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Abstract

We consider a population of N individuals. Each individual has a type belonging
to some at most countable type space K. At each time step each individual of type
k ∈ K mutates to type l ∈ K independently of the other individuals with probability
mk,l. It is shown that the associated empirical measure process is Markovian. For
the two-type case K = {0, 1} we derive an explicit spectral decomposition for the
transition matrix P of the Markov chain Y = (Yn)n≥0, where Yn denotes the number of
individuals of type 1 at time n. The result in particular shows that P has eigenvalues
(1 − m0,1 − m1,0)

i, i ∈ {0, . . . , N}. Applications to mean first passage times are
provided.
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1 Introduction and main results

Consider a population consisting of N ∈ N := {1, 2, . . .} individuals. It is assumed
that each individual has a type belonging to some at most countable type space K. At
each time step each individual of type k ∈ K mutates its type independently of the other
individuals to type l ∈ K with given probability mk,l ∈ [0, 1]. We call the stochastic matrix
M := (mk,l)k,l∈K the mutation matrix.

For n ∈ N0 := {0, 1, . . .} and r ∈ {1, . . . , N} let X(r)
n denote the type of individual r at

time step n. Clearly, X := (Xn)n∈N0
, defined via Xn := (X

(1)
n , . . . , X

(N)
n ) for all n ∈ N0,

is a homogeneous discrete-time Markov chain with state space KN . Since for each
r ∈ {1, . . . , N} the process (X

(r)
n )n∈N0

is a Markov chain and since the types of the N
individuals evolve independently, the Markov chain X is a so-called product chain having
n-step transition probabilities

π
(n)
i,j := P(Xn = j |X0 = i) =

N∏
r=1

P(X(r)
n = jr |X(r)

0 = ir) =

N∏
r=1

m
(n)
ir,jr

(1.1)

for all n ∈ N0 and all i = (i1, . . . , iN ), j = (j1, . . . , jN ) ∈ KN , where Mn = (m
(n)
k,l )k,l∈K

denotes the n-step mutation matrix. The process η := (ηn)n∈N0 , defined via

ηn :=

N∑
r=1

δ
X

(r)
n
, n ∈ N0, (1.2)
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is called the empirical measure process of X. Let K denote the power set of K. Clearly,
η has state spaceM, the set of measures µ on (K,K) with values in {0, . . . , N} and total
mass µ(K) = N . It is a priori not totally obvious that η is still Markovian, since functions
of Markov chains are in general not Markovian anymore. Proposition 1.1 below shows
that η still enjoys the Markov property and provides a formula for its n-step transition
probabilities. The process of going from X to η is an example of what is called projection
or lumping of Markov chains in the literature. The proof of Proposition 1.1 is provided in
Section 4. In the following, for any measure µ ∈ M, we use the notation µk := µ({k}),
k ∈ K.

Proposition 1.1. The empirical measure process η of the product chain X is a homoge-
neous discrete-time Markov chain with state spaceM, the set of measures µ on (K,K)

with values in {0, . . . , N} and total mass µ(K) = N , and n-step transition probabilities

p(n)
ν,µ := P(ηn = µ | η0 = ν) =

∑
T

∏
k∈K

(
νk!

(∏
l∈K

(m
(n)
k,l )tk,l

tk,l!

))
, ν, µ ∈M, n ∈ N0,

where the sum
∑
T extends over all T = (tk,l)k,l∈K ∈ NK×K0 with marginals

∑
l∈K tk,l =

νk, k ∈ K, and
∑
k∈K tk,l = µl, l ∈ K.

From now on we restrict to the two-type situation K = {0, 1} and write the mutation
matrix M = (mk,l)k,l∈{0,1} as well in the form

M =

(
1− a a

b 1− b

)
to avoid indices. The model has hence three parameters, the population size N and
the two mutation probabilities a = m0,1 and b = m1,0. We exclude the two trivial cases
a = b = 0 and a = b = 1. Note that the entries of

Mn = (m
(n)
k,l )k,l∈{0,1} =

(
1− an an
bn 1− bn

)

are explicitly known, namely an = m
(n)
0,1 = a(a + b)−1(1 − (1 − a − b)n) and bn = m

(n)
1,0 =

b(a+ b)−1(1− (1− a− b)n), n ∈ N0.

For the particular situation a = b this model was studied by Scoppola [12] and in a
preprint of Berger and Cerf [1]. We allow here for a general stochastic mutation matrix
M . Nestoridi [10] studies a different but slightly related random walk on the hypercube
{0, 1}N which at each step flips a fixed number k of randomly chosen coordinates.

As in [1] we are interested in the stochastic process Y := (Yn)n∈N0 , defined via

Yn := ηn({1}) =
∑N
r=1X

(r)
n =: ‖Xn‖1 for all n ∈ N0. Note that Yn counts the individuals

of type 1 at time n. Corollary 1.2 below is a straightforward consequence of Proposition
1.1. In the following we use for the binomial probabilities the notation B(n, p, k) :=(
n
k

)
pk(1− p)n−k, n ∈ N0, p ∈ [0, 1], k ∈ {0, . . . , n}.

Corollary 1.2. The process Y is a homogeneous discrete-time Markov chain with state
space S := {0, . . . , N} and n-step transition probabilities

p
(n)
i,j := P(Yn = j |Y0 = i) =

min(i,j)∑
k=0

B(i, 1− bn, k) B(N − i, an, j − k), i, j ∈ S, n ∈ N0,

(1.3)
where an = m

(n)
0,1 = a(a+ b)−1(1− (1−a− b)n) and bn = m

(n)
1,0 = b(a+ b)−1(1− (1−a− b)n),

n ∈ N0.
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Remark 1.3. Let n ∈ N0 and i ∈ S. Corollary 1.2 shows that p(n)
i,j = P(Kn + Ln = j),

where Kn and Ln are independent random variables with Kn binomially distributed with
parameters i and 1 − bn and Ln binomially distributed with parameters N − i and an.
From |1− a− b| < 1 we conclude that limn→∞ an = a/(a+ b) and limn→∞ bn = b/(a+ b).
Thus, Kn → K∞ and Ln → L∞ in distribution as n → ∞, where K∞ and L∞ are
independent with K∞ binomially distributed with parameters i and a/(a + b) and L∞
binomially distributed with parameters N − i and a/(a+ b). It follows that

lim
n→∞

p
(n)
i,j = P(K∞ + L∞ = j) = B

(
N,

a

a+ b
, j
)

=: %j , i, j ∈ S. (1.4)

The stationary distribution (%j)j∈S of Y is hence the binomial distribution with parame-
ters N and a/(a+ b).

Let us now turn to spectral analysis. Spectral decompositions of transition matrices
P for Ehrenfest type models [5] have been provided by Kac [8]. Ehrenfest type models
belong to the class of nearest neighborhood models or local Markov chains allowing
for jumps only to the nearest neighbors (or at least to close neighbors) with positive
probability. In contrast, the Markov chain Y under consideration is non-local satisfying
pi,j > 0 for all i, j ∈ S. In this situation it is usually much harder to find the eigenvalues
and corresponding eigenvectors of P . The literature on (examples of) such classes of full
occupied matrices with explicitly known spectral decomposition is hence somewhat more
sparse. One example from mathematical population genetics are transition matrices
of the forward process of exchangeable Cannings population models [3, 4, 6]. Another
well known example, being important in the theory of discrete Fourier transforms, are
matrices of the form P = (a(i+j) mod N+1)i,j∈{0,...,N} for some given sequence (a0, . . . , aN ).

In the following it is assumed that a 6= 0 and b 6= 0 to avoid trivialities. In order to
state the main result (Theorem 1.4 below), let us introduce the left lower triangular
matrix A := (ai,j)i,j∈S and the right upper triangular matrix B := (bi,j)i,j∈S via

ai,j :=

(
i

j

)(
− b

a

)i−j
and bi,j :=

(
N − i
j − i

)(
a+ b

a

)i
, i, j ∈ S. (1.5)

Note that A and B are non-singular with inverses A−1 and B−1 having entries

(A−1)i,j =

(
i

j

)(
b

a

)i−j
and (B−1)i,j = (−1)j−i

(
N − i
j − i

)(
a

a+ b

)j
, i, j ∈ S. (1.6)

The main result (Theorem 1.4) provides an explicit spectral decomposition for the
transition matrix of the Markov chain Y . Its proof is provided in Section 4.

Theorem 1.4. Assume that a 6= 0 and b 6= 0. Then the transition matrix P = (pi,j)i,j∈S of
the Markov chain Y has a spectral decomposition of the form

P = RDL (1.7)

with R := AB and L := R−1 = B−1A−1, where A and B are defined via (1.5) and D is the
diagonal matrix with entries di,i := (m1,1−m0,1)N−i = (1−a− b)N−i, i ∈ S. In particular,
P has eigenvalues λi := dN−i,N−i = (1− a− b)i, i ∈ S.

Remark 1.5. The matrices R = (ri,j)i,j∈S and L = (li,j)i,j∈S have entries

ri,j =
∑
k∈S

ai,kbk,j =

min(i,j)∑
k=0

(
i

k

)(
− b

a

)i−k(
N − k
j − k

)(
a+ b

a

)k
, i, j ∈ S, (1.8)
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and

li,j =
∑
k∈S

(B−1)i,k(A−1)k,j

=

N∑
k=max(i,j)

(−1)k−i
(
N − i
k − i

)(
a

a+ b

)k(
k

j

)(
b

a

)k−j
, i, j ∈ S. (1.9)

The last column of R contains the (obvious) right eigenvector (1, . . . , 1)T to the eigenvalue
(1− a− b)0 = 1. The last row of L contains the probabilities lN,j = B(N, a/(a+ b), j) = %j ,
j ∈ S, of the stationary distribution of Y . For a = b the matrices R and L only depend on
the population size N but not on the parameters a and b.

Lemma 5.2 in the appendix (Section 5) shows that R and L have horizontal generating
functions

ri(z) :=
∑
j∈S

ri,jz
j = (z + 1)N−i

(
z − b

a

)i
, i ∈ S, z ∈ C,

and

li(z) :=
∑
j∈S

li,jz
j =

(
a

a+ b

)N(
z +

b

a

)i
(1− z)N−i, i ∈ S, z ∈ C.

From

li(−z) =

(
a

a+ b

)N(
− z +

b

a

)i
(1 + z)N−i =

(
a

a+ b

)N
(−1)iri(z), i ∈ S, z ∈ C,

it follows that the entries of the matrices R and L are related via

li,j = (−1)i−j
(

a

a+ b

)N
ri,j and ri,j = (−1)i−j

(
a+ b

a

)N
li,j , i, j ∈ S.

2 Applications to mean passage times

Spectral decompositions of transition matrices P = (pi,j)i,j∈S of Markov chains
have many applications, in particular in the context of potential theory of Markov
chains. For example, each spectral decomposition P = RDL with L = R−1 implies as
well a spectral decomposition of the resolvent Rα := (I − αP )−1, α ∈ (0, 1), namely
Rα =

∑
n≥0 α

nPn = R(
∑
n≥0 α

nDn)L = RDαL, where Dα denotes the diagonal matrix
with diagonal entries

∑
n≥0 α

ndni,i = 1/(1− αdi,i), i ∈ S. For some more information on
the resolvent we refer the reader to Norris [11, p. 146].

We provide here another application concerning mean passage times. Define W :=

(wi,j)i,j∈S := limn→∞ Pn. Clearly, WP = W andW 2 = W and, hence, (P−W )n = Pn−W
for all n ∈ N. Let F = (fi,j)i,j∈S denote the fundamental matrix associated with the
Markov chain Y , i.e.

F := (I − P +W )−1 =
∑
n≥0

(P −W )n = I +
∑
n≥1

(Pn −W ).

For i, j ∈ S let τi,j := inf{n ∈ N |Y0 = i, Yn = j} denote the first time step n ∈ N when
the chain Y reaches state j if started from state i. It is well known that E(τj,j) = 1/%j ,
j ∈ S, where (%j)j∈S denotes the stationary distribution (1.4) of Y . Now let i 6= j. Then
τi,j has mean (see, for example, Grinstead and Snell [7, p. 459, Theorem 11.16])

E(τi,j) =
fj,j − fi,j

%j
.
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Since, for all i 6= j,

fj,j − fi,j = 1 +
∑
n≥1

(p
(n)
j,j − wj,j)−

∑
n≥1

(p
(n)
i,j − wi,j)

= 1 +
∑
n≥1

(p
(n)
j,j − p

(n)
i,j + wi,j − wj,j︸ ︷︷ ︸

=%j−%j=0

)

= 1 +
∑
n≥1

(p
(n)
j,j − p

(n)
i,j ) =

∑
n≥0

(p
(n)
j,j − p

(n)
i,j ),

we can summaries these results in the form

E(τi,j) =
δi,j
%j

+
1

%j

∑
n≥0

(p
(n)
j,j − p

(n)
i,j ), i, j ∈ S. (2.1)

Explicit formulas for p(n)
i,j are available for the present example (see (1.3)). However,

the calculation of the series on the right hand side in (2.1) is inconvenient. Fortunately,
thanks to the spectral decomposition of P , this series can be expressed as a finite sum
and can hence be calculated rather easily as follows. We have ri,N = 1 for all i ∈ S and,
hence,

∑
n≥0

(p
(n)
j,j − p

(n)
i,j ) =

∑
n≥0

N∑
k=0

(rj,kλ
n
N−klk,j − ri,kλnN−klk,j)

=
∑
n≥0

N−1∑
k=0

(rj,k − ri,k)lk,jλ
n
N−k =

N−1∑
k=0

(rj,k − ri,k)lk,j
1− λN−k

, i, j ∈ S.

3 Final remarks and open problems

1. It is natural to conjecture that the transition matrix Π = (πi,j)i,j∈{0,1}N of the
original product Markov chain X has as well (as Y ) the eigenvalues λi := (1 − a − b)i,
i ∈ {0, . . . , N}, where the right and left eigenspaces to the eigenvalue λi have both
dimension

(
N
i

)
, i ∈ {0, . . . , N}. We leave the proof of this conjecture for future research.

2. Let us briefly come back to the multi-type model with (at most countable) type
space K. For n ∈ N0 and k ∈ K let Y (k)

n := ηn({k}) =
∑N
r=1 1{X(r)

n =k} denote the number

of individuals of type k at time n. From Proposition 1.1 it follows that the process
Y = (Yn)n∈N0 , defined via Yn := (Y

(k)
n )k∈K for all n ∈ N0, is a homogeneous discrete-

time Markov chain with state space S := {(ik)k∈K ∈ NK0 |
∑
k∈K ik = N) and n-step

transition probabilities

p
(n)
i,j = P(Yn = j |Y0 = i) =

∑
T

∏
k∈K

(
ik!

(∏
l∈K

(m
(n)
k,l )tk,l

tk,l!

))
(3.1)

for all n ∈ N0 and all i = (ik)k∈K , j = (jk)k∈K ∈ S, where the sum
∑
T extends over all

T := (tk,l)k,l∈K ∈ NK×K0 with marginals
∑
l∈K tk,l = ik, k ∈ K, and

∑
k∈K tk,l = jl, l ∈ K.

Finding spectral decompositions of the transition matrices of X or Y for the multi-type
model is a challenging open problem.

3. Let us finally provide some (mainly non-rigorous) information on the mixing time
of the chain Y . Assume that P(Y0 = i) = 1 for some given fixed state i ∈ S. Let Y∞ be
binomially distributed with parameters N and a/(a + b). Theorem 1.4 yields an exact
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formula for the total variation distance

d(Yn, Y∞) :=
1

2

N∑
j=0

|P(Yn = j)− P(Y∞ = j)| =
1

2

N∑
j=0

|p(n)
i,j − %j | (3.2)

=
1

2

N∑
j=0

∣∣∣∣ N∑
k=0

ri,kd
n
k,klk,j − %j

∣∣∣∣ =
1

2

N∑
j=0

∣∣∣∣N−1∑
k=0

ri,kd
n
k,klk,j

∣∣∣∣, (3.3)

since ri,N = 1, dN,N = λ0 = 1 and lN,j = %j . In the following it is assumed for simplicity
that a + b < 1 such that all eigenvalues λi = (1 − a − b)i, i ∈ S, are strictly positive.
Note that the spectral gap 1− λ1 = a+ b does not depend on N . From dk,k = λN−k with
λ := λ1 = 1− a− b we conclude that

d(Yn, Y∞) ∼ 1

2

N∑
j=0

|ri,N−1d
n
N−1,N−1lN−1,j | = λncN,i, n→∞, (3.4)

with coefficients cN,i := 1
2 |ri,N−1|

∑N
j=0 |lN−1,j |. The coefficients cN,i are explicitly known,

since, by Theorem 1.4 and the remarks thereafter,

ri,N−1 = N − a+ b

a
i and lN−1,j = %j

(
a

b
− a+ b

b

j

N

)
.

Fix ε ∈ (0, 1). Based on (3.4) it is reasonable to conjecture that a good approximation for
the mixing time tmix(ε) := inf{n ∈ N0 : d(Yn, Y∞) < ε} of the chain Y is

tmix(ε) ≈
⌊

log cN,i − log ε

− log λ

⌋
+ 1. (3.5)

Note however that this approximation is a non-rigorous result. For large N one may
further simplify the approximation (3.5) as follows. We have

N∑
j=0

|lN−1,j | =
a

b

N∑
j=0

∣∣∣∣a+ b

a

j

N
− 1

∣∣∣∣%j =
a

b
E

(∣∣∣∣ Y∞
E(Y∞)

− 1

∣∣∣∣) ∼
√

2a

πbN
, N →∞,

where the last asymptotics follows from well known results for asymptotically normal ran-
dom variables. Together with |ri,N−1| ∼ N as N →∞ it follows that cN,i ∼

√
(aN)/(2πb)

as N →∞. Thus, for large N , one can expect that, independent of the fixed initial state
i,

tmix(ε) ≈
⌊ 1

2 log aN
2πb − log ε

− log λ

⌋
+ 1 (3.6)

is a good approximation for the mixing time. Numerical comparisons with the exact value
tmix(ε), which can be computed via (3.2) using Corollary 1.2 or via (3.3) using Eqs. (1.8)
and (1.9), show that both approximations (3.5) and (3.6) are rather sharp. Based on
these approximations we conjecture that Y is rapidly mixing with tmix(ε) = Θ(logN)

as N →∞. We leave a rigorous proof of this conjecture as an open problem. Since Y
is non-reversible, it is not straightforward to use the eigenvalues and eigenvectors to
rigorously provide upper or lower bounds for the mixing time. For example, Wilson’s
lower bound formula (see, for example, [9, Theorem 13.28]) states that, for 1/2 < λ < 1,

tmix(ε) ≥ 1

2 log(1/λ)

(
log

(
(1− λ)(Φ(i))2

2R

)
+ log

(
1− ε
ε

))
,

where Φ := (Φ(0), . . . ,Φ(N))T is a right eigenvector to the eigenvalue λ and R :=

max0≤i≤N Ei((Φ(Y1)− Φ(i))2). In our situation, Φ(i) = ri,N−1 = N − a+b
a i, i ∈ {0, . . . , N},

and, hence, Φ(i) ∼ N as N →∞. Straightforward calculations show that R = O(N2) as
N →∞. Wilson’s lower bound is hence bounded in N and therefore not helpful to prove
the conjecture that tmix(ε) = Θ(logN) as N →∞.
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4 Proofs

In this section, proofs of Proposition 1.1, Corollary 1.2 and Theorem 1.4 are provided.

Proof. (of Proposition 1.1) We have ηn = f ◦ Xn, where f : KN → M is defined via
f(k) :=

∑N
r=1 δkr for all k = (k1, . . . , kN ) ∈ KN . By a criterion of Burke and Rosenblatt

[2], provided for convenience in Lemma 5.1 in the appendix, the process η is Markovian
if, for every i = (i1, . . . , iN ) ∈ KN and every µ ∈M, the sum

∑
j∈f−1(µ) π

(n)
i,j depends on

i only via f(i). In this case η has n-step transition probabilities p(n)
ν,µ =

∑
j∈f−1(µ) π

(n)
i,j ,

where i ∈ f−1(ν) can be chosen arbitrarily. We therefore fix n ∈ N0, i = (i1, . . . , iN ) ∈ KN

and µ ∈M, and focus on the sum
∑

j∈f−1(µ) π
(n)
i,j . Define ν := f(i). By (1.1),

∑
j∈f−1(µ)

π
(n)
i,j =

∑
j∈S

f(j)=µ

N∏
r=1

m
(n)
ir,jr

=
∑
j∈S

f(j)=µ

∏
k,l∈K

(m
(n)
k,l )nk,l(i,j),

where nk,l(i, j) := |{r ∈ {1, . . . , N} : ir = k, jr = l}|. The matrix N(i, j) := (nk,l(i, j))k,l∈K
has marginals

∑
l∈K

nk,l(i, j) = |{r ∈ {1, . . . , N} : ir = k}| =

N∑
r=1

δir ({k}) = f(i)({k}) = νk, k ∈ K,

and

∑
k∈K

nk,l(i, j) = |{r ∈ {1, . . . , N} : jr = l}| =

N∑
r=1

δjr ({l}) = f(j)({l}) = µl, l ∈ K.

We therefore obtain

∑
j∈f−1(µ)

π
(n)
i,j =

∑
T

( ∏
k,l∈K

(m
(n)
k,l )tk,l

) ∑
j∈S

N(i,j)=T

1,

where the sum
∑
T extends over all T = (tk,l)k,l∈K ∈ NK×K0 with marginals

∑
l∈K tk,l =

νk, k ∈ K, and
∑
k∈K tk,l = µl, l ∈ K. Since there exist exactly (

∏
k∈K νk!)/(

∏
k,l∈K tk,l!)

vectors j = (j1, . . . , jN ) ∈ KN satisfying N(i, j) = T we obtain

∑
j∈f−1(µ)

π
(n)
i,j =

∑
T

∏
k∈K

(
νk!

(∏
l∈K

(m
(n)
k,l )tk,l

tk,l!

))
.

The latter expression depends on i only via f(i) = ν. Now apply Lemma 5.1.

Proof. (of Corollary 1.2) Let K := {0, 1} and K the power set of K. The process (Yn)n∈N0

and the empirical measure process η := (ηn)n∈N0 of X, defined via ηn :=
∑N
r=1 δX(r)

n
for

all n ∈ N0, are for K = {0, 1} essentially the same object, since ηn({0}) = N − Yn and
ηn({1}) = Yn. It hence suffices to verify the statements for η instead of Y . By Proposition
1.1, η is a homogeneous, discrete-time Markov chain with state space M, the set of
measures µ on (K,K) with values in {0, . . . , N} and total mass µ(K) = N , and n-step
transition probabilities

p(n)
ν,µ =

∑
T

ν0!
(1− an)t0,0

t0,0!

a
t0,1
n

t0,1!
ν1!

b
t1,0
n

t1,0!

(1− bn)t1,1

t1,1!
,
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where the sum
∑
T extends over all T = (tk,l)k,l∈{0,1} ∈ NK×K0 with marginals

∑
l∈K tk,l =

νk, k ∈ K, and
∑
k∈K tk,l = µl, l ∈ K. Using the notation k := t1,1, i := ν1 and j := µ1,

this turns into

p(n)
ν,µ =

min(i,j)∑
k=0

(N − i)! (1− an)N−i−(j−k)

(N − i− (j − k))!

aj−kn

(j − k)!
i!

bi−kn

(i− k)!

(1− bn)k

k!
,

which is equal to the right hand side in (1.3).

Proof. (of Theorem 1.4) Two proofs of Theorem 1.4 are provided, both based on generat-
ing functions. The first proof shows that the generating functions of Pi,. and (RDL)i,.
coincide. This proof is relatively short but somewhat intransparent. In particular, the
spectral decomposition, i.e. the matrices R, D and L, have to be known in advance. The
second proof is more technical and hence longer, but has the advantage that a recipe
is provided how to obtain, recursively over l ∈ {0, . . . , N}, a right eigenvector to the
eigenvalue λN−l. Hence, the matrices R, D and L do not need to be known in advance.
The formulas for the entries of these three matrices pop up naturally while performing
the calculations.

Proof 1. It suffices to verify that the generating functions of Pi,. and (RDL)i,.
coincide. From Proposition 1.2 it follows that the ith row of the transition matrix
P = (pi,j)i,j∈S has probability generating function (pgf)∑

j∈S
pi,js

j = (b+ b̄s)i(ā+ as)N−i, i ∈ S, s ∈ R, (4.1)

where ā := 1− a and b̄ := 1− b. On the other hand,∑
j∈S

(RDL)i,js
j =

∑
j∈S

sj
∑
m∈S

ri,mdm,mlm,j =
∑
m∈S

ri,mdm,m
∑
j∈S

lm,js
j .

Plugging in the formula for lm,j (see (1.9)) and interchanging the sums over j and over k
yields

∑
j∈S

(RDL)i,js
j =

N∑
m=0

ri,mdm,m

N∑
k=m

(−1)k−m
(
N −m
k −m

)(
a

a+ b

)k k∑
j=0

(
k

j

)(
b

a

)k−j
sj

=

N∑
m=0

ri,mdm,m

N∑
k=m

(−1)k−m
(
N −m
k −m

)(
a

a+ b

)k(
s+

b

a

)k

=

N∑
m=0

ri,mdm,m

N∑
k=m

(−1)k−m
(
N −m
k −m

)(
as+ b

a+ b

)k

=

N∑
m=0

ri,mdm,m

(
as+ b

a+ b

)m(
a− as
a+ b

)N−m
.

Plugging in dm,m = (1− a− b)N−m and the formula for ri,m (see (1.8)) and interchanging
the sums over m and k yields∑
j∈S

(RDL)i,js
j

=

i∑
k=0

(
i

k

)(
− b

a

)i−k(
a+ b

a

)k N∑
m=k

(
N − k
m− k

)(
as+ b

a+ b

)m(
a− as
a+ b

(1− a− b)
)N−m
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=

i∑
k=0

(
i

k

)(
− b

a

)i−k(
a+ b

a

)k(
as+ b

a+ b

)k(
as+ b

a+ b
+

(a− as)(1− a− b)
a+ b

)N−k

=

i∑
k=0

(
i

k

)(
− b

a

)i−k(
as+ b

a

)k
(1− a+ as)N−k

= (1− a+ as)N−i
i∑

k=0

(
i

k

)(
− b

a

)i−k(
as+ b

a

)k
(1− a+ as)i−k

= (1− a+ as)N−i
(
as+ b

a
− b

a
(1− a+ as)

)i
= (ā+ as)N−i(b+ sb̄)i.

This expression coincides with (4.1) and the result is shown. 2

Proof 2. This proof of Theorem 1.4 is somewhat technical in detail, but there is a
straightforward approach behind the technical calculations. We therefore first describe
the basic method and work out the details afterwards. We proceed as follows. As in the
first proof the starting point is formula (4.1) for the pgf of the ith row of P . Now choose
in (4.1) s = s0 with s0 := −b/a. From b+ b̄s0 = s0(1− a− b) and ā+ as0 = 1− a− b we
conclude that∑

j∈S
pi,js

j
0 =

(
s0(1− a− b)

)i
(1− a− b)N−i = (1− a− b)Nsi0, i ∈ S.

Thus, λN = (1 − a − b)N is an eigenvalue of P with corresponding right eigenvector
x0 = (x0,0, . . . , x0,N )T having entries x0,j := sj0, j ∈ S. Taking the derivative with respect
to s in (4.1) it follows that (product rule)∑

j∈S
pi,jjs

j−1 = i(b+ b̄s)i−1b̄(ā+ as)N−i + (b+ b̄s)i(N − i)(ā+ as)N−i−1a

= (b+ b̄s)i−1(ā+ as)N−i−1
(
ib̄(ā+ as) + (b+ b̄s)(N − i)a

)
.

Choosing again s = s0 = −b/a it follows that∑
j∈S

pi,jjs
j−1
0 =

(
s0(1− a− b)

)i−1
(1− a− b)N−i−1 ·

·
(
ib̄(1− a− b) + s0(1− a− b)(N − i)a

)
= (1− a− b)N−1si−1

0

(
ib̄+ s0(N − i)a

)
= λN−1s

i−1
0

(
ib̄+ ib+ s0Na

)
= λN−1s

i−1
0 (i+ s0Na) = λN−1

(
isi−1

0 +Nasi0
)
.

Adding to this equation the C-fold (C ∈ R) of the equation
∑
j∈S pi,js

j
0 = λNs

i
0 =

λN−1(1− a− b)si0 yields∑
j∈S

pi,j
(
jsj−1

0 + Csj0
)

= λN−1

(
isi−1

0 + (Na+ C(1− a− b))si0
)
.

Choosing the constant C such that C = Na+ C(1− a− b), so C = a
a+bN , yields a right

eigenvector x1 to the eigenvalue λN−1, namely x1 = (x1,0, . . . , x1,N )T with entries

x1,j := jsj−1
0 + Csj0 = jsj−1

0 +
a

a+ b
Nsj0, j ∈ S.

The general method is now obvious. We differentiate (4.1), successively for l = 1, 2, . . . , N ,
exactly l-times with respect to s and choose afterwards s = s0. With some skill one

ECP 24 (2019), paper 15.
Page 9/14

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/19-ECP222
http://www.imstat.org/ecp/


A spectral decomposition for a simple mutation model

obtains a right eigenvector xl to the eigenvalue λN−l. We now carry out the details of
this procedure.

Step 1. In this step a system of key equations is derived which will turn out be useful
to find the eigenvectors of the transition matrix P . This step also explains how the matrix
A pops up during the calculations. The lth derivative of (4.1) is (Leipniz rule)∑

j∈S
pi,j(j)ls

j−l =

l∑
m=0

(
l

m

)
∂m

∂sm
(b+ b̄s)i

∂l−m

∂sl−m
(ā+ as)N−i

=

l∑
m=0

(
l

m

)
(i)m(b+ b̄s)i−mb̄m(N − i)l−m(ā+ as)N−i−(l−m)al−m.

Choosing s = s0 = −b/a and noting that b+ b̄s0 = s0(1− a− b) and ā+ as0 = 1− a− b it
follows that∑

j∈S
pi,j(j)ls

j−l
0 = λN−l

l∑
m=0

(
l

m

)
b̄mal−msi−m0 (i)m(N − i)l−m =: λN−lΣ.

In the following we would like to represent Σ as a linear combination of terms of the
descending factorials (i)k, k ∈ {0, . . . , l}. In order to do this we rewrite the last factor
(N − i)l−m by making use of the formula (x+ y)n =

∑n
k=0

(
n
k

)
(x)k(y)n−k as

(N − i)l−m = (−1)l−m(i−m+ l −N − 1)l−m

= (−1)l−m
l∑

k=m

(
l −m
k −m

)
(i−m)k−m(l −N − 1)l−k

=

l∑
k=m

(
l −m
k −m

)
(−1)k−m(i−m)k−m(N − k)l−k,

since (l −N − 1)l−k = (−1)l−k(N − k)l−k. Plugging in this expression yields

Σ =

l∑
m=0

(
l

m

)
b̄mal−msi−m0 (i)m

l∑
k=m

(
l −m
k −m

)
(−1)k−m(i−m)k−m(N − k)l−k.

Using that (i)m(i − m)k−m = (i)k and
(
l
m

)(
l−m
k−m

)
=
(
l
k

)(
k
m

)
and interchanging the two

sums yields

Σ =

l∑
k=0

(
l

k

)
(N − k)l−k(i)ka

l−ksi−k0

k∑
m=0

(
k

m

)
b̄m(−as0)k−m︸ ︷︷ ︸

=(b̄−as0)k=1

=

l∑
k=0

(
l

k

)
(N − k)l−k(i)ka

l−ksi−k0 = l!

l∑
k=0

(
N − k
l − k

)
al−k

(
i

k

)
si−k0 .

Therefore, ∑
j∈S

pi,j

(
j

l

)
sj−l0 = λN−l

Σ

l!
= λN−l

l∑
k=0

(
N − k
l − k

)
al−k

(
i

k

)
si−k0 .

Let A := (ai,j)i,j∈S denote the matrix with entries ai,j :=
(
i
j

)
si−j0 , i, j ∈ S. Then, the

above equation takes the form

(PA)i,l =
∑
j∈S

pi,jaj,l = λN−l

l∑
k=0

(
N − k
l − k

)
al−kai,k, i, l ∈ S. (4.2)

ECP 24 (2019), paper 15.
Page 10/14

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/19-ECP222
http://www.imstat.org/ecp/


A spectral decomposition for a simple mutation model

We will see in the following step, that these are the key equations in order to find the
eigenvectors of the transition matrix P .

Step 2. We will now use the system of equations (4.2) in order to derive, successively
for j = 0, . . . , N , a right eigenvector xj to the eigenvalue λN−j = (1 − a − b)N−j . We
make the ansatz that xj = (xj,0, . . . , xj,N )T is of the form

xj,i =

j∑
k=0

ai,kbk,j , i ∈ S, (4.3)

where the coefficients bk,j may depend on the parameters N , a and b of the model but
not on the state i. Since eigenvectors can be scaled arbitrarily, we can in principle
choose bj,j arbitrary (not equal to zero), but we shall see soon that bj,j := ((a + b)/a)j

is a convenient choice. Since xj should be(come) a right eigenvector to the eigenvalue
λN−j , the chain of equalities

N∑
k=0

pi,kxj,k = λN−jxj,i = λN−j

j∑
k=0

ai,kbk,j (4.4)

should hold for all i ∈ S, where the last equality holds by the ansatz (4.3). On the other
hand, by the ansatz (4.3) and the characteristic equations (4.2),

N∑
k=0

pi,kxj,k =

N∑
k=0

pi,k

j∑
l=0

ak,lbl,j =

j∑
l=0

bl,j

N∑
k=0

pi,kak,l =

j∑
l=0

bl,j(PA)i,l

=

j∑
l=0

bl,jλN−l

l∑
k=0

(
N − k
l − k

)
al−kai,k

= λN−j

j∑
k=0

ai,k

j∑
l=k

bl,jλj−l

(
N − k
l − k

)
al−k, (4.5)

since λN−l = λN−jλj−l. Since (4.4) and (4.5) coincide for all i ∈ S, the coefficients bk,j
need to satisfy the system of equations

bk,j =

j∑
l=k

bl,jλj−l

(
N − k
l − k

)
al−k, j ∈ S, k ∈ {0, . . . , j}.

We now solve this system of equations. Defining

ck,j :=
(N − j)!
(N − k)!

bk,j , j ∈ S, k ∈ {0, . . . , j},

the system reduces to

ck,j =

j∑
l=k

cl,jλj−l
al−k

(l − k)!
, j ∈ S, k ∈ {0, . . . , j}.

In particular, the coefficients ck,j do not depend on N and they satisfy for each fixed
j ∈ S the recursion

ck,j =
1

1− λj−k

j∑
l=k+1

cl,jλj−l
al−k

(l − k)!
, k = j − 1, j − 2, . . . , 1, 0,
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with initial value cj,j = bj,j = ((a + b)/a)j . We prove by backward induction on k =

j, j − 1, . . . , 1, 0 that this recursion has the solution

ck,j =
1

(j − k)!

(
a+ b

a

)k
, j ∈ S, k ∈ {0, . . . , j}.

For k = j this holds since cj,j = ((a+ b)/a)j . The induction step from j, j − 1, . . . , k + 1 to
k reads

ck,j =
1

1− λj−k

j∑
l=k+1

cl,jλj−l
al−k

(l − k)!

=
1

1− λj−k

j∑
l=k+1

1

(j − l)!

(
a+ b

a

)l
(1− a− b)j−l al−k

(l − k)!

=
1

(j − k)!

(
a+ b

a

)k
1

1− λj−k

j∑
l=k+1

(
j − k
j − l

)
(1− a− b)j−l(a+ b)l−k

=
1

(j − k)!

(
a+ b

a

)k
1

1− λj−k

j−k−1∑
r=0

(
j − k
r

)
(1− a− b)r(a+ b)j−k−r

=
1

(j − k)!

(
a+ b

a

)k
1

1− λj−k
(1− (1− a− b)j−k) =

1

(j − k)!

(
a+ b

a

)k
.

In summary, it is shown that xj := (xj,0, . . . , xj,N )T , defined via (4.3), with coefficients
ai,k :=

(
i
k

)
si−k0 and

bk,j :=
(N − k)!

(N − j)!
ck,j =

(N − k)!

(N − j)!
1

(j − k)!

(
a+ b

a

)k
=

(
N − k
j − k

)(
a+ b

a

)k
is a right eigenvector to the eigenvalue λN−j = (1− a− b)N−j , j ∈ S.

Step 3. It is now straightforward to derive the desired spectral decomposition of
the transition matrix P . Let R = (ri,j)i,j∈S denote the matrix, which contains in the jth
column the right eigenvector xj to the eigenvalue λN−j , i.e. ri,j := xj,i =

∑j
k=0 ai,kbk,j or,

in matrix notation, R := AB, where A := (ai,j)i,j∈S is the left lower triangular matrix and
B := (bi,j)i,j∈S the right upper triangular matrix defined via (1.5). Note that A and B are
non-singular with inverses (1.6). Since R is the matrix containing in the jth column the
right eigenvector xj to the eigenvalue λN−j , we have PR = RD, where D is the diagonal
matrix with entries di,i := λN−i = (1− a− b)N−i, i ∈ S. Multiplying from the right with
L := R−1 yields the spectral decomposition P = RDL. The proof is complete.

5 Appendix

For convenience we record a criterion which ensures that a function of a Markov
chain is still Markovian. The result is well known in the probability community (see,
for example, Levin and Peres [9, Lemma 2.5]) and essentially goes back to Burke and
Rosenblatt [2].

Lemma 5.1. Let X = (Xn)n∈N0 be a homogeneous discrete-time Markov chain with
state space S and transition probabilities πi,j , i, j ∈ S. Moreover, let f : S → S′ be a
surjective function in a space S′. Define Yn := f ◦Xn for all n ∈ N0. If, for every i ∈ S
and every v ∈ S′, the sum

∑
j∈f−1(v) πi,j depends on i only via f(i), then Y = (Yn)n∈N0

is
a homogeneous discrete-time Markov chain with state space S′. In this case Y has n-step
transition probabilities p(n)

u,v =
∑
j∈f−1(v) π

(n)
i,j , n ∈ N0, u, v ∈ S′, where i ∈ f−1(u) can be
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chosen arbitrarily. Here π(n)
i,j , n ∈ N0, i, j ∈ S, denote the n-step transition probabilities

of X.

The following lemma provides the horizontal generating functions of the transforma-
tion matrices R and L from Theorem 1.4.

Lemma 5.2. Let R and L be the matrices defined via R := AB and L := R−1, where A
and B are defined via (1.5), and let ri : C→ C and li : C→ C, i ∈ S, denote the associated
horizontal generating functions defined via ri(z) :=

∑
j∈S ri,jz

j and li(z) :=
∑
j∈S li,jz

j

for all z ∈ C and i ∈ S. Then

ri(z) = (z+ 1)N−i
(
z− b

a

)i
and li(z) =

(
a

a+ b

)N(
z+

b

a

)i
(1−z)N−i, i ∈ S, z ∈ C.

Proof. From (1.8) it follows that

ri(z) :=

N∑
j=0

ri,jz
j =

i∑
k=0

(
i

k

)(
− b

a

)i−k(
a+ b

a

)k N∑
j=k

(
N − k
j − k

)
zj

=

i∑
k=0

(
i

k

)(
− b

a

)i−k(
a+ b

a

)k
zk(z + 1)N−k

= (z + 1)N−i
i∑

k=0

(
i

k

)(
a+ b

a
z

)k(
− b

a
(z + 1)

)i−k
= (z + 1)N−i

(
z − b

a

)i
, i ∈ S, z ∈ C.

Similarly, we deduce from (1.9) that

li(z) :=

N∑
j=0

li,jz
j =

N∑
k=i

(
N − i
k − i

)(
a

a+ b

)k
(−1)k−i

k∑
j=0

(
k

j

)(
b

a

)k−j
zj

=

N∑
k=i

(
N − i
k − i

)(
a

a+ b

)k
(−1)k−i

(
z +

b

a

)k

=

(
a

a+ b

)i(
z +

b

a

)i N∑
k=i

(
N − i
k − i

)(
− a

a+ b

(
z +

b

a

))k−i
=

(
a

a+ b

)i(
z +

b

a

)i(
1− a

a+ b

(
z +

b

a

))N−i
=

(
a

a+ b

)i(
z +

b

a

)i(
a

a+ b
− a

a+ b
z

)N−i
=

(
a

a+ b

)N(
z +

b

a

)i
(1− z)N−i, i ∈ S, z ∈ C,

which is the desired formula for the horizontal generating function li.
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