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Abstract

Bullets are fired from the origin of the positive real line, one per second, with inde-
pendent speeds sampled uniformly from a discrete set. Collisions result in mutual
annihilation. We show that a bullet with the second largest speed survives with
positive probability, while a bullet with the smallest speed does not. This also holds for
exponential spacings between firing times. Our results imply that the middle-velocity
particle survives with positive probability in a two-sided version of the bullet process
with three speeds known to physicists as ballistic annihilation.
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1 Introduction

The bullet process is a deceptively simple interacting particle system. Each second, a
bullet is fired from the origin along the positive real line with a speed uniformly sampled
from (0, 1). When a faster bullet collides with a slower one, they mutually annihilate.
The bullet problem is to show there exists sc > 0 such that if the first bullet has speed
faster than sc it survives with positive probability, and if it has speed slower than sc it is
almost surely annihilated. In this work, we prove an analogous transition occurs when
speeds are instead sampled uniformly from a discrete set.

Let (Si)i≥1 be i.i.d. speeds sampled according to a probability measure µ supported
on (0,∞). These define bullet trajectories bi(t) = Si(t− i) defined for t ≥ i. We identify
bullets with the trajectory and refer to bi(t) as the bullet bi. A deterministic delay
between firings is convenient for our argument, but not needed. All of the results here
hold for exponentially distributed firing times (see Remark 2.4). When two or more
bullets collide, all of them are annihilated.
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The bullet problem with discrete speeds

The classical bullet problem is formulated with µ the Lebesgue measure on (0, 1). In
this work, we consider the discrete analogue with µ a sum of equally weighted point-
masses on a set of n ≥ 3 distinct speeds: 0 < sn < · · · < s2 < s1 < ∞. We will refer to
this as a discrete bullet process.

Let {bj 7→ bi} denote the event of bullets bj and bi colliding with bj faster, thus
resulting in their mutual annihilation. We say that bj catches bi. Note that this can only
happen if i < j, Si < Sj , and all bullets fired at times k ∈ (i, j) annihilate before the time
at which bj(tk) = bk(tk). Define τ̃ to be the minimum index with bτ̃ 7→ b1. The minimum is
to account for the possibility of a simultaneous collision of several bullets. If b1 is never
caught by another bullet, set τ̃ =∞. When τ̃ =∞, we say that b1 survives. When τ̃ <∞,
we say that b1 perishes. Our main result is that, when the bullet speeds are uniformly
sampled from a finite set, a second fastest bullet survives with positive probability, while
the slowest bullet does not.

Theorem 1.1. In the discrete bullet process it holds that

(i) P[b1 survives | S1 = s2] > 0, and

(ii) P[b1 survives | S1 = sn] = 0.

That b1 survives when it has maximal speed is obvious because no bullet can catch
it. This is not the case with the second fastest bullet. There will a.s. be infinitely many
faster bullets trailing it. So, its survival hinges on interference of slower bullets.

Theorem 1.1 solves the discrete analogue of the bullet problem. The coupling between
two bullet processes with bullet speeds (Si) and (S′i) in which S1 > S′1 and Si = S′i for
i ≥ 2 has b1 surviving for every realization in which b′1 survives. This guarantees that,
when µ is fixed, the probability the first bullet survives is non-decreasing with respect to
its speed. This monotonicity combined with Theorem 1.1 implies that there is a speed
at which an initial bullet with that speed will perish, while one with faster speed will
survive with positive probability. An interesting further question, that relates back to the
original bullet problem, is to locate where the phase transition occurs when µ is uniform
on the set {1/n, 2/n, . . . , 1}. Currently it is open to to prove that when b1 has the third
fastest speed it survives with positive probability for some choice of n.

1.1 Application to ballistic annihilation

Ballistic annihilation is a physics model that was introduced to isolate intriguing
features observed in more complicated systems, such as diffusions in random media and
irreversible aggregation [6, 1]. Particles are placed on the real line according to a unit
intensity Poisson point process. Each particle is assigned a speed from a measure ν on
R. Particles move at their assigned speed and mutually annihilate upon colliding. This
model received considerable attention from physicists in the 1990s (see [4, 12, 11] for a
start).

Although it appears to have arisen independently, it was observed in [13] that the
bullet problem is equivalent to one-sided ballistic annihilation on [0,∞). If one considers
the graphical representation of bullet locations, it is easy to see that inverting time and
space coordinates makes the process into ballistic annihilation with inverted speeds (see
Figure 1). To make the bullet process two-sided, we extend the definition bi(t) = Si(t− i)
to all integers i.

Systems with three velocities (and not necessarily the uniform measure) are canonical
in ballistic annihilation [5]. A corollary of Theorem 1.1 (i) is survival of the second fastest
particle for asymmetric three-element sets with the uniform measure.

Corollary 1.2. Let −∞ < r3 < r2 < r1 <∞ and ν be the uniform measure on {r3, r2, r1}.
For ballistic annihilation with either unit or exponential spacings, a particle with speed
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Figure 1: The bullet process is equivalent to one-sided ballistic annihilation.

r2 will survive with positive probability.

A similar observation was made in [13] for the case of symmetric speeds {−1, 0, 1}.
Our result is especially relevant given the recent developments for the three-velocity
case that occurred while this article was under review [3, 7, 10]. These concern the
existence of a phase transition for the survival probability of the middle-velocity particle.

1.2 History

The IBM problem of the month from May in 2014 credits a version of the problem
to an engineer named David Wilson. The question there is to fire exactly 2m bullets
with independent uniform (0, 1) speeds and compute the probability of the event Em =

{no bullets survive}. There is an unpublished result of Fedor Nazarov that

P[Em] =

m∏
i=1

(
1− 1

2i

)
= O(m−1/2). (1.1)

Note this is a special case of the more general formula (1.2) described below.
Letting Em,s be the event Em conditioned on S1 = s, it is conjectured that

P[Em,s] = O(m−cs) with cs →∞ as s→ 1.

It is surprising that changing one bullet speed out of the 2n total bullets affects the
exponent. One would naively expect it only changes P[Em] by a constant factor. This
conjecture along with a guess that sc ≈ 0.9, come from simulations performed by Kostya
Makarychev.

Understanding P[Em,s] would be an important step towards solving the bullet prob-
lem. Suppose one could prove that cs > 1 for some value of s, and consider a sequence
of finite bullet processes with 2m total bullets that are coupled to have the same speeds
in the overlap. The Borel-Cantelli lemma would imply that, for m greater than or equal
to some almost surely finite M , there are always at least two surviving bullets. The two
earliest fired surviving bullets in the process with 2M bullets must survive for all larger
bullet processes, otherwise there would be a process with more than 2M bullets with no
surviving bullets. Since the first fired bullet is one of the surviving bullets in the process
with 2M bullets with positive probability, we have the first bullet survives with positive
probability.

The bullet process with n bullets fired was recently studied by Nicolas Broutin and
Jean-François Marckert [2]. They consider arbitrary non-atomic speed distributions on
[0,∞) and find that the distribution qn for the number of surviving bullets is invariant
for several different spacings and acceleration functions for the bullets. The distribution
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The bullet problem with discrete speeds

shows up in other contexts such as random permutations and random matrices. It is
characterized by the following recurrence relation:

q0(0) = 1, q1(1) = 1, q1(0) = 0,

and for n ≥ 2 and any 0 ≤ n,

qn(k) =
1

n
qn−1(k − 1) +

(
1− 1

n

)
qn−2(k) (1.2)

with qn(−1) = qn(k) = 0 for k > n.
This formula generalizes (1.1), which describes q2m(0). The equation for qn can

be analyzed to prove a central limit theorem that says ≈ log n bullets survive (see [2,
Proposition 2]). Unfortunately, this does not imply survival with infinitely many bullets.
Although the number of surviving bullets is growing like log n, we cannot rule out the
possibility that the number of bullets alive at time n in the process is 0 infinitely often.
Indeed, there are instances of qn for which this happens and others where it does not.
These results suggest that it is equally challenging to analyze variants of the bullet
problem.

1.3 Overview of proofs

Let τ be the index of the bullet that destroys b1 in a discrete bullet process with
S1 = s2. The idea in Proposition 2.3 is to condition on S2 and derive a recursive
distributional inequality for τ . If S2 = s1, then b1 is caught no matter what. However,
if S2 = s2, then b1 survives “twice” as long as it would have otherwise. If the second
bullet is slower than s2, then it acts as a shield for b1—thus increasing the survival time
of b1. These arguments hinge on the renewal properties described in Lemma 2.1 and
Lemma 2.2, and a fortuitous dependence that makes fast bullets less likely to appear
behind the bullet that catches b2 when S2 < s2.

We deduce Theorem 1.1 (i) in Section 2.2 by proving that τ is stochastically larger
than the number of leftward steps required for a rightward-biased random walk to reach
0 when starting at 1. As this is infinite with positive probability, so is τ . The recursive
technique we employ is partly inspired by the work of Christopher Hoffman, Tobias
Johnson, and Matthew Junge on the frog model on trees [8, 9].

We use Theorem 1.1 (i) to prove Theorem 1.1 (ii) via contradiction. If the slowest bullet
survives with positive probability, then monotonicity implies that the second slowest
bullet also survives with positive probability. When we extend the bullet process to be
two-sided, the two slowest speeds become the two fastest speeds from the perspective
of bullets fired before them. Theorem 1.1 then implies that both speeds survive with
positive probability in the two-sided process. Because the two-sided process is ergodic,
the Birkhoff ergodic theorem gives a positive density of both speeds that survive. This is
a contradiction since these surviving bullets with different speeds must eventually meet,
and thus cannot survive.

1.4 Organization

The proofs of Theorem 1.1 (i), (ii), and Corollary 1.2 are in Sections 2, 3, and 4,
respectively.

2 Survival of a second fastest bullet

We assume that µ is the uniform measure on a set of n discrete speeds 0 < sn < · · · <
s2 < s1. As defined just above, let τ be the minimum index with bτ 7→ b1 in the process
with S1 = s2. The goal of this section is to prove that P[τ =∞] > 0. To this end, we will
throughout assume that P[τ =∞] = 0 and derive a contradiction.
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The bullet problem with discrete speeds

2.1 Obtaining a recursive inequality

We start with two lemmas describing a renewal property in bullet processes with
discrete speeds. The first states that the bullet speeds behind a maximal speed bullet
are independent of any event involving this bullet.

Lemma 2.1. Let 1 ≤ i < j be fixed indices. Conditional on {bj 7→ bi, Sj = s1)}, the
random variables (Sk)k>j are independent and have distribution µ.

Proof. The bullet bj has the fastest speed, so the bullets behind it do not interfere. Thus
the event {bh 7→ bi, Sj = s1} depends only on the bullet speeds S1, S2, . . . , Sj−1.

A longer range renewal property holds for other annihilation events where, outside
of a particular window, the bullet speeds become independent.

Lemma 2.2. Set i < j, fix x < y from the set {sn, . . . , s1}, and let

E = E(S, x, y, i, j) = {bj 7→ bi, Si = x, Sj = y}.

There exists a positive integer a = a(x, y, i, j) such that, conditional on E, the bullet
speeds Sj+a, Sj+a+1, . . . are independent and have distribution µ. Moreover, no bullet
fired after time j + a can reach bj before it reaches bi.

Proof. Given i, j, x, and y, let a be the smallest integer such that a maximal speed bullet
fired at time j+a cannot reach bj before the collision time of bj and bi. The event bj 7→ bi
is thus unaffected by the bullet speeds Sj+a, Sj+a+1, . . .. The independence claim follows.

Because we will need it later, we write down an explicit formula for a. A collision
between bj and bi would occur at time t0 and location z0 given by

t0 =
jy − ix
y − x

, z0 =
j − i
y − x

xy.

We then define k0 to be the smallest firing time at which a fastest bullet could not
interfere with bj 7→ bi:

k0 := min{k > j : s1(t0 − k) > z0}. (2.1)

We conclude by setting a = k0 − j.

We will occasionally refer to the interval [j, j + a− 1] as the window of dependence of
E. This is because, as described more precisely above in Lemma 2.2, the bullet speeds
in this interval are influenced by E, while those beyond it are again i.i.d. Note, however,
that bullets behind the window of dependence may still interfere with bullets inside the
window, just not in a way that prevents bj from catching bi.

We will write X ∼ Y if X and Y are random variables with the same distribution.
Recall that one of the several equivalent forms of stochastic dominance X � Y is that
there is a coupling with marginals X ′ ∼ X and Y ′ ∼ Y such that X ′ ≥ Y ′ almost surely.
We let 1{·} denote an indicator function.

Proposition 2.3. Suppose that τ is almost surely finite. Let τ1, . . . , τ5 be independent
copies of τ that are also independent of S2. There exists an event F ⊆ {S2 < s2}
independent of the τi with P[F ] = ε > 0 so that

τ � 1{S2=s1} (2.2)

+ 1{S2=s2}(τ1 + τ2) (2.3)

+ 1{S2<s2}(1F (τ3 + τ4) + 1F cτ5). (2.4)

The value of ε may depend on the underlying set of speeds.
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The bullet problem with discrete speeds

Proof. We will establish each line of the above by conditioning on the value of S2. When
S2 = s1 as in (2.2), we have b2 7→ b1 deterministically. Although τ = 2 on this event, it
will simplify our calculations later to use the indicator function as a lower bound.

When S2 = s2 as in (2.3), suppose that bσ destroys b2. We have translated the original
setup by one index, so σ ∼ τ1 + 1. Only a bullet with the fastest speed can catch b2, thus
Sσ = s1. Lemma 2.1 ensures that Sσ+1, Sσ+2, . . . are independent of σ. Suppose that
bσ′ 7→ b1. Once again this is the first unobstructed speed-s1 bullet fired after bσ. Thus
σ′ − σ ∼ τ2 − 1, and this difference is independent of σ. Summing (σ′ − σ) + σ we obtain
the term τ1 + τ2 in (2.3).

The pivotal case is (2.4), when S2 < s2. The idea is that b2 acts as a shield, and causes
an ε-bias for the bullets close behind it to have speed s2. The reasoning in (2.3) then
ensures that b1 will survive twice as long on this ε-likely event. To see this rigorously,
suppose that bγ is the earliest bullet catching b2.

Since γ � τ (by the coupling mentioned in the introduction), we have γ is almost
surely finite by our hypothesis P[τ =∞] = 0. We will start by describing the ε-likely event
F for which we obtain an extra copy of τ . When b2 is caught, there is a finite window of
dependence behind the catching bullet (see Lemma 2.2). With positive probability this
window contains only bullets with speed s2.

A minor nuisance is showing that there is enough room in the window behind bγ
for a speed-s2 bullet. We start by restricting to the event that S2 = sn and show that
P[γ > M ] > 0 for all M > 0. Let m ≥ 2. With positive probability, there are alternating
fastest and slowest bullets from index 3 up to 2m, and then a speed-s2 bullet. Call this
event

A = {S2 = sn, S3 = sn, S4 = s1, . . . , S2m−1 = sn, S2m = s1, S2m+1 = s2}.

On the event A, we have γ = 2m+ 1 and Sγ = s2 so long as nothing catches bγ before it
reaches b2. We track the size of the window of dependence behind bγ with the function

h(m) = a(s2, sn, 2m+ 1, 2), m ≥ 2.

Here a(s2, sn, 2m+ 1, 2) ≥ 1 is as in Lemma 2.2; it is the index distance behind 2m+ 1 at
which bullets resume being i.i.d. conditioned on the event {b2m+1 7→ b2, S2m+1 = s2, S2 =

sn}. We remark that, because we are fixing the indices and speeds in a, the function h is
deterministic.

Plugging our conditions into the explicit formula at (2.1), we have t0 →∞ as m→∞,
and also s2/s1 < 1. Thus, h(m) is non-decreasing with limm→∞ h(m) = ∞. Let m0 =

min{m ≥ 2: h(m) > 1}. As bullet speeds are between sn and s1, we must have m0 <∞
and thus 1 < h(m0) <∞. Let B be the event that all of the bullets in this window have
speed s2. Formally,

B = {S2m0+1+i = s2 for all i = 1, . . . , h(m0)− 1}.

Let F = A ∩ B. This event specifies the speeds of 2m0 + h(m0) − 1 bullets, and by
independence we have

P[F ] = pm0−1
1 pm0

n p
h(m0)
2 > 0, (2.5)

where pi = µ(si).
Conditioned on F , all of b2, . . . , b2m0+1 mutually annihilate. Moreover, S2m0+1+i =

s2 for i = 1, . . . , h(m0) − 1. The trailing bullets speeds (S2m0+1+`)`≥h(m0) are i.i.d. µ-
distributed. The reasoning that yields the additional copy of τ in (2.3) then gives
h(m0)− 1 ≥ 1 additional copies of τ when F occurs. We take only one of them and set
ε = P[F ] as in (2.5). This accounts for the term 1F (τ3 + τ4) in (2.4).
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The bullet problem with discrete speeds

Now that we have constructed the ε-likely event to have b1 survive for at least two
copies of τ , it remains to show that b1 survives for at least a τ -distributed amount of time
on the event {S2 < s2} ∩ F c. This will give the term 1F cτ5 in (2.4).

We borrow an idea from [3] to recursively construct a sequence of windows of
dependence induced by the event {bγ 7→ b2}. Let η1 = γ + a(Sγ , S2, γ, 2). By Lemma 2.2,
this is the index at which bullet speeds are once again independent and µ-distributed,
conditional on {bγ 7→ b2, S2 < s2} ∩ F c. On the event {bγ 7→ b2}, the bullet process
restricted to bullets fired in the interval [2, η1) may contain surviving particles with
speeds ≤ s2, but cannot contain surviving speed-s1 particles. For t ≥ 1, we recursively
define ηt+1 to be the largest value in the union of all windows of dependence induced by
collision events in the process restricted to [2, ηt). The quantity ηt+1 is finite since τ is
almost surely finite and thus all of the bullets fired at times in [2, ηt) will eventually be
caught.

Let t0 be the first time that ηt0+1 = ηt0 . Since τ is almost surely finite, we must have
t0 <∞. By the definition of a window of dependence, there are no surviving particles
in the process restricted to [2, ηt0) and the bullets fired at times ≥ ηt0 are independent
and µ-distributed. Moreover, the bullets fired after time ηt0 will not interfere with any
collision events in the process restricted to [2, ηt0 ]. Thus, on the event {S2 < s2} ∩ F c,
we have τ − ηt0 + 2 ∼ τ5 with τ5 an independent copy of τ .

Remark 2.4. The same recursive inequality as in Proposition 2.3 holds for exponential
spacings. Let (ζi) be i.i.d. unit exponential random variables and consider a discrete
bullet process where we fire b1 at time t1 = ζ1, and bi at time ti = ti−1 + ζi for i ≥ 2. As
before, let τ be the random index of the first bullet to catch b1 conditional on S1 = 2. We
claim that τ still satisfies Proposition 2.3, but with a different event F ⊆ {S2 < s2}.

As before, if S2 = s1, then τ = 2. So, (2.2) still holds. Next, if S2 = s2, then b1 survives
twice as long in the same sense as (2.3). This is because a bullet with speed s1 must
catch b2, and the bullets trailing it have independent speeds and firing times that keep
the exponential spacings just as in Lemma 2.1.

Lastly, if S2 < s2, then we let γ be the index bγ 7→ b2. The construction is simpler than
before. Just as in Lemma 2.2 the event bγ 7→ b2 induces a finite window of dependence
tγ + a. Let N be the number of bullets fired in the window of dependence. We take

F = {N = 1, S2 = sn, S3 = s2, S4 = s2} (2.6)

to be the event that b2 is caught by b3 when it has speed s2. The conditions N = 1, S4 = s2
ensure that there is one speed-s2 bullet in the window of dependence and no others. It is
important that the spacings have the memoryless property, otherwise the times bullets
are fired after tγ + a would not have the same distribution as at the start of the process.

We will see in the next section that satisfying the recursive distributional inequality
in Proposition 2.3 is sufficient to deduce a nonnegative random variable places some
mass at∞. So, our results extend to exponential spacings.

2.2 Analyzing the recursive inequality

Our goal now is to show that any random variable satisfying the recursive distri-
butional inequality in Proposition 2.3 must be infinite with positive probability. With
ε as in Proposition 2.3, we introduce an operator A = A(µ) that acts on probability
measures supported on the positive integers. It will be more convenient to represent
such a measures by the random variable T with law µ. To define A, we let S be sampled
according to µ, and U be an independent uniform (0, 1) random variable. Take T1, . . . , T5
to be i.i.d. copies of T that are also independent of U and S. Let ε be as in Proposition 2.3.
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The bullet problem with discrete speeds

We obtain a new distribution

AT d
= 1{S=s1} + 1{S=s2}(T1 + T2) + 1{S<s2}(1{U≤ε}(T3 + T4) + 1{U>ε}T5).

By Proposition 2.3, assuming P[τ =∞] = 0, it holds that

τ � Aτ. (2.7)

We first observe that A is monotone.

Lemma 2.5. If T � T ′, then AT � AT ′.

Proof. This follows from the canonical coupling which sets each Ti ≥ T ′i .

Let Am denote m iterations of A. We next prove that Amτ converges to a fixed point
of A. We write T (m) =⇒ T for random variables (T (m)) supported on the positive
integers, if P[T (m) ≤ k]→ P[T ≤ k] for all k ≥ 1.

Lemma 2.6. Let τ be as in Proposition 2.3 and assume P[τ = ∞] = 0. It holds that

Amτ =⇒ τ∗ with τ∗
d
= Aτ∗. Moreover, τ∗ is the unique fixed point of A.

Proof. Let Fm(k) = P[Amτ ≤ k] be the cumulative distribution function of Amτ . By
the previous lemma and (2.7), we have Amτ � Am+1τ for all m ≥ 0. Let F (k) =

limm→∞ Fm(k). The limit exists because the definition of stochastic dominance implies
that {Fm(k)}∞m=0 is an increasing bounded sequence. The function F is non-decreasing
and belongs to [0, 1]. Moreover, since τ � Amτ by (2.7) and Lemma 2.5, we have
F (k) ≥ P[τ ≤ k] for all k. In particular, limk→∞ F (k) = 1 by our assumption P[τ <∞] = 1.
Thus, F (k) is the cumulative distribution function of some random variable τ∗.

To see that τ∗ = Aτ∗ observe that

τ∗ = lim
m→∞

Am+1τ = lim
m→∞

A(Amτ) = A( lim
m→∞

Amτ) = Aτ∗.

The limit commutes with A in the third step, because AT decomposes into a sum of
indicator random variables and i.i.d. copies of T . Thus, if a collection of random variables
T (m) =⇒ T , it is easy to deduce that AT (m) =⇒ AT .

As for uniqueness, one way to see this is to assume that T = AT is a fixed point
and explicitly compute the generating function f(x) := ExT = ExAT . This gives a
quadratic equation in f(x) that can be solved for explicitly. Choosing the proper branch
is straightforward since f(0) = 0. Since the probability generating function uniquely
specifies the distribution of a random variable, this proves that all fixed points of A have
the same distribution.

Next we observe that τ∗ couples to the return time to zero of a lazy biased random walk
on the integers.

Proposition 2.7. Let τ∗ be as in Lemma 2.6. It holds that P[τ∗ =∞] > 0.

Proof. Since {S = s2}∩{S < s2} = ∅, an equivalent definition of Aτ∗, that reuses copies
of τ∗ for disjoint events, is

Aτ∗ = 1{S=s1} + (1{S=s2} + 1{S<s2,U≤ε})(τ
∗
1 + τ∗2 ) + 1{S<s2,U>ε}τ

∗
2 .

Let T be the number of leftward steps to reach 0 for a discrete-time lazy random walk on
Z started at 1. The walk moves left with probability p` = P[S = s1] = 1/n, moves right
with probability

pr = P[{S = s2} ∪ {S < s2, U ≤ ε] =
1

n
+
n− 2

n
ε,

ECP 24 (2019), paper 27.
Page 8/11

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP238
http://www.imstat.org/ecp/


The bullet problem with discrete speeds

and stays put with probability 1− (p` + pr). Because ε > 0, we have p` < pr and such a
biased random walk does not return to 0 with probability (1 + (n − 2)ε)−1 > 0. Hence
P[T =∞] > 0. Using the Markov property and translation invariance of simple random
walk, it is easy to see that T = AT . By Lemma 2.6, we have τ∗ is the unique fixed point

of A. Thus, T
d
= τ∗ and P[τ∗ =∞] > 0.

We are now ready to establish survival of a bullet with the second largest speed.

Proof of Theorem 1.1 (i). Assume that P[τ = ∞] = 0. The relation at (2.7) along with
Proposition 2.7 immediately give the contradiction τ � τ∗ with P[τ∗ =∞] > 0.

3 The slowest bullet does not survive

In this section we continue to assume that µ is the uniform measure on a discrete set
of positive speeds with at least three elements. In the usual bullet process the bullet
bi has position Si(t− i). We can extend this definition to all integers i ∈ Z to make the
two-sided bullet process. In this process bullets are removed the first time their position
coincides with another. Now bullets can be destroyed from both sides.

We say that bi survives+ if the position of bi never coincides with the position of any
other bj for j > i. Alternatively, we say that bj survives− if its position never coincides
with the position of a bj for j < i. If both occur, we say that bj survives+,−.

Survival+ only depends on bullets fired after a given bullet, so it describes whether
a bullet catches the survivor. So, survival+ favors faster bullets. On the other hand,
survival− favors slower bullets since it describes whether a bullet catches one fired
before it. As bullet speeds are independent, we can describe survival+,− as a product of
the probabilities of one-sided survival.

Lemma 3.1. For all i ∈ Z it holds that P[bi survives+,− ] = P[bi survives+]P[bi survives−].

The advantage of the two-sided process is that it is ergodic, and so there cannot be
two different bullet speeds that survive with positive probability.

Proposition 3.2. Only one bullet speed can survive+,− with positive probability in the
two-sided discrete bullet process.

Proof. Notice that the two-sided process is translation invariant with i.i.d. speeds and
thus ergodic. If two or more different speeds survived+,− with positive probability,
then by the Birkhoff ergodic theorem, we would have a positive fraction of surviving+,−

bullets of each speed. Suppose that bi is one of these surviving bullets. For some j, k > 0

there almost surely are surviving+,− bullets bi+j and bi−k with the same speed as one
another, but different speed than bi. With different speeds, one of these must collide
with bi, or perhaps some other surviving+,− bullet. In either case, this contradicts that
these bullets survive+,−.

Proof of Theorem 1.1 (ii). If b1 survives+ then b1 survives in the discrete bullet process.
So it suffices to prove that P[b1 survives+ | S1 = sn] = 0. To show a contradiction
suppose this probability is equal to q > 0. A bullet with speed sn is the easiest to catch
for bullets fired at times after it, but it is uncatchable by bullets fired before it. Thus,
P[b1 survives− | S1 = sn] = 1.

Let s′2 be the second slowest speed in the support of µ. The monotonicity for survival
of bullets discussed in the introduction following the statement of Theorem 1.1 ensures
that P[b1 survives+ | S1 = s′2] ≥ q. Moreover, a bullet with speed s′2 is the second fastest
bullet from the perspective of bullets fired before it. Since µ is uniform, we can apply
Theorem 1.1 (i) and deduce P[b1 survives− | S1 = s′2] = p > 0.
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The one-sided survival probabilities above are all positive. By Lemma 3.1, a bullet with
speed sn or s′2 survives+,− with positive probability. This contradicts Proposition 3.2.

4 Application to ballistic annihilation

Corollary 1.2 follows from Theorem 1.1 (i) and Lemma 3.1.

Proof of Corollary 1.2. Start with ballistic annihilation with the uniform measure on
three speeds: r3 < r2 < r1. If r1 > 0, then this is equivalent to a two-sided discrete
bullet process with speeds si = 1/ri. If r1 ≤ 0 we can use the fact that the manner in
which collisions happen in ballistic annihilation is translation invariant (this is referred
to as the linear speed-change invariance property in [13, Section 2]). Namely, the same
particle collisions will occur (although at different times) in ballistic annihilation with
shifted-speeds r′i = ri − r1 + 1. The r′i are positive and, so this process is equivalent
to a two-sided discrete bullet process with speeds si = 1/r′i. In both cases we have
sn < s2 < s1 and µ the uniform measure.

In the two-sided discrete bullet process from the previous section, a bullet with speed
s2 is the second fastest from the perspective of bullets fired before and after it. So,
Theorem 1.1 (i) guarantees that both

P[b1 survives+ | S1 = s2],P[b1 survives− | S1 = s2] > 0,

Note that these probabilities are positive, but may not be equal. Combine this with
Lemma 3.1 and we have

P[b1 survives+,− | S1 = s2] > 0.

We conclude by noting that equivalence of the two processes ensures that a speed-s2
bullet surviving with positive probability is the same as a speed-r2 particle surviving in
ballistic annihilation.
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