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Abstract

In this note we consider a certain class of Gaussian entire functions, characterized by
some asymptotic properties of their covariance kernels, which we call admissible (as
defined by Hayman). A notable example is the Gaussian Entire Function, whose zero
set is well-known to be invariant with respect to the isometries of the complex plane.

We explore the rigidity of the zero set of Gaussian Taylor series, a phenomenon
discovered not long ago by Ghosh and Peres for the Gaussian Entire Function. In
particular, we find that for a function of infinite order of growth, and having an
admissible kernel, the zero set is “fully rigid”. This means that if we know the location
of the zeros in the complement of any given compact set, then the number and location
of the zeros inside that set can be determined uniquely. As far as we are aware, this is
the first explicit construction in a natural class of random point processes with full
rigidity.
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1 Introduction

Zero sets of random analytic functions, and especially Gaussian ones, have attracted
the attention of researchers from various areas of mathematics in the last two decades.
Given a sequence {an}n≥0 of non-negative numbers, we consider the random Taylor
series

f (z) =
∑
n≥0

ξnanz
n, (1.1)

where {ξn}n≥0 is a sequence of independent standard complex Gaussians. By the Cauchy-
Hadamard formula, a necessary and sufficient condition for f to be almost surely (a.s.)
an entire function is

lim
n→∞

a1/nn = 0,

and in this case we call f a Gaussian entire function (not to be confused with the
Gaussian Entire Function which is defined below). We will only consider transcendental
entire functions, that is, sequences an which contain infinitely many non-zero terms.
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Rigidity for zero sets of Gaussian entire functions

Denote by Zf = f−1 {0} the zero set of f ; its properties are determined by the covariance
kernel

Kf (z, w) = E
[
f (z) f (w)

]
=: G(zw̄), where G(z) :=

∑
n≥0

a2nz
n.

One model that was particularly well studied is the Gaussian Entire Function (GEF),
given by the Taylor series

F (z) =

∞∑
n=0

ξn
zn√
n!
, z ∈ C,

with ξn as before. It is well-known that its zero set is invariant under the isometries of
the complex plane (see [6, §2.3]), and this fact has lead to quite an intensive study of its
properties. Not long ago, Ghosh and Peres [3] established a rigidity phenomenon for
the GEF. More precisely, if K ⊂ C is any compact set, then the number of zeros in K,
and their first moment (i.e. sum), are uniquely determined if we are given the precise
location of all zeros of F in C\K. For more details on the GEF see the book [6], and the
ICM lecture notes [8].

It is of interest to construct point processes with higher order rigidity (e.g. [1]). We
will say that a point process in C is “fully rigid” if its restriction to a compact set K
is determined by its restriction to the complement C \K (see Section 1.2 for a formal
definition). To study the rigidity of the zero set of a Gaussian entire function we impose
certain conditions on its covariance kernel. The admissibility condition is a regularity
property of the kernel, originally introduced by Hayman [5] to study generating functions,
see Section 1.1 for the definition. In addition, we relate the rigidity of the zero set, to
a certain growth condition on the function G, see the statement of Theorem 1.2. Two
examples where the zero set exhibits full rigidity, include the kernel functions

G(z) = exp (exp (z)) , and G(z) =
∑
n≥0

zn

logn (n+ e)
,

see Section 3.2. Another approach to full rigidity can be found in [2].

1.1 Admissible kernel functions

Given an entire function G with non-negative Taylor coefficients, put

a (r) = r
G′ (r)

G (r)
, b (r) = ra′ (r) .

An entire function G that satisfies the following conditions is called admissible:

1. b (r)→∞ as r →∞,

2. there exists a function, δ : [0,∞)→ (0, π) such that the following holds:

G
(
reiθ

)
= G (r) exp

(
iθa (r)− 1

2θ
2b (r)

)
(1 + o (1))

uniformly for |θ| ≤ δ (r) as and r →∞, and∣∣G (reiθ)∣∣ =
o (G (r))√

b (r)
, (1.2)

uniformly for δ (r) ≤ |θ| ≤ π as r →∞.

Let us briefly explain the meaning of each condition. The first condition implies that the
function G grows sufficiently fast as r →∞. More precisely,

logG (r) 6= O
(
log2 r

)
, r →∞.
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Rigidity for zero sets of Gaussian entire functions

Actually, our theorem relies on a much stronger growth assumption as detailed in
Remark 1.3. The second condition implies that near θ = 0, the function θ 7→ logG

(
reiθ

)
is well-approximated by its Taylor polynomial of degree 2 (in θ), and away from θ = 0,
the function θ 7→ G

(
reiθ

)
is negligibly small compared to G (r). The class of admissible

functions has many nice closure properties, for example if f is admissible, then so is ef ,
for details and examples, see [5].

1.2 Rigidity of the zero set

Ghosh and Peres [3] introduced the following property for point processes.

Definition 1.1. A random point processes Z taking values in C, is said to be rigid of
level n ∈ N+ ∪ {+∞}, if for any bounded open set D ⊂ C and any integer 0 ≤ k < n,
there exists a map Sk from the set of all locally finite point configurations in C \D to the
complex plane, such that∑

D∩Z
zk = Sk (Z ∩ (C \D)) , almost surely.

In addition, if the point process is rigid of level +∞ we call it fully rigid.

For a fully rigid process, given the locations of all the points outside a given compact
set K, we can recover the precise location of the points inside K, using our knowledge
of all moments. More precisely, if the number of points in D is N = S0 (which is almost
surely finite), then the points {zj}Nj=1 in D are the roots of the polynomial

N∏
j=1

(z − zj) =

N∑
`=0

(−1)N−`eN−`(z1, . . . , zN )z`,

where {e`}N`=0 are the elementary symmetric polynomials of the roots (with e0 ≡ 1). It is
well known that the polynomials {e`} can be computed in terms of the power sums {Sk}
(see [9, Prop. 7.7.1]).

In Section 3 we will construct explicitly Gaussian entire functions whose zero sets
are fully rigid point processes, using our main result.

Theorem 1.2. Let f be a Gaussian entire function with covariance kernel
(z, w) 7→ G(zw). If G is admissible and satisfies

B := lim inf
r→∞

log b (r)

log r
> 0, (1.3)

then Zf is rigid of level dBe, the smallest integer larger than B. Moreover,

if log b(r)
log r −−−→r→∞

∞, then Zf is fully rigid.

Remark 1.3. The condition (1.3) implies that G is an entire function of lower order at
least B, that is

lim inf
r→∞

log logG (r)

log r
≥ B.

Remark 1.4. For the specific choice an = (n!)
−A with 1

2A an integer, which in particular
implies (1.3) with B = 1

2A , Ghosh and Krishnapur [1] showed that the zero set process is
rigid of level 1

2A + 1. However, our Theorem only gives rigidity of level 1
2A , which seems

to be the best result we can get from those general hypotheses.

Remark 1.5. In our theorem, one could relax the usual definition of “admissible” by
replacing the expression

√
b(r) in condition (1.2) with b(r)1/4.
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Rigidity for zero sets of Gaussian entire functions

2 Proof of Theorem 1.2

The proof is based on the following theorem, which is a special case of [3, Theorem
6.1].

Theorem 2.1 (Rigidity condition). Let n ∈ N+. If for any bounded open set D ⊂ C, any
ε > 0, and every 0 ≤ k < n there exists a smooth test function ΦεD,k which coincides with

z 7→ zk on D and Var
(∫
C

ΦεD,k dZf
)
< ε, then Zf is rigid of level n.

Let B be as in the statement of Theorem 1.2, k ∈ [0, B) an integer, and ε > 0. Also
given D a bounded open set, choose L ≥ 1 large enough so that D is contained in
{|z| ≤ L}. In the proof, C will denote a positive numerical constant, independent of all
the other parameters, which may differ between appearances.

2.1 Definition of the test function ΦεD,k

For η = η(B, ε) > 0, which will be chosen later, let ϕη : [0,∞)→ [0, 1] be a twice

differentiable function which is equal to 1 on [0, 1], equal to 0 on
[
e

1
η ,∞

)
, and such that

|ϕ′η(r)| ≤ Cη

r
, |ϕ′′η(r)| ≤ Cη

r2
, ∀r ≥ 0. (2.1)

We also put f̂(z) = f(z)√
G(|z|2)

, and write ϕη,L(r) = ϕη(r/L). Now we choose our test

function to be
ΦεD,k(z) = Φ̃η,L(z) := zkϕη,L(|z|). (2.2)

2.2 Integral expression for the variance of Φ̃η,L

According to [6, equation 3.5.2],

Var

(∫
C

Φ̃η,L dZf
)

=
1

4π2

∫∫
C2

∆Φ̃η,L(z)∆Φ̃η,L(w)E
[
log
∣∣∣f̂(z)

∣∣∣ log
∣∣∣f̂(w)

∣∣∣] dm(z) dm(w),

where m is the Lebesgue measure in the complex plane. Furthermore, by [6, Lemma
3.5.2],

E
[
log
∣∣∣f̂(z)

∣∣∣ log
∣∣∣f̂(w)

∣∣∣] =
1

4

∑
j≥1

1

j2
|J (z, w)|2j ,

where

J (z, w) =
E
[
f(z)f(w)

]
√
E |f2(z)|E |f2(w)|

=
G (zw)√

G
(
|z|2
)√

G
(
|w|2

) ,
is the normalized covariance kernel. By the Cauchy–Schwarz inequality |J (z, w)| ≤ 1.
Thus ∑

j≥1

1

j2
|J (z, w)|2j ≤ |J (z, w)|2

∑
j≥1

1

j2
≤ 2 |J (z, w)|2 ,

which in turn implies

Var

(∫
C

Φ̃η,L dZf
)
≤ C

∫∫
C2

∣∣∣∆Φ̃η,L(z)
∣∣∣ ∣∣∣∆Φ̃η,L(w)

∣∣∣ |J (z, w)|2 dm(z) dm(w).

Recall that the Laplace operator in polar coordinates z = reiθ is given by ∂2

∂r2 + 1
r
∂
∂r+ 1

r2
∂2

∂θ2 .
Thus, substituting (2.2), we compute

∆Φ̃η,L(z) = ∆z,z

(
zkϕη,L(|z|)

)
= ∆r,θ

(
rkeikθϕη,L(r)

)
= rk−2eikθ

[
(2k + 1) rLϕ

′
η( rL ) + r2

L2ϕ
′′
η( rL )

]
.
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Rigidity for zero sets of Gaussian entire functions

Hence, by (2.1) we obtain ∣∣∣∆Φ̃η,L(z)
∣∣∣ ≤ Cη|z|k−2(k + 1).

Moreover, observe that ∆Φ̃η,L vanishes outside the annulus
{
L ≤ |z| ≤ Le1/η

}
; this

follows since ϕη,L is supported therein, and zk is holomorphic. Combining these observa-
tions we obtain the following bound for the variance

Var

(∫
C

Φ̃η,L dZf
)
≤ C(k + 1)2η2

∫∫
C2

χL(|z|)χL(|w|) |J (z, w)|2 dm(z) dm(w),

where χL(r) = rk−21[1,e1/η ] (r/L).
Using polar coordinates z = Lreiθ1 and w = Lseiθ2 , and the definition of J , we finally

obtain the following bound for the variance

Var

(∫
C

Φ̃η,L dZf
)
≤ C(k + 1)2η2L2(k−1) · IL, (2.3)

where

IL :=

∫ ∞
0

∫ ∞
0

χ(r)χ(s)
A(L2rs)

G(L2r2)G(L2s2)
rsdr ds,

A(R) :=

∫ π

−π

∫ π

−π

∣∣∣G2
(
Rei(θ1−θ2)

)∣∣∣ dθ1 dθ2,

and χ ≡ χ1.

2.3 Preliminary claims

Before bounding the integral IL, we need two simple claims.

Claim 2.2. We have

A(R) ≤ C · G
2 (R)√
b (R)

,

for R sufficiently large.

Proof. Making the linear change of variables θ2 = θ2, θ = θ1 − θ2 gives

A(R) =

∫ π

−π

∫ π

−π

∣∣G2
(
Reiθ

)∣∣ dθ dθ2 = 2π

∫ π

−π

∣∣G2
(
Reiθ

)∣∣ dθ.

Recall that by admissibility∣∣G (Reiθ)∣∣2
G2 (R)

=

{
exp

(
−θ2b(R) (1 + o(1))

)
, |θ| ≤ δ (R) ;

o(1)
b(R) , otherwise,

as R→∞, where the o(1) terms are uniform in θ. Thus, for R sufficiently large

A(R) ≤ 2π ·G2 (R)

[∫
|θ|≤δ(R)

exp
(
− 1

2θ
2b(R)

)
dθ +

1

b(R)

]
.

Since ∫
|θ|≤δ(R)

exp
(
− 1

2θ
2b(R)

)
dθ ≤

∫
R

exp
(
− 1

2θ
2b(R)

)
dθ ≤ C√

b(R)

the claim follows.
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Rigidity for zero sets of Gaussian entire functions

Claim 2.3. For r ≤ s,

G2(L2rs)

G(L2r2)G (L2s2)
≤ exp

(
− log2 s

r
· min
x∈[L2r2,L2s2]

b (x)

)
.

Proof. Notice that if h (t) is a C2 convex function on the interval [x, y], the function

t 7→ h (t)− 1
2 t

2 min
s∈[x,y]

h′′(s)

is also convex, and therefore,

2h

(
x+ y

2

)
≤ h(x) + h(y)− 1

4
(y − x)

2
min
s∈[x,y]

h′′(s). (2.4)

Recall that G(et) =
∑∞
n=0 a

2
ne
nt, with an ≥ 0. It follows from the Cauchy–Schwarz

inequality that

G2(et) · d2

dt2
logG(et) = G(et) · d2

dt2
G(et)−

(
d

dt
G(et)

)2

=

∞∑
n=0

a2ne
nt ·

∞∑
n=0

n2a2ne
nt −

( ∞∑
n=0

na2ne
nt

)2

≥ 0,

hence the function t 7→ logG(et) is convex. Applying (2.4) to this function, with
x = log

(
L2r2

)
and y = log

(
L2s2

)
, we obtain

log

(
G2(L2rs)

G(L2r2)G (L2s2)

)
≤ − log2 s

r
· min
t∈[log(L2r2),log(L2s2)]

d2

dt2
logG(et),

and we remind that the second derivative of logG(et) is denoted by b (et).

2.4 Bounding the integral IL

Recall that

IL =

∫ ∞
0

∫ ∞
0

χ(r)χ(s)
A(L2rs)

G(L2r2)G(L2s2)
rsdr ds, χ(r) = rk−21[1,e1/η ] (r) ,

and therefore by Claim 2.2 we have that

IL ≤ C
∫ ∞
0

∫ ∞
0

χ(r)χ(s)
G2(L2rs)

G(L2r2)G (L2s2)

1√
b (L2rs)

rsdr ds.

The above integral is symmetric with respect to the variables r and s, and therefore, if
we put

ML := min
x∈[L2r2,L2s2]

b (x) ,

then, by Claim 2.3,

IL ≤ C
∫ ∞
0

∫ s

0

χ(r)χ(s)
G2(L2rs)

G(L2r2)G (L2s2)

1√
b (L2rs)

rsdr ds

≤ C
∫ ∞
0

∫ s

0

χ(r)χ(s) exp
(
− log2 s

r
·ML

) 1√
b (L2rs)

rsdr ds,

By the definition of χ, we get

IL ≤ C
∫ ∞
1

∫ s

1

exp
(
− log2 s

r
·ML

) 1√
b (L2rs)

rk−1sk−1 dr ds.
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Rigidity for zero sets of Gaussian entire functions

Fix k < B0 < B. By the assumption in the statement of the theorem, for x0 sufficiently
large b(x) ≥ xB0 for all x ≥ x0, thus there exist a constant c > 0 (depending on B0) such
that b (x) ≥ cxB0 for any x ≥ 1. Therefore,

IL ≤ CL−B0

∫ ∞
1

∫ s

1

exp
(
−c log2 s

r
·
(
L2r2

)B0
)
rk−B0/2−1sk−B0/2−1 dr ds.

Making the change of variables s = xr, we obtain

IL ≤ CL−B0

∫ ∞
1

∫ ∞
1

exp
(
−c log2 x · (Lr)2B0

)
r2k−B0−1xk−B0/2−1 dr dx

=: CL−B0
[
I1L + I2L

]
,

where I1L is the integral over the range x ∈ [1, 2e] and r ∈ [1,∞), and I2L is the integral
over the rest.

To bound I1L, we use the elementary inequality log x > 1
3 (x− 1), for 1 ≤ x ≤ 2e, and

for L ≥ 1 we get

I1L ≤
∫ ∞
1

∫ 2e

1

exp
(
− c

9
(x− 1)

2 · (Lr)2B0

)
r2k−B0−1xk−B0/2−1 dx dr

≤ (2e)k
∫ ∞
1

∫ 2e

1

exp
(
− c

9
(x− 1)

2
(Lr)

2B0

)
r2k−B0−1 dx dr

≤ 3(2e)k√
c

∫ ∞
1

1√
(Lr)

2B0

r2k−B0−1 dr

=
3(2e)k√

c

∫ ∞
1

r2k−2B0−1 dr · L−B0 =: C1(B0, k)L−B0 .

Next we turn to the integral I2L. Since x > 2e, for L ≥ 1 we get using a linear change of
variables∫ ∞
1

exp
(
−c log2 x (Lr)

2B0

)
r2k−B0−1 dr =

∫ ∞
1

exp

(
−c
(

1 + log
x

e

)2
(Lr)

2B0

)
r2k−B0−1 dr

≤ exp
(
−c log2 x

e

)∫ ∞
1

exp
(
−c (Lr)

2B0

)
r2k−B0−1 dr

= exp
(
−c log2 x

e

)∫ ∞
L

e−cy
2B0
( y
L

)2k−B0−1 dy

L

≤ exp
(
−c log2 x

e

)
LB0−2k

∫ ∞
1

e−cy
2B0

y2k−B0−1 dy

=: exp
(
−c log2 x

e

)
LB0−2k · C2(B0, k).

Thus we obtain

I2L ≤ C2(B0, k)LB0−2k
∫ ∞
2e

exp
(
−c log2 x

e

)
xk−B0/2−1dx =: C3(B0, k)LB0−2k.

Since B0 > k, we have established that for L ≥ 1,

IL ≤ CL−B0
[
I1L + I2L

]
≤ CL−B0

[
C1(B0, k)L−B0 + C3(B0, k)LB0−2k

]
≤ C4(B0, k)L−2k.

2.5 Finishing the proof

Recalling (2.3), we conclude that

Var

(∫
C

Φ̃η,L dZf
)
≤ C(k + 1)2η2L2(k−1) · IL ≤ C5(B0, k)η2L−2.
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Rigidity for zero sets of Gaussian entire functions

Choosing η sufficiently small, so that C5(B0, k)η2 < ε and appealing to the rigidity
condition of Ghosh and Peres, we find that Zf is rigid of level dBe. This completes the
proof of Theorem 1.2. �

3 Examples

Here are some explicit examples for Theorem 1.2.

3.1 The Mittag-Leffler function

We consider the function f whose associated kernel function G is the Mittag-Leffler
function

G(z) = Gα(z) =
∑
n≥0

zn

Γ (1 + α−1n)
,

where α ∈ (0,∞) is a fixed parameter. Notice that G1(z) = ez and G 1
2

(z) = cosh
√
z. The

asymptotic behavior of G is well-known (see for example [4, Section 3.5.3]). In particular,
as |z| → ∞

G(z) =

{
αez

α

+O
(
|z|−1

)
, |arg z| ≤ π

2α ;

O
(
|z|−1

)
, otherwise.

Remark 3.1. Notice that for α ∈
(
0, 12
]

the complement of
{
|arg z| ≤ π

2α

}
is empty.

From this asymptotic description, one easily verifies the admissibility assumptions
are fulfilled, with

a (r) ∼ αrα, b (r) ∼ α2rα, r →∞.

Thus, by Theorem 1.2, Zf is rigid of level dαe. However, for α an integer, using a similar
proof to [1] and the above asymptotic formula one can check that Zf is rigid of level
α+ 1.

3.2 The double exponent and the Lindelöf functions

Consider the function f associated with kernel function G(z) = ee
z

. Since ez is
admissible, so is G. By direct computation,

a (r) = rer, b (r) = r (r + 1) er.

Thus, G has an infinite order of growth, by which we mean that (1.3) holds with B = +∞.
Hence, by Theorem 1.2, Zf is fully rigid.

In addition, for α > 0, consider the function f whose associated kernel function G is
given by

G(z) = Gα (z) =
∑
n≥0

zn

logαn (n+ e)
.

It follows, for example, from [7, example 1.4.1], that G is admissible with

a (r) ∼ exp
(
r1/α − 1

)
, b (r) ∼ exp

(
r1/α − log r

α
− 1− logα

)
, r →∞.

In particular, the function G has an infinite order of growth, and again by Theorem 1.2,
Zf is fully rigid.
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