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Abstract

We provide a random walk in random scenery representation of a new class of stable
self-similar processes with stationary increments introduced recently by Jung, Owada
and Samorodnitsky. In the functional limit theorem they provided only a single
instance of this class arose as a limit. We construct a model in which a significant
portion of processes in this new class is obtained as a limit.
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1 Introduction

1.1 Random walks in random scenery

Our model is based in the framework of random walks in random scenery models.
They were first considered in [4], where a number of limit theorems regarding the
scaling limits of these models were proved. The more specific context in which we will
be working was presented in [1]. The model considered therein can be briefly sketched
as follows. Assume that there is a user moving randomly on the network (in this paper
the network is just Z) which earns random rewards (governed by the random scenery)
associated to the points in the network that they visit. The quantity of interest is then the
total amount of rewards collected. To be more precise, assume that that the movement
of the user is a random walk on Z which after suitable scaling converges to the β-stable
Lévy process with β ∈ (1, 2]. Furthermore, let the random scenery be given by i.i.d.
random variables (ξj)j∈Z which belong to the normal domain of attraction of a symmetric
strictly stable distribution with index of stability α ∈ (0, 2]. Then the random walk in
random scenery is given by

Zn =

n∑
k=1

ξSk
, (1.1)

where Sk =
∑k

j=1 Xk is the random walk determining the movement of the user. If
we consider a large number of independent random walkers moving in independent
random sceneries, then the scaling limit in the corresponding functional limit theorem
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Random walks in doubly random scenery

(see Theorem 1.2 in [1]) leads to the process which has the integral representation given
by

X =

(∫
R×Ω′

Lt(x, ω
′)Mα(dx, dω

′)

)
t≥0

, (1.2)

where (Lt(x, ω
′))t≥0,x∈R is a jointly continuous version of the local time of the symmetric

β-stable Lévy motion (defined on some probability space (Ω′,F ′,P′)) and Mα is a sym-
metric α-stable random measure on R× Ω′ with control measure λ1 ⊗ P′, which is itself
defined on some other probability space (Ω,F ,P). The process (1.2) was also obtained
in [6] where it arose as a limit of partial sums of a stationary and infinitely divisible
process.

1.2 The limit process

Very recently Jung, Owada and Samorodnitsky in their paper [3], which was an
extension of the model considered in [6], introduced a new class of self-similar stable
processes whose members have an integral representation given by

Yα,β̃,γ(t) :=

∫
Ω′×[0,∞)

Sγ(Mβ̃((t− x)+, ω
′), ω′)dZα,β̃(ω

′, x), t ≥ 0, (1.3)

where
0 < α < γ ≤ 2, 0 ≤ β̃ < 1,

(Sγ(t, ω
′))t≥0 is a symmetric γ-stable Lévy motion and (Mβ̃(t, ω

′))t≥0 is an independent

β̃-Mittag-Leffler process (see section 3 in [6] for more on the latter). Both of these
processes are defined on a probability space (Ω′,F ′,P′). Finally Zα,β̃ is a symmetric
α-stable random measure on Ω′ × [0,∞) with control measure P′ ⊗ νβ̃, where νβ̃(dx) =

(1− β̃)x−β̃1x≥0dx. By Proposition 3.2 in [3] the process Yα,β̃,γ is H-sssi (self-similar with

stattionary increments) with Hurst coefficient H = β̃/γ + (1 − β̃)/α. Here we use β̃

instead of β so as not to confuse it with the notation we have adopted for this paper.
Similarly as in the proof of (3.10) in [6] we can show that for β̃ ∈ (0, 1

2 )

(Yα,β̃,γ(t))t≥0
d
= cβ̃

(∫
Ω′×R

Sγ(Lt(x, ω
′), ω′)dZα(ω

′, x)

)
t≥0

, (1.4)

where cβ̃ is a constant depending only on β̃, (Lt(x))t≥0 is the local time of a symmetric
β-stable Lévy motion defined independent of the process Sγ (both defined on (Ω′,F ′,P′)),

β = (1 − β̃)−1 and Zα is a symmetric α-stable random meaure on (Ω′,R) with control
measure P′ ⊗ λ1.

The limit process obtained in [3] corresponds to γ = 2 in (1.3) it is our purpose to
provide a model in which the scaling limit is given by processes of the form (1.4) for any
allowable choice of parameters α, β and γ.

2 Description of the model and the result

Imagine that each x ∈ Z is associated with a reward (or punishment) given by ξx
which takes integer values. Now imagine a random walker moving on Z independently
of the rewards and starting at 0. Before the movement the walker generates a strategy
Y1, Y2, . . . of i.i.d. random variables which are independent of the ξx’s and his movement.
Now, any time the walker visits a point x he gets a reward (or receives punishment)
given by Yk × ξx, where k is number of times that the walker has already stayed at x
(including the current visit). Thus the amount by which a potential reward is being
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Random walks in doubly random scenery

multiplied depends only on the number of the visits. The total reward/punishment at
time n in this scheme is given by

∑
x∈Z

(Nn(x)∑
k=1

Yk

)
ξx, (2.1)

where

Nn(x) :=

n∑
k=1

1{Sk=x} (2.2)

denotes the number of visits to the point x ∈ Z up to time n ∈ N and Sk = X1 + . . . Xk is
the random walk performed.

The specific context in which our model is investigated is an extension of the one
presented in Section 1.2 of [1] and goes as follows. Let (Sn)n≥0 be a random walk on Z
such that

1

an
Sn ⇒ Zβ , (2.3)

where Zβ has symmetric β-stable distribution 1 < β < 2. In particular, we assume that
the random walk is recurrent. In the most general setting (an)n≥1 is regularly varying at
infinity with exponent β. We will assume more, i.e., that (Sn) is in the normal domain of
attraction of Zβ and take an = n1/β . Let ξ = (ξx)x∈Z be a family of i.i.d. random variable
such that

1

n1/α

n∑
x=0

ξx ⇒ Zα, (2.4)

where Zα is a symmetric α-stable random variable with α ∈ (0, 2). What is different from
the model considered in [1] is that we introduce more randomness to the model with an
i.i.d. sequence (Yn)n≥1 such that

1

nγ

n∑
j=1

Yj ⇒ Zγ , (2.5)

where Zγ has a symmetric γ-stable distribution with α < γ ≤ 2. In the original formu-
lation of [1] all the Yn’s are equal to one. For technical reasons we will also assume
that

sup
k∈N

E

∣∣∣∣∣Y1 + . . .+ Yk

k1/γ

∣∣∣∣∣
ακ

< ∞, (2.6)

for some κ > 1. The above condition can be viewed as a restriction on the distributution
of Y1. A sufficient condition for (2.6) to hold is given in the lemma below. We denote the
characteristic function of Y1 by φ.

Lemma 2.1. If α > 1, then (2.6) is satisfied as long as∫ ∞

r

|φ′(θ)|
θακ

dθ < ∞ (2.7)

for some r > 0 and there is a finite constant K such that |φ′(θ)| ≤ K|θ|γ−1 for θ in some
neighbourhood of zero.

The proof of Lemma 2.1 is given in the Appendix.

The base for our study is the behaviour of the process

Z̃(t) :=
∑
x∈Z

(N[t](x)∑
k=1

Yk

)
ξx, t ≥ 0. (2.8)
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Random walks in doubly random scenery

We also define the rescaled version of (2.8) by

Dn(t) := r−1
n Z̃(nt), n ≥ 1, i ≥ 1, t ≥ 0, (2.9)

with rn = n1/γ+1/(αβ)−1/(γβ).
We are interested in the scaling limit in which we consider the aggregate behaviour

of a large number of independent walkers with independent strategies and having
independent environments from which they collect the rewards. More precisely, consider
an i.i.d. sequence of processes

(
(D

(i)
n (t))t≥0

)∞
i=1

, n ≥ 1 and define for t ≥ 0

Gn(t) :=
1

c
1/α
n

cn∑
i=1

D(i)
n (t), n ≥ 1, (2.10)

where cn is any sequence of positive integers converging to +∞. Now we may state our
result concerning the scaling limit of the above process.

Theorem 2.2. For any 0 < α < γ ≤ 2 the process (Gn(t))t≥0 defined by (2.10) converges
(up to a multiplicative constant) as n → ∞, in the sense of finite-dimensional distributions,
to the process given by (1.4).

3 Proof of Theorem 2.2

For clarity we divided the proof of Theorem 2.2 into a number of lemmas. Basically,
we prove the convergence of finite-dimensional distributions by showing the convergence
of appropriate characteristic functions. First we will state them and then proceed to
their proofs. In order to simplify the notation we put

Ñn(x) :=

Nn(x)∑
j=1

Yj , (3.1)

for n ∈ N and x ∈ Z. Since we are going to work a lot with the characteristic function of
ξ0 we introduce the following notation. Let

λ(u) = E(exp(iuξ0)), u ∈ R (3.2)

and
λ̄(u) = exp(−|u|α), u ∈ R. (3.3)

Assume that θ1, . . . , θk ∈ R, t1, . . . , tk ∈ [0,∞) for k ≥ 1. We want to show the conver-
gence of the characteristic function of

∑k
j=1 θjGn(tj) to the corresponding characteristic

function of the process given by (1.3).
The first lemma in this section removes the first layer of randomness in our scheme

and expresses the characteristic function in question solely in terms of the random walk
and the sequence (Yk)k≥1.

Lemma 3.1. For the setting as in Section 2

E
(
exp

i

k∑
j=1

θjGn(tj)

) = (E( ∏
x∈Z

λ
(
c−1/α
n r−1

n

k∑
j=1

θj

N[ntj ]
(x)∑

m=1

Ym

)))cn

. (3.4)

The second lemma says that, in the limit, only the asymptotic behaviour of λ near
zero matters.

Lemma 3.2.

E

(
cn

( ∏
x∈Z

λ(c−1
n r−1

n

k∑
j=1

θjÑ[ntj ](x))− λ̄(c−1
n r−1

n

k∑
j=1

θjÑ[ntj ](x))
))

(3.5)

converges to 0 as n → ∞.
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The third lemma is the backbone of the whole proof.

Lemma 3.3. Let

Bn :=
∑
x∈Z

∣∣∣∣∣∣r−1
n

k∑
j=1

θj

N[ntj ]
(x)∑

m=1

Ym

∣∣∣∣∣∣
α

, n ≥ 1. (3.6)

Then,

lim
n→∞

E(Bn) = c(α)E

∫
R

∣∣∣∣∣∣
k∑

j=1

θjY (Ltj (x))

∣∣∣∣∣∣
α

dx

 , (3.7)

and

E(exp(−c−1
n Bn)) = 1− c−1

n c(α)E(B) + o(c−1
n ). (3.8)

Here B =
∫
R
|
∑k

j=1 θjY (Ltj (x)|αdx and c(α) is a constant depending only on α.

It is evident that given the lemmas above, Theorem 2.2 follows immediately (see the
proof of Theorem 1.2 in [1]). First, however, we will show that the random variables Bn,
n ∈ N introduced in the formulation of Lemma 3.3 are uniformly integrable. We do this
by showing that E|Bn|κ is bounded uniformly in n ∈ N for some κ > 1.

Lemma 3.4. Assume that (2.6) holds for some 1 < κ < γ/(γ − α). Then, for every t > 0

there is a constant C, independent of n ∈ N (possibly depending on κ), such that we
have

E(Bκ
n) ≤ C. (3.9)

Proof of Lemma 3.4. It is enough to prove the lemma with k = 1 and θ1 = 1. Fix n ∈ N
and t ≥ 0. Let x1, . . . , xsn be the points in the range of the random walk up to time [nt]

taken in the increasing order with respect to N[nt](xi). We can write

Bn =
1

rαn

(∣∣Y1 + . . .+ YN[nt](x1)

∣∣α + . . .+
∣∣Y1 + . . .+ YN[nt](xsn )

∣∣α) . (3.10)

Notice that by Jensen inequality, for any κ > 1 we have

Bκ
n ≤ r−κα

n Rκ−1
[nt]

(∣∣Y1 + . . .+ YN[nt](x1)

∣∣ακ + . . .+
∣∣Y1 + . . .+ YN[nt](xsn )

∣∣ακ) , (3.11)

where Rm =
∑

x∈Z 1{Nm(x) 6=0} for m ∈ N. Since the sequence (Yn)n∈N and the random
walk are independent, by conditioning on the random walk, we get

E(Bκ
n) ≤ r−κα

n sup
k∈N

E

∣∣∣∣∣Y1 + . . .+ Yk

k1/γ

∣∣∣∣∣
ακ

E
(
Rκ−1

[nt] N[nt](x1)
ακ
γ + . . .+N[nt](xsn)

ακ
γ

)
, (3.12)

We now claim that

r−κα
n E

Rκ−1
[nt]

R[nt]∑
k=1

N[nt](xk)
ακ
γ

 (3.13)

is bounded uniformly in n ∈ N for all κ > 1 sufficiently close to 0. Using Hölder inequality
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with p = γ
ακ and q = γ

γ−ακ we see that (3.13) is no bigger than

r−κα
n E

(
Rκ−1

[nt]

(∑
x∈Z

1{N[nt](x)6=0}

) γ−ακ
γ

[nt]
ακ
γ

)
= r−κα

n E
(
R

(γ−α)κ
γ

[nt]

)
[nt]

ακ
γ

≤ r−κα
n

(
E(R[nt])

) (γ−α)κ
γ (∑

x∈Z
N[nt](x)

)ακ
γ

= r−κα
n

(
E(R[nt])

) (γ−α)κ
γ

[nt]
ακ
γ , (3.14)

where the inequality in (3.14) follows from Hölder inequality as long as κ ≤ γ
γ−α . By

Lemma 1 in [4], E(R[nt]) ≤ c1[nt]
1/β for some constant c1 depending only on β. We thus

conclude that (3.13) can be bounded by

c1[nt]
(γ−α)κ

γβ [nt]
ακ
γ n−κα

γ −κ
β+κα

γβ , (3.15)

which is bounded uniformly in n ∈ N.

The proof of Lemma 3.1 is the same as the proof of Lemma 3.4 in [1] and, therefore,
we skip it and proceed directly to the proof of Lemma 3.2.

Proof of Lemma 3.2. The proof presented here is very similar to the proof of Lemma 3.5
in [1]. Recall that, by assumption,

λ(u) = λ̄(u) + o(|u|α),

as u → 0. Let

Un(x) := r−1
n

k∑
j=1

θjÑ[ntj ](x), n ∈ N, x ∈ Z. (3.16)

Using inequality (41) in [1]∣∣∣∣∣∏
x∈Z

λ(c−1/α
n Un(x))−

∏
x∈Z

λ̄(c−1/α
n Un(x))

∣∣∣∣∣
≤
∑
x∈Z

∣∣∣λ(c−1/α
n Un(x))− λ̄(c−1/α

n Un(x))
∣∣∣ . (3.17)

Therefore (3.5) can be bounded by

cnE

(∑
x∈Z

∣∣∣λ(c−1/α
n Un(x))− λ̄(c−1/α

n Un(x))
∣∣∣) . (3.18)

Define g(v) = |v|−α|λ(v)−λ̄(v)|, for v 6= 0 and g(0) = 0. Then g is bounded and continuous.
With this notation (3.18) equals

E

(∑
x∈Z

|Un(x)|αg(c−1/α
n Un(x))

)
. (3.19)

Fix any ε > 0 and choose δ > 0 such that |z| < δ implies |g(z)| < ε. Then, (3.19) can be
bounded by

εE

(∑
x∈Z

|Un(x)|α
)
+ ‖g‖∞E

(∑
x∈Z

|Un(x)|α1{c1/αn |Un(x)|≥δ}

)
, (3.20)
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which in turn is bounded by

εE

(∑
x∈Z

|Un(x)|α
)
+ ‖g‖∞E

(∑
x∈Z

|Un(x)|α1{
∑

x∈Z |Un(x)|α≥cnδα}

)
. (3.21)

Since, by Lemma 3.4 the sequence of random variables (
∑

x∈Z |Un(x)|α)n∈N is uniformly
integrable, the first sumand in (3.21) is bounded by ε times a constant independent of
n ∈ N and the second converges to 0 as n → ∞. The choice of ε was arbitrary and hence
the proof is finished.

Proof of Lemma 3.3. First we are going to show that (3.7) holds. Without losing gener-
ality we may assume that 0 ≤ t1 ≤ . . . ≤ tk. For convenience we also put t0 = 0.

We can rewrite E(Bn) as∫
R

E

∣∣∣∣(θ1 + . . . θk)Z
(1)(N[nt1]([anx]))

(N[nt1]([anx])

na−1
n

)1/γ
+(θ2 + . . . θk)Z

(2)
(
N[nt2]([anx])−N[nt1]([anx])

)
×
(N[nt2]([anx])−N[nt1]([anx])

na−1
n

)1/γ
+ . . .+

+θkZ
(k)
(
N[ntk]([anx])−N[ntk−1]([anx])

)
×
(N[nt2]([anx])−N[nt1]([anx])

na−1
n

)1/γ∣∣∣∣αdx,
where Z(1)(·), . . . , Z(k)(·) are i.i.d. copies of the sequence (we put Z(j)(0) = 0 for conve-
nience)

Z(0)(m) =
1

m1/γ
(Y1 + . . . Ym) , m ∈ N, (3.22)

which are independent of the random walk (Sn). By Skorochod representation theorem
we may assume that for j = 1, . . . , k, Z(j)(m) converges almost surely to Z(j), which has
symmetric γ-stable distribution and the random variables Z(j) are independent. Let

Cn =

∫
R

∣∣∣∣(θ1 + . . . θk)Z
(1) ×

(N[nt1]([anx])

na−1
n

)1/γ
(3.23)

+(θ2 + . . . θk)Z
(2) ×

(N[nt2]([anx])−N[nt1]([anx])

na−1
n

)1/γ
+ . . .+

+θkZ
(k) ×

(N[ntk]([anx])−N[ntk−1]([anx])

na−1
n

)1/γ∣∣∣∣α.
We are going to show that E(Bn) − E(Cn) converges to 0 as n → ∞. For that we will
need the inequalities:

|aα − bα| ≤ α|a− b|(aα−1 + bα−1), α > 1, a, b ≥ 0, (3.24)

and

|aα − bα| ≤ |a− b|α, 0 ≤ α ≤ 1, a, b ≥ 0. (3.25)
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Assume first that α > 1. Put

A =

∣∣∣∣(θ1 + . . . θk)Z
(1)(N[nt1]([anx]))

(N[nt1]([anx])

na−1
n

)1/γ
+(θ2 + . . . θk)Z

(2)
(
N[nt2]([anx])−N[nt1]([anx])

)
×
(N[nt2]([anx])−N[nt1]([anx])

na−1
n

)1/γ
+ . . .+

+θkZ
(k)
(
N[ntk]([anx])−N[ntk−1]([anx])

)
×
(N[nt2]([anx])−N[nt1]([anx])

na−1
n

)1/γ∣∣∣∣,
and

B =

∣∣∣∣(θ1 + . . . θk)Z
(1) ×

(N[nt1]([anx])

na−1
n

)1/γ
+(θ2 + . . . θk)Z

(2) ×
(N[nt2]([anx])−N[nt1]([anx])

na−1
n

)1/γ
+ . . .+

+θkZ
(k) ×

(N[ntk]([anx])−N[ntk−1]([anx])

na−1
n

)1/γ∣∣∣∣.
Then by (3.24) and Hölder inquality

E|aα − bα| ≤ αE
(
|A−B|(Aα−1 +Bα−1)

)
≤ α

(
E|A−B|α

)1/α((
EAα

)(α−1)/α
+
(
EBα

)(α−1)/α
)
.

By triangle inequality

|A−B| ≤
k∑

j=1

∣∣θj + . . .+ θk
∣∣∣∣∣∣(Z(j)

(
N[ntj ]([anx])−N[ntj−1]([anx])

)
− Z(j)

)
×
(
N[ntj ]([anx])−N[ntj−1]([anx])

na−1
n

)1/γ∣∣∣∣. (3.26)

Notice that by (2.6) the sequence of random variables(∣∣∣Y1 + . . . Yn

n1/γ

∣∣∣α)
n≥1

(3.27)

is uniformly integrable and hence, by conditioning on the random walk and using triangle
inequality once again (now for the α-norm of a random variable), we conclude that

(
E|A−B|α

)1/α ≤
k∑

j=1

∣∣θj + . . .+ θk
∣∣

×
(
E

∣∣∣f(N[ntj ]([anx])−N[ntj−1]([anx])
)

×
(N[ntj ]([anx])−N[ntj−1]([anx])

na−1
n

)1/γ∣∣∣∣α)1/α

(3.28)

where f : N ∪ {0} → R+ is a bounded function such that limm→∞ f(m) = 0. Using (2.6)
again one can easily notice that both EAα and EBα can be bounded by

c1E
(N[ntk]([anx])

na−1
n

)α/γ
(3.29)
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for some finite constant c1 independent of n. Thus, to show that |E(Bn)−E(Cn)| goes to
zero as n → ∞ it remains to prove that for any j = 1, . . . , k∫

R

(
E
(
f
(
N[ntj ]([anx])−N[ntj−1]([anx])

)α
×
(N[ntj ]([anx])−N[ntj−1]([anx])

na−1
n

)α/γ))1/α

×
(
E
(N[ntk]([anx])

na−1
n

)α/γ)(α−1)/α

dx (3.30)

converges to 0 as n → ∞. The integrand in (3.30) is bounded by the function

x 7→ c2E
(N[ntk]([anx])

na−1
n

)α/γ
, (3.31)

for some constant c2 independent of n. It follows from the proof of Lemma 6 in [4] that
for any K > 0 and t > 0 ∫

|x|>K

(N[nt]([anx])

na−1
n

)α/γ
dx

converges in distribution to ∫
|x|>K

Lt(x)
α/γdx (3.32)

were (Lt(x))t≥0,∈R is a jointly continuous version of local time of a symmetric β-stable
Lévy process. By Lemma 3.3 in [1] the convergence holds also in L1(Ω). Since the
expected value of (3.32) converges to 0 as K → ∞ (see Lemma 2.1 in [1]), we see that
by choosing K large enough, ∫

|x|>K

E
(N[ntk]([anx])

na−1
n

)α/γ
dx (3.33)

can be made arbitrarily small for all n large enough. Thus it remains to show that for
any K > 0 ∫

|x|≤K

(
E
(
f
(
N[ntj ]([anx])−N[ntj−1]([anx])

)α
×
(N[ntj ]([anx])−N[ntj−1]([anx])

na−1
n

)α/γ))1/α

×
(
E
(N[ntk]([anx])

na−1
n

)α/γ)(α−1)/α

dx (3.34)

converges to zero as n → ∞. This is relatively easy and we will only sketch the idea. Fix
any r > 0 and j = 1, . . . , k. The integral in (3.34) can be written as a sum of two integrals
I1, I2 depending on whether

N[ntj ]([anx]) −N[ntj−1]([anx])

na−1
n

(3.35)

is greater than r or not. In the first case, taking n sufficiently large, the integrand can be
bounded by an arbitrarily small constant (in this case N[ntj ]([anx]) −N[ntj−1]([anx]) must
be large since na−1

n → ∞). In the second case we simply bound the integrand by

r1/γ
(N[ntk]([anx])

na−1
n

)(α−1)/γ

(3.36)
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and the corresponding integral (again by Lemma 3.3 in [1]) can be bounded from above
by a constant independent of n times c1/γ . Choosing r small in the first place gives us
what was needed. The case 0 ≤ α ≤ 1 is very similar and we skip the proof.

Now, by the stability and independence of Z(1), . . . , Z(k), E(Cn) is equal to∑
x∈Z

r−α
n

(∣∣∣|θ1 + . . . θk|γN[nt1](x) (3.37)

+|θ2 + . . . θk|γ
(
N[nt2](x)−N[nt1](x)

)
+ . . .+

+|θk|γ
(
N[ntk](x)−N[ntk−1](x)

)∣∣∣α/γ)E(|Y1|α
)
.

By Lemmas 3.2 ad 3.3 in [1], (3.37) converges as n → ∞, to∫
R

E

∣∣∣∣∣
k∑

j=1

(
|θj + . . .+ θk|γ − |θj+1 + . . .+ θk|γ

)
Ltj (x)

∣∣∣∣∣
α

dx, (3.38)

which finishes the proof of (3.7). Now let us turn to (3.8). Define fn(x) := cn(1 −
exp(−c−1

n (x))) for x ∈ R, n ∈ N. Then, (3.8) is equivalent to

lim
n→∞

Efn(Bn) = EB. (3.39)

We can write, for δ > 0

Efn(Bn) = E
(
fn(Bn)1{|Bn|>cδn}

)
+ E

(
fn(Bn)1{|Bn|≤cδn}

)
(3.40)

= I1 + E

(
cn

(
1−

(
1−Bn/cn +O((Bn/cn)

2)
))

1{|Bn|≤cδn}

)
,

where (using |fn(x)| ≤ |x| for all x ∈ R and n ∈ N)

|I2(x)| ≤ E
(
|Bn|1{|Bn|>cδn}

)
, (3.41)

which converges to 0 as n → ∞ by the uniform integrability of (Bn)n≥1. Using this, and
taking δ < 1

2 we see that (again by the uniform integrability of (Bn)n≥1) (3.39) holds.

A Appendix

Proof of Lemma 2.1. Take any κ > 1 such that ακ < γ. In the proof c1, c2, . . . will denote
constants independent of k and θ. Since the random variable Y1 is symmetric we may
write (using Lemma 1.3 in [5])

mk(ακ) := E

∣∣∣∣Y1 + . . . Yk

k1/γ

∣∣∣∣ακ = c1

∫ ∞

0

φ′
k(−θ)

θακ
dθ, (A.1)

for some constant c1 which depends only on α and κ. Here φk denotes the characteristic
function of (1/k1/γ)(Y1 + . . . Yk). Recall that by φ we denote the characteristic function
of Y1. Since Y1 in the domain of normal attraction of Zγ we conclude (see [2] for proofs)
that the function

θ 7→ 1− φ(θ) (A.2)

is regularly varying at 0 with exponent γ and in particular

lim
θ→0

1− φ(θ)

|θ|γ
= c2, (A.3)
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with c2 being a finite positive constant depending only on γ. mk(ακ) can be bounded by

c1

∫ ∞

0

|φ′
k(θ)|
θακ

dθ (A.4)

which after a change of variables equals

c1

∫ ∞

0

|φ′(θ)|
(
1− (1− φ(θ))

)k−1

θακ
k1−(ακ)/γdθ. (A.5)

Fix c > 0 such that

1− φ(θ) ≥ c3|θ|γ ,
|φ′(θ)| ≤ c4|θ|γ−1,

for |θ| ≤ c and some positive constants c3, c4. The integral in (A.5) can be written as I1 +
I2, where I1 and I2 are integrals over (0, c) and (c,∞) respectively. First, notice that

I1 ≤ c5

∫ c

0

|θ|γ−1(1− c3|θ|γ)k−1

θακ
k1−(ακ)/γdθ. (A.6)

Since for z close to zero 1− z ∼ exp(−z), I1 is no bigger than

c6

∫ c

0

θγ−1−ακ exp(−(k − 1)θγ)k1−(ακ)/γdθ. (A.7)

Changing variables θ = (k − 1)1/γθ and using Theorem 10.5.6 in [7] we conclude that
lim supk→∞ I1 < ∞. The fact that for any c > 0, I2 is bounded uniformly in k ∈ N follows
directly from the assumptions of Lemma 2.1.
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