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Abstract

In this paper, we consider the maximum of the Sineβ counting process from its
expectation. We show the leading order behavior is consistent with the predictions of
log–correlated Gaussian fields, also consistent with work on the imaginary part of the
log–characteristic polynomial of random matrices. We do this by a direct analysis of
the stochastic sine equation, which gives a description of the continuum limit of the
Prüfer phases of a Gaussian β–ensemble matrix.
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1 Introduction

The Sineβ point process ([16]), which arises as the local point process limit of the
eigenvalues of β–ensembles, can be defined in terms of the SDE

dαx,t = x
β

4
e−

β
4 tdt+ Re

[(
e−iαx,t − 1

)
dZt

]
, αx,0 = 0, (1.1)

where Z is a complex Brownian motion normalized so that [Zt, Z̄t] = 2t for all t ≥ 0.

Specifically, sending t → ∞, αx,t/(2π) converges for all x to an integer valued limit,
which is the counting function of the Sineβ point process.

We are interested in the question of whether this function is an example of a process
that should satisfy log–correlated field predictions. For an overview on work related to
log–correlated Gaussian and approximately Gaussian processes see [1, 19]. This question
follows naturally from the fact that the counting function of Sineβ is a scaling limit of
the imaginary part of the logarithm of the characteristic polynomial of random matrices.
Such Gaussian log–correlated field predictions have been proven for a variety of matrix
models [2, 13, 5, 10]. Similar work has been done for randomized models of the Riemann
ζ function [4], and also for the ζ function itself [3, 11]. For further discussion of the
connections between the ζ function and random matrix theory see [8].

We consider the processN(x) = limt→∞
αx,t−α−x,t

2π , which counts the number of points
in the Sineβ point process between [−x, x] for any x > 0. This process exhibits a purer
analogy with log–correlated fields (see Remark 1.5 for details). We show that:
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The maximum deviation of the Sineβ counting process

Theorem 1.1.
max0≤λ≤x[N(λ)− λ

π ]

log x

Pr−−−−→
x→∞

2√
βπ

.

Moreover, we do this by a direct argument for the Sineβ process. Another possible
approach might be to use the recent [17], which gives a coupling between the Sineβ
and CβE point processes, to transfer estimates from the random matrix process to the
continuum limit.

Observe that as the process N(λ) is almost surely non–decreasing, we may immedi-
ately replace this maximum over all 0 ≤ λ ≤ x by the maximum over any discrete net
of [0, x] with maximum spacing o(log x). Likewise, we may assume that x is an integer.
Going forward, we will take λ and x to be integers. The monotonicity of N(λ) may be
seen from the SDE description by observing that the noise term vanishes at multiples of
2π and the drift is positive for λ > 0 and negative for λ < 0 ([16, Proposition 9(ii)]).

It should be noted there is another SDE description due to [9] (only recently proven
to give rise to the same process by [12], while another proof follows from [18]), which
can be related to (1.1) by a time–reversal. This arises due to an order reversal of the
Prüfer phases, for which reason the correlation structure is reversed from the previously
studied CβE model. The processes αx,t and αy,t are strongly correlated for large times
and weakly correlated for small times. We elaborate upon the correlation structure in
(1.6).

Heuristic

We will name the martingale part of αλ,t − α−λ,t diffusion:

Mλ,t = Re

∫ t

0

(e−iαλ,s − e−iα−λ,s)dZs. (1.2)

As the process αx,t converges for all x ∈ R when t → ∞, so does Mλ,t converge for all
λ ∈ R when t → ∞. Moreover,

2πN(λ)− 2λ = Re

∫ ∞

0

(e−iαλ,s − e−iα−λ,s)dZs = Mλ,∞.

Therefore we can reformulate Theorem 1.1 as

max0≤λ≤x Mλ,∞

log x

Pr−−−−→
x→∞

4√
β
. (1.3)

Let Tλ = 4
β log λ. This is heuristically the length of time that Mλ,t needs to evolve so

that it is within bounded distance of its limit. Specifically, the variables Mλ,∞ −Mλ,Tλ

have a uniform–in–λ exponential tail bound:

Proposition 1.2. There is a constant C = Cβ so that for all λ, r ≥ 0,

P [Mλ,∞ −Mλ,Tλ
≥ C + r] ≤ e−r/C .

Using the monotonoicity of N(λ), we can also show that:

Proposition 1.3.
max0≤λ≤x |Mλ,∞ −Mλ,Tλ

|
log x

Pr−−−−→
x→∞

0.
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The maximum deviation of the Sineβ counting process

Hence we need only consider the process Mλ,t up to time t = Tλ. We delay the proofs of
these propositions to Section 2.

Another representation for Mλ,t is given by, for all t ≥ 0

Mλ,t = Re

∫ t

0

(e−
i
2 (αλ,s−α−λ,s) − e−

i
2 (α−λ,s−αλ,s))e−

i
2 (αλ,s+α−λ,s)dZs

= Re

∫ t

0

(e−
i
2 (αλ,s−α−λ,s) − e−

i
2 (α−λ,s−αλ,s))(dV (λ)

s + idW (λ)
s )

=

∫ t

0

2 sin
(

αλ,s−α−λ,s

2

)
dW (λ)

s . (1.4)

where dV
(λ)
s + idW

(λ)
s = e−

i
2 (αλ,s+α−λ,s)dZs is a standard complex Brownian motion.

Hence, the bracket process is given by

[Mλ]t =

∫ t

0

4 sin
(

αλ,s−α−λ,s

2

)2
ds.

Applying the trig identity 2 sin(x)2 = 1 − cos(2x), and treating the oscillating the term
as negligible, we can consider [Mλ]t ≈ 2t, for t ≤ Tλ. This allows us to roughly consider
Mλ,Tλ

, for the purpose of moderate deviations, as a centered Gaussian of variance 2Tλ.

As for the correlation structure,

[Mλ,Mµ]t = Re

∫ t

0

(e−iαλ,s − e−iα−λ,s)(eiαµ,s − eiα−µ,s) ds (1.5)

Approximating αλ,t by its drift in the equation above, we are led to the heuristic that Mλ

and Mµ behave approximately independently for t ≤ 4
β log+ |λ − µ| and are maximally

correlated for larger t. This leads to the cross variation heuristic:

[Mλ,Mµ]Tλ∧Tµ ≈ 2(Tλ ∧ Tµ − 4
β log+ |λ− µ|). (1.6)

We can define a Gaussian process that has the exact correlation structure suggested
by the heuristics in (1.6):

Gλ,t = Re

∫ t

0

(e−iEαλ,s − e−iEα−λ,s)dZs. (1.7)

For this process, we have correlation given by

[Gλ, Gµ]t = 4

∫ t

0

sin

(
λ(1− e−

β
4 s)

)
sin

(
µ(1− e−

β
4 s)

)
ds.

On the supposition that the maximum of (Mλ,∞, 0 ≤ λ ≤ x) and the maximum of
(Gλ,Tλ

, 0 ≤ λ ≤ x) agree up to order 1 corrections, we are led to the following conjecture.

Conjecture 1.4. There is a random variable ξ so that

max
0≤λ≤x

(Mλ,∞)− 4√
β

(
log x− 3

4 log log x
) (d)−−−−→

x→∞
ξ.

Indeed by a theorem of [6], full convergence could be proven for the Gλ,Tλ
field. One

should expect that the distribution of ξ is sensitive to the model and so should be different
than in the Gaussian case.

Remark 1.5. If we instead considered the one–sided problem, we would instead see

max0≤λ≤x [αλ,∞ − λ]

log x

Pr−−−−→
x→∞

4√
2β

.
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The maximum deviation of the Sineβ counting process

We would be led to considering the martingale

Vλ,t = Re

∫ t

0

(e−iαλ,s − 1)dZs.

which has quadratic variation [Vλ]t ≈ 2t for t < Tλ and cross variation:

[Vλ, Vµ]Tλ∧Tµ = Re

∫ t

0

(e−iαλ,s − 1)(eiαµ,s − 1) ds ≈ Tλ ∧ Tµ +
1

2
[Mλ,Mµ]Tλ∧Tµ . (1.8)

Thus, the process has an additional positive correlation, which is heuristically equivalent
to adding a common standard normal of variance 4

β log x to every Vλ,∞ for δx ≤ λ ≤ x. In
particular this is too small to change the behavior of the maximum. As working with Vλ,t

does not materially change the argument, we have not pursued it here.

2 Background tools

We begin with the proofs of Propositions 1.2 and 1.3. These rely heavily on basic
properties of the diffusion established in [16, Proposition 9].

Delayed proofs from introduction

Proof of Proposition 1.2. Observe first by integrating the drift

Mλ,∞ −Mλ,Tλ
= αλ,∞ − αλ,Tλ

− 1. (2.1)

Consider the process v that satisies

dvt = λ
β

4
e−

β
4 t1 {t ≤ Tλ} dt+ Re

[(
e−ivt − 1

)
dZt

]
, v0 = 0.

Then αλ,t and vt are equal until Tλ. After this time, v never crosses another multiple of
2π. Moreover, it eventually converges to a multiple of 2π ([16, Proposition 9(iv)]). Hence
we have

|v∞ − αλ,Tλ
| ≤ 2π. (2.2)

On the other hand αλ,∞ − v∞ has the same law as α1,∞. By [16, Proposition 9(viii)], this
has an exponential tail bound.

Proof of Proposition 1.3. By (2.1), it suffices to show the same for αλ,∞ − αλ,Tλ
. The

diffusion αλ,t can not cross below an integer multiple of 2π. Hence if s ≤ t, for all λ ≥ 0

αλ,s ≤ αλ,t + 2π. This implies

min
0<λ≤x

(αλ,∞ − αλ,Tλ
) ≥ −2π,

and it suffices to consider an upper bound. For x/2 ≤ λ ≤ x, we can estimate

αλ,∞ − αλ,Tλ
≤ αλ,∞ − αλ,Tx/2

+ 2π

Let vλ satisfy

dvλ,t = λ
β

4
e−

β
4 t1

{
t ≤ Tx/2

}
dt+ Re

[(
e−ivλ,t − 1

)
dZt

]
, vλ,0 = 0.

As vλ can not cross multiples of 2π, for any λ ∈ R, after Tx/2, we have

αλ,∞ − αλ,Tx/2
+ 2π ≤ αλ,∞ − vλ,∞ + 4π.
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The maximum deviation of the Sineβ counting process

On the other hand αλ,t − vλ,t is monotone increasing in λ almost surely (as the difference
for parameters λ1 > λ2 satisfies an SDE that can not cross below 0, c.f. [16, Proposition
9(ii)]). Combining the work so far, we have the bound

max
x/2≤λ≤x

(αλ,∞ − αλ,Tλ
) ≤ αx,∞ − vx,∞ + 4π.

Using the equality in law given by(
αx,t+Tx/2

− vx,t+Tx/2
, t ≥ 0

) L
= (α2,t, t ≥ 0) ,

and by [16, Proposition 9(viii)], α2,∞ has an exponential tail bound depending only on
β. Applying the same argument for j ∈ N and x2−j−1 ≤ λ ≤ x2−j , we may use a union
bound up to j on the order of log x to conclude that there is a constant Cβ so that

max
0<λ≤x

(αλ,∞ − αλ,Tλ
) ≤ Cβ log log x (2.3)

with probability going to 1 as x → ∞.

Oscillatory integrals

For each λ ∈ R, suppose that Aλ,t is an adapted finite variation process so that
|Aλ,t| ≤ ξ ∈ (0,∞) for all time almost surely and suppose that Xλ,t is a martingale
satisfying d[Xλ]t ≤ 2. Suppose that

duλ,t = λβ
4 e

−β
4 tdt+Aλ,tdt+ dXλ,t, uλ,0 = 0. (2.4)

Proposition 2.1. Let uλ,t satisfy (2.4) and let f(t) = β
4 e

− β
4 t, then for each fixed β > 0

there exist constants R and γ uniform in T and λ, a ∈ R such that

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

eiauλ,sds

∣∣∣∣] ≤ R(1 + |ξ|)
|aλ|f(T )

, (2.5)

and for all C > 0

P

(
sup

0≤t≤T

∣∣∣∣∫ t

0

eiauλ,sds

∣∣∣∣− R(1 + |ξ|)
|aλ|f(T )

≥ C

)
≤ exp

[
−γC2a2λ2f(T )2

]
. (2.6)

Proof. The theorem is vacuous if aλ = 0, so we may assume this is not the case. Writing
ut in its integrated form, we have

ut = λ

(
1− 4

β
f(t)

)
+Rt, where Rt =

∫ t

0

{Aλ,sds+ dXλ,s} .

Let H(t) = 1− 4
β f(t) and Λ(t) =

∫ t

0
eiaλH(s)ds , then we may use Itô integration by parts

to get∫ t

0

eiaλusds =

∫ t

0

eiaλH(s)eiaRsds = eiaRtΛ(t) +

∫ t

0

Λ(s)eiaRs ·
{
−ia dRs +

a2

2
d[R]s

}
.

(2.7)

Now observe that Λ(t) may be bounded in the following way:∫ t

0

eiaλH(s)ds =

∫ t

0

1

iaλf(s)

d

ds
eiaλH(s)ds

=
4e

β
4 t

βiaλ

{
eiaλH(t) − 1

}
− 1

iaλ

∫ t

0

e
β
4 s
{
eiaλH(s) − 1

}
ds.
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The maximum deviation of the Sineβ counting process

This gives us |Λ(s)| ≤ 16
β|aλ|e

β
4 t. Applying this to our integrated equation we get for the

finite variation terms∣∣∣∣∫ t

0

Λ(s)eiRsaAλ,sds+
a2

2

∫ t

0

Λ(s)eiaRsd[R]s

∣∣∣∣ ≤ 16

βaλ
e

β
4 t
(
|a|ξ + a2

)
.

By (2.7) and the triangle inequality, it remains to show the desired tail bound and
supremum bound for the martingale Vt given by

Vt =

∫ t

0

Λ(s)iaeiaRs · dXλ,s

Note we have an easy bracket bound, for σ ∈ {1, i} given by

[<(σV )]t ≤
∫ t

0

2Λ(s)a2 ds ≤ Cβ

λ2
|a|e

β
2 t

for some constant Cβ . Hence the desired bounds follow immediately from the Dambis–
Dubins–Schwarz theorem ([15, Theorem V.1.6] or [14, Theorem II.42]) and Doob’s
inequality.

Tilting

We now want to look at the measure tilted so that W (λ) (see (1.4)) has a drift. In
particular for deterministic η ∈ R, we consider the measure Qη,λ so that

dXs = dW (λ)
s − η sin

(
αλ,s−α−λ,s

2

)
ds

is a standard Brownian motion up to time T under Qη,λ. By Girsanov (see e.g. [14,
Theorem III.8.46]) we get that

dQη,λ

dP
= E(ηMλ) = exp(ηMλ,T − η2

2 [Mλ]T ) (2.8)

Since sin2(x) ≤ 1 we have that the bracket process of [Mλ]t ≤ T almost surely for all
t ≥ 0. In particular, the exponential martingale is uniformly integrable by Novikov’s
condition for all η ∈ R.

Under Qη,λ the law of αλ,t − α−λ,t changes; it can be succinctly described as the
solution to

duλ,η,t = 2λβ
4 e

−β
4 tdt+ 2η sin

(uλ,η,t

2

)2
dt+ 2 sin

(uλ,η,t

2

)
dXt, u0 = 0 (2.9)

for a Brownian motion dX, which we call the accelerated stochastic sine equation with
acceleration η. Let Mλ,η,t be the martingale part of uλ,η,t.

Martingale bounds

Using the Girsanov transformation, we now give a nearly sharp tail bound for Mλ.

Proposition 2.2. For any η ∈ R, there is an R > 0 so that for all λ > 0, all T ≤ Tλ

P

(
sup

0≤t≤T
Mλ,η,t ≥ C

)
≤ exp

[
−C2

4(T +R)

(
1− C2R

2(T +R)3

)
∧ −C4/3

4T 1/3

]
.

and

P

(
inf

0≤t≤T
Mλ,η,t ≤ −C

)
≤ exp

[
− C2

4(T +R)

(
1− C2R

2(T +R)3

)
∧ −C4/3

4T 1/3

]
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The maximum deviation of the Sineβ counting process

Remark 2.3. For C up to the order of magnitude of T 3/2 the Gaussian tail majorizes
the martingale tail. For larger C, the second term majorizes the martingale tail. For
much much larger C (on the order T 2) a small change in the proof gives decay of order
e−cC4/3

. A large deviations principle for Nλ is proven in [7] which suggests a stronger
tail bound ought to be true.

Proof. Let Xt be a standard Brownian motion, and let w solve (2.9) the accelerated
stochastic sine equation with acceleration η. Let M be the martingale part of w. Let
ξ ∈ R, and apply Doob’s inequality to the submartingale eξMt to get

P

(
sup

0≤t≤T
Mt ≥ C

)
≤ e−ξCE(eξMT ).

Applying (2.8), we have that

E(eξMT ) = E

(
E(ξMT )e

ξ2

2 [M ]T

)
= Q̂E

(
e
ξ2

2 [M ]T

)
,

with Q̂E(·) the expectation under the probability measure Q̂ defined by

dQ̂

dP
= E(ξMT ).

By the Girsanov theorem,
dYs = dXs − ξ sin

(
wt

2

)
ds

is a Q̂–Brownian motion. Hence,

Mt =

∫ t

0

2 sin
(
ws

2

)
dYs +

∫ t

0

2ξ sin
(
ws

2

)2
ds.

Further, the law of ws changes under Q̂, as we have that

dwt = 2λβ
4 e

−β
4 tdt+ 2(ξ + η) sin

(
wt

2

)2
dt+ 2 sin

(
wt

2

)
dYt, w0 = 0.

Hence, under Q̂, w is a solution of the accelerated stochastic sine equation with acceler-
ation ξ + η.

As for the bracket, we have that for t ≤ T

[Mλ]t =

∫ t

0

4 sin
(
ws

2

)2
ds = 2t−

∫ t

0

2 cos (ws) ds.

Using Proposition 2.1, we have that for T ≤ Tλ, there is an R independent of ξ and η so
that for all C > 0

Q̂

(∫ T

0

−2 cos (ws) ds ≥ R(1 + |ξ + η|) + C

)
≤ e−C2/R.

Therefore, we have that for T ≤ Tλ

Q̂E

(
e
ξ2

2 [Mλ]T

)
= eξ

2T Q̂E

(
exp

(∫ T

0

−ξ2 cos (ws) ds

))
≤ eξ

2(T+S)+S|ξ|3

for some constant S > 0 independent of ξ, λ or T but depending on η.

There remains to optimize in ξ. From the work so far, we have

P

(
sup

0≤t≤T
Mt ≥ C

)
≤ e−ξCE(eξMT ) ≤ e−ξC+ξ2(T+S)+S|ξ|3 .
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The maximum deviation of the Sineβ counting process

Taking ξ = C
2(T+S) ,

P

(
sup

0≤t≤T
Mt ≥ C

)
≤ exp

[
− C2

4(T + S)
+

SC3

8(T + S)3

]
,

and taking ξ = (C/(4T + 4S))1/3 gives

P

(
sup

0≤t≤T
Mt ≥ C

)
≤ exp

[
− 3C4/3

4(4(T + S))1/3
+

C2/3(T + S)1/3

42/3

]
.

Hence the desired bound holds by taking the second bound for C > P (T + S) and P

sufficiently large, and the first bound for C ≤ P (T + S).

The statement about the infimum may be proved in an identical fashion by refor-
mulating it as an equivalent bound on the supremum of −Mλ. We would then use the
submartingale e−ξMλ and use [Mλ]t = [−Mλ]t.

3 Main theorem

The one–point upper bound

Using Proposition 2.2 with η = 0, we can give the upper bound in (1.3).

Proposition 3.1. For any δ > 0

lim
x→∞

P

(
max

0≤λ≤x
Mλ,Tλ

>

(
4√
β
+ δ

)
log x

)
= 0

Proof. As commented, it suffices to bound the probability for natural numbers λ and x.

By Proposition 2.2 for any δ > 0 sufficiently small there is an ε > 0 and an x0 sufficiently
large so that for all x > x0 and all x > λ > exp((log x)3/4)

P

(
Mλ,Tλ

>

(
4√
β
+ δ

)
log x

)
≤ exp

(
−(log x)2

(
4√
β
+2δ

)2

16
β log λ

)
≤ exp(−(log x)(1 + ε)).

For smaller λ, we have, taking the 4/3–power bound in Proposition 2.2, that for some
Cβ,δ

P

(
Mλ,Tλ

>

(
4√
β
+ δ

)
log x

)
≤ exp

(
−(log x)13/12Cβ,δ

)
Hence, taking a union bound over all natural numbers λ less than x gives the desired
bound.

Remark 3.2. In fact, the proof is easily modified to give

lim sup
λ→∞

(
Mλ,Tλ

log λ

)
≤ 4√

β
, a.s.

The tube event and the lower bound

Let x be a natural number, and let R be a large parameter to be chosen later. Let
T ′
λ = Tλ −R2

√
log λ. Define an event Aλ given by

Aλ =

{
|Mλ,t −

√
βt| ≤ R

√
log x, ∀ 0 ≤ t ≤ T ′

x;

|[Mλ]t − 2t| ≤ R, ∀ 0 ≤ t ≤ T ′
x

}
.
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The maximum deviation of the Sineβ counting process

Let x be a natural number, and define

Sx =

2x∑
λ=x

E(
√
βMλ,T ′

x
)1 {Aλ} (3.1)

Notice that with this definition of Sx we will have that Sx > 0 if and only if the event Aλ

occurs for some integer λ ≤ x. Using the Cauchy-Schwarz inequality for non-negative
random variables, we arrive at the Paley-Zygmund inequality

P(Sx > 0)ES2
x ≥ (ESx)

2. (3.2)

We wish to show that this has probability going to 1 as λ → ∞ for any δ > 0. Hence, we
need to produce a lower bound of the form

E[E(
√
βMλ,T ′

x
)1 {Aλ}] = Q√

β,λ(Aλ) ≥ 1− Cβe
−R4/3/Cβ ,

and we need to produce a similar upper bound on

E[E(
√
βMλ1,T ′

x
)1 {Aλ1} E(

√
βMλ2,T ′

x
)1 {Aλ2}].

From these bounds we will be able to show that as x → ∞

(VarSx)/x
2 → 0 and ESx ≥ x(1− Cβe

−R4/3/Cβ ). (3.3)

Hence, we conclude (3.2) that for any ε > 0 there is an R sufficiently large and an x0

sufficiently large so that for all x > x0

P(Sx > 0) ≥ (ESx)
2

ES2
x

≥ 1− ε.

We have therefore shown that by letting Rx tend arbitrarily slowly to infinity

max
x≤λ≤2x

{
Mλ,T ′

x

}
≥
√
βT ′

x −Rx

√
log x, (3.4)

with probability going to 1 as x → ∞.

One point lower bound

We need to find a lower bound on

E[E(
√
βMλ,T ′

x
)1 {Aλ}] = Q√

β,λ(Aλ),

which is on the order of unity. Recall that under Q√
β,λ the process αλ,· − α−λ,· follows

the accelerated stochastic sine equation (2.9) with ξ =
√
β. The process Mλ,t referenced

in the event Aλ can be expressed as

Mλ,t = uλ,ξ,t − 2λ(1− 4
β f(t)).

Meanwhile, the performing the Doob decomposition on uλ,ξ,t, we have

Mλ,ξ,t = uλ,ξ,t − 2λ(1− 4
β f(t))−

∫ t

0

2ξ sin
(uλ,ξ,s

2

)2
ds

The bracket process [Mλ,ξ]t is given as before by

[Mλ,ξ]t =

∫ t

0

4 sin
(uλ,ξ,s

2

)2
ds = 2t−

∫ t

0

2 cos (uλ,ξ,s) ds.
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Hence we can write

Qξ,λ(Aλ) ≥ 1−Qξ,λ

(
sup

0≤t≤T ′
x

∣∣∣∣Mλ,ξ,t +

∫ t

0

ξ cos(uλ,ξ,s) ds

∣∣∣∣ > R
√
log x

)

−Qξ,λ

(
sup

0≤t≤T ′
x

∣∣∣∣∫ t

0

2 cos (uλ,ξ,s) ds

∣∣∣∣ > R

)
.

By Propositions 2.1 and 2.2, we conclude that

Qξ,λ(Aλ) ≥ 1− Cβe
−R4/3/Cβ (3.5)

for some Cβ sufficiently large and all λ sufficiently large.

Two point bound

Following the heuristic (1.6), we treat Mλ1,t and Mλ2,t as uncorrelated until T∗ =
4
β log+ |λ1 − λ2|. Without loss of generality, suppose that λ2 ≥ λ1. On the event Aλ2 , we
can estimate

E(
√
βMλ2,T ′

x
) = E(

√
βMλ2,T∗) exp

(√
β(Mλ2,T ′

x
−Mλ2,T∗)−

β
2 ([Mλ2

]T ′
x
− [Mλ2

]T∗)
)

≤ E(
√
βMλ2,T∗) exp

(
2
√
βR
√
log x+ βR

)
.

Hence, we have the estimate

E[E(
√
βMλ1,T ′

x
)1 {Aλ1

} E(
√

βMλ2,T ′
x
)1 {Aλ2

}]

≤E
[
E(
√

βMλ1,T ′
x
)E(
√
βMλ2,T∗) exp

(
2
√
βR
√
log x+ βR

)]
.

(3.6)

We now observe that

E(
√
βMλ1,T ′

x
)E(
√
βMλ2,T∗) = E(

√
β(Mλ1,T ′

x
+Mλ2,T∗)) exp

(
β[Mλ1

,Mλ2
]T∗∧T ′

x

)
. (3.7)

By the Girsanov theorem, under the measure S with Radon–Nikodym derivative

dS

dP
= E(

√
β(Mλ1,T ′

x
+Mλ2,T∗)),

we have that there is a finite variation process At bounded almost surely by an absolute
constant so that

dUt = dZt −
√
βAt dt

is a standard complex S–Brownian motion. Here Zt is the standard complex Brownian
motion used in equation (1.1) under the measure P. Meanwhile (1.1) (also c.f. (1.5))
shows that [Mλ1

,Mλ2
]t is a sum of integrals of eiσ1(σ1ασ2λ1,t+σ3ασ4λ2,t) with σj ∈ {1,−1} .

Applying Proposition 2.1 to each of these integrals, we can conclude

P
(
[Mλ1

,Mλ2
]T∗∧T ′

x
> t+ C

)
≤ e−t2/C

for sufficiently large C. Hence we conclude using (3.7) and (3.6) that there is some
constant Cβ so that for any R > 0

E[E(
√
βMλ1,T ′

x
)1 {Aλ1

} E(
√
βMλ2,T ′

x
)1 {Aλ2

}] ≤ eCβ+2R
√
β log x+βR. (3.8)
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Fine estimate

We also need an estimate that improves when λ1 and λ2 are well separated. Once
more, we estimate by dropping the indicators and writing

E[E(
√
βMλ1,T ′

x
)1 {Aλ1

} E(
√
βMλ2,T ′

x
)1 {Aλ2

}] ≤ S
(
exp

(
β[Mλ1

,Mλ2
]T ′

x

))
, (3.9)

where
dS

dP
= E(

√
β(Mλ1,T ′

x
+Mλ2,T ′

x
)).

Now, on applying Proposition 2.1, we have a tail bound of the form

P
(
[Mλ1

,Mλ2
]T ′

x
> t+ Cβ/∆

)
≤ e−t2∆2/Cβ

where ∆ = |λ1 − λ2|f(T ′
x) and Cβ > 0 is a constant. This leads to an estimate of the form

E[E(
√

βMλ1,T ′
x
)1 {Aλ1

} E(
√
βMλ2,T ′

x
)1 {Aλ2

}] ≤ exp (Cβ/∆) . (3.10)

for some other Cβ and all ∆ ≥ 1.

The second moment

Here we estimate ES2
x. Recalling (3.1), we can write

ES2
x =

2x∑
λ1=x

2x∑
λ2=x

E
[
E(
√
βMλ1,Tλ1

)1 {Aλ1} E(
√
βMλ2,Tλ2

)1 {Aλ2}
]
. (3.11)

We partition this sum according to the magnitude of |λ1 − λ2|. Let S0 be all those pairs

(λ1, λ2) so that |λ1 − λ2| ≥ xe−
1
2R

2√log x. Let S1 be the remaining pairs. Observe that the

cardinality of S1 is at most 2x2e−
1
2R

2√log x.

For terms in S0, we apply the fine bound (3.10). The term ∆ that appears for such
terms can be estimated uniformly by

∆ ≥ xe−
1
2R

2√log x · β
4 e

− log x+R2√log x,

which tends to ∞ with x. In particular, we can estimate∑
S0

E
[
E(
√
βMλ1,T ′

x
)1 {Aλ1} E(

√
βMλ2,T ′

x
)1 {Aλ2}

]
≤ x2 · (1 +O(e−

1
2R

2√log x)). (3.12)

For the remaining terms, we apply the coarse bound (3.8), using which we conclude
that∑

S1

E
[
E(
√
βMλ1,T ′

x
)1 {Aλ1

} E(
√

βMλ2,T ′
x
)1 {Aλ2

}
]
≤ x2eCβ−

1
2R

2√log x+2R
√
β log x+βR.

(3.13)
Hence picking R sufficiently large (anything larger than 4

√
β will do), we have combining

(3.11), (3.12) and (3.13) that

(VarSx)/x
2 → 0

as x → ∞, hence establishing (3.3).
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Proof of main theorem

As in the proofs of Propositions 1.2 and 1.3, we get
(
αλ,t − αλ,T ′

x
− 4π : t ≥ T ′

x, λ > 0
)

is stochastically dominated by

(
α
λ
4
β f(T ′

x),t
: t ≥ 0, λ > 0

)
. Therefore we have by Proposi-

tion 2.2 that there is a γ > 0 so that for all C > 0,

max
x≤λ≤2x

P
(
αλ,Tx

− αλ,T ′
x
− 2λ( 4β )(f(Tx)− f(T ′

x)) ≤ −C + 4π
)
≤ e−γC2/(Tx−T ′

x).

In particular we conclude that

max
x≤λ≤2x

{
−Mλ,Tx +Mλ,T ′

x

}
≤ CβRx(log x)

3/4 (3.14)

with probability going to 1.

Finally, we observe that for 0 ≤ λ ≤ 2x,

0 ≤ αλ,∞ − αλ,Tx
= Mλ,∞ −Mλ,Tx

+ 2λ( 4β f(Tx)) ≤ Mλ,∞ −Mλ,Tx
+ 16

β .

Therefore, we conclude that

max
x≤λ≤2x

{Mλ,∞} ≥ max
x≤λ≤2x

{Mλ,Tx
} − 16

β
(3.15)

Combining (3.4), (3.14) and (3.15), we conclude that

max
x≤λ≤2x

{Mλ,∞} ≥ 4√
β
log(x)− CβRx(log x)

3/4 − (R2
x +Rx)

√
log x− 16

β

with probability going to 1 as x → ∞.
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