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Abstract

For the Labouchere system with winning probability p at each coup, we prove that the
expectation of the largest bet size under any initial list is finite if p > 1

2
, and is infinite

if p ≤ 1
2
, solving the open conjecture in [6]. The same result holds for a general family

of betting systems, and the proof builds upon a recursive representation of the optimal
betting system in the larger family.
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1 Introduction

The Labouchere system, also known as the cancellation system, is one of the most
well-known betting systems used in roulette. It was popularized by Henry Du Pré
Labouchere, an English politician, writer and journalist. Before the betting, the bettor
chooses an initial list L0 of positive real numbers (e.g., L0 = (1, 2, 3, 4)). During each bet,
the bet size equals the sum of the first and last numbers on the list (if only one number
remains on the list, then the bet size equals that number). After a win, the first and last
terms are canceled from the list; after a loss, the amount just lost is appended to the last
term of the list. This system is continued until the list is empty. Table 1 illustrates an
example of the Labouchere system.

We introduce the following notations. Let Ln be the list after the n-th coup, ln be
the corresponding list length, Bn be the bet size at the n-th coup, Tn be the remaining
target profit (i.e., the sum of the numbers in the list) after the n-th coup, and N be the
stopping time that the list first becomes empty, i.e., LN = ∅. In this paper, we investigate
the behavior of the largest bet size B? , max1≤n≤N Bn (or supn≥1Bn if N =∞) in the
Labouchere system, and in particular, whether or not B? has a finite expectation.

There is very limited literature on analyzing the Labouchere system. Let p ∈ [0, 1] be
the winning probability at each coup, where we assume that the outcomes at different
coups are independent. By the standard theory of asymmetric random walks, it is
straightforward to show that N <∞ almost surely if and only if p ≥ 1

3 and E[N ] <∞ if
and only if p > 1

3 . Downton [3] found a recursion for the distribution of the stopping time
N in the case that the initial list L0 is (1, 2, 3, 4), and Ethier [4] generalized this result
to arbitrary initial lists and gave an explicit formula using a generalized version of the
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Expectation of the largest bet size in the Labouchere system

Table 1: An illustration of the Labouchere system with initial list L0 = (1, 2, 3, 4).
Coup n Bet Size Bn Result List Ln Target Profit Tn

1, 2, 3, 4 10
1 5 Win 2, 3 5
2 5 Loss 2, 3, 5 10
3 7 Loss 2, 3, 5, 7 17
4 9 Loss 2, 3, 5, 7, 9 26
5 11 Win 3, 5, 7 15
6 10 Loss 3, 5, 7, 10 25
7 13 Win 5, 7 12
8 12 Win ∅ 0

ballot theorem [2, 1]. Specifically, the stopping time N has a finite k-th moment for any k
if and only if p > 1

3 . However, Grimmett and Stirzaker [6, Problem 12.9.15] showed that

both max1≤n≤N Tn and
∑N
n=1Bn have infinite expectations if p = 1

2 . It was also stated
in [6] that E[B?] = ∞, but we were informed by Ethier that the proof was incomplete
(via an email exchange between him and Grimmett in February 2006). A recent work [7]
shows that a sufficient condition of E[B?] <∞ is that p > p0 ≈ 0.613763, while matching
necessary conditions are still missing. Hence, it remains an open conjecture for more
than a decade if the largest bet size B? also has an infinite expectation when 1

3 < p ≤ 1
2 ,

which is the main focus of this paper.
There is also another betting system which is similar to the Labouchere system, i.e.,

the Fibonacci system. Instead of considering the first and last numbers in the list at
each coup, the last two numbers are added or canceled in the Fibonacci system. Ethier
[5] showed that E[B?] = +∞ in Fibonacci system if and only if p ≤ 1

2 . However, the proof
heavily relies on the fact that any list in a Fibonacci system is uniquely determined by its
length, which does not hold for the Labouchere system where the list evolves in a more
complicated “history dependent” manner.

2 Main results

To study the Labouchere system, we first introduce a larger family of betting systems
called (a, b)-list systems:

Definition 2.1 ((a, b)-List System). Let a < 0 ≤ b be integers. An (a, b)-list system
consists of a target sequence {Tn}, a bet sequence {Bn} and a length sequence {ln},
which evolve as follows:

1. At the beginning, T0 > 0 and l0 ∈ {1, 2, · · · };
2. At the n-th coup, the system makes a bet size Bn ∈ [0, Tn−1] which may depend on

the entire history. Then the target and length sequences evolve as

Tn =

{
Tn−1 −Bn if wins

Tn−1 +Bn if loses
, ln =

{
(ln−1 + a)+ if wins

ln−1 + b if loses
.

3. Termination condition: let N = inf{n : ln = 0} be the stopping time that the length
becomes zero, we must have Tn = ln = 0 for any n ≥ N and Bn = 0 for any n > N .

In such a list system, the target Tn represents the remaining amount of money one
would like to earn at the end of the n-th coup; consequently, Tn shrinks after a win,
and increases after a loss. The length ln represents the length of the “list” at the n-th
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coup, where it may be some real/virtual list which governs the betting process. For
example, the well-known martingale system (where the bet is doubled after each loss)
belongs to the (−1, 0)-list system with l0 = 1 and Bn = Tn−1, and both the Labouchere
and Fibonacci systems fall into the category of (−2, 1)-list systems. The termination
condition ensures that, as long as the list length ln hits zero, the target must be fulfilled
as well (i.e., Tn = 0), and the betting process terminates.

In this paper, we only consider (−2, 1)-list systems where the Labouchere system is
included, but our results and proof techniques are generalizable to general (a, b)-list
systems. Our first result characterizes the behavior of the largest bet size B? under
general list systems:

Theorem 2.2. For any (−2, 1)-list system, the following holds:

1. If p > 1
2 , we have E[B?] <∞;

2. If 1
3 < p < 1

2 , we have E[B?] =∞;

3. If p ≤ 1
3 and Bn ≥ c1ln−1 + c2 for some constants c1 > 0, c2 ∈ R almost surely, we

have E[B?] =∞.

Theorem 2.2 shows that for any (−2, 1)-list systems, the expectation E[B?] of the
largest bet size B? has a phase transition at p = 1

2 : the expectation is finite if the player
is favored, and is infinite if the house takes the advantage. Consequently, we have the
following corollary:

Corollary 2.3. For the Labouchere system with any initial list, we have E[B?] < ∞ if
p > 1

2 and E[B?] =∞ if p < 1
2 .

The fair-game case p = 1
2 requires more delicate analysis, and is summarized in the

following theorem:

Theorem 2.4. Let (bl)∞l=1, (bl)
∞
l=1 be two sequences taking value in [0, 1]. Suppose that

some (−2, 1)-list system satisfies that Tn−1bln−1
≤ Bn ≤ Tn−1bln−1 for any n, and one of

the following conditions holds:

1. liml→∞ bl = 0;

2. inf l bl > 0,

we have E[B?] =∞ under p = 1
2 .

Note that Bn/Tn−1 is the bet proportion at the n-th coup, and general (−2, 1)-list
systems correspond to the case where bl = 1, bl = 0 for any l. Theorem 2.4 shows that, if
the bet proportion either vanishes or is lower bounded from below as the list length l

grows, the largest bet size still has an infinite expectation in a fair game. The following
corollary follows from Theorem 2.4:

Corollary 2.5. For the Labouchere system with any initial list, E[B?] =∞ if p = 1
2 .

Combining Corollaries 2.3 and 2.5, we conclude that for the Labouchere system,
E[B?] =∞ if and only if p ≤ 1

2 , solving the open conjecture in [6]. It also follows directly
from Theorems 2.2 and 2.4 that for the Fibonacci system, E[B?] =∞ if and only if p ≤ 1

2 ,
recovering the result in [5]. Generalizing the arguments to (−1, 0)-list systems, this also
recovers the famous St. Petersburg paradox that E[B?] =∞ in the martingale system
under p = 1

2 .
Based on Theorem 2.4, a natural question would be that whether E[B?] =∞ holds in

any (−2, 1)-list systems. We have the following partial result:

Theorem 2.6. For any (−2, 1)-list system and ε > 0, the following holds under p = 1
2 :

E
[
B?(1 ∨ logB?)−(1+ε)

]
<∞, E[B?(1 ∨ logB?)] =∞.
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Theorem 2.6 shows that, the moment E[(B?)α] always has a phase transition at α = 1

in a fair game. However, the exact answer for α = 1 is still unknown, and we leave it as
a conjecture:

Conjecture 2.7. For any (−2, 1)-list systems, E[B?] =∞ under p = 1
2 .

3 Proof of Theorems 2.2 and 2.6

In this section, we first prove Theorem 2.6, and then apply Theorem 2.6 to proving
Theorem 2.2.

3.1 Proof of Theorem 2.6

We make use of the asymptotic tail behavior of the stopping time N in the (−2, 1)-list
system.

Lemma 3.1. [4] For p > 1
3 , we have

Pl0(N ≥ n+ 1) ∼ Dl0(n)n
− 3

2κ
n
3 ,

where l0 is the length of the initial list, Dl0(n) is a constant only depending on l0 and n
(mod 3), and κ , 27

4 p(1− p)
2 < 1.

Based on Lemma 3.1, we are about to prove Theorem 2.6. We first show that
E
[
B?(1 ∨ logB?)−(1+ε)

]
< ∞. Under p = 1

2 , the target sequence {Tn} is a martingale,
with E[Tn] = T0. By Doob’s maximal inequality, for any λ > 0,

P

(
max

0≤m≤n
Tm ≥ λ

)
≤ E[Tn]

λ
=
T0
λ
.

Note that Bn ≤ Tn−1, for λ ≥ 2 we therefore have

P

(
max

1≤m≤n
Bm(1 ∨ logBm)−(1+ε) ≥ λ

)
= P

(
max

1≤m≤n
Bm ≥ Cλ(log λ)1+ε

)
≤ P

(
max

0≤m≤n−1
Tm ≥ Cλ(log λ)1+ε

)
≤ T0
Cλ(log λ)1+ε

where C > 0 is some universal constant. As a result,

E

[
max

1≤m≤n
Bm(1 ∨ logBm)−(1+ε)

]
=

∫ ∞
0

P

(
max

1≤m≤n
Bm(1 ∨ logBm)−(1+ε) ≥ λ

)
dλ

≤ 2 +

∫ ∞
2

T0
Cλ(log λ)1+ε

dλ <∞

where in the last step we have used that∫ ∞
2

dx

x(log x)1+ε
<∞.

Choosing n→∞, by monotone convergence we arrive at E
[
B?(1 ∨ logB?)−(1+ε)

]
<∞.

Now we show that E[B?(1 ∨ logB?)] = ∞. We recall the following Fenchel–Young
inequality:

xy ≤ ψ(x) + ψ?(y)
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where ψ(·) is convex, and ψ?(y) = supx(xy − ψ(x)) is the Fenchel–Legendre dual of ψ.
For ψ(x) = ecx with c > 0, we have

ψ?(y) = sup
x∈R

(xy − ecx) = y

c

(
log

y

c
− 1
)
,

and therefore

E[NB?] ≤ E[ψ(N)] + E[ψ?(B?)] = E[ecN ] +
1

c
E

[
B?
(
log

B?

c
− 1

)]
.

By Lemma 3.1, for c > 0 sufficiently small we have E[ecN ] <∞. Moreover, [6] shows that

E[NB?] ≥ E

[
N∑
n=1

Bn

]
=∞.

A combination of the previous two inequalities yields E[B?(1 ∨ logB?)] =∞.

3.2 Proof of Theorem 2.2 and Corollary 2.3

Now we prove Theorem 2.2 using Theorem 2.6 and a change of measure.
Fix any p > 1

2 , let P be the probability measure over the betting process under
winning probability p, and Q be the counterpart under winning probability 1

2 . Note that
for any sample path ω with stopping time N = n, there must be n

3 + c wins and 2n
3 − c

losses, where c is a constant depending only on the initial length l0 and n (mod 3). As a
result, the likelihood ratio is

dP

dQ
(ω) =

p
n
3 +c(1− p) 2n

3 −c

2−n
=

(
p

1− p

)c
·
(
p(1− p)2
1
2 (1−

1
2 )

2

)n
3

≤ Cρn

where C > 0, ρ ∈ (0, 1) are numerical constants independent of n, and we have used that
the function p 7→ p(1− p)2 is strictly decreasing in p ∈ [ 13 , 1]. As a result,

EP [B
?] = EQ

[
B? · dP

dQ

]
≤ C · EQ[ρNB?].

Since Tn ≤ Tn−1+Bn ≤ 2Tn−1 in any list system, we haveB? ≤ max0≤n≤N Tn ≤ T0·2N ,
and therefore

EQ[ρ
NB?] ≤ T ε0 · EQ[(ρ2ε)N (B?)1−ε]

for any ε > 0. Choosing ε > 0 small enough such that ρ2ε < 1, Theorem 2.6 implies that
EP [B

?] <∞.
For p ∈ ( 13 ,

1
2 ), we use the same argument to obtain dP

dQ ≥ Cρ
N for some ρ > 1. Then

EP [B
?] ≥ C · EQ[ρNB?] ≥ CT−ε0 · EQ[(ρ2−ε)N (B?)1+ε],

and by choosing ε > 0 small enough, Theorem 2.6 yields EP [B?] =∞.
Finally, for p ≤ 1

3 , we have E[sup0≤n<N ln] =∞ by the theory of asymmetric random
walks. Hence, by assumption we have

E[B?] ≥ c1E[ sup
0≤n<N

ln] + c2 =∞

as desired. The proof of Theorem 2.2 is completed.
As for Corollary 2.3, it suffices to verify that the condition Bn ≥ c1ln−1 + c2 holds for

the Labouchere system. Let a > 0 be the minimum number in the initial list L0, a simple
induction on n yields that Bn ≥ a(ln−1 − l0)+, which shows that the condition is fulfilled
with c1 = a > 0, c2 = −al0.
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4 Proof of Theorem 2.4 and Corollary 2.5

In this section, we first use a recursive representation of the optimal list system
to prove Theorem 2.4. Then we investigate the specific properties of the Labouchere
system and show that the condition in Theorem 2.4 holds, thereby proving Corollary 2.5.

4.1 Proof of Theorem 2.4

If inf l bl ≥ c > 0, we have B? ≥ cmax0≤n≤N Tn, which has an infinite expectation [6].
Now we assume that liml→∞ bl = 0 and prove Theorem 2.4 by contradiction. We first
introduce the following definition:

Definition 4.1. For any x > 0 and l ∈ {1, 2, · · · }, we define f(x, l) to be the infimum of
E[B?] over all possible (−2, 1)-list systems with initial target x and initial length l, such
that Bn ≤ bln−1Tn−1 for any n.

Definition 4.1 considers an optimal (−2, 1)-list system with initial target x and initial
length l, where optimality is measured in terms of a smallest expectation of the largest
bet size B?. The quantity f(x, l) ∈ R+ ∪ {+∞} is the corresponding expectation, and it
is well-defined even if the optimal list system does not exist. The next lemma presents
recursive relations between f(x, l) with different l.

Lemma 4.2. There exists some sequence (al)
∞
l=1 taking value in R+ ∪ {+∞} such that

f(x, l) = xal for any x > 0. Moreover, the sequence (al)
∞
l=1 satisfies the following

inequalities:

al ≥ min
b∈[0,bl]

max{b, (1− b)al−2}+max{b, (1 + b)al+1}
2

, l ≥ 3

a1 ≥ a2 +
1

2
≥ a3 + 1.

Proof. When the initial target x is scaled by λ > 0, we may always scale all bet sizes by
λ to arrive at a new list system with the initial target λx, and vice versa. Hence, f(x, l) is
proportional to x, and f(x, l) = xal.

For l ≥ 3 and any (−2, 1)-list system, let b ∈ [0, bl] be any bet size at the first coup with
initial target T0 = 1 and initial length l. Let B?1 , B

?
2 be the largest bet sizes (excluding the

first bet) after winning/losing the first coup, respectively. Then by definition of f(x, l),
we have

EB?1 ≥ f(1− b, l − 2) = (1− b)al−2,
EB?2 ≥ f(1 + b, l + 1) = (1 + b)al+1.

Note that B? is either max{b, B?1} or max{b, B?2}, we have

E[B?] =
Emax{b, B?1}+ Emax{b, B?2}

2

≥ max{b,EB?1}+max{b,EB?2}
2

≥ max{b, (1− b)al−2}+max{b, (1 + b)al+1}
2

where the first inequality is due to the convexity of x 7→ max{b, x}. Note that this
inequality holds for any list systems, taking infimum over the LHS gives the desired
inequality for l ≥ 3. The other inequalities for l ≤ 2 can be established analogously.

Based on Lemma 4.2, we may investigate more properties of al. If a1 = ∞, it is
obvious that al =∞ for any l ∈ N (since any initial list may evolve into length one with a
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non-zero probability), and Theorem 2.4 holds. Next we show that a1 <∞ is impossible.
Assume by contradiction that a1 <∞, we will have the following lemma.

Lemma 4.3. If a1 < ∞, the sequence {al} will be strictly decreasing, i.e., a1 > a2 >

a3 > · · · .

Proof. For l ≥ 3, by Lemma 4.2 we have

al ≥ min
b∈[0,bl]

(1− b)al−2 + (1 + b)al+1

2

≥ min
b∈[0,1]

(1− b)al−2 + (1 + b)al+1

2

= min

{
al−2 + al+1

2
, al+1

}
,

where in the last step we have used the fact that an affine function attains its minimum
at the boundary. Consequently, if we already know that a1 ≥ a2 ≥ · · · ≥ al, we must also
have al ≥ al+1. Hence, by induction on l, the sequence {al} is decreasing.

To show the strict decreasing property, by Lemma 4.2 again we have

al ≥ min
b∈[0,bl]

max{b, (1− b)al−2}+ (1 + b)al+1

2

≥ min
b∈[0,1]

max{b, (1− b)al−2}+ (1 + b)al+1

2

=
1

2
min
b∈[0,1]

max{b+ (1 + b)al+1, (1− b)al−2 + (1 + b)al+1}.

For real numbers r1, r2, s1, s2 with r1 > 0 ≥ r2, s1 ≤ s2, r1 + s1 ≥ r2 + s2, straightforward
computation yields

min
x∈[0,1]

max{r1x+ s1, r2x+ s2} =
r1s2 − r2s1
r1 − r2

.

Hence,

al ≥
2al−2al+1 + al−2 + al+1

2(al−2 + 1)
= al+1 +

al−2 − al+1

2(al−2 + 1)
.

If we have al = al+1, we will also have al−2 = al+1 based on the previous inequality. Due
to the decreasing property of {al}, al−1 = al also holds, and repeating this process yields
a2 = a3, a contradiction to Lemma 4.2. Hence al > al+1 for any l.

Based on Lemmas 4.2 and 4.3, we are about to arrive at the desired contradiction.
Fix any ε > 0 such that ρ , 1−ε

1+ε + ( 1−ε1+ε )
2 > 1. Since liml→∞ bl = 0, we take l0 > 0 large

enough such that bl < ε for any l > l0. Then for l > l0, Lemma 4.2 yields

al ≥ min
b∈[0,bl]

(1− b)al−2 + (1 + b)al+1

2

≥ min
b∈[0,ε]

(1− b)al−2 + (1 + b)al+1

2

= min
b∈[0,ε]

(al+1 − al−2)b+ al+1 + al−2
2

=
(al+1 − al−2)ε+ al+1 + al−2

2
,
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where in the last step we have used al+1 ≤ al−2 by Lemma 4.3. A rearrangement of the
previous inequality gives

al − al+1 ≥
1− ε
1 + ε

· (al−2 − al)

for any l > l0. Similarly,

al+1 − al+2 ≥
1− ε
1 + ε

· (al−1 − al+1)

≥ 1− ε
1 + ε

· (al − al+1)

≥
(
1− ε
1 + ε

)2

· (al−2 − al).

Adding them together yields

al − al+2 ≥

[
1− ε
1 + ε

+

(
1− ε
1 + ε

)2
]
· (al−2 − al) = ρ(al−2 − al).

Our choice of ε implies ρ > 1, and therefore al+2k−2 − al+2k ≥ ρk(al−2 − al) for any
k ∈ N and l > l0. Since al+2k−2 − al+2k ≤ a1, and al−2 > al by Lemma 4.3, this inequality
implies that

a1 ≥ ρk(al−2 − al)

for any k = 1, 2, · · · , a contradiction to the assumption a1 <∞. The proof of Theorem 2.4
is complete.

4.2 Proof of Corollary 2.5

First we observe that it suffices to prove the case where the initial list consists of a
single positive number. This observation is due to that there is a positive probability to
reduce the list length to ln = 1 after finitely many coups for any initial list L0.

To study the combinatorial properties of the Labouchere system, we introduce the
following definition:

Definition 4.4. A list of positive real numbers (a1, a2, a3, · · · , an) is called good if it
satisfies the following conditions:

• Every element in the list is positive, i.e., ai > 0 for any i;

• The list is non-decreasing, i.e., a1 ≤ a2 ≤ · · · ≤ an;

• The difference of the list is non-decreasing with difference at most a1, i.e., a2−a1 ≤
a3 − a2 ≤ · · · ≤ an − an−1 ≤ a1.

The key properties of a good list are summarized in the following lemmas.

Lemma 4.5. If the initial list L0 is good, the list Ln after n-th coup is also good for any
n.

Proof. It suffices to prove that, if Ln−1 = (a1, · · · , al) is a good list, so is Ln. Based on
the outcome at n-th coup, there are only two possibilities:

• Ln = (a1, a2, · · · , al, a1 + al), or

• Ln = (a2, a3, · · · , al−1).

In either case, one can check from Definition 4.4 directly that Ln is a good list, as
desired.
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Lemma 4.6. If the list Ln−1 is good and has length l ≥ 2, in the Labouchere system we
have

Bn
Tn−1

≤
√

2

l
+

2

l
.

Proof. Let Ln−1 = (a1, · · · , al). By definition, for any k ≤ l we have

al ≤ al−1 + a1 ≤ al−2 + 2a1 ≤ · · · ≤ al−k + ka1.

As a result,

al ≤
1

k

k∑
j=1

(al−j + ja1) ≤
1

k

l∑
j=1

aj +
k + 1

2
· a1.

Note that the current bet size is Bn = a1+al, and the current target is Tn−1 =
∑l
j=1 aj .

Hence, for any k ≤ l we have

Bn
Tn−1

=
a1 + al∑l
j=1 aj

≤ (k + 3)a1

2
∑l
j=1 aj

+
1

k
≤ k + 3

2l
+

1

k
.

Setting k = d
√
2le ≤ l arrives at

Bn
Tn−1

≤ d
√
2le+ 3

2l
+

1

d
√
2le
≤
√
2l + 4

2l
+

1√
2l

=

√
2

l
+

2

l
,

as claimed.

Note that the initial list L0 consisting of a single positive number is good, by Lemma
4.5 we know that all future lists Ln are also good. Moreover, by setting

bl = min

{√
2

l
+

2

l
, 1

}
,

by Lemma 4.6 we know that Bn ≤ bln−1Tn−1 always holds. Note that liml→∞ bl = 0,
Theorem 2.4 yields E[B?] =∞ in the Labouchere system, as desired.
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