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Abstract

Let X be a C-valued random variable with the property that

X has the same law as
∑
j≥1

TjXj

where Xj are i.i.d. copies of X, which are independent of the (given) C-valued random
variables (Tj)j≥1. We provide a simple criterion for the absolute continuity of the
law of X that requires, besides the known conditions for the existence of X, only
finiteness of the first and second moment of N - the number of nonzero weights Tj .
Our criterion applies in particular to Biggins’ martingale with complex parameter.
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1 Introduction

In a variety of models coming from theoretical computer science, applied probability,
economics or statistical physics, quantities of interest exhibit asymptotic fluctuations
that do not have a normal or α-stable distribution. In many cases, the limiting law µ can
be characterized as a fixed point of a mapping S of the form

S(µ) = Law of
(∑

j≥1

TjXj

)
, (1.1)

where Xj are i.i.d. complex-valued random variables with law µ and independent of the
given complex variables (Tj)j≥1. See [12] and references therein for a list of examples.

The fixed point property µ = S(µ) then may and shall be used to analyze properties of
µ. Let us stress at this early point that S usually has multiple fixed points, which have to
be analyzed by different methods. They can roughly be classified by a parameter α: The
first class of fixed points are mixtures of α-stable laws, while the second class of fixed
points appears only for α ≥ 1. Fixed points of the second class are limits of martingales
in an associated weighted branching process. Under an additional very mild assumption,
fixed points from the second class are integrable.
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Absolute continuity of complex martingales

In this note, we will study absolute continuity of fixed points of S and take advantage
of the classification described above, which was recently given in [12]. This simplifies
essentially the approach. For fixed points from the first class, absolute continuity can be
proved along similar lines as for infinitely divisble laws. For fixed points from the second
class, we apply Fourier analytic methods and then integrability allows us to work with
derivatives of the characteristic function.

History of the problem and related works

In the theory of branching processes, it is a well-established technique to analyze
decay rates of the derivative of the characteristic function φ in order to prove absolute
continuity of martingale limits; see [2, 4, 9, 13]. The idea is to prove that φ′(t) decays
at infinity at least like t−1/2−ε for a positive ε, which is sufficient to prove that φ′ is
square-integrable, which in turn provides an L2 density for the size-biased law of the
random variable in question. In the complex setting considered here, one has to provide
more refined estimates: Namely, if X is a complex-valued random variable, we define
its characteristic function as if X were a R2-valued random vector. Then one has to
prove that φ′ ∈ L2(R2). For this to hold, we need a twice as fast decay at infinity as for
real-valued random variables.

Alternatively, we may consider I(K) =
∫
|t|≤K

|φ′(t)|2 dt and prove, by a kind of

recurrence argument, that I(K) is bounded independently of K. However, again the
dimension makes a difference and neither of previously suggested arguments works
directly for R2.

Absolute continuity of solutions to (1.1) has been considered before; mainly in the
setup where Tj and Xj are nonnegative real-valued random variables, see [2, 4, 9]. The
most general conditions for absolute continuity of nonnegative solutions are provided in
[9].

The real- and complex-valued setup considered in our work has been treated recently
also in [8] within the framework of systems of fixed point equations, but under stronger
assumptions than imposed here. For instance negative moments of (Tj)j≥1 are required
which is not natural for (1.1), while integrability of (Tj)j≥1 is. The approach in [8] is
different, for it does not take into account a-priori knowledge such as the classification
of fixed points described above. Absolute continuity of a specific complex-valued model
was also studied in [3].

We continue in Section 2 with a precise description of the setup and the set of fixed
points of S. Then we state our results and describe several examples that motivated our
study. The proofs are given in Section 3.

2 Statement of results

2.1 Solutions to complex smoothing equations

Let (Tj)j≥1 be complex-valued random variables, satisfying

N := #{j : Tj 6= 0} = max{j : Tj 6= 0} < ∞ P-a.s.

Let X be a complex random variable with law µ such that S(µ) = µ. Then

X
law
=

N∑
j=1

TjXj , (2.1)

where
law
= means same law. Upon introducing the function

m(s) := E
[∑
j≥1

|Tj |s
]
,
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Absolute continuity of complex martingales

consider the following conditions.

m(0) = E[N ] > 1. (A1)

m(α) = 1 for some α > 0. (A2)

Under (A2), W1 :=
∑N

j=1 |Tj |α defines a mean one random variable. Consider further

m′(α) := E
[ N∑
j=1

|Tj |α log |Tj |
]
∈ (−∞, 0) and E

[
W1 log+ W1

]
< ∞. (A3)

Let U ⊂ C be the smallest closed multiplicative subgroup generated by the support of
(Tj)j≥1.

If the assumptions (A1)–(A3) (plus an additional technical assumption if α = 1) are
satisfied, then [12, Theorem 1.2] describes all solutions to (2.1). Namely, there exists a
nonnegative random variable W with unit mean and a C-valued random variable Z (both
are described in detail below) such that if X satisfies (2.1), then

X
law
= YW + xZ, (2.2)

where x ∈ C and (Yt)t≥0 is a complex-valued Lévy process with the invariance property

uYt
law
= Y|u|αt for all u ∈ U, t > 0, (2.3)

and (Yt)t≥0 is independent of (W,Z). Note that Yt ≡ 0 is a valid choice. If (Yt)t≥0 is
nontrivial, it holds E

[
|YW |α

]
= ∞, see [12, Remark 1.4].

2.1.1 Martingales and the weighted branching process

To give a description of W and Z, let us define a weighted branching process as follows:
Let V =

⋃∞
n=0N

n denote the infinite tree with Harris-Ulam labelling and root ∅. For each
v ∈ V, we denote by |v| its generation. To each v ∈ V, we attach an independent copy
(T1(v), T2(v), . . . ) of (Tj)j≥1 and define the weighted branching process by

L(∅) := 1, L(vi) := Ti(v)L(v),

where vi denotes concatenation: if v = v1 · · · vk, then vi = v1 · · · vki.
Then W := limn→∞ Wn := limn→∞

∑
|v|=n |L(v)|α with E[W ] = 1. Here, (A2) implies

that Wn is a martingale and (A3) guarantees its convergence in L1 by Biggins’ theorem,
see [10].

Z = 0 unless E
[∑N

j=1 Tj

]
= 1 and α ≥ 1. If these requirements are satisfied,

then Zn :=
∑

|v|=n L(v) defines a C-valued martingale with mean one. Whenever this
martingale converges a.s., we set Z := limn→∞ Zn; and define Z := 0 if the convergence
fails. Note that convergence of the martingale Zn is not guaranteed by the assumptions
(A1) – (A3) considered so far. That is, the representation (2.2) holds, but in order to
determine whether or not Z = 0, we need additional assumptions. To proceed, we have
to distinguish three cases.

If α = 1, then 1 = m(1) = E[
∑N

j=1 |Tj |] = E[
∑N

j=1 Tj ] implies U ⊂ R+, hence Zn = Wn.
Since Wn → W a.s and in L1 under (A1) – (A3), it holds Z = W . Continuity properties of
the nonnegative random variable W have been studied in [2, 9].

If α ≥ 2, under mild conditions, Z cannot be absolutely continuous. More precisely,
under (A1)–(A3), [12, Proposition 1.1] shows that Zn converges to a nonzero limit if and
only if Z = Zn = z a.s. for a deterministic z ∈ C \ {0}. In addition, [7, Proposition 2.2]
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Absolute continuity of complex martingales

gives conditions under which even the convergence to a nonzero deterministic limit fails
for α = 2.

Hence, the interesting case is 1 < α < 2. In this case, it follows from [12, Proposition
1.1] that Zn is uniformly integrable, hence Zn → Z in L1, whenever Zn converges at all.
This is why we will require the following assumption in our results:

lim
n→∞

Zn exists a.s. and in L1. (Z1)

If (A1)-(A2) hold then a sufficient condition for Zn to converge a.s. and in Lp for all
p < α is α ∈ (1, 2) and

m′(α) ≤ 0 and E
[∣∣Z1

∣∣α log2+ε
+ |Z1|

]
for some ε > 0, (A4)

see [7, Theorem 2.1].
To summarize, under (A1)–(A3), we have to investigate absolute continuity of the

law of YW for α ∈ (0, 2] (there is only the trivial process Yt ≡ 0 if α > 2) and absolute
continuity of the law of Z for α ∈ (1, 2), for Z is trivial or deterministic if α /∈ (1, 2).

2.2 Results

When studying absolute continuity of Z, we may focus on the case 1 < α < 2 by the
above discussion. We can further assume that P(N = 0) = 0, i.e., the weighted branching
process survives with probability 1. Namely, if there were a positive probability q ∈ (0, 1)

of extinction, then any fixed point µ of S can be decomposed as µ = qδ0+(1−q)µ∗, where
µ∗ is a fixed point of a mapping S∗ associated with the weighted branching process
consisting of individuals with infinite lines of descent, conditioned on non-extinction. See
[2, p. 742] for the details of this construction, which extends to our complex setting.

Finally, to avoid trivial cases, we have to assume that

P
( N∑

j=1

Tj = 1
)

< 1, (Z2)

since otherwise, Z = Zn = 1 a.s.

Theorem 2.1. Suppose N > 0 a.s., (A1)-(A2) with α ∈ (1, 2), (Z1)-(Z2) and U * R

together with

E
[
N2

]
< ∞ and E

[
N

N∑
j=1

log+ |Tj |
]
< ∞. (C1)

Then the law of Z is absolutely continuous.
If U ⊂ R, then (C1) can be replaced with the assumption E[N ] < ∞.

Recall that U is the smallest closed multiplicative subgroup generated by the support
of (Tj)j≥1. Hence U ⊂ R entails supp(Z) ⊂ R. As mentioned before, (A4) is a mild
sufficient condition for (Z1). If higher order moment conditions on Z and N are satisfied,
one can prove further smoothness properties of the Fourier transform of Z, see Remark
3.6.

Concerning (Yt)t≥0, standard arguments yield the following continuity result:

Proposition 2.2. Suppose (A1)-(A2) with α ∈ (0, 2]. Suppose that (Yt)t≥0 is a nonde-
generate complex-valued Lévy process satisfying (2.3) and that there is no U -invariant
R-linear subspace of C. Then for each t > 0, the law of Yt is absolutely continuous.

Combining both results and using that (Yt)t≥0 is independent of (W,Z) in the repre-
sentation (2.2), we have:

Corollary 2.3. Suppose (A1)-(A4), (C1), (Z2) and that there is no U -invariant R-linear
subspace of C. Then the law of any nontrivial solution to (2.1) is absolutely continouous.
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Absolute continuity of complex martingales

2.3 Examples

Biggins’ martingale with complex parameter

A branching random walk is defined as follows. An ancestor at the origin produces
offspring which is displaced on R according to a point process. Each new particle then
produces again offspring independently of all other particles according to the same law.
Denote the positions of the n-th generation particles by (S(v))|v|=n and suppose that for
some λ ∈ C,

m(λ) := E
[ ∑
|v|=1

e−λS(v)
]

exists and is nonzero. Then

Wn(λ) := m(λ)−n
∑
|v|=n

e−λS(v)

defines a C-valued martingale that coincides with Zn upon identifying

Tj = m(λ)−1e−λS(j).

These complex martingales were studied in [1] to analyze the frequencies of particles
with a certain speed in the branching random walk. See [1, 7] for conditions ensuring
(Z1) and explicit examples.

Cyclic Pólya urns

A cyclic Pólya urn consists of balls of b different types. Each time a ball of type m is
drawn, it is placed back into the urn together with a ball of type m+ 1 mod b. If b ≥ 7,
the asymptotic fluctuations of the proportion of balls of a given type are described in
terms of a complex random variable X with finite variance that satisfies

X
law
= UζX1 + ζ(1− U)ζX2,

where ζ = exp(i 2πb ) is a b-th root of unity and X1, X2 are i.i.d. copies of X which are
independent of U , which is a uniform [0, 1]-random variable; see e.g. [6].

We show how our result applies. With T1 = Uζ and T2 = ζ(1− U)ζ , the Assumptions
(A1)–(A4) and (Z1) are readily checked. The real part <(ζ) of ζ is greater than 1/2 iff
b ≥ 7, thus α = 1/<(ζ) ∈ (1, 2) as soon as b ≥ 7. Since the solution of interest has a
second moment, it has to be X = xZ for some x ∈ C. The set Z := supp(Z) has to satisfy

uζZ + ζ(1− u)ζZ ⊂ Z for all u ∈ [0, 1]

which yields that Z * R. Hence Theorem 2.1 applies and shows that X has a density.

3 Proofs

3.1 An equation for characteristic functions

In order to obtain an equation for the characteristic function of X satisfying (2.1),
we first note that its characteristic function is defined as if X were a R2-valued random
vector. That is, we define for ξ = ξ1 + iξ2, X = X(1) + iX(2)

φX(ξ) := E
[
exp

(
− i

[
ξ1X(1) + ξ2X(2)

])]
= E

[
exp

(
− i

1

2

[
ξX̄ + ξ̄X

])]
(3.1)
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Absolute continuity of complex martingales

where ξ̄ = ξ1 − iξ2 denotes the complex conjugate. We deduce that the characteristic
function of TX, T ∈ C, is then given by

φTX(ξ) = E
[
exp

(
− i

1

2

[
ξ ·TX+ ξ̄ ·TX

])]
= E

[
exp

(
− i

1

2

[
T̄ ξ · X̄+ T̄ ξ ·X

])]
= φX(T̄ ξ).

Using this, Eq. (2.1) gives rise to an equation for the characteristic function φX ,
namely

φX(ξ) = E
[ N∏
j=1

φX(T̄jξ)
]
. (3.2)

The above identity will be used later to study properties of φ and its derivatives.

3.2 Proof of Propositon 2.2

Let X be a random vector in Rd with characteristic function φX . Then (the law of) X
is called full, if for all v 6= 0 in Rd, 〈v,X〉 is not a point mass. A complex-valued random
variable X is full, if it is full upon identifying C ' R2. If X is full, then there is ε > 0 such
that |φX(ξ)| < 1 for all 0 < |ξ| < ε, see [11, Lemma 1.3.15].

Proof of Proposition 2.2. If there is no U -invariant R-linear subspace, then the invari-
ance property (2.3) yields that the support of Yt is also not contained in a proper linear
subspace of C, hence Yt is full. By (A1) and (A2), the function m is not constant, hence
there is u ∈ U with |u| 6= 1. Then, using that Yt is infinitely divisible, Eq. (2.3) yields
that Yt is operator semistable (see [11, Definition 7.1.2]). By [11, Theorem 7.1.15], a full
operator semistable law has a density with respect to Lebesgue measure.

3.3 Proof of Theorem 2.1

Lemma 3.1. Assume (A1), (A2) and (Z1). Then supp(Z) is closed under multiplication.

Proof. Mutatis mutandis, this is proved along the same lines as [2, Theorem 2].

In the following, we restrict our attention to the case where Z is properly C-valued,
i.e., supp(Z) * R. This automatically excludes the case P(

∑N
j=1 Tj = 1) = 1. The simpler

case supp(Z) ⊂ R requires only minor modifications. If supp(Z) * R, then Lemma 3.1
yields that supp(Z) is not contained in any affine R-linear subspace of C, hence Z is full.

From now on, φ is the characteristic function φZ of Z.

Lemma 3.2. Assume (A1), (A2) and (Z1), as well as N ≥ 1 a.s. and E[N ] < ∞. Then
` := lim sup|ξ|→∞ |φ(ξ)| = 0.

Proof. By the same arguments as in [9, Lemma 3.1 (i)], ` ∈ {0, 1}. As the next step, we
prove that |φ(ξ)| < 1 for all ξ 6= 0.

Since Z is full, [11, Lemma 1.3.15] yields that there is η > 0 such that |φ(ξ)| < 1 for
all 0 < |ξ| < η. Suppose

R := inf
{
r > 0 : ∃ ξ with |ξ| = r s.t. |φ(ξ)| = 1

}
< ∞.

Then choose ξ∗ with |ξ∗| = R and |φ(ξ∗)| = 1. Taking absolute values on both sides of Eq.
(3.2) yields

1 ≤ |φ(ξ∗)| ≤ E|φ(T̄1ξ
∗)| ≤ 1,

thus |φ(T̄1ξ
∗)| = 1 a.s. This would require |T1| ≥ 1 a.s. At the same time, since N ≥ 1

a.s. and EN > 1, we have that P(|T2| > 0) > 0. Together, this would give m(s) ≥
E
[
|T1|s + |T2|s

]
> 1 for all s > 0; which contradicts m(α) = 1. Hence R = ∞.
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Absolute continuity of complex martingales

It remains to prove ` < 1. By (A2) and the branching property, E
∑

|v|=n |L(v)|α = 1

for all n ∈ N, which yields that the expected number of summands exceeding 1 has to
be smaller than one. In addition, E[#{v : |v| = n}] = (E[N ])n < ∞ gives that we can
choose δ and n such that

L := {v : |v| = n, δ ≤ |L(v)| ≤ 1}

satisfies 1 < E[#L] < ∞. Hence, for the moment generating function κ(s) := E
[
s#L]

it holds s − κ(s) > 0 for all s ∈ (η, 1), where η is the unique root of κ(s) − s = 0 on the
interval [0, 1).

Suppose ` = 1. By the previous step, for sufficiently small ε > 0, there are 0 < t1 < t2
with t1 < δt2 s.t. |φ(ξ)| < 1 − ε for all t1 < |ξ| < t2, while there is ξ∗ with |ξ∗| = t2 s.t.
|φ(ξ∗)| = 1− ε. By iterating Eq. (3.2), we obtain

1− ε = |φ(ξ∗)| ≤ E
[ ∏
v∈L

∣∣φ(L(v)ξ∗)∣∣] ≤ E
[
(1− ε)#L] = κ(1− ε),

which contradicts s > κ(s) for all s ∈ (η, 1).

Derivatives of the characteristic function

Note that φ is differentiable as soon as E
[
|Z|

]
< ∞. To proceed further, we will consider

the complex derivatives ∂ξ̄φ(ξ) and ∂ξφ(ξ), which are obtained by considering ξ and ξ̄

as independent variables when differentiating, i.e. ∂ξ(ξ̄) = 0 and vice versa. See [5, pp.
22-23] for a list of properties of the complex derivatives.

Recall from (3.1) that the characteristic function φ of Z is given by

φ(ξ) = E
[
exp

(
− i

1

2
(ξZ̄ + ξ̄Z

))]
.

Hence

∂ξφ(ξ) = E
[
− i

2
Z̄ exp

(
− i

1

2
(ξZ̄ + ξ̄Z

))]
,

∂ξ̄φ(ξ) = E
[
− i

2
Z exp

(
− i

1

2
(ξZ̄ + ξ̄Z

))]
.

because ∂ξ(ξz) = z, ∂ξ̄(ξz) = 0 for z ∈ C. Therefore, by the chain rule for complex
differentiation (see [5, p. 23])

∂ξφ(T̄ ξ) = T̄ (∂ξφ)(T̄ ξ), ∂ξ̄φ(T̄ ξ) = T (∂ξ̄φ)(T̄ ξ). (3.3)

As the first step, we are going to prove decay rates for both derivatives.

Decay rates

Lemma 3.3. Suppose N > 0 a.s., (A1)-(A2) with α ∈ (1, 2), (Z1) and E[N ] < ∞. Then
there is a finite constant C such that

|∂ξφ(ξ)| ≤ C(1 + |ξ|)−1 and |∂ξ̄φ(ξ)| ≤ C(1 + |ξ|)−1 for all ξ ∈ C. (3.4)

Remark 3.4. If supp(Z) ⊂ R it follows that ∂ξφ(ξ), ∂ξ̄φ(ξ) are square-integrable w.r.t.
Lebesgue measure on R.

Proof. We will prove the estimate for ∂ξ̄φ. The proof for ∂ξφ is completely analogous, up
to replacing Tj by T̄j . Define g(ξ) := ∂ξ̄φ(ξ). Then, differentiating both sides of Eq. (3.2)
and using (3.3)

g(ξ) = E
[ N∑
j=1

Tjg(T̄jξ)
∏
i6=j

φ(T̄iξ)
]
. (3.5)
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Absolute continuity of complex martingales

Note that the right hand side is finite by using that m(1) < ∞ and that g is bounded by
E|Z| < ∞. By Lemma 3.2, for every ε, there is tε such that |φ(ξ)| < ε for every |ξ| > tε.
Given δ > 0 let

Nδ =

N∑
j=1

1{|Tj | > δ}.

If Nδ ≥ 1 and |ξ| > tεδ
−1 then for all 1 ≤ j ≤ N ,∏

i 6=j

|φ(Tiξ)| ≤ εNδ−1 (3.6)

and hence

|g(ξ)| ≤ E
[
ε(Nδ−1)+

N∑
j=1

|Tj ||g(T̄jξ)|
]

for |ξ| > tεδ
−1. (3.7)

Here (x)+ = max{0, x}. Define a complex valued random variable B by setting

Eh(B) = q−1
ε,δE

[
ε(Nδ−1)+

N∑
j=1

|Tj |h(T̄j)
]
, (3.8)

for any bounded, measurable function h, where qε,δ = E
[
ε(Nδ−1)+

∑N
j=1 |Tj |

]
. If δ → 0

then Nδ → N ≥ 1 and thus, using that m(1) < ∞ and monotone convergence

lim
δ→0

qε,δ = E
[
εN−1

N∑
j=1

|Tj |
]
. (3.9)

Moreover,

qε,δE
[
|B|−1

]
= E

[
ε(Nδ−1)+

N∑
j=1

|Tj ||T̄j |−1
]

= E
[
Nε(Nδ−1)+

]
δ→0→ E

[
NεN−1

]
(3.10)

when δ → 0, using that E
[
N
]
< ∞ by assumption. Hence, by Eq.s (3.9) and (3.10), we

can choose δ and ε small enough such that qε,δ < 1 and qε,δE
[
|B|−1

]
< 1. Recall that we

assume throughout that P(N = 0) = 0 to avoid an atom at zero.

From now on, δ and ε are fixed and we write p := qε,δ < 1. By (3.7), it holds for all
|ξ| ≥ tεδ

−1 that

|g(ξ)| ≤ pE
[
|g(Bξ)|

]
,

and we have that pE
[
|B|−1

∣∣ < 1. Recalling that |g| is bounded by E
[
|Z|

]
, we can apply a

Gronwall-type Lemma [9, Lemma 3.2] to the real-valued function

g∗ : R+ → R+, g∗(t) := max{|g(ξ)| : |ξ| = t}

to conclude that g∗(t) = O(t−1). The assertion follows.

Lemma 3.5. Suppose N > 0 a.s., (A1)-(A2) with α ∈ (1, 2), (Z1) and (C1). Then ∂ξφ and
∂ξ̄ are square-integrable (w.r.t. Lebesgue measure on C).
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Proof. As before, we focus on g(ξ) = ∂ξ̄φ(ξ). By taking squares in Eq. (3.7) and applying

Jensen’s inequality to the discrete probability measure
∑N

j=1
1
N δ{|Tj ||g(T̄jξ)|}, we obtain

|g(ξ)|2 ≤ E
[
ε2(Nδ−1)+N2

( 1

N

N∑
j=1

|Tj ||g(T̄jξ)|
)2]

≤ E
[
ε2(Nδ−1)+N

N∑
j=1

(
|Tj ||g(T̄jξ)|

)2]
, (3.11)

and this estimate is valid for all ξ with |ξ| ≥ tεδ
−1. Using the decay properties of g

provided by Lemma 3.3, we have that the right hand side in (3.11) is bounded by

E
[
ε2(Nδ−1)+N

N∑
j=1

(
|Tj |C(1 + |Tj ||ξ|)−1

)2] ≤ C

|ξ|2
E
[
ε2(Nδ−1)+N2

]
,

which is finite due to (C1). Defining

I(K) :=

∫
|ξ|≤K

|g(ξ)|2 dξ

and using the change-of-variables formula (on C), we have with U := tεδ
−1

I(K) ≤ I(U) + E
[
ε2(Nδ−1)+N

N∑
j=1

I
(
|Tj |K

)]
(3.12)

Now choose ε and δ small such that

γ := E
[
ε2(Nδ−1)+N2

]
< 1.

This is possible since Nδ → N a.s. for δ → 0, P(N > 1) > 0 and E
[
N2

]
< ∞. Recall that

β := E
[
ε2(Nδ−1)+N

N∑
j=1

log+ |Tj |
]
< ∞

by assumption. The remainder of the proof relies on the following claim.

Claim: For all m ∈ N,

I(K) ≤
m∑

n=0

γnI(U) +mγm−1βC + γmC log+ K,

where C < ∞ is the constant factor in the bound on g(ξ) = ∂ξ̄φ(ξ) provided by Lemma
3.3.

If the claim holds, then I(K) ≤ I(U)
1−γ < ∞ for all K, which proves that g : C→ C is

in L2 and thus finishes the proof.

Proof of the Claim: We proceed by induction over m ∈ N. For m = 0, we use the
bound |g(ξ)|2 ≤ C(1 + |ξ|)−2, provided by Lemma 3.3 to estimate

I(K) ≤
∫
|ξ|≤1

C dξ +

∫
1<|ξ|≤K

C

|ξ|2
dξ = Cπ +

∫ 2π

0

∫ K

1

C

r2
r dr dϕ = Cπ + 2πC log+ K,

where we used polar coordinates in the second expression for the integrals. After making
U and C larger if necessary, we have

I(K) ≤ I(U) + C log+ K.

ECP 23 (2018), paper 60.
Page 9/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP155
http://www.imstat.org/ecp/


Absolute continuity of complex martingales

Suppose the claim holds for m ∈ N. This means I(K) ≤ a+ b log+ K with the values

a =

m∑
n=0

γnI(U) +mγm−1βC, b = γmC.

Using Eq. (3.12) to iterate, we obtain

I(K) ≤ I(U) + E
[
ε2(Nδ−1)+N

N∑
j=1

(
a+ b log+ |Tj |+ b log+ K

)]

= I(U) + E
[
ε2(Nδ−1)+N2

(
a+ b log+ K

)]
+ E

[
ε2(Nδ−1)+N

N∑
j=1

b log+ |Tj |
]

= I(U) + γa+ γb log+ K + βb

= I(U) + γ

m∑
n=0

γnI(U) +mγmβC + γm+1C log+ K + βγmC

which proves the claim.

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Writing ξ = ξ1 + iξ2 and using

∂ξ1φ = ∂ξφ+ ∂ξ̄φ, ∂ξ2φ = i
(
∂ξφ− ∂ξ̄φ

)
(see [5, (1.1.2)]) we have obtained the square-integrability of ∂ξ1φ and ∂ξ2φ.

For j = 1, 2, (∂ξjφ(ξ))dξ defines a tempered distribution [14, VI.2.(4’)]. By the
Plancherel theorem [14, VI.2.(19)], its Fourier inverse

F−1
(
∂ξjφ(ξ)dξ

)
=: fj(z)dz

is a tempered distribution defined with square-integrable function fj . On the other hand,

F−1
(
∂ξjφ(ξ)dξ

)
= − izjF−1

(
φ(ξ)dξ

) (
z = z1 + iz2

)
by [14, VI.2.(18)]. But F−1

(
φ(ξ)dξ

)
is nothing but the tempered distribution given by

P(Z ∈ dz) (in the sense of [14, VI.2.(4)]), this can be seen as in [14, VI.2.(11)]. Hence

fj(z)dz = − izjP(Z ∈ dz).

This shows that for j = 1, 2, −izjP
(
Z ∈ d(z1, z2)

)
has a square-integrable density fj on C.

We decompose C \ {0} ' R2 into the disjoint union of sets

C1 = {z = (z1, z2) : |z2| < z1}, C2 = {z : |z1| ≤ z2, z2 6= 0},

C3 = −C1 and C4 = −C2. On C1 ∪ C3, P(Z ∈ dz) has a density given by (−iz1)
−1f1(z),

while on C2 ∪ C4, a density for P(Z ∈ dz) is given by (−iz2)
−1f2(z).

Therefore P(Z ∈ dz) = P(Z = 0)δ0 + ν, where ν has a density. Then it holds that
P(Z = 0) = lim sup|ξ|→∞ |φ(ξ)| = 0 in view of Lemma 3.2 and so P(Z ∈ dz) is absolutely
continuous w.r.t. Lebesgue measure on C.

Remark 3.6. If m(2) < ∞, E[N2] < ∞ and E|Z|2 < ∞, then h(ξ) := ∂
(2)

ξ̄
φ(ξ) is in L1+ε

for any ε > 0, namely h(ξ) = O(|ξ|−2).
In a similar way, for all k ∈ N, k > 2 the following holds: m(k) < ∞, E[Nk] < ∞ and

E|Z|k < ∞ imply that ∂(k)

ξ̄
φ(ξ) = O(|ξ|−k). Hence the density f of P(Z ∈ dz) belongs to

Ck−3(C \ {0}) and derivatives of f of order for k − 2 exist in a weak sense on C \ {0}.
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Proof of Remark 3.6. Firstly, E|Z|2 < ∞ guarantees the existence of h(ξ) and that h is
bounded. By the convexity of m, the finiteness of both m(0) = EN < E[N2] and m(2)

yields that m(1) < ∞. Hence the assumptions of Lemma 3.3 are satisfied and we obtain
the bound |g(ξ)| = |∂ξ̄φ(ξ)| ≤ C(1 + |ξ|)−1. Taking derivatives on both sides of Eq. 3.5,
we have

h(ξ) = E
[ N∑
j=1

T 2
j h(T̄jξ)

∏
i 6=j

φ(T̄iξ) + 2
∑

1≤i<j≤N

TiTjg(T̄iξ)g(T̄jξ)
∏
k 6=i,j

φ(T̄kξ)
]
.

Using the weaker estimate |g(T̄iξ)| ≤ C|Tj |−1|ξ|−1, we deduce

|h(ξ)| ≤ E
[ N∑
j=1

|Tj |2|h(T̄jξ)|
∏
i6=j

|φ(T̄iξ)|
]
+ 2CE

[
N2

]
|ξ|−2. (3.13)

Now one can proceed as in the proof of Lemma 3.3, defining a complex random variable
B such that for any test function f

Ef(B) = p−1E
[
ε(Nδ−1)+

N∑
j=1

|Tj |2f(T̄j)
]

with the normalization constant p < 1. Then pE
[
|B|−2

]
≤ E

[
ε(Nδ−1)+N

]
< 1 for ε

sufficiently small, and
|h(ξ)| ≤ pE

[
h(Bξ)

]
+ C ′|ξ|−2.

This is indeed sufficient to proceed as in [9, Lemma 3.2] to conclude that |h(ξ)| = O(|ξ−2).

This estimate can then be used in a similar way to produce bounds for ∂(3)

ξ̄
φ(ξ), and

so on.
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