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1 Introduction

The purpose of this note is to show that random networks, which can be defined
as images of Poissonian Markov loop ensembles (also known as “loop soups”), are
naturally associated to random configurations and combinatorial maps. The relation
with configurations, defined as families of entering and exiting half edges attached to
each vertex and coupled to form edges, follows easily from the distribution of the edge
occupation field, given in [4]. The relation with random combinatorial maps is more
novel and should be investigated further. In the last section, we collect a few properties
of these random maps which can be deduced from [3].

We first present briefly the framework of our study, described in [3], and recall a
few useful results. Consider a graph G, i.e. a set of vertices X together with a set of
non oriented edges E. We assume it is connected, and that there is no loop-edges nor
multiple edges. The set of oriented edges, denoted Eo, is viewed as a subset of X2. An
oriented edge (x, y) is defined by the choice of an ordering in an edge {x, y}.

Given a graph G = (X,E), a set of non negative conductances Cx,y = Cy,x indexed
by the set of edges E (Cx,y vanishes if {x, y} is not an edge), and a non negative killing
measure κ on the set of vertices X, we can associate to them an energy (or Dirichlet
form) E , we will assume to be positive definite, which is a transience assumption. For
any function f on X, we have:

E(f, f) = 1

2

∑
x,y

Cx,y(f(x)− f(y))2 +
∑
x

κxf(x)
2.

There is a duality measure λ defined by λx =
∑
y Cx,y+κx. Let Gx,y denote the symmetric

Green’s function associated with E . Its inverse equals Mλ − C with Mλ denoting the
diagonal matrix defined by λ.
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On Markovian random networks

The associated λ-symmetric Markov chain is defined by the transition matrix P xy =
Cx,y
λy

.
We denote by µ the discrete loop measure associated with this Markov chain. µ is

first defined on based loops by

µ([x0, x1, ...xn−1, x0]) =
1

n
P x0
x1
P x1
x2
...P xn−1

x0
.

A loop is an equivalence class of based loops under time shift.
Given any oriented edge (x, y) of the graph, we denote by Nx,y(l) the total number of

jumps made from x to y by the loop l and set Nx(l) =
∑
y Nx,y(l).

We have µ({l, Nx(l) = n) = (1−px)n
n and therefore µ({l, Nx > 0}) = − ln(px), with

px = 1
λxGx,x

. We refer to chapter 2 of [3] for the proof. Note however that in [3] we
considered mostly loops in continuous time, including one-point loops. From proposition
7 and formula 2-11 in [3], we get that µ(1 − e−tl̂x) = log(1 + tGx,x) − log(1 + t

λx
) =

log
(
λx+tλxG

x,x

λx+t

)
, l̂x being the sum of Nx(l) independent exponential variables of mean

λx. We check that this equals
∑∞

1
pnx
n

(
λx
λx+t

)n
.

The Poissonian loop ensemble L is defined to be the Poisson process of loops of
intensity µ. We refer to [3] for more details. Notations here are slightly different. Given
any oriented edge (x, y) of the graph, we denote by Nx,y(L) or simply Nx,y the total
number of jumps made from x to y by the loops of L and set again Nx =

∑
y Nx,y..

We define a network to be a N-valued function defined on oriented edges of the graph.
It is given by a matrix k with N-valued coefficients which vanishes on the diagonal and
on entries (x, y) such that {x, y} is not an edge of the graph. We say that k is Eulerian if∑

y

kx,y =
∑
y

ky,x.

For any Eulerian network k, we define kx to be
∑
y kx,y =

∑
y ky,x. It is obvious that the

field N defines a random network which verifies the Eulerian property.
For a finite graph, the distribution of the random network defined by L was given in

[4]. See also [10] for related Markov properties.

Theorem 1.1. For any Eulerian network k,

P (N = k) = det(I − P )
∏
x kx!∏

x,y kx,y!

∏
x,y

P kx,yx,y .

2 Networks and configurations

The distribution of N on Eulerian networks can be obtained differently when G is
finite. We introduce a specific type of configuration model.

Let C be the space of configurations c defined as follows: attach to each vertex x
cx entering half edges and cx exiting half edges, numbered from 1 to cx. Then provide
a coupling between entering and exiting half-edges in such a way that they define an
oriented edge of G.

For each oriented edge (x, y), there are cx,y half edges exiting from x coupled with cx,y
half edges entering in y. For each vertex x,

∑
y cx,y =

∑
y cy,x is equal to cx and we see

that such a configuration c defines a Eulerian network c̃. Moreover each Eulerian network

k is the image by this projection map c −→ c̃ of
∏
x(kx!)

2∏
(x,y)∈Eo kx,y !

different configurations.

Indeed, there are
∏
x

kx!∏
y kx,y !

way of partitioning exiting half edges and
∏
x

kx!∏
y ky,x!

ways

of partitioning entering half edges according to the oriented edge of G they define, and
then

∏
(x,y)∈Eo kx,y! ways to couple them.
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On Markovian random networks

We can now conclude easily that:

Theorem 2.1. The probability Q defined on C by

Q(c) = det(I − P ) 1∏
x cx!

∏
x,y

P cx,yx,y

is such that, for any Eulerian network k, Q(c̃ = k) = P (N = k).

We say two configurations are opposite if they are exchanged by reversing the
orientation of all half edges. We say they are equivalent if they can be exchanged by
a circular permutation at each vertex, acting simultaneously on entering and exiting
half-edges.

We can deduce from this result an expression for counting configurations with given
vertex degrees:

Corollary 2.2. Denote C(ix,x∈X) the set of configurations with vertex degrees ix:
C(ix,x∈X) = {c ∈ C,∀x ∈ X, cx = ix} Then the joint exponential generating function

of the cardinalities of these sets,
∑

(ix,x∈X) |C(ix,x∈X)|
∏
x
sixx
ix!

, defined for 0 ≤ sx < 1
dx

, is
given by the inverse of the determinant of the matrix δx,y− sxAx,y, A being the adjacency
matrix of G.

Proof. Taking unit unit conductances and variable killing rates 1 − dxsx, we rewrite∑
cQ(c) = 1 in terms of cardinalities.

Remark. A similar construction can be made with the even networks defined by the

edge occupation field N ( 1
2 ) of a loop ensemble L( 1

2 )
of intensity 1

2µ (cf [5]). N
( 1
2 )

{x,y} is the
total number of jumps from x to y or from y to x made by the loops of L( 1

2 )
. The space of

configurations is now the set Cev of numbered G-maps with an even number of incident
edges at each vertex. At each vertex x there are 2kx!∏

y k{x,y}!
way of partitioning the 2kx

incident edges and there are
∏
{x,y}∈E k{x,y}! ways to couple the numbers assigned to

the edges between x and y. Each even network k is the image of
∏
x(2kx!)∏

{x,y}∈E k{x,y}!
different

configurations and the distribution of these configurations is uniform conditionally to
the network.

3 Configurations and Wilson algorithm

Let us recall the relation given in section 8-2 of [3] between loop ensembles and
Wilson algorithm (cf [11]), for a finite graph. The choice of an arbitrary order on
the vertices x1, x2... allows to construct from a finite sequence of random walks a
random spanning tree together with an independent set of loops li, based at xi and
included in the complement of {x1, ... , xi−1}. Note that li can be empty as we are
here in discrete time. The random network defined by this set of loops has the same
distribution as N . Moreover, all such sets of loops defining the same network have equal
probability.

In order to construct not only the network N but the Poissonian ensemble L, these
based loops li have to be randomly divided at their base points xi. This partition is
defined by a Poisson-Dirichlet distribution if we consider loops indexed by continuous
time, with exponential holding time: see remark 21 in section 8-2 of [3]. As mentioned in
[6] there is a discrete version of this splitting method: If li visits xi nxi times, we can view
each based loop li as a set of nxi excursions out of xi and partition it randomly according

to the exchangeable partition probability function (EPPF)
∏k

1 (nj−1)!
nxi !

occurring in the

so-called “chinese restaurant process” ([8], sections 2-1 and 3-1). The EPPF
∏k

1 (nj−1)!
nxi !

is
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the probability of a partition into a set of size n1, a set of size n2 etc. The distribution
of the block sizes, presented in exchangeable random order is 1

k!
∏k

1 nj
(cf section 2-1 in

[8]).
The proof is based on the fact that for any partition {m1,m2, ...mk} of m, the

probability that the k-tuple m1, ...mk is equal to the set {Nx(l), l ∈ L} in random

order equals P (|{l ∈ L, Nx(l) > 0)}| = k)
∏k
j=1

µ(Nx(l)=mj)
µ(Nx(l)>0) = px

k!

∏k
j=1

(1−px)mj
mj

. As

P (Nx(L) = m) = px(1 − px)
m, conditionally to Nx(L) = m, this probability equals

1
k!

∏k
1 mj

.

By exchangeability, performing the partitition in {m1,m2, ...mk} based loops accord-
ing to the original order in the excursion set yields the same distribution.

We then concatenate the excursions in each part according to their original order
and define L to be the associated set of (unbased) discrete time loops. Its distribution is
uniform conditionally on the network.

Note that his construction can be related to random configurations. Let us call exit
configuration a class of configurations with the same partition of exiting half edges.
More precisely, an exit configuration is determined by assigning to each exiting half
edge the vertex to which the oriented edge will lead, without specifying the entering
half edge of that vertex. All configurations c in such a class cex have equal probability
and the image of Q on the set of exit configurations Cex is Q(cex) = det(I − P )

∏
x,y P

cx,y
x,y .

All exit configurations inducing the same network have equal probability.
Such an exit configuration cex, with the choice of an order on X, allows to construct

a sample of the family of based loops li considered above. The first loop is based at the
first vertex x1 and visits it cexx1

times. It starts with the first exiting half-edge, continues
to the vertex to which it is associated, then with the first half edge exiting this vertex
and so on, using and taking at each vertex exiting half edges in increasing order until
all have been used at x1. Then iterate this procedure with the remaining configuration,
starting at the first vertex it contains, according to the order initially defined on X.

This correspondence is a bijection, and if we start with a random exit configuration,
the distribution obtained on the sequence of based loops is the same as in Wilson’s
algorithm. Note for the following that we get the same distribution if exiting half edges
are used in random order. Partitioning these based loops as above yields a set of unbased
loops Lex distributed as L.

An entrance configuration cin is defined in an analogous way, in terms of entering
half edges, assigning to each of them the vertex from which the oriented edge starts.

Similarly, we can define Lin and we get in that way two sets of loops which are clearly
independent conditionally on the network c̃.

4 Networks and combinatorial maps

The relations between configurations and Poissonian loop ensembles appears to be
deeper, as shown in the following.

– Recall that a combinatorial map can be defined as a graph, with possibly multiple
edges between vertices, equipped with a combinatorial embedding, i.e. a cyclic ordering
of edges around each vertex (see [7], [1]). This ordering allows to define combinatorial
faces (termed as facial walks in section 4-1 of [7]) as cycles of the permutation φ on
oriented edges obtained by composing the edge orientation reversal ρ by the shift defined
by the cyclic order. Note that the facial walks may visit a vertex several times. The map
can be drawn on a surface with possibly several connected components (see [7], p. 85).
Let us say it is a G-map if its vertex set is contained in X and if its edges are multiple
copies of elements of E (if G is complete, the second condition is redundant). Let us say
a map is numbered if a first edge is chosen at every vertex.
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– An element c of C defines a numbered G-mapM(c) with an even number of incident
edges at each vertex. The first edge at each vertex is determined by the first exiting half
edge and the half edge it is coupled to, the second by the first entering half edge and
the half-edge it is coupled to, the third by the second exiting half edge and the half-edge
it is coupled to, and so on, alternating entering and exiting half edges according to their
original cyclic order. We actually get in this way, an orientation on the edges of the map.
At each vertex, the cyclic order on edges alternates exiting and entering edges. The
number of oriented edges carried by (x, y) is equal to c̃x,y. Two equivalent configurations
define the same G-map.

– An equivalent class of configurations defines also alternating signs on the combina-
torial faces of its associated map.

The positive faces F+ are defined by the cycles of the permutation on edges obtained
by mapping each exiting half-edge with the exiting half-edge following, (in the above
defined cyclic order at each vertex), the entering half-edge coupled to it. Oriented face
contours are defined by the orientation of their edges.

The negative faces F− are defined by the cycles of the permutation on edges obtained
by mapping an entering half-edge with the entering half-edge following the exiting
half-edge coupled to it. Oriented face contours are defined by reversing the orientation
of their edges.

Taking the opposite configuration exchanges F+ and F−.
Each edge of the map is in this way adjacent to two faces of opposite signs, and

giving it opposite orientations as part of a face contour. Note that F+ determines the
configuration, up to equivalence. The same holds for F−.

The image on G of the sets of oriented face contours of F+ and F− are multisets of
loops denoted (L+ and L−).

– We can now state our main result:

Theorem 4.1. The loop ensembles L+ and L− defined by a random configuration under
the probability Q have both the same distribution as L.

Proof. Note first that (in contrast with the original version of the algorithm presented
in the previous section), this construction does not require additional independent
partitions.

We can again choose an arbitrary order on the vertices to run a different version
of Wilson algorithm to construct L+. This algorithm can be viewed as a way, starting
from cex (i.e. the partition of exiting half edges) to sample the random coupling with
entering edges progressively. This determines a configuration c sampled uniformly in
cex. We start a based loop at the first vertex with the first exiting half edge, then move
to the vertex attached to it by the partition, and choose an entering half edge to couple
it. Then follow the exiting half edge following this entering edge in the alternating cyclic
order, and so on until we reach again the base point. Then, a based loop is created if
the first exiting half-edge follows the last entering one, in the cyclic order. We iterate
the process until this happens, and create a based loop by concatenating the excursions
we constructed. Note that conditioning on the initially given partition of exiting half
edges and on the partial coupling with entering half edges done until a return time (this
includes the excursions out of x1 up to this return time), the creation of a based loop
occurs with probability one over the number of unused entering half edges at the base
point. Then restart at the same vertex with the next free exiting half-edge. Iterate until
all half edges at the first vertex have been used.

– We can then restart the algorithm at the next vertex with unused exiting half-edge,
starting with the first one. Iterate until all half edges of all vertices have been used. If
we start with a random initial exit configuration, the concatenation of the excursions
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obtained at each vertex has the same distribution as the family of based loops {li} defined
by Wilson algorithm as explained at the end of the previous section (the exiting half
edges here are used in random order). Conditionally on these based loops, the random
ordered partitions of them we have obtained at each vertex are exactly the size-biased
presentation of the random partition defined by the “chinese restaurant process” (see
section 2-1 in [8]). This observation completes the proof of the theorem as the case of
L− can be treated in the same way.

5 Expectations calculations

The study of the geometrical properties of the random combinatorial maps defined
by random configurations should be pushed further. In this last section, we present a
few results in this direction.

Using the results of [3], expressions for the expected number of vertices, edges and
combinatorial faces ofM(c) can be given. These are respectively: E(|{x ∈ X, cx > 0}|) =∑
x(1 −

1
λxGx,x

) (as Nx follows a geometric distribution of parameter 1
λxGx,x

(see the
remark following formula 4-3 in [3]), E(

∑
x,y c̃x,y) =

∑
x,y Cx,yG

x,y (see formula 2-10 in
[3]) and E(|L+(c)|+ |L−(c)) = −2 ln det(I − P ) (see formula 2-5 in [3]).

Similar expressions can be given for the variances of the vertices and edges numbers.
Much more intricate expressions can also be given for the number and the sizes of the
connected components of the map (see [2]).

All these results apply in particular to the case of complete graphs, which is of special
interest in relation with the theory of combinatorial maps.

For d vertices and constant killing rate κ, λ = d − 1 + κ and G = 1
d+κ (I + 1

κJ), J

denoting the (d, d) matrix with all entries equal to 1. Setting p = 1
d−1+κ , det(I − P ) =

(1− (d− 1)p)(1 + p)d−1.
Inserting this in the expressions recalled hereinabove, it appears that if we let d

and κ increase to infinity, with κ
d converging to zero, the expected number of vertices

and the expected number of edges are both equivalent to d
κ . More precisely, they are

respectively equal to d
(κ+1) + 1 + o(1) and d

κ − 1 + o(1). The expected number of faces is

2 ln(d/κ)− 2 + o(1).
Following section 4-1 in [7], the Euler characteristic χ(c) of the combinatorial map

M(c) is defined as the number of vertices + the number of combinatorial faces – the
number of edges, i.e |{x ∈ X, cx > 0}|+ |L+(c)|+ |L−(c)| −N(c) with N(c) =

∑
x,y c̃x,y.

Its expectation can be expressed as

E(χ) =
∑
x

(1− 1

λxGx,x
)− 2 ln det(I − P )−

∑
x,y

Cx,yG
x,y.

In particular, for the complete graph, E(χ) = d(1 − (1 − 1
κ+1 )(1 + 1

d−1+κ )) −
d(d−1)
κ(d+κ) −

2 ln( κ
d−1+κ )− 2(d− 1) ln(1+ 1

d−1+κ ). The expectation of the characteristic χ can converge

to any value v by taking κ(d, v) =

√
d

u(d, v)
with u(d, v) > 1 defined as the unique solution

of the equation u(d, v)− ln(u(d, v)) = ln(d)− v. Note that u(d, v) is equivalent to ln(d) as

d increases to infinity. If we take κ(d) =

√
d

ln(d)
, the expectation of χ is equivalent to

ln(ln(d)) as d increases to infinity.
Note however that the number of faces in the 2-cell embedding in surfaces defined

by the combinatorial map is larger than the number of facial walks. Hence the sum
of the Euler characteristics of the surfaces is smaller or equal to χ(c) (see proof of

3-4-1 in [7]). The average number of vertices visited by a facial walk is
∑
x µ(Nx>0)

|µ| =
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−
∑
x ln(P (Nx=0))

− ln det(I−P ) =
∑
x ln(λxG

x,x)

− ln det(I−P ) It is smaller from the average length of the walk which is∑
x µ(Nx)

|µ| =
∑
x(λxG

x,x−1)
− ln det(I−P ) . The difference is the average number of multiple points on the

loop, counted with their multiplicities minus 1.
For the complete graph, with d and κ increasing to infinity, with κ

d converging to zero,
we get that the is the average number of multiple points is equivalent to d

2κ2 ln( dκ )
which

converges to 1
2 if we take κ(d) =

√
d

ln(d)
.

Consider finally essential vertices, i.e. such that Nx > 1. Their expected number in

general is
∑
x(1 −

1
λxGx,x

)2 which equals d(d+2κ−1)2
(κ+1)2(d−1+κ)2 in the complete graph case. If

we take κ(d) =

√
d

ln(d)
or κ(d, v) =

√
d

u(d, v)
, the expected number of facial walks and

the expected number of essential vertices are both equivalent to ln(d) as d increases to
infinity.
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