
1

A2
t

∑
u∈T∩[s,s′)

var(Z(u)

t ) 6
∑

u∈T∩[s,s′)

A−2
u E

[
1l{Z(u)

u =1}

(Z(u)

t

Af,ut

)2]
.

Conditionally on {Z(u)
u = 1}, the process Z

(u)
t

Af,ut
has the same distribution as the martingale

Mf,u from before. By Lemma 2.1, there exists a constant C2 such that

E
[
1l{Z(u)

u =1}

(Z(u)

t

Af,ut

)2]
6 C2 p

for u ∈ [s, s′). Hence,

var(M̄t) 6 C2 p
∑

u∈T∩[s,s′)

A−2
u

We proceed as in part one. Using (2.4) and the inequality 1 6 et∆t, we get that

var(M̄t) 6 C3 p
∑

u∈T∩[s,s′)

exp{−2f(u− s) + 2fΥ[s, u]} eu ∆u

for a constant C3. Hence, we get as before that one has

var(M̄t) 6 C4 p e
s

∫ s′

s

exp{(1− 2f) (u− s)− 2fΥ[s, u]}du

for all t > s′. The estimate is also true for t < s′ since the variance is increasing in t.

3 Riemann approximation/binning

The main tool of this section is a binning argument. We collect vertices of similar
fitness and similar date of birth in individual bins. Further we give each bin a type (A),
(B), (C) or (D). Bins of the same type will behave similarly in our forthcoming analysis.
Mainly, there are three ways how bins contribute to the overall impact. All but finitely
many of the bins of type (A) will be empty and their contribution is negligible. Bins of
type (C) and (D) will typically comprise a large number of vertices and we will prove a
strong law of large numbers for their contribution. Problematic are the bins of type (B).
Most of these bins are empty, but there is an infinite number of vertices in these bins.
We will prove that the probability that a vertex of type (B) effects the overall impact at a
certain time vanishes as time tends to infinity.

The binning argument is based on two parameters ζ > 1 and ι > 0 that govern the
size of the bins and that are fixed in the following discussion. Let

fm := 1− ζ−m and Sn,m := logµ([fm, fm+1))−1 + ι n,

for m ∈ N0 with µ([fm, fm+1)) > 0 and n ∈ Z. We consider the (n,m)-bin

In,m := {s ∈ T : Sn,m < s ≤ Sn+1,m, Fs ∈ [fm, fm+1)}.

The relevant bins (n,m) satisfy n ∈ Z and m ∈ N0 with

µ([fm, fm+1)) > 0 and Sn+1,m > 0

and we restrict attention to these choices of parameters!
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We note that the index n refers to the date of birth and the index m to the fitness of
the vertices of a bin and for fixed n ∈ Z one has as m→∞

E[#In,m] = (N(Sn+1,m)−N(Sn,m))µ([fm, fm+1)) ∼ CN eιn(eι − 1).

Hence, the definition of the bins is achieved in such a way that n is closely related to the
number of vertices in the respective bin.

Crucial to us will be the analysis of the contribution of an individual bin (n,m) to the
overall impact at time t ∈ T and we set

Σn,m(t) :=
∑

s∈In,m

Z[s, t] (t ∈ T). (3.1)

We distinguish different categories of bins. We set

n0(m) = infN0 ∩ [ζι−1 logm,∞) and n′0(m) = infN0 ∩ [(ζι)−1 logm,∞)

and consider the following four categories:

(A) Bins (n,m) with n < −n0(m) are negligible since for all sufficiently large m these
are empty.

(B) Bins (n,m) with with −n0(m) 6 n < −n′0(m) typically are empty and do not con-
tribute. However, infinitely many of them do contain vertices, the early birds.

(C) Bins (n,m) with −n′0(m) 6 n < n0(m) contribute a negligible amount to the total
edge weight.

(D) Bins (n,m) with n > n0(m) contribute to the total edge weight and we prove a law
of large numbers.

We will keep the notation for the bins in the whole section and recall that their
definition and classification depends on the fixed parameters ζ > 1 and ι > 0. Moreover,
we call the set of all vertices with fitness in [fm, fm+1) the vertices of the mth stripe.

3.1 Analysis of the bins of type (A) and (B)

We start with showing that bins of type (A) are typically empty and that bins of type
(B) contain only vertices that are in the random set Eγ as long as the fitness is sufficiently
large.

Lemma 3.1. Almost surely, the bins of category (A) contain only a finite number of
vertices.

Proof. Using Lemma 5.1, we conclude that

P
(
∃s ∈ T ∩ [0, S−n0(m),m] with Fs ∈ [fm, fm+1)

)
6 N(S−n0(m),m)µ([fm, fm+1)) . CNm

−ζ

which is summable. By the lemma of Borel-Cantelli all but finitely many stripes m do not
contain vertices of type (A). This proves the statement since any stripe has only a finite
number of bins and thus vertices of category (A)

Recall the definition of the set of early birds. Depending on a parameter γ ∈ (0, 1) it
is the random set

Eγ = {π(n) : n(log n)γµ([Fn, 1)) 6 1}.

Lemma 3.2. Assume Assumption (A1). Provided that γ < ζ−1, almost surely, all but
finitely many vertices in bins of type (B) belong to Eγ .
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Proof. Let m ∈ N and suppose that s ∈ T is a vertex with Fs ∈ [fm, fm+1) that is of type
(B). It suffices to show that s is in Eγ as long as m is sufficiently large since every stripe
does only contain finitely many vertices of type (B).

We note that by Assumption (A1), µ([fm, fm+1)) ≈ µ([Fs, 1)) and we conclude that

s 6 logµ([fm, fm+1))−1 − ιn′0(m) = logµ([Fs, 1))−1 − ζ−1 logm+O(1).

Hence there exists a constant C1 such that as long as m is sufficiently large one has

es 6 C1
µ([Fs, 1))−1

mζ−1 .

Since es ≈ N(s) and m ≈ log(1 − Fs)
−1 ≈ logµ([Fs, 1))−1 we obtain existence of a

constant C2 such that as long as m is large

N(s) 6 C2 µ([Fs, 1))−1(logµ([Fs, 1))−1)−ζ
−1

.

Applying the monotonically increasing function [1,∞) 3 x 7→ x(log x)ζ
−1

implies existence
of a constant C3 such that for large m

N(s)(logN(s))ζ
−1

6 C3 µ([Fs, 1))−1.

and the statement follow by recalling that γ < ζ−1.

3.2 Analysis of bins of type (D)

Next, we analyse the contribution of the bins of type (D). For each s ∈ T, we represent
its impact evolution as

Z[s, t] = M [s, t]A[s, t],

where

A[s, t] =
∏
u∈T

s 6 u<t

(
1 +

Fs
F̄u

∆u
)

(3.2)

and M [s, ·] is a convergent martingale (see Lemma 2.1). Further, we denote

a[s, t] =
∑
u∈T

s 6 u 6 t

1

F̄u
∆u and Υ[s, t] =

∫ t

s

(1− F̄v) dv

for 0 6 s 6 t.

Lemma 3.3. Assume Assumption (A0). For ε > 0, one has, almost surely, that for all but
finitely many

(n,m) ∈ SD := {(n′,m′) ∈ N2
0 : n′ > n0(m′), µ([fm′ , fm′+1)) > 0} (3.3)

that

Σn,m(t) 6 eεE[#In,m] exp{fm+1 a[Sn,m, t]}

for all t > Sn,m and

Σn,m(t) > e−εE[#In,m] exp{fm a[Sn+1,m, t]}

for all t > Sn+1,m, where Σn,m is as in (3.1).
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Proof. In the following, C1, C2, . . . denote constants that may change from line to line
and that do not depend on the variables n and m.

1.) In the first step we show that (#In,m)(n,m)∈SD satisfies a strong law of large
numbers. By Lemma 5.1, one has

N(Sn+1,m)−N(Sn,m) ∼ CNeSn,m(eι − 1)

on SD, since Sn,m tends to infinity on SD. Consequently, one has

E[#In,m] = µ([fm, fm+1))(N(Sn+1,m)−N(Sn,m)) ∼ CN (eι − 1)eιn. (3.4)

Note that var(#In,m) 6 E[#In,m] so that by Chebyshev’s inequality

P(|#In,m − E[#In,m]| > εE[#In,m]) ≤ ε−2E[#In,m]−1.

Consequently,

∞∑
n=n0(m)

P(|#In,m − E[#In,m]| > εE[#In,m]) 6 ε−2
∞∑

n=n0(m)

E[#In,m]−1

6 C1

∞∑
n=n0(m)

e−ιn = C1
1

1− e−ι
e−ιn0(m)

where C1 < ∞ does not depend on m ∈ N. Note that e−ιn0(m) ≈ m−ζ as m → ∞ and
that ζ > 1. Hence, one has by the lemma of Borel-Cantelli that, almost surely, for all but
finitely (n,m) ∈ SD

(1− ε)E[#In,m] ≤ #In,m ≤ (1 + ε)E[#In,m].

2.) Recall that the impact evolutions Z[s, ·] (s ∈ T) are all independent and each
admits a representation

Z[s, ·] = M [s, ·]A[s, ·]

with A[s, ·] as in (3.2) and M [s, ·] being a martingale. For each (n,m) ∈ SD, we consider

M̄n,m(t) :=
∑

s∈In,m

1l{s 6 t}(M [s, t]− 1) (t ∈ T),

By Lemma 2.1, all processes appearing in the sum are uniformly square integrable
martingales. Since the individual terms M [s, ·] are independent one gets with Doob’s
maximal inequality that

E
[
sup
t∈T

M̄n,m(t)2
]
≤ 4E[M̄n,m(∞)2] = 4E

[ ∑
s∈In,m

E[(M [s,∞]− 1)2|Fs]
]

By Lemma 2.1 and (3.4), one has for (n,m) ∈ SD that

E
[
sup
t∈T

M̄n,m(t)2
]
≤ C2E[#In,m] ∼ C2 CN (eι − 1)eιn,

where C2 is as in the lemma. As before one verifies with Borel-Cantelli that, almost
surely, for all but finitely many (n,m) ∈ SD

sup
t∈T
|M̄n,m(t)| 6 εE[#In,m].
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Altogether we get with Lemma 5.2 that, almost surely, for all but finitely many (n,m) ∈ SD
and for all t > Sn+1,m

Σn,m(t) =
∑

s∈In,m

M [s, t]A[s, t] > exp{−4N(Sn,m)−1} exp{fma[Sn+1,m, t]}
∑

s∈In,m

M [s, t]

= exp{−4N(Sn,m)−1} exp{fma[Sn+1,m, t]}(#In,m + M̄n,m(t))

> (1− 2ε) exp{−4N(Sn,m)−1} exp{fma[Sn+1,m, t]}E[#In,m].

This immediately implies the second inequality of the statement since N(Sn,m) tends to
infinity. The converse direction follows analogously.

Remark 3.4. We remark that the same proof allows to verify that for f, f ′ ∈ [0, 1] with
f 6 f ′, and

Īn := {s ∈ T : (n− 1)ι < s 6 nι, Fs ∈ [f, f ′)}
one has for ε > 0 that, almost surely, for all but finitely many n ∈ N,∑

s∈Īn

Z[s, t] > e−εE[Īn,m] exp{f a[nι, t]}

for all t > nι.

We prove a modified version of Lemma 3.3 that expresses the contribution of the bins
of type (D) in terms of Υ.

Proposition 3.5. Assume Assumptions (A0) and (A2). For every ε > 0, one has that,
almost surely, for all but finitely many (n,m) ∈ SD,

Σn,m(t) 6 eε+2ι µ([fm, fm+1))N(t)

∫ Sn+1,m

Sn,m

exp{−(1− fm+1)(t− u) + Υ[u, t]} du,

for t > 0, and

Σn,m(t) > e−ε−2ι µ([fm, fm+1))N(t)

∫ Sn+1,m

Sn,m

exp{−(1− fm)(t− u) + fmΥ[u, t]} du,

for t > Sn+1,m.

Proof. Let ε > 0. Note that by Lemma 5.3, one has for all but finitely many (n,m) ∈ SD
for all t > Sn,m (we briefly say eventually) that

a[Sn,m, t] 6 t− Sn,m + Υ[Sn,m, t] + ε

Further, by Lemma 5.1, eventually,

E[#In,m] = µ([fm, fm+1)) (N(Sn+1,m)−N(Sn,m)) ∼ CN µ([fm, fm+1))

∫ Sn+1,m

Sn,m

eu du

and for u ∈ [Sn,m, Sn+1,m]

(t− Sn,m) + Υ[Sn,m, t] =

∫ t

Sn,m

(2− F̄v) dv 6 (t− u) + Υ[u, t] + 2ι.

Consequently, one has that, eventually,

E[#In,m] exp{fm+1a[Sn,m, t]}

6 e2εCN µ([fm, fm+1))

∫ Sn+1,m

Sn,m

eu du exp{fm+1(t− Sn,m) + fm+1Υ[Sn,m, t]}

6 e2ε+2ιCN e
t µ([fm, fm+1))

∫ Sn+1,m

Sn,m

exp{−(1− fm+1)(t− u) + fm+1Υ[u, t]} du
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Hence, by Lemma 3.3, one has that, almost surely, eventually,

Σn,m(t) 6 e3ε+2ι µ([fm, fm+1))N(t)

∫ Sn+1,m

Sn,m

exp{−(1− fm+1)(t− u) + Υ[u, t]} du.

Conversely, it follows in complete analogy that for all but finitely many (n,m) ∈ SD for
t > Sn+1,m,

E[#In,m] exp{fma[Sn+1,m, t]}

> e−2εCN µ([fm, fm+1))

∫ Sn+1,m

Sn,m

eu du exp{fm(t− Sn+1,m) + fmΥ[Sn+1,m, t]}

> e−2ε−2ιCN e
t µ([fm, fm+1))

∫ Sn+1,m

Sn,m

exp{−(1− fm)(t− u) + fmΥ[u, t]} du

which implies that, almost surely, for all but finitely many (n,m) ∈ SD for t > Sn+1,m

Σn,m(t) > e−3ε−2ι µ([fm, fm+1))N(t)

∫ Sn+1,m

Sn,m

exp{−(1− fm)(t− u) + fmΥ[u, t]} du,

again by Lemma 3.3.

3.3 Analysis of bins of type (C)

In this subsection we provide the main estimate to control the impact of the bins of
category (C). For m ∈ N0 with µ([fm, fm+1)) > 0 and t > 0, let

Σ(C)
m (t) :=

n0(m)−1∑
n=−n′0(m)

∑
s∈In,m

Z[s, t].

Lemma 3.6. Assume Assumptions (A1) and (A2). For every ε > 0, one has that almost
surely, for all but finitely many m and all t > 0

Σ(C)
m (t) 6 ε S0,m e

−(1−fm+1)t+Υ[S0,m,t] µ([fm, fm+1))N(t),

where Υ[u, v] = 0 for v < u.

Proof. We use constants C1, C2, . . . that may change from line to line and do not depend
on m and t. We will apply Proposition 2.3. Fix m ∈ N with µ([fm, fm+1)) > 0, let
f = fm+1, p = µ([fm, fm+1)),

s = S−m := minT ∩ (S−n′0(m),m,∞) and s′ = S+
m := minT ∩ (Sn0(m),m,∞)

and consider the processes M̄ = M̄f,p,s,s′ and A = Af,s as introduced in Subsection 2.2.
By definition of M̄ and A, one can couple Σ

(C)
m with M̄ such that

Σ(C)
m (t) 6 M̄tAt (3.5)

for all t ∈ T. By Proposition 2.3, M̄ is a non-negative submartingale and together with
Doob’s martingale inequality we get existence of a constant C1 such that for sufficiently
large m

E
[
sup
t∈T

M̄2
t

]
6 C1 p

2 e2S−m(S+
m − S−m)2e2(1−f)(S+

m−S
−
m) + C1 p e

S−m (S+
m − S−m).
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We note that 1− f = ζ−(m+1) and S+
m − S−m 6 2ζ logm+ 2 + 2ι so that e2(1−f)(S+

m−S
−
m) → 1

as m→∞. Hence,

E
[
sup
t∈T

M̄2
t

]
6 2C1 p

2 e2S−m(S+
m − S−m)2 + C1 p e

S−m (S+
m − S−m)

for large m. Since p = e−S0,m and S0,m − S−m > ζ−1 logm − 1, we get with the above
estimate for S+

m − S−m that

p eS
−
m (S+

m − S−m) 6 em−ζ
−1

(2ζ logm+ 2 + 2ι) ≈ m−ζ
−1

logm.

Consequently, there exists a constant C2 such that for sufficiently large m ∈ N one has

E
[
sup
t∈T

M̄2
t

]
6 C2m

−ζ−1

logm. (3.6)

Let now (αm)m∈N denote a sequence of positive numbers with

∞∑
m=1

α−2
m m−1/ζ logm <∞. (3.7)

By the Markov inequality, one has

P
(

sup
t∈T

M̄2
t 6 α2

m

)
6
E[supt∈Ts M̄

2
t ]

α2
m

and by Borel-Cantelli (see (3.6) and (3.7)) it follows that, almost surely,

sup
t∈T

M̄t 6 αm

for all but finitely many m ∈ N. Together with (3.5) and Lemma 5.2, we get that almost
surely, for all sufficiently large m and t > 0 (we briefly say eventually),

Σ(C)
m (t) 6 αm exp{fm+1a[S−m, t]}. (3.8)

We distinguish two cases. First we restrict attention to t > S0,m. Since S0,m ∼ S−m,
we get with Lemma 5.3 existence of a constant C3 with

a[S−m, S0,m] 6 S0,m − S−m + C3 6 logm1/ζ + C3 + ι (3.9)

for large m. Since S0,m ∼ αm log ζ as m→∞, we get that, eventually,

Σ(C)
m (t) 6 C4αmm

ζ−1−1S0,m exp{fm+1a[S0,m, t]},

where the constant C4 does not depend on the choice of (αm). By Lemma 5.3, one has

fm+1 a[S0,m, t] = fm+1(t− S0,m + Υ[S0,m, t] + o(1)) 6 fm+1(t− S0,m) + Υ[S0,m, t] + o(1).

Consequently, we obtain with µ([fm, fm+1)) = e−S0,m and N(t) ∼ CNet that, eventually,

Σ(C)
m (t) 6 C5αmm

ζ−1−1S0,m e
−(1−fm+1)(t−S0,m)eΥ[S0,m,t]µ([fm, fm+1))N(t),

where C5 is a constant not depending on (αm). The choice αm := ε (2C5)−1m1−ζ−1

is
admissible in the sense that (3.7) is valid and we conclude that, eventually, for t > S0,m

Σ(C)
m 6

ε

2
S0,m e

−(1−fm+1)(t−S0,m)+Υ[S0,m,t] µ([fm, fm+1))N(t).
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Next,we consider the case t ∈ [S−m, S0,m) We use that by (3.8), almost surely, for
sufficiently large m

Σ(C)
m (t) 6 αm exp{fm+1 a[S−m, t]}.

Estimate (3.9) remains true when replacing S0,m by t ∈ [S−m, S0,m) with the same argu-
ment. Hence, there exists a constant C6 such that, eventually,

Σ(C)
m (t) 6 C6 αm e

t−S−m

The rest of the proof is in line with case one: using that e−S0,m = µ([fm, fm+1)), N(t) ≈
e−t, S0,m − S−m = logm1/ζ +O(1) and S0,m ≈ m we conclude existence of a constant C7

such that, eventually,

Σ(C)
m (t) 6 C7 αmm

ζ−1−1 S0,m µ([fm, fm+1))N(t).

Choosing (αm) as before gives that, eventually, for t ∈ [S−m, S0,m)

Σ(C)
m 6

ε

2
S0,m µ([fm, fm+1))N(t).

Noting that S0,m = logµ([fm, fm+ 1))−1 = log(1− fm+1)−α+o(1) = o((1− fm+1)−1) we get
the result.

3.4 The stripes in the condensate without early birds

In this subsection we control the contribution of vertices of type (C) and (D) in
stripes contributing to the condensate. From now on we always assume validity of
Assumptions (A1) and (A2) without further mentioning!

Proposition 3.7. Assume Assumptions (A1) and (A2). Let κ, ε > 0. Almost surely, for all
but finitely many m for all t ∈ [0, κ/(1− fm)] one has

Σm(t) =
∑
n∈Z

n > −n′0(m)

Σn,m 6
e2ι+ε

α− 1
S0,me

−(1−fm+1)t+Υ[S0,m,t] µ([fm, fm+1))N(t).

Proof. First we analyse the contribution of all boxes of category (D). We denote by m the
index of the stripe which is sent to infinity. Most of the following equations are meant to
hold almost surely, for all but finitely many m and all t ∈ [S0,m, κ/(1− fm)]. We briefly
say the statement holds eventually.

Consider

Σ(D)
m (t) :=

∞∑
n=n0(m)

Σn,m(t)

for t > 0. By Proposition 3.5, one has that, eventually,

Σ(D)
m (t) 6 eε+2ι µ([fm, fm+1))N(t)

∫ t+ι

S0,m

exp{−(1− fm+1)(t− u) + Υ[u, t]}du

= eε+2ι µ([fm, fm+1)) e−(1−fm+1)t+Υ[S0,m,t]

×N(t)

∫ t+ι

S0,m

exp{(1− fm+1)u−Υ[S0,m, u]} du. (3.10)

Let α′ ∈ (1, α) arbitrary and note that, by Lemma 5.3, one has Υ[S0,m, u] > log(u/S0,m)α
′

for u > S0,m, as long as m is sufficiently large. Consequently, one has that, eventually,∫ t+ι

S0,m

exp{(1− fm+1)u−Υ[S0,m, u]}du 6
∫ t+ι

S0,m

exp{(1− fm+1)u}
(S0,m

u

)α′
du

6 S0,m

∫
R

1l[1,( κ
1−fm+ι)/S0,m](v) exp{(1− fm+1)S0,mv} v−α

′
dv,

(3.11)
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where we applied the substitution v = u/S0,m and the inequality t 6 κ/(1− fm) in the
second transformation. We note that the function

v 7→ 1l[1,∞)(v) eκ+ι v−α
′

is an integrable majorant for the latter integral. Furthermore, one has limm→∞(1 −
fm+1)S0,m = 0 so that the integrand converges pointwise to 1l[1,∞)(v)v−α

′
. Consequently,

one has by dominated convergence that for sufficiently large m∫
R

1l[1,( κ
1−fm+ι)/S0,m](v) exp{(1− fm+1)S0,mv} v−α

′
dv 6 eε

∫ ∞
1

v−α
′
dv =

eε

α′ − 1
.

In combination with (3.10) and (3.11), we conclude that, eventually,

Σ(D)
m (t) 6

e2ε+2ι

α′ − 1
µ([fm, fm+1))S0,m e

−(1−fm+1)t+Υ[S0,m,t]N(t). (3.12)

Clearly, the estimate is true for all m ∈ N for all t ∈ [0, S0,m) since for these parameters
the left hand side is zero. Note that ε > 0, resp. α′ ∈ (1, α) can be chosen arbitrarily
close to zero or α so that the statement of the proposition follows with Lemma 3.6.

3.5 The contribution outside the two main windows

First we derive an estimate which allows us to control the contribution of vertices
born before time t/2 that are no early birds and have fitness smaller than 1− κ/t with κ
being a large constant.

Proposition 3.8. For every ε > 0, there exists κ > 1 such that almost surely for
sufficiently large t > 0, one has∑

s∈Ecγ∩[0,t/2]

Fs 6 1−κδ(t)

Z[s, t] 6 ε T eΥ[T,t]−T N(t).

Proof. We fix ζ > 1 with γ < ζ−1 and recall that by Lemmas 3.1 and 3.2, almost surely,
all but finitely many vertices in Ecγ are of type (C) or (D). We start with controlling the
contribution of vertices of type (D) in stripes with large index m.

In the following C1, C2, . . . denote constants that do not depend on the parameters
κ, n, m and t. By Proposition 3.5, one has that, almost surely, for all but finitely many
(n,m) ∈ S(D) for t > 0

Σn,m(t) 6 2µ([fm, fm+1))N(t) eΥ[S0,m,t]

∫ Sn+1,m

Sn,m

exp{−(1− fm+1)(t− u)−Υ[S0,m, u]} du,

(3.13)

and, hence almost surely, for sufficiently large m ∈ N and all t > 0 (we will briefly say
eventually)

Σ(D)
m (t) :=

∑
n > n0(m)

with Sn,m 6 t/2

Σn,m(t)

6 2µ([fm, fm+1))N(t) eΥ[S0,m,t]e−(1−fm+1)t/3

∫ 2t/3

S0,m

e−Υ[S0,m,u] du.

Fix α′ ∈ (1, α). By Lemma 5.3, one has that, eventually,

Σ(D)
m (t) 6 3µ([fm, fm+1))N(t) eΥ[S0,m,t]−(1−fm+1)t/3

∫ ∞
S0,m

( u

S0,m

)−α′
du.
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Hence, there exists a constant C1 depending only on α′ such that, eventually,

Σ(D)
m (t) 6 C1 S0,m µ([fm, fm+1))N(t) eΥ[S0,m,t]−(1−fm+1)t/3

By Lemma 3.6, the same estimate is true for the bins of type (C) and we conclude that,
eventually,

Σm(t) :=
∑

n > −n′0(m)
with Sn,m 6 t/2

Σn,m(t) 6 C2 S0,m µ([fm, fm+1))N(t) eΥ[S0,m,t]−(1−fm+1)t/3. (3.14)

Let m0 denote a random integer such that the latter estimate is true for all m > m0 and
t ∈ T. For large t we now analyse the contribution of the bins in the stripes m0,m0 +1, . . .

of type (C) and (D) with 1− fm > κδ for κ > 1 with κα(1− ζ−α) > 1: let

Σ(t) :=
∑

m:m > m0
with 1−fm > κδ

Σm(t).

First we show that, S0,m 6 T for all m with 1− fm > κδ as long as t is sufficiently large.
As m→∞, one has for t > 0 with 1− fm > κ/t

µ([fm, fm+1)) ∼ (1− ζ−α)µ([fm, 1)) > (1− ζ−α)µ([1− κδ, 1)) ∼ κα(1− ζ−α)µ([1− δ, 1)).

Consequently, µ([fm, fm+1)) > µ([1 − δ, 1)) and, equivalently, Sm,0 6 T as long as m is
sufficiently large. For the finitely many remaining indices m the inequality is trivially
true for large t. Conversely, by the Potter bound (Lemma 5.5), there exists α′′ > α and a
constant C3 such that for m with 1− fm > δ

µ([fm, fm+1)) 6 µ([fm, 1)) 6 C3

(1− fm
δ

)α′′
µ([1− δ, 1))︸ ︷︷ ︸

=e−T

. (3.15)

In combination with vα
′′

= α′′

1−ζ−α′′
∫ v
v/ζ

uα
′′−1 du for v = (1− fm)/δ we deduce with (3.14)

that for sufficiently large t

Σ(t) 6 C4Te
Υ[T,t]−T N(t)

∑
m:m > m0

with 1−fm > κδ

(1− fm
δ

)α′′
e−

1−fm+1
3δ +Υ[S0,m,T ]

6 C5Te
Υ[T,t]−TN(t)

∑
m:m > m0

with 1−fm > κδ

eΥ[S0,m,T ]

∫ 1−fm
δ

1−fm+1
δ

uα
′′−1e−

u
3ζ du.

(3.16)

Note that eΥ[T/2,T ] → 2α and eΥ[0,T ] = Tα+o(1) by Lemma 5.3. Therefore, one has for
sufficiently large T that

eΥ[s,T ] 6

{
2α+1 if s ∈ [T/2, T ]

Tα+1 if s ∈ [0, T ].

Next, we show that the contribution of bins with S0,m < T/2 is asymptotically negligible.
By (3.15),

S0,m = − logµ([fm, fm+1)) > T − logC3

(1− fm
δ

)α′′
so that S0,m < T/2 implies that 1−fm

δ > (eT/(2α)/C3)1/α′′ . Hence,

∑
m:m > m0

with S0,m<T/2

eΥ[S0,m,T ]

∫ 1−fm
δ

1−fm+1
δ

uα
′′−1e−

u
3ζ du 6 Tα+1

∫ ∞
(eT/(2α)/C3)1/α′′/ζ

uα
′′
e−

u
3ζ du

EJP 21 (2016), paper 3.
Page 23/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3801
http://www.imstat.org/ejp/


The condensate in preferential attachment models with fitness

which tends to zero as t→∞. It follows with (3.16) that there exists a constant C6 not
depending on κ such that, eventually,

Σ(t) 6 C6Te
Υ[T,t]−TN(t)

∫ ∞
κ/ζ

uα
′′
e−

u
2ζ du.

It remains to consider the stripes m < m0. Note that (3.13) is true for all but finitely
many bins of type (D) and we can proceed as above to control the contribution of these
“nice” bins. Altogether, one ends with an estimate

C7Te
Υ[T,t]−TN(t)

∫ ∞
κ/ζ

uα
′′
e−

u
2ζ du,

for the contribution of all bins for which the law of large numbers applies. Note that
choosing κ sufficiently large finishes the proof of the statement for the contribution of
these vertices.

The remaining bins contain only finitely many vertices and each impact evolution
satisfies logZ[s, t] ∼ Fst (see Remark 2.2). Conversely, one has log TeΥ[T,t]−TN(t) ∼
t as t → ∞, which shows that in general finitely many vertices are asymptotically
negligible.

Next, we control the contribution of vertices that are born after time t/2 with fitness
smaller than 1− κ/t, again with κ denoting a large constant.

Proposition 3.9. Suppose that Assumptions (A1) and (A2) are true. Let κ > 9α. One
has almost surely, that for all sufficiently large t

1

N(t)

∑
s∈T∩[t/2,t]
Fs 6 1−κδ

Z[s, t] 6
1

1− 9α/κ

∫
1

1− f
µ(df).

Proof. Let S(t) denote the indices of the bins (n,m) that contribute (at least partially) to

Σ(t) :=
∑

s∈T∩[t/2,t]
Fs 6 1−κδ

Z[s, t]

For sufficiently large t these are all of type (D) and, moreover, one has that, almost
surely, for sufficiently large t the estimates of Proposition 3.5 are valid for all bins in S(t).
Consequently, one has almost surely, for all sufficiently large t and all bins (n,m) ∈ S(t)

(again we say briefly eventually) that

Σn,m(t) 6 eε+2ιµ([fm, fm+1))N(t)

∫ Sn+1,m

Sn,m

exp{−(1− fm+1)(t− u) + Υ[u, t]} du.

By assumption, fm 6 1 − κδ for (n,m) ∈ S(t) which implies that 1 − fm+1 = (1 −
fm)/ζ > κδ/ζ. Further, F̄u > 1 − 4αδ for u ∈ [t/3, t] as long as t is sufficiently large.
Hence,

Υ[u, t] 6 4αδ(t− u) 6 4αζ
κ (1− fm+1)(t− u)

for u ∈ [t/3, t] as long as t is large. Suppose that ζ ∈ (1, 2). Then

Σn,m(t) 6 eε+2ιµ([fm, fm+1))N(t)

∫ Sn+1,m

Sn,m

exp{−(1− 8α
κ )(1− fm+1)(t− u)} du,

eventually. Since 1− fm+1 > ζ−1(1− f) for f ∈ [fm, fm+1), we conclude that, eventually,

Σn,m(t) 6 eε+2ιN(t)

∫
[fm,fm+1)

∫ Sn+1,m

Sn,m

exp{−(1− 8α
κ )ζ−1(1− f)(t− u)} duµ(df).
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Each bin corresponds to an integration over the set [fm, fm+1) × [Sn,m, Sn+1,m). The
sets are pairwise disjoint and the union of all relevant sets is contained in the set
[0, 1− κ/ζ)× [0, t+ ι] so that, eventually,

Σ(t) 6 eε+2ιN(t)

∫
[0,1−κ/ζ)

∫ t+ι

0

exp{−(1− 8α
κ )ζ−1(1− f)(t− u)} duµ(df)

6 eε+3ι ζ

1− 8ακ−1
N(t)

∫
[0,1)

1

1− f
µ(df).

The statement follows since ε, ι > 0 and ζ > 1 can be chosen arbitrarily small.

3.6 Negligibility of early birds

The former two propositions allow to control the contribution outside the condensa-
tion window in an almost sure sense when excluding early birds. It remains to show that,
with high probability, early birds, i.e., vertices in Eγ , do typically not contribute.

Again we denote by t > 0 the time in the network formation. Depending on a
parameter κ > 0, we analyse separately the contribution of vertices s ∈ T ∩ [0, T ] with

(I) 1− T−s−κ
t 6 Fs

(II) Fs 6 1− (T−s−κ)∨1
t

First we provide an estimate for the number of vertices of type (I).

Proposition 3.10. Under Assumption (A1), there exists a constant C > 0 such that for
κ > 0

lim sup
t→∞

E
[
#
{
s ∈ T : 1− T − s− κ

t
6 Fs

}]
6 Ce−κ.

Proof. Let ρ(s) = ρ(t)(s) := T−s−κ
t and denote by N = N (t) the random number of

vertices
N = N (t) := #

{
s ∈ T : 1− ρ(s) 6 Fs

}
One has

E[N ] =
∑
s∈T
s 6 s0

µ
([

1− T − s− κ
t

, 1
])
,

where s0 = s(t)0 := T − κ. By Lemma 5.1, one has 1 6 es ∆s for s ∈ T so that

E[N ] 6 µ([1− ρ(0), 1)) +
∑
s∈T

0<s 6 s0

es µ([1− ρ(s), 1)) ∆s

6 µ([1− ρ(0), 1)) + e

∫ s0

0

es µ([1− ρ(s), 1)) ds.

For all s ∈ [0, s0 − 1], one has ρ(s) > δ and by Potter’s bound (Lemma 5.5) there is a
constant C > 1 depending only on µ with

µ([1− ρ(s), 1)) 6 Cµ([1− δ, 1)) (T − s− κ)α+1,

for s ∈ [0, s0 − 1]. Consequently,

E[N ] 6 µ([1− ρ(0), 1)) + C eµ([1− δ, 1))

∫ s0

0

es ((T − s− κ) ∨ 1)α+1 ds.

We apply the substitution u = T − s− κ and recall that e−T = µ([1− δ, 1)) to deduce that

E[N ] 6 µ([1− ρ(0), 1)) + C e e−κ
∫ ∞

0

e−u(u ∨ 1)α+1 du.

The statement follows since µ([1− ρ(0), 1)) = µ([1− T−κ
t , 1))→ 0 as t→∞.
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Next, we use a first moment method to bound the impact of vertices of type (II).

Proposition 3.11. We assume Assumptions (A1) and (A2). For κ > 0, there exists a
constant C such that for all sufficiently large t, one has∑

s∈T
0 6 s 6 T (t)

E
[
Z[s, t] 1l{Fs 6 1−ρ(s)}

]
6 C et−T (t)+Υ[T (t),t],

where ρ(s) := ρ(t)(s) := (T (t)−s−κ)∨1
t (s ∈ [0,∞)).

Proof. In the following C1, C2, . . . denote constants that do not depend on t. Further the
following estimates are only valid for sufficiently large t ∈ T. We analyse

Σ(t) :=
∑

s∈T∩[0,T (t)]

E
[
Z[s, t] 1l{Fs<1−ρ(s)}

]
By Lemmas 5.2 and 5.3, there is a constant C1 such that one has for s, t ∈ T with s 6 t

E[Z[s, t]|Fs] = A[s, t] 6 C1 exp{Fs(t− s) + Υ[s, t]}.

By Lemma 5.6, there exists a constant C2 such that for s 6 t with s 6 T = T (t)

E
[
Z[s, t] 1l{Fs 6 1−ρ(s)}

]
6 1 + C2e

Υ[s,t] exp{(1− ρ(s))(t− s)}µ([1− ρ(s), 1)).

Consequently, using that 1 6 es∆s we get

Σ(t) =
∑
s∈T

0 6 s 6 T

E
[
Z[s, t] 1l{Fs 6 1−ρ(s)}

]
6 N(T ) + C2 e

t+Υ[T,t]
∑
s∈T

0 6 s 6 T

e−ρ(s)(t−s)+Υ[s,T ] µ([1− ρ(s), 1)) ∆s

=: Σ1(t) + Σ2(t).

Note that Σ1(t) ∼ CNeT (t) ∼ CN tα/`(t−1) is of negligible order and we restrict attention
to Σ2(t) in the following. The map s 7→ ρ(s)(t− s) is decreasing on [0, t] and one has for
0 6 s 6 s′ 6 s+ 1, ρ(s) 6 2ρ(s′) so that by the Potter bound (Lemma 5.5)

µ([1− ρ(s), 1)) 6 C3 µ([1− ρ(s′), 1))

for a constant C3. Using further that Υ[s, s′] 6 1 we conclude that

Σ2(t) 6 C4 e
t+Υ[T,t]

∫ T+1

0

e−ρ(s)(t−s)+Υ[s,T+1] µ([1− ρ(s), 1)) ds.

For sufficiently large t, one has t > 2(T + 1) and it follows that, for s ∈ [0, T + 1],
ρ(s)(t − s) > 1

2 [(T − s − κ) ∨ 1]. Further, by Lemma 5.3, there exists a constant α′ > α

not depending on t such that eΥ[s,T+1] 6
(
T+2
s+1

)α′
for all s 6 T . Hence, for large t

Σ2(t) 6 C4 e
t+Υ[T,t]

∫ T+1

0

e−
1
2 [(T−s−κ)∨1]

(T + 2

s+ 1

)α′
µ([1− ρ(s), 1)) ds

and the Potter bound implies that for a further constant C5

Σ2(t) 6 C5 e
t+Υ[T,t] µ([1− δ, 1))

∫ T+1

0

e−
1
2 [(T−s−κ)∨1]

(T + 2

s+ 1

)α′
((T − s− κ) ∨ 1)α

′
ds.
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If T is sufficiently large to ensure that T+2
T−κ−1+1 6 2 one gets that

T + 2

s+ 1
6 2[(T − s− κ) ∨ 1] for all s > 0.

Hence, there exists a constant C6 such that for large t

Σ2(t) 6 C6 e
t+Υ[T,t] µ([1− δ, 1))

∫ T+1

0

e−
1
2 [(T−s−κ)∨1]((T − s− κ) ∨ 1)2α′ ds

6 C6 e
t+Υ[T,t] µ([1− δ, 1))

∫ ∞
−1

e−
1
2 [(u−κ)∨1]((u− κ) ∨ 1)2α′ du,

where we applied the substitution u = T−s in the latter transformation. Clearly, the latter
integral is finite and the statement follows since µ([1− δ, 1)) = e−T , by definition.

The combination of the above propositions allows us to conclude that for large times,
typically, early birds have no impact:

Proposition 3.12. For any ε > 0, one has

lim
t→∞

1

T (t) et+Υ[T (t),t]−T (t)

∑
s∈T∩[0,T (t)]:
Fs 6 1−1/t

Z[s, t] = 0, in probability.

Proof. We fix κ > 0 and note that any vertex s ∈ [0, T ] ∩ T with Fs 6 1 − δ satisfies
property (I) or (II) above. Hence, there exists a constants C1 not depending on κ and a
further constant C2 such that for every ε > 0 and t large

P
( ∑
s∈T∩[0,T (t)]:
Fs 6 1−1/t

Z[s, t] > εT (t) et+Υ[T (t),t]−T (t)
)

6 P
({
∃s ∈ T ∩ [0, T ] with 1− T − s− κ

t
6 Fs

})
+ P

( ∑
s∈T∩[0,T ]
Fs 6 1−ρ(s)

Z[s, t] > εT (t) et+Υ[T (t),t]−T (t)
)

6 C1e
−κ + C2

1

ε T (t)
,

Here we used Proposition 3.10 to bound the first term and Proposition 3.11 together
with the Markov inequality to bound the second term. The statement follows since the
second term tends to 0 and the first one can be made arbitrarily small by choosing κ

large.

4 Proof of the main theorems

We start with proving Theorem 1.6, that is we prove that for γ ∈ (0, 1), almost surely,
the scaled impact distributions with discarded early birds

Γ∗t =
1

N(t)

∑
s∈T
s 6 t

1lEcγ (s) δ(s/T,(1−Fs)t)

converge, almost surely, in an appropriate topology to γα. Recall that

Eγ = {s ∈ T : (log(1− Fs)−1)γ N(s) 6 µ([Fs, 1))−1}.
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Proof of Theorem 1.6. Step 1: We first prove that for arbitrary bounded intervals A =

(a0, a1] ⊂ R+ and B = (b0, b1] ⊂ R+

lim inf
t→∞

1

T (t) eΥ[T (t),t]−T Γ∗t (A×B) > γα(A×B), almost surely. (4.1)

Since γα is supported on (1,∞)×(0,∞), we can and will assume without loss of generality
that 1 < a0 < a1 and 0 < b0 < b1.

We use the concepts of bins introduced in Section 3 with fixed ζ ∈ (1, γ−1) and ι > 0.
Associate each bin In,m with a cube Cn,m := [fm, fm+1)× (Sn,m, Sn+1,m] and its t-scaled
analogue

Cn,m;t := T−1(Sn,m, Sn+1,m]× t(1− fm+1, 1− fm].

We denote by S(t) the set of bins (n,m) with

Cn,m ⊂ T A× (1−B/t) or, equivalently, Cn,m;t ⊂ A×B.

These bins contribute to Γ∗t (A×B). First we need to convince ourselves that the vertices
of these bins are for sufficiently large t of type (D) which then allows us to apply the
estimates of Proposition 3.5. One has for (n,m) ∈ S(t)

1− fm ≈ 1/t and Sn,m ≈ T ≈ log t (4.2)

as t→∞, so that on S(t)

logµ([fm, fm+1))−1 + ι n0(m) ∼ logµ([fm, 1])−1 ∼ logµ([1− t−1, 1])−1 = T (t) (4.3)

as t → ∞. For (n,m) ∈ S(t) one has Sn,m > a0T with a0 > 1 so that (4.3) implies that
n > n0(m) for sufficiently large m.

By Proposition 3.5 one has, almost surely, for sufficiently large t ∈ T for all (n,m) ∈
S(t) (we again say eventually) that

Σn,m(t) > e−ε−2ιµ([fm, fm+1))N(t)

∫ Sn+1,m

Sn,m

exp{−(1− fm)(t− u) + fm Υ[u, t]} du.

Recalling that on S(t), 1−fm ≈ 1/t, we conclude with Lemma 5.3 that (1−fm)Υ[u, t]→ 0

uniformly for all bins in S(t) and u in the respective domains of integration. Hence, one
has eventually that

Σn,m(t) > e−2ε−2ιµ([fm, fm+1))N(t) e−(1−fm)t

∫ Sn+1,m

Sn,m

eΥ[u,t] du.

The domain of integration is for sufficiently large t to the right of T so that we have
Υ[u, t] = Υ[T, t] − Υ[T, u]. Further the domain is of order T (uniformly on S(t)) so that
eΥ[T,u] 6 eε (u/T )α by Lemma 5.3. Hence, eventually

Σn,m(t) > e−3ε−2ιµ([fm, fm+1))N(t) eΥ[T,t] e−(1−fm)t

∫ Sn+1,m

Sn,m

(u/T )α du.

Using that

µ([fm, fm+1)) = µ([fm, 1))− µ([fm+1, 1)) ∼
∫ fm+1

fm

α(1− f)α−1 df `(t−1), (4.4)
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(1− fm)t 6 b1 and 1− fm = ζ(1− fm+1) we get that

Σn,m(t)

> α e−4ε−2ι−(ζ−1)b1 N(t) eΥ[T,t]

∫ fm+1

fm

e−(1−f)t (1− f)α−1 df `(t−1)

∫ Sn+1,m

Sn,m

(u/T )α du

= α e−4ε−2ι−(ζ−1)b1 N(t) eΥ[T,t]

∫
Cn,m

e−(1−f)t (1− f)α−1 `(t−1)(u/T )α d(u, f)

= e−4ε−2ι−(ζ−1)b1 N(t) eΥ[T,t] t−α`(t−1)︸ ︷︷ ︸
e−T

T

∫
Cn,m;t

αe−g gα−1 vα d(v, g),

where we substituted (u, f) by (v, g) with v = u/T and g = (1 − f)t in the latter step.
Consequently, eventually,

Γ∗t (A×B) >
1

N(t)

∑
(n,m)∈S(t)

Σn,m(t) > e−4ε−2ι−(ζ−1)b1 T eΥ[T,t]−T γα

( ⋃
(n,m)∈S(t)

Cn,m;t

)
.

Note that for large t, the cubes (Cn,m;t : (n,m) ∈ S(t)) cover

[a0 + ε, a1 − ε]× [b0ζ, b1/ζ].

Since the measure γα has Lebesgue density and since ε > 0 and ζ > 1 can be chosen
arbitrarily small it follows validity of (4.1).

Step 2: In the next step we show that for K = [0, b] with b > 0 one has that, almost
surely,

lim sup
t→∞

1

T eΥ[T,t]−T Γ∗t (R×K) 6 γα(R×K).

By Lemma 3.2, the vertices that contribute to Γ∗t (R×K) are of type (C) and (D) provided
that t is sufficiently large. We analyse

Σm(t) :=

∞∑
n=−n′0(m)

∑
s∈In,m

Z[s, t]

for the t-dependent set of indices

S(t) := {m ∈ N : (1− fm+1)t 6 b}.

By Proposition 3.7, one has that, almost surely, for sufficiently large t, for all m ∈ S(t),
(we briefly say eventually)

Σm(t) 6
e2ι+ε

α− 1
µ([fm, fm+1))S0,me

−(1−fm+1)t+Υ[S0,m,t]N(t). (4.5)

As t→∞ the terms T and S0,m with m ∈ S(t) tend to infinity so that by Lemma 5.3

S0,m e
Υ[S0,m,t] =

( T

S0,m

)α−1+o(1)

T eΥ[T,t].

Since for m ∈ S(t), e−S0,m = µ([fm, fm+1)) 6 µ([1 − (ζb)/t, 1)) ≈ e−T , there exists a
constant C such that for sufficiently large t, S0,m > T − C on S(t), and we conclude that,
eventually,

S0,m e
Υ[S0,m,t] 6 eε T eΥ[T,t]. (4.6)
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Now we distinguish two cases. First we consider the contribution of m ∈ S(t) with
fm > 1 − t−1 in which case S0,m > T . We apply the Potter bound and note that for
arbitrarily fixed α′ ∈ (0, α) one has for sufficiently large t that

µ([fm, fm+1)) 6 eεµ([fm, 1))(1− ζ−α) ≤ e2εµ([1− t−1, 1))((1− fm)t)α
′
(1− ζ−α)

= e2ε 1− ζ−α

1− ζ−α′
e−T α′

∫ (1−fm)t

(1−fm+1)t

fα
′−1 df.

Combining this estimates with (4.5) and (4.6), we conclude that, eventually,

Σm(t) 6
e2ι+5ε

α− 1

1− ζ−α

1− ζ−α′
T eΥ[T,t]−T α′

∫ (1−fm)t

(1−fm+1)t

fα
′−1 e−ζ

−1f df N(t).

Next, we consider the contribution of m ∈ S(t) with fm < 1 − t−1. In this case

we can use as in step one of the proof, see (4.4), that µ([fm, fm+1)) 6 eε
∫ fm+1

fm
α(1 −

f)α−1 df `(t−1) to deduce that, eventually,

Σm(t) 6
e2ι+4ε

α− 1
T eΥ[T,t]−T α

∫ (1−fm)t

(1−fm+1)t

fα−1 e−ζ
−1f df N(t).

Altogether we get that, eventually,

Σm(t) 6
e2ι+5ε

α− 1

1− ζ−α

1− ζ−α′
T eΥ[T,t]−T α

∫ (1−fm)t

(1−fm+1)t

(fα−1 ∨ fα
′−1) e−ζ

−1f df N(t).

irrespective of the case. Consequently, it follows that almost surely for sufficiently large
t

Γ∗t (R×K) 6

∑
m∈S(t) Σm(t)

N(t)
6
e2ι+5ε

α− 1

1− ζ−α

1− ζ−α′
T eΥ[T,t]−T α

∫ ζb

0

(fα−1∨fα
′−1) e−ζ

−1f df.

By choosing ε, ι > 0 and ζ > 1 small and α′ ∈ (0, α) large, we get that, almost surely,

lim sup
t→∞

1

T eΥ[T,t]−T Γ∗t (R+ ×K) ≤ α

α− 1

∫ b

0

fα−1 e−f df = γα(R×K).

Step 3: Let K ⊂ R+ be a bounded open interval. We prove that, almost surely,

lim
t→∞

1

T eΥ[T,t]−T Γ∗t
∣∣
R×K = γα

∣∣
R×K ,

in the weak topology. Without loss of generality, we can assume that K = (0, b) with
b ∈ Q ∩ (0,∞), since we make the statement stronger by enlarging the set K and since
neither of the measures puts mass on R× (−∞, 0]. (Indeed, for every open interval K
the boundary of R×K is a γα-zero set and hence restrictions to such sets preserve weak
convergence.) By step 1, we have that, almost surely,

lim inf
t→∞

Γ∗t ((a0, a1]× (b0, b1])

T eΥ[T,t]−T > γα((a0, a1]× (b0, b1]), (4.7)

for all a0, a1, b0, b1 ∈ Q with 0 < a0 < a1 and 0 < b0 < b1. Say this property is true on the
almost sure set Ω0. We denote by K the collection of all sets that can be represented as
finite disjoint unions of such cubes. Then clearly the statement (4.7) remains true on Ω0

for all sets from K. Let now U ⊂ R2 be an arbitrary open set. It is straight-forward to
construct an increasing sequence (Un)n∈N of sets from K with

⋃
n∈N Un = U ∩ (0,∞)2.
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Since on one hand, by monotone convergence γα(Un)→ γα(U ∩ (0,∞)2) = γα(U) and, on
the other hand, lim inf Γ∗t (U) > lim inf Γ∗t (Un) > γα(Un) on Ω0, we conclude that on Ω0

lim inf
t→∞

Γ∗t (U)

T eΥ[T,t]−T > γα(U).

In order to apply Portmanteau’s thorem, we still need to verify that

lim
t→∞

Γ∗t (R×K)

T eΥ[T,t]−T = γα(R×K)

and that the right hand side is finite. The finiteness is clear and the lower bound follows
immediately by choosing U = R× (0, b) above. The converse estimate is an immediate
consequence of step 2.

Proof of Theorem 1.4. In view of Theorem 1.6, it suffices to show that for a > 0

lim
t→∞

1

T eΥ[T,t]−T N(t)

∑
s∈T

1lEγ (s) 1l[1−δa,1)(Fs)Z[s, t] = 0, in probability. (4.8)

Again we make use of the binning techniques introduced in Section 3. We choose as
parameters ι > 0 and ζ ∈ (1, γ−1) and let ε > 0 denote an arbitrarily small number. We
distinguish three cases.

First we consider the contribution of stripes m with index in

S(t) = {m ∈ N0 : fm+1 > 1− aδ(t), fm < 1− εδ(t)}.

By construction the number of indices in S1(t) is uniformly bounded by 2 + log(a/ε)
log ζ .

Further, by Lemma 3.2, one has for sufficiently large t that{
∃s ∈ Eγ that belongs to a stripe in S(t)

}
⊂
{
∃ stripe in S(t) containing a vertex of type (A) or (B)

}
and for m ∈ N0 large

P(stripe m contains a vertex of type (A) or (B)) 6 N(Sm,−n′0(m))µ([fm, fm+1))

∼ CN exp{−ιn′0(m)} → 0.

Hence with probability tending to one all stripes in S(t) do not contain vertices from Eγ .
Second, we consider the contribution of vertices s ∈ T with fitness Fs > 1− εt−1 that

are born before T . Using the regular variation of the tails of µ we get that

P(∃s ∈ T ∩ [0, T ] with Fs > 1− εt−1) 6 N(T )µ([1− εδ, 1))

∼ CN
µ([1− εδ, 1))

µ([1− δ, 1))
→ CN ε

−α.

Third we control the contribution of all vertices with fitness Fs > 1− εt−1 born after
time T with the help of Proposition 2.3. Set

Σε(t) :=
∑

s∈T∩[T,t]

1l{Fs > 1−εt−1}Z[s, t].

The process Σε(t) is stochastically dominated by A1,T∗

t M̄1,p,T∗,t
t (see Section 2.2 for its

definition), where
p = µ([1− εt−1, 1)) and T ∗ = minT ∩ [T,∞).

EJP 21 (2016), paper 3.
Page 31/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3801
http://www.imstat.org/ejp/


The condensate in preferential attachment models with fitness

Now Proposition 2.3 implies that for a constant C not depending on ε > 0

E[Σε(t)] 6 C pA1,T∗

t eT
∗
∫ t

T∗
exp{−Υ[T ∗, u]} du.

As a consequence of Lemma 5.3, one obtains that∫ t

T∗
exp{−Υ[T ∗, u]} du ∼

∫ ∞
T

( u
T

)−α
du =

1

α− 1
T.

Further, by Lemma 5.3, A1,T∗

t ∼ exp{a[T, t]} ∼ exp{t − T + Υ[T, t]} and eT
∗ ∼ eT .

Consequently,

E[Σε(t)] .
C

α− 1
T exp{t+ Υ[T, t]}µ([1− εt−1, 1)) ∼ C

CN (α− 1)
εα T eΥ[T,t]−TN(t),

where we used that µ([1− εδ, 1)) ∼ εα µ([1− δ, 1)) = εαe−T in the last step. Since ε > 0

can be chosen arbitrarily small it is now straight-forward to combine the estimates of
the three cases and deduce the statement of the theorem.

Proof of Theorem 1.7. Similarly as in the proof of Theorem 1.6, one can deduce the
statement of Theorem 1.7 from the following two properties:

1. For every rectangle A = [s1, s2)× [f1, f2) with 0 6 s1 < s2 and 0 6 f1 < f2 < 1, one
has almost surely

lim inf
n→∞

Φt(A) > e−(1−f1)s2 (s2 − s1)µ([f1, f2))

2. For all 0 6 f1 < f2 < 1, one has almost surely that

lim sup
t→∞

Φt(R× [f1, f2)) 6
1

1− f2
µ([f1, f2)).

We start with proving the first statement. It suffices to consider the case with µ([f1, f2)) >

0. Fix ε > 0 and ι ∈ (0, (s2 − s1)/2) and denote for n ∈ N

In := {s ∈ T ∩ ((n− 1)ι, nι] : Fs ∈ [f1, f2)} and Σn(t) =
∑
s∈In

Z[s, t].

In complete analogy to the binning analysed in Section 3, see Remark 3.4, one notices
that almost surely for all but finitely many n ∈ N for all t > nι (we briefly say eventually)

Σn(t) > e−ε µ([f1, f2))E[#In] exp{f1a[nι, t]}.

By Lemma 5.1, E[#In] ∼ CNeιn(1− e−ι) and we assume that ι > 0 is chosen sufficiently
small to ensure that (1−e−ι) > e−ει. Since a[nι, t] > e−ε(t−nι) as long as n is sufficiently
large we get that eventually

Σn(t) > e−2εCN ι e
ιn µ([f1, f2)) exp{e−εf1(t− nι)}.

For given t ∈ T the vertices in bins In with

((n− 1)ι, nι] ⊂ (t− s2, t− s1]

and using that N(t) 6 eεCNe
t for sufficiently large t we get that almost surely

Φt(A) >
∑
n∈N

((n−1)ι,nι]⊂(t−s2,t−s1]

Σn(t)

N(t)
> e−3ε e−(1−e−εf1)s2 (s2 − s1 − 2ι)µ([f1, f2))

EJP 21 (2016), paper 3.
Page 32/38

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/16-EJP3801
http://www.imstat.org/ejp/


The condensate in preferential attachment models with fitness

for large t. Since ι and ε can be chosen arbitrarily small this proves the first statement.
The proof of the second statement is similar to the proof of the first one. Using

the same bins as in part one we get with analogous reasoning that almost surely for
sufficiently large n ∈ N and all t > (n− 1)ι (we briefly say eventually)

Σn(t) 6 eε µ([f1, f2))E[#In] exp{f2 a[(n− 1)ι, t]}.

For sufficiently large n, we have E[#In] 6 eεCN (1 − e−ι)eιn 6 eεCN ιe
ιn and a[(n −

1)ι, t] 6 eε(t− (n− 1)ι) so that eventually

Σn(t) 6 e2ε CN µ([f1, f2)) ee
εf2(t+ι) ι eιn(1−eεf2). (4.9)

We assume that ε s sufficiently small to ensure that eεf2 < 1 and use that

ι eιn(1−eεf2) 6 eι
∫ nι

(n−1)ι

e(1−eεf2)u du

We denote by n0 a random index for which (4.9) is true for all n > n0 and conclude that

dt/ιe∑
n=n0

Σn(t) 6 e2ε+2ι CN µ([f1, f2)) ee
εf2t

∫ t+ι

−∞
e(1−eεf2)u du.

Evaluating the integral and using that N(t) > e−εCNe
t for sufficiently large t, we get

that eventually
dt/ιe∑
n=n0

Σn(t) 6 e2ε+3ι 1

1− eεf2
µ([f1, f2))N(t).

Since the vertices born before time n0ι have an asymptotically negligible influence,
see Remark 2.2, the second statement follows by noticing that ε and ι can be chosen
arbitrarily small.

Proof of Theorem 1.2. In view of Theorems 1.1 and 1.4 it suffices to show that for every
ε > 0

lim
t→∞

P
(

Ξt([0, 1)) 6
∫

1

1− f
dµ+ α

α−1 Γ(α)w + ε
)

= 1

By Propositions 3.8 and 3.12 together with Assumption COEX, we conclude that for
sufficiently large κ > 0,

P
( ∑
s∈T∩[0,t/2]
Fs 6 κ/t

Z[s, t] 6
ε

3
N(t)

)
→ 1.

Further assuming that κ is sufficiently large we conclude with Proposition 3.9 that,
almost surely, for large t ∈ T∑

s∈T∩[t/2,t]
Fs 6 κ/t

Z[s, t] 6
(∫ 1

1− f
dµ(f) +

ε

3

)
N(t).

The result follows by recalling that by Theorem 1.4, almost surely for large t ∈ T∑
s∈T

Fs > 1−κ/t

Z[s, t] 6 (w +
ε

3
)N(t).

When disregarding the early birds, the estimate is also true in the almost sure sense.
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5 Appendix

Lemma 5.1 (Technical estimates). 1. One has, for n ∈ N,

lnn 6 π(n) 6 ln(2n− 1)

and for t > 0,
et−1 < N(t) 6 et

2. There exists a positive constant CN such that

N(t) ∼ CNet

Proof. 1.) Using the convexity of x 7→ 1/x on (0,∞), we get that

π(n) 6
∫ n− 1

2

1
2

1

x
dx = ln(2n− 1)

for n ∈ N. Further, π(n) >
∫ n

1
1
x dx = ln(n). For t > 0, one has π(N(t)) 6 t, which implies

with the lower bound for π(n) that N(t) 6 et. The converse estimate is an immediate
consequence of the estimate

π(n) 6 1 +

∫ n−1

1

1

x
dx 6 1 + ln(n− 1) (n > 2)

and π(N(t) + 1) > t.
2.) Since

|π(n+ 1)− π(n)− (log(n+ 1)− log n)| 6 1

n2

is summable, there exists a constant C such that

log n = π(n) + C + o(1).

As t tends to infinity, N(t) tends to infinity and we get with π(N(t)) = t+ o(1) that

logN(t) = t+ C + o(1)

so that applying an exponential yields

N(t) ∼ eCet.

Often we consider expressions of the form

At = Af,st =
∏
u∈T

s 6 u<t

(
1 +

f

F̄u
∆u
)

for t ∈ T with t > s, where s ∈ T and f ∈ (0, 1] are parameters.

Lemma 5.2. Let f ∈ (0, 1] and s ∈ T with F̄u > 1
2 for all u > s. Then one has for

t ∈ T ∩ [s,∞)

e−4∆s exp{f a[s, t]} 6 Af,st 6 exp{f a[s, t]}

where

a[s, t] =
∑
u∈T

s 6 u<t

1

F̄u
∆u.
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Proof. Using the concavity of the logarithm one gets

logAt =
∑

u∈[s,t)∩T

log
(

1 +
f

F̄u
∆u
)
≤ fa[s, t].

Conversely, since log(1 + u) ≥ u− 1
2u

2 for u > 0, one has

logAt ≥ f a[s, t]− 1

2

∑
u∈[s,t)∩T

f2

F̄ 2
u

(∆u)2 ≥ fa[s, t]− 2
∑

u∈[s,t)∩T

(∆u)2 ≥ f a[s, t]− 4∆s.

Let Υ be defined via

Υ[s, t] =

∫ t

s

(1− F̄u) du.

Lemma 5.3. Under Assumption (A0), one has for s 6 t

a[s, t] = t− s+ (1 + o(1))Υ[s, t]

as s, t→∞. If, additionally, Assumption (A1) is satisfied, one has for s 6 t

a[s, t] = t− s+ Υ[s, t] + o(1)

and

Υ[s, t] = (1 + o(1)) log
( t
s

)α
as s, t→∞. Further, there exists a finite constant C such that for all 0 6 s 6 t

a[s, t] 6 t− s+ Υ[s, t] + C and Υ[s, t] 6 C log
t+ 1

s+ 1

Proof. The first assertion follows since

a[s, t]− (t− s) =

∫ t

s

1− F̄u
F̄u

du.

The second statement is a direct consequence of the estimate∣∣ 1
x
− (1 + 1− x)

∣∣ 6 8(1− x)2 for x ∈ (
1

2
,∞)

which follows itself by the Taylor theorem. Indeed, it implies that for sufficiently large s,
one has

|a[s, t]−
(
t− s+ Υ[s, t])| =

∣∣∣∫ t

s

1

F̄u
−
(
1 + 1− F̄u) du

∣∣∣ 6 8

∫ ∞
s

(1− F̄u)2 du

which becomes small when s is large. It is straight-forward to verify the remaining
statements.

Lemma 5.4. Suppose that Assumption (A1) is satisfied, i.e. µ([1 − δ, 1]) = δβ`(ε) for `
being slowly varying at zero and β > 0. Then for 0 < f < g, one has for f∗(δ) = 1− δf
and g∗(δ) = 1− δg

µ([g∗(δ), f∗(δ))) ∼ `(δ)δβ(gβ − fβ) = β`(δ)δβ
∫ g

f

yβ−1 dy.

Suppose that v : (0,∞)→ [0,∞) with limt→∞ tvt = w ∈ [0,∞]. Then

lim
t→∞

tβ

`(1/t)

∫
[1−vt,1)

exp{(1− y)t} dµ(y) =

∫ w

0

e−u duβ .
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Proof. First suppose that w ∈ (0,∞). One has∫
[1−vt,1)

exp{(1− y)t} dµ(y) =

∫
(0,1]

µ
([

1− (
1

t
log

1

s
) ∧ vt, 1

))
ds

=

∫ ∞
0

µ([1− u

t
∧ vt, 1))e−u du

= t−β
∫ ∞

0

(
u ∧ (tvt)

)β
`
(u
t
∧ vt

)
e−u du

where we carried out the substitution s = e−u. Standard reasoning for regularly varying
functions now gives that∫

[1−vt,1)

exp{(1− y)t}dµ(y) ∼ t−β`(1

t
)

∫ ∞
0

(
u ∧ (tvt)

)β
e−u du ∼ t−β`(1

t
)

∫ w

0

e−u duβ ,

where we used partial integration in the last step.

The case where tvt → 0 follows imediately by domination. Furthermore, it suffices to
consider the case vt = 1 to achieve the result in the general case tvt →∞. This is done
in analogy to the above reasoning. One has∫

[0,1)

exp{(1− y)t}dµ(y) = t−β
∫ ∞

0

uβ`
(u
t

)
e−u du

and a standard argument for regularly varying functions implies the assertion.

Lemma 5.5 (Potter bounds). Under Assumption (A1) there exists for every η > 0 a
constant C such that for all δ, δ′ ∈ (0, 1] with δ 6 δ′

1

C

(δ′
δ

)α−η
µ([1− δ, 1]) 6 µ([1− δ′, 1]) 6 C

(δ′
δ

)α+η
µ([1− δ, 1])

Moreover, for any fixed C > 1 the estimate is valid for all sufficiently small δ′.

Under Assumption (A2), for every η > 0 and C > 1 that exists s0 > 0 such that for all
s2 > s1 > s0

1

C

(s2

s1
)α−η 6 exp Υ[s1, s2] 6 C

(s2

s1
)α+η.

Proof. By Theorem 1.5.6 of [5] the first statement is valid for all sufficiently small δ, δ′

say for δ, δ′ 6 δ0. The general statement follows straight-forwardly from the fact that

µ([1− δ′, 1])

µ([1− δ, 1])

is uniformly bounded for δ, δ′ ∈ [δ0, 1]. The second statement is again a consequence
of the classical Potter bound: Use that [0,∞) 3 u 7→ exp Υ[0, u] is regularly varying at
infinity with index α combined with the representation

exp Υ[s1, s2] =
exp Υ[0, s2]

exp Υ[0, s1]
.

Lemma 5.6. There is a constant C such that for all v ∈ (0, 1] and θ > 0 with vθ > 1, one
has ∫

[0,1−v]

eθy dµ(y) 6 1 + C e(1−v)θ µ([1− v, 1)).
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Proof. One has

I :=

∫
[0,1−v]

eθy dµ(y) 6 1 +

∫ ∞
1

µ([θ−1 log s, 1− v]) ds

We apply two substitutions s = eu and w = θ − u and obtain

I 6 1 +

∫ (1−v)θ

0

eu µ([θ−1u, 1− v]) du = 1 + eθ
∫ θ

vθ

e−w µ([1− w/θ, 1− v]) dw.

The Potter bound implies that for a constant C1 only depending on µ, one has

I 6 1 + C1e
θ µ([1− v, 1))

∫ ∞
vθ

e−w
( w
vθ

)α+1
dw.

By the rule of de l’Hôpital, the function

z 7→
∫ ∞
z

e−wwα+1
/(

e−zzα+1
)

is bounded on [1,∞) so that there exists a constant C with

I 6 1 + C e(1−v)θ µ([1− v, 1)).
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