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We consider real random walks with finite variance. We prove an optimal integrability
result for the diffusively rescaled maximum, when the walk or its bridge is conditioned
to stay positive, or to avoid zero. As an application, we prove tightness under diffusive
rescaling for general pinning and wetting models based on random walks.

Keywords: random walk; bridge; excursion; conditioning to stay positive; uniform integrability;
polymer model; pinning model; wetting model; tightness.
AMS MSC 2010: 82B41; 60K35; 60B10.
Submitted to ECP on June 1, 2018, final version accepted on September 28, 2018.

1 Introduction

In this paper we deal with random walks on R, with zero mean and finite variance.
In Section 2 we consider the random walks, or their bridges, conditioned to stay

positive on a finite time interval. We prove that the maximum of the walk, diffusively
rescaled, has a uniformly integrable square. The same result is proved under the
conditioning that the walk avoids zero.

In Section 3 we present an application to pinning and wetting models built over ran-
dom walks. More generally, we consider probabilities which admit suitable regeneration
epochs, which cut the path into independent “excursions”. We prove that these models,
under diffusive rescaling, are tight in the space of continuous functions. This fills a gap
in the proof of [DGZ05, Lemma 4].

Sections 4, 5, 6 contain the proofs.
This paper generalizes and supersedes the unpublished manuscript [CGZ07b].

2 Random walks conditioned to stay positive, or to avoid zero

We use the conventions N := {1, 2, 3, . . .} and N0 := N ∪ {0}. Let (Xi)i∈N be i.i.d. real
random variables. Let (Sn)n∈N0

be the associated random walk:

S0 := 0 , Sn := X1 + . . .+Xn for n ∈ N .

Assumption 2.1. E[X1] = 0, E[X2
1 ] = σ2 < ∞, and one of the following cases hold.

• Discrete case. The law of X1 is integer valued and, for simplicity, the random walk
is aperiodic, i.e. P(Sn = 0) > 0 for large n, say n ≥ n0.
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Maximum of conditioned random walks

• Continuous case. The law ofX1 has a density with respect to the Lebesgue measure,
and the density of Sn is essentially bounded for some n ∈ N:

fn(x) :=
P(Sn ∈ dx)

dx
∈ L∞ .

It follows that for large n, say n ≥ n0, fn is bounded and continuous, and fn(0) > 0.

Let us denote by Pn the law of the first n steps of the walk:

Pn := P
(
(S0, S1, . . . , Sn) ∈ ·

)
. (2.1)

Next we define the laws of the meander, bridge and excursion:

Pmea
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣S1 > 0, S2 > 0, . . . , Sn > 0
)
,

Pbri
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣Sn = 0
)
,

Pexc
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣S1 > 0, S2 > 0, . . . , Sn−1 > 0, Sn = 0
)
.

(2.2)

In Remark 2.5 below we discuss the conditioning on {Sn = 0}, and periodicity issues.
Our main result concerns the integrability of the absolute maximum of the walk:

Mn := max
0≤i≤n

|Si| . (2.3)

Theorem 2.2. Let Assumption 2.1 hold. Then M2
n/n is uniformly integrable under any

of the laws Q ∈
{
Pn, P

bri
n , Pmea

n , Pexc
n

}
:

lim
K→∞

sup
n∈N

EQ

[
M2

n

n
1{M2

n
n >K

}] = 0 . (2.4)

The proof of Theorem 2.2, given in Section 4, comes in three steps. First we exploit
local limit theorems, to remove the conditioning on {Sn = 0} and just deal with Pn, Pmea

n .
Then we use martingale arguments, to get rid of the maximum Mn and focus on Sn.
Finally we use fluctuation theory, to perform sharp computations on the law of Sn.

Remark 2.3. For a symmetric random walk, the bound M2
n ≥ X2

n 1{Sn−1≥0, Xn≥0} gives

E

[
M2

n

n
1{M2

n
n >K

}] ≥ 1

4
E

[
X2

1

n
1{X2

1
n >K

}] . (2.5)

Given n ∈ N, we can choose the law of X1 so that the right hand side vanishes as slow
as we wish, as K → ∞. Thus (2.4) cannot be improved, without further assumptions.

We next introduce the laws of the random walk and bridge conditioned to avoid zero:

Pmea2
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣S1 6= 0, S2 6= 0, . . . , Sn 6= 0
)
,

Pexc2
n ( · ) := P

(
(S0, S1, . . . , Sn) ∈ ·

∣∣S1 6= 0, S2 6= 0, . . . , Sn−1 6= 0, Sn = 0
)
.

(2.6)

In the continuous case P(Sn 6= 0) = 1, so we have trivially Pmea2
n = Pn and Pexc2

n = Pbri
n .

In the discrete case, however, the conditioning on {Sn 6= 0} has a substantial effect:
Pmea2
n and Pexc2

n are close to “two-sided versions” of Pmea
n and Pexc

n (see [Bel72, Kai76]).
We prove the following analogue of Theorem 2.2.

Theorem 2.4. Let Assumption 2.1 hold. Then M2
n/n under Pexc2

n or Pmea2
n is uniformly

integrable.

Theorem 2.4 is proved in Section 5. We first use local limit theorems to reduce the
analysis to Pmea2

n , as for Theorem 2.2, but we can no longer apply martingale techniques.
We then exploit direct path arguments to deduce Theorem 2.4 from Theorem 2.2.
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Maximum of conditioned random walks

Remark 2.5. The laws Pbri
n , Pexc

n , Pexc2
n are well-defined for n ≥ n0 — since P(Sn = 0) > 0

or fn(0) > 0, see Assumption 2.1 — but not obviously for n < n0. This is quite immaterial
for our goals, since uniform integrability is essentially an asymptotic property: we can
take any definition for these laws for n < n0, as long as we have Mn ∈ L2.

We also stress that we require aperiodicity in Assumption 2.1 only for notational
convenience. If a discrete random walk has period T ≥ 2, then Theorems 2.2 and 2.4
still hold, with essentially no change in the proofs, but for the the laws Pbri

n , Pexc
n , Pexc2

n

to be well-defined we have to restrict n ∈ TN, to ensure that P(Sn = 0) > 0 for large n.

3 Tightness for pinning and wetting models

We prove tightness under diffusive rescaling for pinning and wetting models, see
Subsection 3.2, exploiting the property that these models have independent excursions1,
conditionally on their zero level set. It is simpler and more transparent to work with
general probabilities which enjoy (a generalization of) this property, that we now define.

3.1 A sharp criterion for tightness based on excursions

Given t ∈ N, we use the shorthands

[t] := {0, 1, . . . , t} , R[t] = {x = (x0, x1, . . . , xt) : xi ∈ R} ' Rt+1 .

We consider probabilities PN on paths x = (x0, . . . , xN ) ∈ R[N ] which admit regeneration
epochs in their zero level set. To define PN , we need three ingredients:

• the regeneration law pN is a probability on the space of subsets of [N ] which
contain 0;

• the bulk excursion laws P bulk
t , t ∈ N, are probabilities on R[t] with P bulk

t (x0 = xt =

0) = 1;

• the final excursion laws P fin
t , t ∈ N, are probabilities on R[t] with P fin

t (x0 = 0) = 1.

Definition 3.1. The law PN is the probability on R[N ] under which the path x =

(x0, x1, . . . , xN ) is built as follows.

(1) First sample the number n and the locations 0 =: t1 < . . . < tn ≤ N of the
regeneration epochs, with probabilities pN ({t1, . . . , tn}).

(2) Then write the path x as a concatenation of n excursions x(i), with i = 1, . . . , n:

x(i) := (xti , . . . , xti+1
) , with tn+1 := N .

(3) Finally, given the regeneration epochs, sample the excursions x(i) independently,
with marginal laws P bulk

ti+1−ti for i = 1, . . . , n− 1 and (in case tn < N ) P fin
N−tn

for i = n.

Let C([0, 1]) be the space of continuous functions f : [0, 1] → R, with the topology of
uniform convergence. We define the diffusive rescaling operator RN : R[N ] → C([0, 1])

RN (x) :=
{
linear interpolation of 1√

N
xNt for t ∈

{
0, 1

N , . . . , N−1
N , 1

}}
We give optimal conditions under which the laws PN ◦ R−1

N , called diffusive rescalings
of PN , are tight. Remarkably, we make no assumption on the regeneration laws pN .

Theorem 3.2. Let PN be as in Definition 3.1. The diffusive rescalings (PN ◦ R−1
N )N∈N

are tight in C([0, 1]), for an arbitrary choice of the regeneration laws (pN )N∈N, if and
only if the following conditions hold:

1In this section the word “excursion” has a more general meaning than in Section 2.
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Maximum of conditioned random walks

(1) the diffusive rescalings (P bulk
t ◦ R−1

t )t∈N and (P fin
t ◦ R−1

t )t∈N are tight in C([0, 1]);

(2) the bulk excursion law satisfies the following integrability bound:

sup
t∈N

P bulk
t

(
max0≤i≤t |xi|√

t
> a

)
= o

(
1

a2

)
as a ↑ ∞ . (3.1)

We point out that a slightly weaker version of Theorem 3.2 was proved in [CGZ07b].
To make a link with the previous section, we set Mt := max0≤i≤t |xi| and observe that

P bulk
t

(
max0≤i≤t |xi|√

t
> a

)
≤ 1

a2
Ebulk

t

[
M2

t

t
1{M2

t
t >a

}] .
Thus condition (2) in Theorem 3.2 is satisfied if M2

t /t is uniformly integrable under P bulk
t .

We then obtain the following corollary of Theorems 2.2 and 2.4.

Proposition 3.3. Condition (2) in Theorem 3.2 is satisfied if P bulk
t is chosen among

{Pbri
t ,Pexc

t ,Pexc2
t }, see (2.2) and (2.6), for a random walk satisfying Assumption 2.1.

Remark 3.4. Condition (1) in Theorem 3.2 is satisfied too, if P bulk
t is chosen among

{Pbri
t ,Pexc

t ,Pexc2
t } and P fin

t is chosen among {Pn,P
mea
n ,Pmea2

n }, under Assumption 2.1.
Indeed, the diffusive rescalings of Pn, Pbri

n , Pmea
n and Pexc

n converge weakly to Brownian
motion [Don51], bridge [Lig68, DGZ05], meander [Bol76] and excursion [CC13]; in the
discrete case, the diffusive rescalings of Pmea2

n and Pexc2
n converge weakly to two-sided

Brownian meander [Bel72] and excursion [Kai76].

3.2 Pinning and wetting models

An important class of laws PN to which Theorem 3.2 applies is given by pinning and
wetting models (see [Gia07, Gia11, Hol09] for background).

Fix a random walk (Sn)n∈N0
as in Assumption 2.1 and a real sequence ξ = (ξn)n∈N

(environment). For N ∈ N, the pinning model Pξ
N is the law on R[N ] defined as follows.

• Discrete case. We define

Pξ
N

(
(S0, . . . , SN ) = (s0, . . . , sN )

)
P
(
(S1, . . . , SN ) = (s1, . . . , sN )

) :=
e
∑N

n=1 ξn 1{sn=0}

Zξ
N

,

where Zξ
N is a suitable normalizing constant, called partition function.

• Continuous case. We assume that ξn ≥ 0 for all n ∈ N and we define Pξ
N by

Pξ
N

(
(S0, . . . , Sn)∈ (ds0, . . . , dsn)

)
:= δ0(ds0)

∏N
n=1

(
f(sn − sn−1) dsn + ξn δ0(dsn)

)
Zξ
N

,

where f(·) is the density of S1 and δ0(·) is the Dirac mass at 0.

Note that Pξ
N fits Definition 3.1 with regeneration epochs {k ∈ [N ] : sk = 0} (the whole

zero level set) and P bulk
t = Pexc2

t , P fin
t = Pmea2

t (which means P bulk
t = Pbri

t , P fin
t = Pt in

the continuous case).
Another example of law PN as in Definition 3.1 is the wetting model Pξ,+

N , defined by

Pξ,+
N ( · ) := Pξ

N ( · | s1 ≥ 0, s2 ≥ 0, . . . , sN ≥ 0 ) .

The bulk excursion law is now P bulk
t = Pexc

t , while the final excursion law is P fin
t = Pmea

t .
Finally, constrained versions of the pinning and wetting models also fit Definition 3.1:

Pξ,c
N ( · ) := Pξ

N ( · | sN = 0) , Pξ,+,c
N ( · ) := Pξ,+

N ( · | sN = 0) .

The final and bulk excursion laws coincide (P fin
t = Pexc2

t for Pξ,c
N , P fin

t = Pexc
t for Pξ,+,c

N ).
Proposition 3.3 and Remark 3.4 yield immediately the following result.
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Theorem 3.5 (Tightness for pinning and wetting models). Fix a real sequence ξ =

(ξn)n∈N. Under Assumption 2.1, the diffusive rescalings (PN ◦ R−1
N )N∈N of pinning or

wetting models PN ∈ {Pξ
N , Pξ,+

N , Pξ,c
N , Pξ,+,c

N } are tight in C([0, 1]).

This result fills a gap in the proof of [DGZ05, Lemma 4], which was also used in the
works [CGZ06], [CGZ07a]. A recent application of Theorem 3.5 can be found in [DO18].

Pinning and wetting models are challenging models, which display a rich behavior.
This complexity is hidden in the regeneration law pN = pξN . This explains the importance
of having criteria for tightness, such as Theorem 3.2, which only looks at excursions.

Remark 3.6. There are models where regeneration epochs are a strict subset of the
zero level set. For instance, in presence of a Laplacian interaction [BC10, CD08, CD09],
couples of adjacent zeros are regeneration epochs. Theorem 3.2 can cover these cases.

4 Proof of Theorem 2.2

We fix a random walk (Sn)n∈N0
which satisfies Assumption 2.1, for simplicity with

σ2 = 1. We split the proof of Theorem 2.2 in three steps. To prove (2.4) we may take
n ≥ n0, with n0 as in Assumption 2.1, because (2.4) holds for any fixed n, by Mn ∈ L2.

Step 1. We use the shorthand UI for “uniformly integrable”. In this step assume that

M2
n

n under Pn (resp. under Pmea) is UI , (4.1)

and we show that
M2

n

n under Pbri
n (resp. under Pexc

n ) is UI . (4.2)

Let us set M[a,b] := maxa≤i≤b |Si|. Since Mn ≤ max{M[0,n/2],M[n/2,n]}, it suffices to
prove that M2

[0,n/2]/n and M2
[n/2,n]/n are UI. By symmetry, (4.2) is equivalent to

M2
n/2

n under Pbri
n (resp. under Pexc

n ) is UI . (4.3)

We take n even (for simplicity). We show that the laws of V n/2 := (S1, . . . , Sn/2) under
Pbri
n (resp. Pexc

n ) and under Pn (resp. Pmea
n ) have a bounded Radon-Nikodym density:

sup
n≥n0

sup
z∈Rn/2

Pbri
n (V n/2 ∈ dz)

Pn(V n/2 ∈ dz)
< ∞

(
resp. sup

n≥n0

sup
z∈Rn/2

Pexc
n (V n/2 ∈ dz)

Pmea
n (V n/2 ∈ dz)

< ∞

)
. (4.4)

SinceMn/2 is a function of V n/2, it follows that (4.1) implies (4.3) (note thatMn/2 ≤ Mn).
It remains to prove (4.4). By Gnedenko’s local limit theorem, in the discrete case

∀n ≥ n0 : P(Sn = 0) ≥ c√
n
, sup

x∈Z
P(Sn = x) ≤ C√

n
, (4.5)

hence
Pbri
n (V n/2 = z)

Pn(V n/2 = z)
=

P(Sn/2 = −zn/2)

P(Sn = 0)
≤ C

c
< ∞ ,

which proves the first relation in (4.4) in the discrete case. The continuous case is similar,
since fn(0) ≥ c√

n
and supx∈R fn(x) ≤ C√

n
for n ≥ n0, under Assumption 2.1.

To prove the second relation in (4.4), in the discrete case we compute

Pexc
n (V n/2 = z)

Pmea
n (V n/2 = z)

=
P0(S1 > 0, . . . , Sn > 0)Pzn/2

(S1 > 0, . . . , Sn/2−1 > 0, Sn/2 = 0)

P0(S1 > 0, . . . , Sn−1 > 0, Sn = 0)Pzn/2
(S1 > 0, . . . , Sn/2 > 0)

,

where Px is the law of the random walk started at S0 = x. For some c1 < ∞ we have

P0(S1 > 0, . . . , Sn > 0) ≤ c1√
n
,
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by [Fel71, Th.1 in §XII.7, Th.1 in §XVIII.5]. Next we apply [CC13, eq. (4.5) in Prop. 4.1]
(with an =

√
n (1 + o(1))), which summarizes [AD99, VV09]: for some c2 ∈ (0,∞)

P0(S1 > 0, . . . , Sn−1 > 0, Sn = 0) ≥ c2
n3/2 .

As a consequence, if we rename n/2 as n and zn/2 as x, it remains to show that

sup
n≥n0

sup
x≥0

nPx(S1 > 0, . . . , Sn−1 > 0, Sn = 0)

Px(S1 > 0, . . . , Sn > 0)
< ∞ . (4.6)

By contradiction, if (4.6) does not hold, there are subsequences n = nk ∈ N, x =

xk ≥ 0, for k ∈ N, such that the ratio in (4.6) diverges as k → ∞. We distinguish two
cases: either lim infk→∞ xk/

√
nk = η > 0 (case 1), or lim infk→∞ xk/

√
nk = 0, i.e. there is

a subsequence k` with xk`
= o(

√
nk`

) (case 2).
In case 1, i.e. for x ≥ η

√
n, the denominator in (4.6) is bounded away from zero:

Px(S1 > 0, . . . , Sn > 0) ≥ Pbη
√
nc(S1 > 0, . . . , Sn > 0) −−−−→

n→∞
Pη(Bt > 0 ∀t ∈ [0, 1]) > 0 ,

by Donsker’s invariance principle [Don51] (B = (Bt)t≥0 is Brownian motion started at η).
For the numerator, by [CC13, eq. (4.4) in Prop. 4.1] which summarizes [Car05, VV09],

Px(S1 > 0, . . . , Sn−1 > 0, Sn = 0) ≤ c3√
n
P(S1 < 0, . . . , Sn < 0) ≤ c′3

n ,

for suitable c3, c
′
3 ∈ (0,∞). Then the ratio in (4.6) is bounded, which is a contradiction.

In case 2, i.e. for x = o(
√
n), by [CC13, eq. (4.5) in Prop. 4.1] we have

Px(S1 > 0, . . . , Sn−1 > 0, Sn = 0) ∼
n→∞

V −(x) c4
n3/2 , (4.7)

for a suitable V −(x). Since {S1 > 0, . . . , Sn > 0} =
⋃

m>n{S1 > 0, . . . , Sm−1 > 0, Sm = 0}
a.s. (note that the random walk is recurrent), we get

Px(S1 > 0, . . . , Sn−1 > 0, Sn > 0) ∼
n→∞

V −(x) 2 c4√
n
,

see also [Don12, Cor. 3]. Thus the ratio in (4.6) is bounded, which is the desired
contradiction.

This completes the proof of the second relation in (4.4) in the discrete case. The
continuous case is dealt with with identical arguments, exploiting [CC13, Th. 5.1].

Step 2. In this step we assume that

S2
n

n under Pn (resp. under Pmea
n ) is UI , (4.8)

and we deduce that
M2

n

n under Pn (resp. under Pmea
n ) is UI . (4.9)

Observe that (|Si|)0≤i≤n is a submartingale under Pn. Let us show that (|Si|)0≤i≤n is
a submartingale also under Pmea

n (for every fixed n ∈ N). We set for m ∈ N and x ∈ R

qm(x) := P(x+ S1 > 0, x+ S2 > 0, . . . , x+ Sm > 0) ,

with q0(x) := 1. Then we can write, for any n ∈ N, i ∈ {0, 1, . . . , n− 1} and x ≥ 0,

Pmea
n

[
Si+1 ∈ dy

∣∣Si = x
]
=
1(0,∞)(y) qn−(i+1)(y)

qn−i(x)
P(X1 ∈ dy − x) .
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Since y 7→ (y − x) and y 7→ 1(0,∞)(y) qn−(i+1)(y) are non-decreasing functions, it follows
by the Harris inequality (a special case of the FKG inequality) and E[X1] = 0 that

Emea
n

[
Si+1 − Si

∣∣Si = x
]

≥
∫
R

(y − x) P(X1 ∈ dy − x) ·
∫ ∞

0

qn−(i+1)(y)

qn−i(x)
P(X1 ∈ dy − x) = 0 .

Since (|Si|)0≤i≤n is a submartingale, also (Zi := (|Si| −K)+)0≤i≤n is a submartingale,
for any K ∈ (0,∞). Doob’s L2 inequality yields, for Pn = Pn or Pn = Pmea

n (recall (2.3)),

En

[
(Mn −K)2 1{Mn>K}

]
= En

[(
max
0≤i≤n

Zi

)2]
≤ 4En

[
Z2
n

]
= 4En

[
(Sn −K)2 1{Sn>K}

]
.

For Mn > 2K we can bound M2
n ≤ 4(Mn−K)2. Since (Sn−K)2 ≤ S2

n for Sn > K, we get

En

[
M2

n 1{Mn>2K}
]
≤ 16En

[
S2
n 1{Sn>K}

]
.

We finally choose K = 1
2

√
tn, for t ∈ (0,∞), to obtain

En

[
M2

n

n 1
{M2

n
n >t}

]
≤ 16En

[
S2
n

n 1
{S2

n
n > t

2}

]
, ∀t > 0 .

This relation for Pn = Pn (resp. Pn = Pmea
n ) shows that (4.8) implies (4.9).

Step 3. In this step we prove that (4.8) holds, completing the proof of Theorem 2.2. We
are going to apply the following standard result, proved below.

Proposition 4.1. Let (Yn)n∈N, Y be random variables in L1, such that Yn → Y in law.
Then (Yn)n∈N is UI if and only if limn→∞ E[|Yn|] = E[|Y |].

Let us define
Yn :=

S2
n

n .

Since Sn/
√
n under Pn converges in law to Z ∼ N(0, 1), we have Yn → Z2 in law. Since

En[|Yn|] = 1 = E[Z2] for all n ∈ N, relation (4.8) under Pn follows by Proposition 4.1.
Next we focus on Pmea

n . It is known [Bol76] that Sn/
√
n under Pmea

n converges in
law toward the Brownian meander at time 1, that is a random variable V with law
P(V ∈ dx) := x e−x2/2 1(0,∞)(x) dx. Therefore Yn → V 2 in law, under Pmea

n . Since
E[V 2] = 2, relation (4.8) under Pmea

n is proved once we show that

lim
n→∞

Emea
n

[
S2
n

n

]
= 2 . (4.10)

To evaluate this limit, we express the law of Sn/
√
n under Pmea

n using fluctuation
theory for random walks. By [Car05, equations (3.1) and (2.6)], as n → ∞

Pmea
n

(
Sn√
n
∈ dx

)
=
(√

2π + o(1)
) ∫ 1

0

∫ ∞

0

P
(

Sbn(1−α)c√
n

∈ dx− β
)
1[0,x)(β) dµn(α, β) ,

where µn is a finite measure on [0, 1)× [0,∞), defined in [Car05, eq. (3.2)]. Then

Emea
n

[
S2
n

n

]
=
(√

2π + o(1)
)

×
∫ 1

0

∫ ∞

0

{
E
[
(S+

bn(1−α)c)
2

n

]
+ 2β E

[
S+
bn(1−α)c√

n

]
+ β2 P

(
Sbn(1−α)c√

n
> 0
)}

dµn .

By the convergence in law (under P) Sn/
√
n → Z ∼ N(0, 1), together with the uniform

integrability of (Sn/
√
n)2 that we already proved, we have as n → ∞

E
[
(S+

bn(1−α)c)
2

n

]
−→ (1− α) E[(Z+)2] =

1− α

2
,

E
[
S+
bn(1−α)c√

n

]
−→

√
1− αE[Z+] =

√
1−α√
2π

, P
(

Sbn(1−α)c√
n

> 0
)
−→ P(Z > 0) = 1

2 ,
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Maximum of conditioned random walks

uniformly for α ∈ [0, 1− δ], for δ > 0. By [Car05, Prop. 5] we have the weak convergence

µn(dα, dβ) =⇒ µ(dα, dβ) :=
β√

2π α3/2
e−

β2

2α dα dβ ,

and note that µ is a finite measure on [0, 1)× [0,∞). Then limn→∞ Emea
n

[
S2
n

n

]
equals

∫ 1

0

(∫ ∞

0

{
1−α
2 + 2β

√
1−α√
2π

+ 1
2β

2
}

β
α3/2 e

− β2

2α dβ
)
dα =

∫ 1

0

{
1−α
2
√
α
+

√
1− α+

√
α
}
dα = 2 ,

which completes the proof of (4.10).

Proof of Proposition 4.1. We assume that Yn → Y a.s., by Skorokhod’s representation
theorem. If (Yn)n∈N is UI, then Yn → Y in L1, hence E[|Yn|] → E[|Y |].

Assume now that limn→∞ E[|Yn|] = E[|Y |] < ∞. Since Yn → Y a.s., dominated
convergence yields limn→∞ E[|Yn|1{|Yn|≤T}] = E[|Y |1{|Y |≤T}] for T ∈ (0,∞) with P(|Y | =
T ) = 0. Then

lim
n→∞

E[|Yn|1{|Yn|>T}] = lim
n→∞

(
E[|Yn|]− E[|Yn|1{|Yn|≤T}]

)
= E[|Y |1{|Y |>T}] .

Since limT→∞ E[|Y |1{|Y |>T}] = 0, this shows that (Yn)n∈N is UI.

5 Proof of Theorem 2.4

We fix a random walk (Sn)n∈N0 which satisfies Assumption 2.1 in the discrete case
(the continuous case is covered by Theorem 2.2), with σ2 = 1. We proceed in two steps.

Step 1. We assume that M2
n/n under Pmea2

n is UI and we prove that M2
n/n under Pexc2

n

is UI. As in Section 4, it suffices to show that, with V n/2 := (S1, . . . , Sn/2) and n0 as in
Assumption 2.1,

sup
n≥n0

sup
z∈Zn/2

Pexc2
n (V n/2 = z)

Pmea2
n (V n/2 = z)

< ∞ . (5.1)

If we define T := min{n ∈ N : Sn = 0}, we can compute (recall (2.6))

Pexc2
n (V n/2 = z)

Pmea2
n (V n/2 = z)

=
P(T > n) Pzn/2

(T = n/2)

P(T = n) Pzn/2
(T > n/2)

,

where Px is the law of the random walk started at S0 = x. By [Kes63], as n → ∞

P(T = n) =
σ√

2π n3/2

(
1 + o(1)

)
, (5.2)

hence, summing over n, we get P(T > n) = 2nP(T = n) (1 + o(1)). Then (5.1) reduces to

sup
n≥n0

sup
x≥0

nPx(T = n)

Px(T > n)
< ∞ . (5.3)

Arguing as in the lines after (4.6), we need to show that the ratio in (5.3) is bounded
in two cases: when x ≥ η

√
n for fixed η > 0 (case 1) and when x = xn = o(

√
n) (case 2).

In case 1, i.e. for x ≥ η
√
n, the denominator in (5.3) is bounded away from zero:

Px(T > n) ≥ Pbη
√
nc(S1 > 0, . . . , Sn > 0) −−−−→

N→∞
Pη(Bt > 0 ∀t ∈ [0, 1]) > 0 ,

where (Bt)t≥0 is a Brownian motion [Don51]. Then the ratio in (5.3) is bounded because
supx∈Z Px(T = n) ≤ c′

n for some c′ ∈ (0,∞), by [Kai75, Cor. 1].
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In case 2, i.e. for x = o(
√
n), we apply [Uch11, Thm. 1.1], which generalizes (5.2):

Px(T = n) = a∗(x)
σ√

2π n3/2

(
1 + o(1)

)
as n → ∞ , uniformly in x ∈ Z ,

for a suitable a∗(x) (the potential kernel of the walk). Then Px(T > n) = 2nPx(T =

n) (1 + o(1)), hence the ratio in (5.3) is bounded. This completes the proof of (5.1).

Step 2. We prove that M2
n/n under Pmea2

n is UI. We argue by contradiction: if this does
not hold, then there are η > 0 and (ni)i∈N, (Ki)i∈N, with limi→∞ Ki = ∞, such that

Emea2
ni

[
M2

ni

ni
1
{

M2
ni

ni
>Ki}

]
≥ η , ∀i ∈ N . (5.4)

We are going to deduce that M2
n/n under Pn is not UI, which contradicts Theorem 2.2.

We show below that we can strengthen (5.4), replacing Emea2
ni

by Emea2
m for any

m ∈ {ni, . . . , 2ni}: more precisely, there exists η′ > 0 such that

Emea2
m

[
M2

ni

ni
1
{

M2
ni

ni
>Ki}

]
≥ η′ , ∀i ∈ N , ∀m ∈ {ni, . . . , 2ni} . (5.5)

To exploit (5.5), we work on the time horizon 2n, for fixed n ∈ N. We split any path S =

(S0, . . . , S2n) with S0 = 0 in two parts S̃ = (S0, S1, . . . , Sσ) and Ŝ = (Sσ, Sσ+1, . . . , S2n),
where σ := σ2n := max{i ∈ {0, . . . , 2n} : Si = 0}. If S is chosen according to the
unconditioned law P2n, then Ŝ has law Pmea2

2n−σ, conditionally on σ. If we set M̂2n :=

max |Ŝ| = maxσ≤i≤2n |Si|, the bound M2n ≥ M̂2n gives

E
[
(M2n)

2

2n 1
{ (M2n)2

2n >K
2 }

]
≥ E

[
(M̂2n)

2

2n 1
{ (M̂2n)2

2n >K
2 }

]
=

2n∑
r=0

E

[
Emea2
2n−r

[
M2

2n−r

2n 1
{

M2
2n−r
n >K}

]
1{σ=r}

]
.

We now restrict the sum to r ≤ n, so that M2
2n−r ≥ M2

n, to get

E
[
(M2n)

2

2n 1
{ (M2n)2

2n >K
2 }

]
≥ 1

2 P(σ2n ≤ n) inf
n≤m≤2n

Emea2
m

[
M2

n

n 1
{M2

n
n >K}

]
.

Note that limn→∞ P(σ2n ≤ n) = P(Bt 6= 0 ∀t ∈ ( 12 , 1]) =: p > 0 (actually p = 1
2 , by the

arcsine law), hence γ := infn∈N P(σ2n ≤ n) > 0. If we take n = 2ni and K = Ki, by (5.5)

lim inf
K→∞

sup
n∈N

E
[
(Mn)

2

n 1{ (Mn)2

n >K
2 }

]
≥ inf

i∈N
E
[
(M2ni

)2

2ni
1
{

(M2ni
)2

2ni
>

Ki
2 }

]
≥ γ η′

2
> 0 .

This means that M2
n/n under Pn is not UI, which contradicts Theorem 2.2.

It remains to prove (5.5). We fix C ∈ (0,∞), to be determined later. We may assume
that Ki ≥ C for all i ∈ N. To deduce (5.5) from (5.4), we show that for some c > 0

inf
n∈N, m∈{n,...,2n}, z∈Z: z≥C

√
n

Pmea2
m (Mn = z)

Pmea2
n (Mn = z)

≥ c . (5.6)

Fix m ≥ n and z > 0. If we sum over the last ` ≤ n for which Mn = |S`|, we can write

Pmea2
m (Mn = z) =

n∑
`=1

Pmea2
m (M`−1 ≤ z, |S`| = z, |Si| < z ∀i = `+ 1, . . . , n) .
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We write Pmea2
m ( · ) = P( · |Em), with Em := {S1 6= 0, . . . , Sm 6= 0}, and we apply the

Markov property at time `. The cases S` = z and S` = −z give a similar contribution and
we do not distinguish between them (e.g. assume that the walk is symmetric). Then

Pmea2
m (Mn = z)

=
1

P(T > m)

n∑
`=1

P(M`−1 ≤ z, |S`| = z, E`) Pz(|Si| < z ∀1 ≤ i ≤ n− `, Em−`)︸ ︷︷ ︸
A

.

The same expression holds if we replace Pmea2
m by Pmea2

n , namely

Pmea2
n (Mn = z)

=
1

P(T > n)

n∑
`=1

P(M`−1 ≤ z, |S`| = z, E`) Pz(|Si| < z ∀1 ≤ i ≤ n− `, En−`)︸ ︷︷ ︸
B

.

Since P(T > m) ≤ P(T > n), to prove (5.6) we show that A ≥ cB, with c > 0. We bound

B ≤ Pz(Si < z ∀i = 1, . . . , n− `) = P0(E
−
n−`) ,

where we set E−
k := {S1 < 0, . . . , Sk < 0}. Similarly, for z ≥ C

√
n we bound

A ≥ Pz(Si < z ∀i = 1, . . . , n− `, Si > 0 ∀i = 1, . . . ,m− `)

= P0(E
−
n−`, Si > −z ∀i = 1, . . . ,m− `)

≥ P0(E
−
n−`) P0

(
(−Si) < C

√
n ∀i = 1, . . . ,m− `

∣∣E−
n−`

)︸ ︷︷ ︸
D

.

It remains to show that D ≥ c. Let us set S̃i := −Si and Ẽ+
k := E−

k = {S̃1 > 0, . . . , S̃k > 0}.
If we write r := n− `, for m ∈ {n, . . . , 2n}, we have m− ` = r + (m− n) ≤ r + n, hence

D ≥ P
(
S̃i <

1
2C

√
r ∀i = 1, . . . , r

∣∣ Ẽ+
r

)
· P
(
S̃i <

1
2C

√
n ∀i = 1, . . . , n

)
, (5.7)

by the Markov property, since (S̃j)j≥r under P( · |Ẽ+
r ) is the random walk S̃ started at S̃r.

By [Bol76, Don51], as r → ∞ the two probabilities in the right hand side of (5.7)
converge respectively to P(supt∈[0,1] mt < 1

2C) and P(supt∈[0,1] Bt < 1
2C), where B =

(Bt)t≥0 is Brownian motion and m = (mt)t∈[0,1] is Brownian meander. Then, if we fix
C > 0 large enough, the right hand side of (5.7) is ≥ c > 0 for all r, n ∈ N0.

6 Proof of Theorem 3.2

Let us set QN := PN ◦ R−1
N . We prove that conditions (1) and (2) in Theorem 3.2 are

necessary and sufficient for the tightness of (QN )N∈N.

Necessity. The necessity of condition (1) is clear: just note that, by Definition 3.1,
the law PN coincides with P fin

N (resp. with P bulk
N ) if we choose the regeneration law pN

to be concentrated on the single set {0} (resp. on the single set {0, N}).
To prove necessity of condition (2), we assume by contradiction that (2) fails. Then

there exists η > 0 and two sequences (tn)n∈N, (an)n∈N, with limn→∞ an = ∞, such that

P bulk
tn

(
Mtn√
tn

> an

)
≥ η

a2n
, ∀n ∈ N , where Mt := max

0≤i≤t
|xi| . (6.1)

We may assume that an ∈ N (otherwise consider banc and redefine η).
Define Nn := tn a

2
n and let pNn

be the regeneration law concentrated on the single
set {0, tn, 2tn, . . . , Nn − tn, Nn}. Let PNn

be the corresponding probability on R[Nn], see
Definition 3.1. We now show that QN = PN ◦ R−1

N is not tight on C([0, 1]).
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Any path f(t) under QNn
vanishes for t ∈ {0, 1

a2
n
, 2
a2
n
, . . . , 1 − 1

a2
n
, 1}, which becomes

dense in [0, 1] as n → ∞. Then, if (QNn)n∈N were tight, it would converge weakly to the
law concentrated on the single path (ft ≡ 0)t∈[0,1]. We rule this out by showing that

lim inf
n→∞

QNn

(
sup

t∈[0,1]

|ft| > 1

)
≥ 1− e−η > 0 . (6.2)

For x ∈ R[Nn] and j = 1, . . . , a2n we define M
(j)
tn := maxi∈{(j−1)tn,...,jtn} |xi|, so that

QNn

(
sup

t∈[0,1]

|ft| > 1

)
= PNn

(
max

i=0,1,...,Nn

|xi| >
√
Nn

)
= PNn

(
max

j=1,...,a2
n

M
(j)
tn√
tn

> an

)
.

The random variables M (j)
tn for j = 1, . . . , a2n are independent and identically distributed,

because they refer to different excursions. Then we conclude by (6.1):

QNn

(
sup

t∈[0,1]

|ft| > 1

)
= 1−

(
1− P bulk

tn

(
Mtn√
tn

> an

))a2
n

≥ 1−

(
1− η

a2n

)a2
n

−−−−−→
n→∞

1− e−η .

Sufficiency. We assume that conditions (1) and (2) in Theorem 3.2 hold and we prove
that (QN )N∈N is tight in C([0, 1]), that is

∀η > 0 : lim
δ↓0

sup
N∈N

QN

(
Γ(δ) > η

)
= 0 , (6.3)

where Γ(δ)(f) := sup|t−s|≤δ |ft − fs| denotes the continuity modulus of f ∈ C([0, 1]).
Given a finite subset U = {u1 < . . . < un} ⊆ [0, 1] and points s, t ∈ [0, 1], we write

s ∼U t iff no point ui ∈ U lies between s and t. Then we define

Γ̃U (δ)(f) := sup
s,t∈[0,1]: s∼U t, |t−s|≤δ

|ft − fs| .

Plainly, if f(ui) = 0 for all ui ∈ U , then Γ(δ)(f) ≤ 2 Γ̃U (δ)(f). This means that in (6.3) we
can replace Γ(δ)(f) by Γ̃U (δ)(f), where U is any subset of [0, 1] on which f vanishes. We
fix U = { t1

N , . . . , tn
N }, where ti are the regeneration epochs of PN . It remains to show that

∀η > 0 : lim
δ↓0

sup
N∈N

QN

(
Γ̃U (δ) > η

)
= 0 . (6.4)

We set for short Qfin
t := P fin

t ◦ R−1
t and Qbulk

t := P bulk
t ◦ R−1

t . By Definition 3.1

QN

(
Γ̃U (δ) ≤ η

)
=

N+1∑
n=1

∑
0=t1<...<tn≤N

pN ({t1, . . . , tn})

×
n−1∏
i=1

Qbulk
ti+1−ti

(
Γ( N

ti+1−ti
δ) ≤ η

√
N

ti+1−ti

)
×Qfin

N−tn

(
Γ( N

N−tn
δ) ≤ η

√
N

N−tn

)
.

Note that we have the original continuity modulus Γ. Let us set

gbulkη (δ) := inf
N∈N, 2≤n≤N+1,
0=t1<...<tn≤N

n−1∏
i=1

Qbulk
ti+1−ti

(
Γ( N

ti+1−ti
δ) ≤ η

√
N

ti+1−ti

)
(6.5)

gfinη (δ) := inf
N∈N, 1≤t<N

Qfin
N−t

(
Γ( N

N−tδ) ≤ η
√

N
N−t

)
,
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so that we can bound QN

(
Γ̃U (δ) ≤ η

)
≥ gbulkη (δ) gfinη (δ) (we recall that pN (·) is a proba-

bility). We complete the proof of (6.4) by showing that

∀η > 0 : lim
δ↓0

gbulkη (δ) gfinη (δ) ≥ 1 .

We first show that limδ↓0 g
fin
η (δ) ≥ 1, for every η > 0. We fix θ ∈ (0, 1) and consider

two regimes. For t < (1− θ)N we can bound (recall that (Qfin
` )`∈N is tight by assumption)

inf
N∈N, 1≤t<(1−θ)N

Qfin
N−t

(
Γ( N

N−tδ) ≤ η
√

N
N−t

)
≥ inf

`∈N
Qfin

`

(
Γ( δθ ) ≤ η

)
−−→
δ↓0

1 .

On the other hand, for t ≥ (1− θ)N we can bound

inf
N∈N, (1−θ)N≤t<N

Qfin
N−t

(
Γ( N

N−tδ) ≤ η
√

N
N−t

)
≥ inf

`∈N
Qfin

`

(
max
s∈[0,1]

|fs| ≤ 1
2

η√
θ

)
=: hη(θ) .

For any η > 0, we have limδ↓0 gfinη (δ) ≥ limθ↓0 hη(θ) = 1, by the tightness of (Qfin
` )`∈N.

To complete the proof, we show that limδ↓0 g
bulk
η (δ) ≥ 1, for every η > 0. Note that

inf
t∈N

Qbulk
t

(
max
s∈[0,1]

|fs| ≤ a
)

= inf
t∈N

P bulk
t

(
max

i=0,...,t
|xi| ≤ a

√
t
)

≥ 1− ε(a)

a2
,

where lima↑∞ ε(a) = 0, by assumption (2). We may assume that a 7→ ε(a) is non increasing.
Fix θ ∈ (0, 1). Given a family of epochs 0 ≤ t1 < . . . < tn ≤ N , we distinguish two cases.

• For θN < ti+1 − ti ≤ N we can bound

Qbulk
ti+1−ti

(
Γ( N

ti+1−ti
δ) ≤ η

√
N

ti+1−ti

)
≥ inf

t∈N
Qbulk

t

(
Γ( δθ ) ≤ η

)
=: Fη,θ(δ) ,

and note that for fixed η, θ we have limδ↓0 Fη,θ(δ) = 1, because (Qbulk
t )t∈N is tight.

• For ti+1 − ti ≤ θN we can bound

Qbulk
ti+1−ti

(
Γ( N

ti+1−ti
δ) ≤ η

√
N

ti+1−ti

)
≥ Qbulk

ti+1−ti

(
max
s∈[0,1]

|fs| ≤ η
2

√
N

ti+1−ti

)
≥ 1− 4(ti+1−ti)

η2 N ε
(

η

2
√
θ

)
≥ exp

(
− 8(ti+1−ti)

η2 N ε
(

η

2
√
θ

))
,

where the last inequality holds for θ > 0 small, by 1− z ≥ e−2z for z ∈ [0, 1
2 ].

We can have ti+1 − ti > θN for at most b1/θc values of i, hence

gbulkη (δ) ≥ Fη,θ(δ)
1
θ

n−1∏
i=1

exp
(
− 8(ti+1−ti)

η2 N ε
(

η

2
√
θ

))
≥ Fη,θ(δ)

1
θ exp

(
− 8

η2 ε
(

η

2
√
θ

))
.

Given η > 0 and ε > 0, we first fix θ > 0 small enough, so that the exponential is greater
than 1− ε; then we let δ → 0, so that Fη,θ(δ)

1
θ → 1. This yields limδ↓0 g

bulk
η (δ) ≥ 1− ε. As

ε > 0 was arbitrary, we get limδ↓0 g
bulk
η (δ) ≥ 1.
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