An upper bound for the probability of visiting a distant point by a critical branching random walk in \mathbb{Z}^{4*}

Qingsan Zhu[†]

Abstract

In this paper, we study the probability of visiting a distant point $a \in \mathbb{Z}^4$ by a critical branching random walk starting at the origin. We prove that this probability is bounded by $1/(|a|^2 \log |a|)$ up to a constant factor.

Keywords: critical branching random walk; visiting probability; critical dimension. **AMS MSC 2010:** 60G50; 60J80. Submitted to ECP on December 5, 2018, final version accepted on April 8, 2019.

1 Introduction

A branching random walk is a discrete-time particle system in \mathbb{Z}^d as the following. Fix a probability measure μ on \mathbb{N} , called offspring distribution, and another probability measure θ on \mathbb{Z}^d , called jump distribution. At time 0, there is a single particle at the origin $0 \in \mathbb{Z}^d$. At each time step $n \in \mathbb{N}$, every particle, say at the site $x \in \mathbb{Z}^d$, gives birth to a random number of offspring (and dies afterwards), according to μ ; each of these moves independently to a site according to distribution $x + \theta$. If the mean of μ is one, we say that the branching random walk is critical.

The asymptotic behavior of the probability of visiting a distant point $a \in \mathbb{Z}^d$ by a critical branching random walk (denoted by S) in low dimensions ($d \leq 3$) was established recently by Le Gall and Lin (Theorem 7 in [3]). Their theorem implies that (under some regularity assumption about the critical branching random walk)

$$P(\mathcal{S} \text{ visits } a) \asymp |a|^{-2} \text{ in } \mathbb{Z}^d \text{ for } d \leq 3,$$

where we write $f(a) \succeq g(a)$ ($f(a) \preceq g(a)$ respectively) if there exists a positive constant c (only depending on d, the offspring distribution μ and the jump distribution θ of the critical branching random walk) such that $f(a) \ge cg(a)$ ($f(a) \le cg(a)$ respectively) and $f(a) \asymp g(a)$ if $f(a) \succeq g(a)$ and $f(a) \preceq g(a)$.

A simple calculation of the first and second moments gives (see e.g. Remark (2) at the end of Section 2.4 in [2])

$$P(\mathcal{S} \text{ visits } a) \asymp |a|^{2-d} \text{ in } \mathbb{Z}^d \text{ for } d \ge 5,$$

and

$$P(\mathcal{S} \text{ visits } a) \succeq 1/(|a|^2 \log |a|) \quad \text{in } \mathbb{Z}^4.$$
(1.1)

^{*}The author is partially supported by ISF grant 1207/15 and ERC starting grant 676970.

 $^{^{\}dagger}\text{Tel}$ Aviv University, ISRAEL. E-mail: qingsanz@mail.tau.ac.il

Probability of visiting a distant point by a critical branching random walk in \mathbb{Z}^4

It is expected that:

$$P(\mathcal{S} \text{ visits } a) \preceq 1/(|a|^2 \log |a|) \quad \text{in } \mathbb{Z}^4.$$
(1.2)

In this paper, we prove (1.2) under some regularity assumption about θ - we almost assume nothing about μ , as long as μ is critical and nondegenerate i.e. μ is not the Dirac mass at 1. Let us state our main theorem.

Theorem 1.1. Let μ be a critical probability measure on \mathbb{N} , which is not the Dirac mass at 1, and θ be a probability measure on \mathbb{Z}^4 with zero mean and finite $(4 + \epsilon)$ -th moment for some $\epsilon > 0$ (i.e. $\sum_{z \in \mathbb{Z}^4} \theta(z) z = 0$ and $\sum_{z \in \mathbb{Z}^4} \theta(z) |z|^{4+\epsilon} < \infty$), which is not supported on a strict subgroup of \mathbb{Z}^4 . Write S for the critical branching random walk with offspring distribution μ and jump distribution θ starting at the origin. Then, there exists a positive constant C depending on μ and θ , such that, for any $a \in \mathbb{Z}^4$ with |a| sufficiently large,

$$P(\mathcal{S} \text{ visits } a) \le C \cdot \frac{1}{|a|^2 \log |a|}.$$
(1.3)

Remark 1.2. If μ is the Dirac mass at 1, then the branching random walk is just the ordinary random walk and it is classical that (1.3) is not true and the visiting probability of a behaves like $c||a||^{-2}$ for some explicit positive constant c, where $||a|| = \sqrt{a \cdot Q^{-1}a}/2$ with Q being the covariance matrix of θ .

Remark 1.3. Note that for (1.1) we need to assume that μ has finite variance. Hence if μ has finite variance in addition to the assumptions above, then: (when |a| > 1)

$$P(S \text{ visits } a) \asymp \frac{1}{|a|^2 \log |a|}.$$
 (1.4)

Remark 1.4. In this paper we are only interested in the case that θ is centered, i.e. the mean of θ is zero. Moreover, we need the moment assumption for θ in order to control the long jump (see the proof of (2.4)). We have not striven for the greatest generality about the assumption on θ and would like to make our proof simple.

Remark 1.5. Update: based on the result and some idea in this paper, the asymptotics of P(S visits a) has been constructed in [5], under an additional and essential assumption that μ has finite variance. It is shown there (under further assumptions that μ has finite variance and that θ has finite exponential moments),

$$\lim_{a \to \infty} \|a\|^2 \log \|a\| P(\mathcal{S} \text{ visits } a + K) = \frac{1}{2\sigma^2},$$

where K is any fixed nonempty finite subset of \mathbb{Z}^4 and σ^2 is the variance of μ .

2 Proof of the main theorem

Before the formal proof, let us first mention the main idea. Since the branching is critical, the expectation of the number of visits to a is G(a) = G(0, a) where G is the Green function of an ordinary random walk with jump distribution θ . Our assumptions about θ can guarantee $G(z) \approx |z|^{-2}$ (see Theorem 2 in [4]). If conditionally on visiting a, the conditional expectation of the number of visits is of order $\log |a|$, then we can get (1.3). In fact, we will show that this is true with high probability.

Let us introduce some notations. Classically, a branching random walk can be regarded as a random function $S: V(T) \to \mathbb{Z}^4$, where T is a random plane tree, i.e. a rooted ordered tree, and V(T) is the set of all vertices of T. In our case T is a Galton-Watson tree with offspring distribution μ . Conditionally on T, we assign to every edge eof T a random variable Y_e according to θ independently. Then, S(v), for any $v \in V(T)$ is Probability of visiting a distant point by a critical branching random walk in \mathbb{Z}^4

just the sum of the random variables Y_e over all edges e belonging to the unique simple path from the root to u in the tree (hence the root is mapped to the origin). Since we have an order \prec for the children of each vertex in T, we could adopt the classical order, for all vertices, according to the so-called Depth-first search on V(T) as follows. For v and v', two different vertices, let $\omega = (v_0, v_1, \ldots, v_m)$ and $\omega' = (v'_0, v'_1, \ldots, v'_n)$ be the unique simple paths in the tree from the root (hence $v_0 = v'_0$ is the root) to v and v'respectively. We say that v is on the left of v', if either (v_0, v_1, \ldots, v_m) is a subsequence of $(v'_0, v'_1, \ldots, v'_n)$ or $v_i \prec v'_i$, where $i = \min\{k : v_k \neq v'_k\}$.

For any branching random walk sample $S : V(T) \to \mathbb{Z}^4$ that visits $a, V_a := \{v \in V(T) : S(v) = a\}$ is not empty. Let u be the leftmost point in V_a and (v_0, v_1, \ldots, v_k) be the unique simple path in T from the root to u. Then $(S(v_0), S(v_1), \ldots, S(v_k))$ is a path in \mathbb{Z}^4 from the origin to a. We denote this path by $\tilde{\gamma}(S)$. Let N be the number of visits to a. For any γ , a path from the origin to a, define $p(\gamma) = P(N > 0, \tilde{\gamma}(S) = \gamma)$ and $e(\gamma) = E(N|N > 0, \tilde{\gamma}(S) = \gamma)$. Note that N > 0 iff S visits a. For any path $\gamma = (z_0, \ldots, z_n)$ in \mathbb{Z}^4 , define $g(\gamma) = \sum_{i=0}^n G(z_i, a) = \sum_{i=0}^n G(a - z_i)$. Let $\mathcal{G} = 1\{S \text{ visits } a\} \cdot g(\tilde{\gamma}(S))$. The following lemmas are key ingredients for our main theorem.

Lemma 2.1. For any γ , a path from the origin to a such that $p(\gamma) > 0$, we have:

$$e(\gamma) \ge g(\gamma) \sum_{i \ge 2} \mu(i).$$
(2.1)

Lemma 2.2. There exists positive constants c, c_1, c_2 , such that for all $a \in \mathbb{Z}^4$ with |a| sufficiently large, we have

$$P(0 < \mathcal{G} \le c_1 \log |a|) \le c_2 / |a|^{2+c}.$$
(2.2)

We postpone proofs of these two lemmas and start the proof of Theorem 1.1. Since μ is critical, we have:

$$EN = G(0, a) \asymp |a|^{-2}.$$

By Lemma 2.1, we have:

$$|a|^{-2} \approx EN \ge P(\mathcal{G} \ge c_1 \log |a|) E(N|\mathcal{G} \ge c_1 \log |a|)$$
$$\ge P(\mathcal{G} \ge c_1 \log |a|) (\sum_{i\ge 2} \mu(i)) c_1 \log |a|$$
$$\ge P(\mathcal{G} \ge c_1 \log |a|) \log |a|.$$

Note that since μ is critical and nondegenerate, $\sum_{i>2} \mu(i) > 0$. Therefore:

$$P(\mathcal{G} \ge c_1 \log |a|) \preceq 1/(|a|^2 \log |a|).$$

Then we have:

$$P(\mathcal{S} \text{ visits } a) = P(\mathcal{G} > 0)$$

= $P(0 < \mathcal{G} < c_1 \log |a|) + P(\mathcal{G} \ge c_1 \log |a|)$
 $\leq 1/|a|^{2+c} + 1/(|a|^2 \log |a|)$
 $\leq 1/(|a|^2 \log |a|).$

Proof of Lemma 2.1. Fix a $\gamma = (z_0, z_1, \ldots, z_k)$ such that $p(\gamma) > 0$. For any branching random walk sample S such that $\tilde{\gamma}(S) = \gamma$, write a_i (b_i respectively) for the number of siblings of z_i on the left of z_i (on the right respectively), for $i = 1, \ldots, k$. From the tree

ECP 24 (2019), paper 32.

structure, one can easily see that, for any $l_1,\ldots,l_k,\,m_1,\ldots,m_k\in\mathbb{N}$, we have

$$P(N > 0, \tilde{\gamma}(S) = \gamma; a_i = l_i, b_i = m_i, \text{ for } i = 1, \dots, k)$$
$$= s(\gamma) \prod_{i=1}^k \left(\mu(l_i + m_i + 1)(q(a - z_{i-1}))^{l_i} \right), \quad (2.3)$$

where $s(\gamma)$ is the probability weight for the random walk with jump distribution θ , i.e., $s(\gamma) = \prod_{i=1}^{k} \theta(z_i - z_{i-1})$ and q(z) is the probability that the branching random walk avoids z conditioned on the initial particle having only one child.

Conditionally on the event in (2.3), the expectation of N is:

$$G(0) + \sum_{i=1}^{k} m_i G(a - z_{i-1}).$$

Recall that $g(\gamma) = \sum_{i=0}^{k} G(a - z_i) = G(0) + \sum_{i=1}^{k} G(a - z_{i-1})$. Thus it suffices to show:

$$E(b_i|N>0, \tilde{\gamma}(\mathcal{S})=\gamma) \ge \sum_{i\ge 2} \mu(i).$$

A straight computation using (2.3) gives:

$$E(b_i|N > 0, \tilde{\gamma}(S) = \gamma) = \frac{\sum_{l \ge 0, m \ge 0} m\mu(l+m+1)(q(a-z_{i-1}))^l}{\sum_{l \ge 0, m \ge 0} \mu(l+m+1)(q(a-z_{i-1}))^l}$$

$$\ge \frac{\sum_{l=0, m \ge 1} 1 \cdot \mu(l+m+1)}{\sum_{l \ge 0, m \ge 0} \mu(l+m+1)}$$

$$= \frac{\sum_{m \ge 1} \mu(m+1)}{\sum_{j \ge 1} j\mu(j)}$$

$$= \frac{\sum_{i \ge 2} \mu(i)}{1}$$

$$= \sum_{i \ge 2} \mu(i).$$

Proof of Lemma 2.2. A straight calculation using (2.3) gives:

$$p(\gamma) = s(\gamma) \prod_{i=1}^{k} \left(\sum_{l_i \ge 0, m_i \ge 0} \mu(l_i + m_i + 1)(q(a - z_{i-1}))^{l_i}\right)$$

$$\leq s(\gamma) \prod_{i=1}^{k} \left(\sum_{l_i \ge 0, m_i \ge 0} \mu(l_i + m_i + 1)\right)$$

$$= s(\gamma) \prod_{i=1}^{k} \left(\sum_{j \ge 1} j\mu(j)\right)$$

$$= s(\gamma).$$

Hence, we have:

$$P(0 < \mathcal{G} \le c_1 \log |a|) = \sum_{\gamma: 0 \to a, g(\gamma) \le c_1 \log |a|} p(\gamma)$$
$$\le \sum_{\gamma: 0 \to a, g(\gamma) \le c_1 \log |a|} s(\gamma).$$

Then Lemma 2.2 is implied by the following proposition.

ECP 24 (2019), paper 32.

http://www.imstat.org/ecp/

Probability of visiting a distant point by a critical branching random walk in \mathbb{Z}^4

Proposition 2.3. There exist c, c_1, c_2 such that for $a \in \mathbb{Z}^4$ with |a| sufficiently large,

$$P(\tau_a < \infty, \sum_{i=0}^{\tau_a} G(S_i) \le c_1 \log |a|) \le c_2 |a|^{-(2+c)})$$

where $(S_i)_{i \in \mathbb{N}}$ is the ordinary random walk starting from 0 with jump distribution θ and τ_a is the hitting time for a.

Note that we actually deduce Lemma 2.2 by applying the previous proposition to the random walk with jump distribution $-\theta$.

This proposition is an adjusted version of Lemma 10.1.2 (a) in [1]. It is assumed there that θ has finite support which is stronger than our case, though its conclusion is also stronger than ours. Following the argument there, we present a proof here.

Proof of Proposition 2.3. It suffices to show:

$$P(\sum_{i=0}^{\gamma_n} G(S_i) \le c_1 \log n) \le c_2 n^{-(2+c)},$$
(2.4)

where $\tau_n = \min\{k \ge 0 : |S_k| \ge n\}$. Choose $\alpha < \beta < c \in (0, 0.1)$, such that

 $(4+\epsilon)(1-\beta) - 2(1-\alpha) > 2+c.$ (2.5)

Let A be the event that $|X_i| \leq M \doteq \lfloor n^{1-\beta} \rfloor$ for $i = 1, 2, \ldots, T \doteq 2\lfloor n^{2(1-\alpha)} \rfloor$ (where $X_i = S_i - S_{i-1}$). Write $X'_i = X_i 1\{|X_i| \leq M\}$ and $S'_i = X'_1 + \cdots + X'_i$. Note that on A, $S_i = S'_i$ for $i = 1, \ldots, T$ and

$$P(A^{c}) \preceq n^{2(1-\alpha)} P(|X_{1}| \ge M) \le n^{2(1-\alpha)} \frac{E|X_{1}|^{4+\epsilon}}{M^{4+\epsilon}} \stackrel{(2.5)}{\preceq} n^{-(2+c)}.$$

Write $l = \max\{i \in \mathbb{N} : 4^i \le n^{1-\beta}\}$ and $L = \max\{i \in \mathbb{N} : 4^i \le n^{1-\alpha}\}$. Define ξ_i for i = l, l + 1, ..., L, inductively by $\xi_l = 0$, $\xi_{i+1} = (\xi_i + (4^{i+1})^2) \land \min\{k \in \mathbb{N} : |S'_k| \ge 4^{i+1}\}$, where we write $x \land y = \min\{x, y\}$. Note that $\xi_L \le (4^L)^2 (1 + \frac{1}{16} + (\frac{1}{16})^2 + ...) \le 2(4^L)^2 \le 2\lfloor n^{2(1-\alpha)} \rfloor$ and $L - l \asymp (\beta - \alpha) \log n$.

On the other hand, since $G(x) \succeq (|x|+1)^{-2}$, we have

$$\sum_{i=\xi_k}^{\xi_{k+1}-1} G(S'_i) \succeq (\xi_{k+1} - \xi_k) (4^{k+1})^{-2}$$

It is not difficult to see that for every $b \in (0, 0.1)$ we could find some $t \in (0, 0.1)$ such that

$$\sup_{k,n\in\mathbb{N},x\in\mathbb{Z}^4:l\le k\le L-1,|x|\le 2\cdot 4^k} P(\xi_{k+1}-\xi_k\le t(4^{k+1})^2|S'_{\xi_k}=x) < b.$$

For example, one could first show, using Kolmogorov's maximal inequality, the corresponding result when the role of X'_i is replaced by X_i and then note that on A, $S_i = S'_i$ and that $P(A^c)$ is very small.

Write I_k for $1{\xi_{k+1} - \xi_k \le t(4^{k+1})^2}$. Then we have

$$P(I_{k+1} = 1 | S'_0, \dots, S'_{\mathcal{E}_k}) < b.$$

Therefore, $J \doteq \sum_{k=l}^{L-1} I_k$ is stochastically bounded by a binomial random variable with parameters L - l and b. By choosing b small enough and standard estimates for binomial random variables, one could get

$$P(J \ge \frac{L-l}{2}) \le (2\sqrt{b(1-b)})^{L-l} \le n^{-3}.$$

ECP 24 (2019), paper 32.

On the event $\{J < \frac{L-l}{2}\}$, we have

$$\sum_{i=\xi_l}^{\xi_L-1} G(S'_i) \ge \frac{L-l}{2} t \asymp (\beta - \alpha) t \log n.$$

Noting that $P(A^c) \leq n^{-(2+c)}$ and on A, $\sum_{i=0}^{\tau_n} G(S_i) \geq \sum_{i=\xi_l}^{\xi_L-1} G(S'_i)$, we finish the proof.

References

- Lawler, G. F. and Limic, V.: Random walk: a modern introduction. *Cambridge University* Press, Cambridge, 2010. MR-2677157
- [2] Le Gall, J.-F. and Lin, S.: The range of tree-indexed random walk. J.Inst. Math. Jussieu 15, (2016), 271-317. MR-3480967
- [3] Le Gall, J.-F. and Lin, S.: The range of tree-indexed random walk in low dimensions. Ann. Probab. 43, (2015), 2701-2728. MR-3395472
- [4] Uchiyama, K.: Green's functions for random walks on \mathbb{Z}^N . Proc. London Math. Soc. 77, (1998), 215-240. MR-1625467
- [5] Zhu, Q.: On the critical branching random walk III: the critical dimension, arXiv:1701.08917

Acknowledgments. This work was done when the author was a PhD student in the University of British Columbia. The author would like to thank his advisor, Professor Omer Angel for inspiring discussions.