On covering paths with 3 dimensional random walk

Eviatar B. Procaccia *† Yuan Zhang ${ }^{\ddagger \S}$

Abstract

In this paper we find an upper bound for the probability that a 3 dimensional simple random walk covers each point in a nearest neighbor path connecting 0 and the boundary of an L_{1} ball of radius N in \mathbb{Z}^{d}. For $d \geq 4$, it has been shown in [5] that such probability decays exponentially with respect to N. For $d=3$, however, the same technique does not apply, and in this paper we obtain a slightly weaker upper bound: $\forall \varepsilon>0, \exists c_{\varepsilon}>0$,

$$
P\left(\operatorname{Trace}(\mathcal{P}) \subseteq \operatorname{Trace}\left(\left\{X_{n}\right\}_{n=0}^{\infty}\right)\right) \leq \exp \left(-c_{\varepsilon} N \log ^{-(1+\varepsilon)}(N)\right)
$$

Keywords: 3 dimensional random walk; covering probability.
AMS MSC 2010: 60G50; 60J10.
Submitted to ECP on September 25, 2017, final version accepted on August 3, 2018.

1 Introduction

In this paper, we study the probability that the trace of a nearest neighbor path in \mathbb{Z}^{3} connecting 0 and the boundary of an L_{1} ball of radius N is completely covered by the trace of a 3 dimensional simple random walk.

First, we review some results we proved in a recent paper for general d's. For any integer $N \geq 1$, let $\partial B_{1}(0, N)$ be the boundary of the L_{1} ball in \mathbb{Z}^{d} with radius N. We say that a nearest neighbor path

$$
\mathcal{P}=\left(P_{0}, P_{1}, \cdots, P_{K}\right)
$$

is connecting 0 and $\partial B_{1}(0, N)$ if $P_{0}=0$ and $\inf \left\{n:\left\|P_{n}\right\|_{1}=N\right\}=K$. And we say that a path \mathcal{P} is covered by a d dimensional random walk $\left\{X_{d, n}\right\}_{n=0}^{\infty}$ if

$$
\operatorname{Trace}(\mathcal{P}) \subseteq \operatorname{Trace}\left(X_{d, 0}, X_{d, 1}, \cdots\right):=\left\{x \in \mathbb{Z}^{d}, \exists n X_{d, n}=x\right\}
$$

In [5], we have shown that for any $d \geq 2$ such covering probability is maximized over all nearest neighbor paths connecting 0 and $\partial B_{1}(0, N)$ by the monotonic path that stays within distance one above/below the diagonal $x_{1}=x_{2}=\cdots=x_{d}$.

[^0]Theorem 1.1. (Theorem 1.4 in [5]) For each integers $L \geq N \geq 1$, let \mathcal{P} be any nearest neighbor path in \mathbb{Z}^{d} connecting 0 and $\partial B_{1}(0, N)$. Then

$$
P\left(\operatorname{Trace}(\mathcal{P}) \in \operatorname{Trace}\left(X_{d, 0}, \cdots, X_{d, L}\right)\right) \leq P\left(\overline{\mathcal{P}} \in \operatorname{Trace}\left(X_{d, 0}, \cdots, X_{d, L}\right)\right)
$$

where

$$
\begin{gathered}
\stackrel{\mathcal{P}}{\mathcal{P}}=\left(\operatorname{arc}_{1}[0: d-1], \operatorname{arc}_{2}[0: d-1], \cdots, \operatorname{arc}_{[N / d]}[0: d-1], \operatorname{arc}_{[N / d]+1}[0: N-d[N / d]]\right), \\
\operatorname{arc}_{1}[0: d-1]=\left(0, e_{1}, e_{1}+e_{2}, \cdots, \sum_{i=1}^{d-1} e_{i}\right)
\end{gathered}
$$

and $\operatorname{arc}_{k}=(k-1) \sum_{i=1}^{d} e_{i}+\operatorname{arc}_{1}$.
Then noting that the probability of covering $\widetilde{\mathcal{P}}$ is bounded above by the probability that a simple random walk returns to the exact diagonal line for $[N / d]$ times, one can introduce the Markov process

$$
\hat{X}_{d-1, n}=\left(X_{d, n}^{1}-X_{d, n}^{2}, X_{d, n}^{2}-X_{d, n}^{3}, \cdots, X_{d, n}^{d-1}-X_{d, n}^{d}\right)
$$

where $X_{d, n}^{i}$ is the i th coordinate of $X_{d, n}$ and see that $\left\{\hat{X}_{d-1, n}\right\}_{n=0}^{\infty}$ is another $d-1$ dimensional non simple random walk, which is transient when $d \geq 4$. In particular, starting from any point $\left(x_{1}, x_{2}, \cdots, x_{d-1}\right) \in \mathbb{Z}^{d-1}$, the transition probability of $\hat{X}_{d-1, .}$ is given as follows:

- $\left(x_{1}, x_{2}, \cdots, x_{d-1}\right) \rightarrow\left(x_{1} \pm 1, x_{2}, \cdots, x_{d-1}\right)$, both with probability $1 /(2 d)$.
- For any $2 \leq i \leq d-1,\left(x_{1}, \cdots, x_{i-1}, x_{i}, x_{i+1}, \cdots, x_{d-1}\right) \rightarrow\left(x_{1}, \cdots, x_{i-1} \mp 1, x_{i} \pm\right.$ $\left.1, x_{i+1}, \cdots, x_{d-1}\right)$ each with probability $1 /(2 d)$.
- $\left(x_{1}, x_{2}, \cdots, x_{d-1}\right) \rightarrow\left(x_{1}, x_{2}, \cdots, x_{d-1} \pm 1\right)$, both with probability $1 /(2 d)$.

Thus, we immediately have the following upper bound:
Theorem 1.2. (Theorem 1.5 in [5]) There is a $P_{d} \in(0,1)$ such that for any nearest neighbor path $\mathcal{P}=\left(P_{0}, P_{1}, \cdots, P_{K}\right)$ connecting 0 and $\partial B_{1}(0, N)$ and $\left\{X_{d, n}\right\}_{n=0}^{\infty}$ which is a d-dimensional simple random walk starting at 0 with $d \geq 4$, we always have

$$
P\left(\operatorname{Trace}(\mathcal{P}) \subseteq \operatorname{Trace}\left(\left\{X_{d, n}\right\}_{n=0}^{\infty}\right)\right) \leq P_{d}^{[N / d]}
$$

Here P_{d} equals to the probability that $\left\{X_{d, n}\right\}_{n=0}^{\infty}$ ever returns to the dimensional diagonal line.

Theorem 1.2 implies that for each fixed $d \geq 4$, the covering probability decays exponentially with respect to N.

For $d=3$, the same technique may not apply since now $\left\{\hat{X}_{2, n}\right\}_{n=0}^{\infty}$ is a recurrent 2 dimensional random walk, which means that $P_{3}=1$ and that the original 3 dimensional random walk will return to the diagonal line infinitely often. To overcome this issue, we note that although the diagonal line

$$
\mathcal{D}_{\infty}=\{(0,0,0),(1,1,1), \cdots\}
$$

is recurrent, it is possible to find an infinite subset $\tilde{\mathcal{D}}_{\infty} \subset \mathcal{D}_{\infty}$ that is transient. And if we can further show for this specific transient subset that the return probability is uniformly bounded away from 1 (which is not generally true for all transient subsets, as is shown in Counterexample 1 in Section 3), then we are able to show

$$
P\left(\overline{\mathcal{P}} \in \operatorname{Trace}\left(X_{3,0}, X_{3,1}, \cdots\right)\right) \leq \exp \left(-c\left|\tilde{\mathcal{D}}_{\infty} \cap \widetilde{\mathcal{P}}\right|\right)
$$

With this approach, we have the following theorem:

On covering paths with 3 dimensional random walk

Theorem 1.3. For each $\varepsilon>0$, there is a $c_{\varepsilon} \in(0, \infty)$ such that for any $N \geq 2$ and any nearest neighbor path $\mathcal{P}=\left(P_{0}, P_{1}, \cdots, P_{K}\right) \subset \mathbb{Z}^{3}$ connecting 0 and $\partial B_{1}(0, N)$, we have

$$
P\left(\operatorname{Trace}(\mathcal{P}) \subseteq \operatorname{Trace}\left(\left\{X_{3, n}\right\}_{n=0}^{\infty}\right)\right) \leq \exp \left(-c_{\varepsilon} N \log ^{-(1+\varepsilon)}(N)\right)
$$

Note that the upper bound in Theorem 1.3 seems to be non-sharp. The reason is that we did not fully use the geometric structure of path $\overline{\mathcal{P}}$ to minimize the covering probability. I.e., although we require our simple random walk to visit the transient subset for $O\left(N \log ^{-1-\varepsilon}(N)\right)$ times, those returns may be not enough to cover every point in $\tilde{\mathcal{D}}_{\infty} \cap \mathcal{\mathcal { P }}$. In fact, the following conjecture seems to be supported by numerical simulations, which is shown in Section 4.

Conjecture 1.4. There is a $c \in(0, \infty)$ such that for any $N \geq 2$ and any nearest neighbor path $\mathcal{P}=\left(P_{0}, P_{1}, \cdots, P_{K}\right) \subset \mathbb{Z}^{3}$ connecting 0 and $\partial B_{1}(0, N)$, we always have

$$
P\left(\operatorname{Trace}(\mathcal{P}) \subseteq \operatorname{Trace}\left(\left\{X_{3, n}\right\}_{n=0}^{\infty}\right)\right) \leq \exp (-c N)
$$

The structure of this paper is as follows: In Section 2, we construct the infinite subset $\tilde{\mathcal{D}}_{\infty}$ of the diagonal line, calculate its density, and show it is transient. In Section 3, we show the return probability of $\tilde{\mathcal{D}}_{\infty}$ is uniformly (in the starting point) bounded away from 1 , and with these techniques, finish the proof of Theorem 1.3. In Section 4, we present a numerical simulation which seems to support Conjecture 1.4.

2 Infinite transient subset of the diagonal

Without loss of generality we can concentrate on the proof of Theorem 1.3 for sufficiently large N. Recall that

$$
\stackrel{\nearrow}{\mathcal{P}}=\left(\operatorname{arc}_{1}[0: d-1], \operatorname{arc}_{2}[0: d-1], \cdots, \operatorname{arc}_{[N / d]}[0: d-1], \operatorname{arc}_{[N / d]+1}[0: N-d[N / d]]\right)
$$

is the path connection 0 and $B_{1}(0, N)$ that maximizes the covering probability. When $d=3$, let

$$
\mathcal{D}_{[N / 3]}=\{(0,0,0),(1,1,1), \cdots,([N / 3],[N / 3],[N / 3])\}
$$

be the points in $\overparen{\mathcal{P}}$ that lie exactly on the diagonal. Although it is clear that for simple random walk $\left\{X_{3, n}\right\}_{n=0}^{\infty}$ starting at $0, \mathcal{D}_{\infty}$ is a recurrent set, following a similar construction to Spitzer [6, Chapter 6.26], we find a transient infinite subset of \mathcal{D}_{∞} as follows: for $n_{1}=0, n_{2}=\left\lceil\log ^{1+\varepsilon}(2)\right\rceil=1$, and for all $k \geq 3$

$$
\begin{equation*}
n_{k}=\left\lceil\sum_{i=1}^{k} \log ^{1+\varepsilon}(i)\right\rceil \in \mathbb{Z} \tag{2.1}
\end{equation*}
$$

define

$$
\tilde{\mathcal{D}}_{\infty}=\left\{\left(n_{k}, n_{k}, n_{k}\right)\right\}_{k=1}^{\infty} \subset \mathcal{D}_{\infty}
$$

Since $\log ^{1+\varepsilon}(k)>1$ for all $k \geq 3$, it is easy to see that $\left\{n_{k}\right\}_{k=1}^{\infty}$ is a monotonically increasing sequence. Moreover, for each $1 \leq k_{1}<k_{2}<\infty$,

$$
\begin{aligned}
n_{k_{2}}-n_{k_{1}} & =\left\lceil\sum_{i=1}^{k_{2}} \log ^{1+\varepsilon}(i)\right\rceil-\left\lceil\sum_{i=1}^{k_{1}} \log ^{1+\varepsilon}(i)\right\rceil \\
& \geq \sum_{i=k_{1}+1}^{k_{2}} \log ^{1+\varepsilon}(i)-1
\end{aligned}
$$

On covering paths with 3 dimensional random walk

This implies that for all $k_{2} \geq 8$ and $1 \leq k_{1}<k_{2}$,

$$
\begin{equation*}
n_{k_{2}}-n_{k_{1}} \geq \frac{1}{2} \int_{k_{1}}^{k_{2}} \log ^{1+\varepsilon}(x) d x \tag{2.2}
\end{equation*}
$$

For any $N \in \mathbb{Z}$, define

$$
\tilde{\mathcal{D}}_{N}=\tilde{\mathcal{D}}_{\infty} \cap \mathcal{D}_{N}
$$

and

$$
C_{N}=\left|\tilde{\mathcal{D}}_{N}\right|=\sup \left\{k: n_{k} \leq N\right\}
$$

Recalling the definition of n_{k} in (2.1), we also equivalently have

$$
C_{N}=\sup \left\{k: \sum_{i=1}^{k} \log ^{1+\varepsilon}(i) \leq N\right\}=\inf \left\{k: \sum_{i=1}^{k} \log ^{1+\varepsilon}(i)>N\right\}-1 .
$$

Lemma 2.1. For any $\varepsilon>0$, there is a constant $C_{\varepsilon}<\infty$ such that

$$
C_{N} \in\left(2^{-1-\varepsilon} N \log ^{-1-\varepsilon}(N), C_{\varepsilon} N \log ^{-1-\varepsilon}(N)\right)
$$

for all $N \geq 2$.
Proof. Note that for any k such that

$$
\sum_{i=1}^{k} \log ^{1+\varepsilon}(i)>N
$$

we must have that $k>C_{N}$, and that

$$
\begin{equation*}
\sum_{i=1}^{k} \log ^{1+\varepsilon}(i) \geq \int_{1}^{k} \log ^{1+\varepsilon}(x) d x \geq \frac{1}{2^{1+\varepsilon}}\left(k-k^{1 / 2}\right) \log ^{1+\varepsilon}(k) \tag{2.3}
\end{equation*}
$$

For $K_{N}=\left\lceil 2^{2+\varepsilon} N / \log ^{1+\varepsilon}(N)\right\rceil$, we have by (2.3)

$$
\begin{align*}
\sum_{i=1}^{K_{N}} \log ^{1+\varepsilon}(i) & \geq \frac{1}{2^{1+\varepsilon}}\left(K_{N}-K_{N}^{1 / 2}\right) \log ^{1+\varepsilon}\left(K_{N}\right) \\
& \geq \frac{1}{2^{1+\varepsilon}} \cdot K_{N} \cdot \frac{K_{N}-K_{N}^{1 / 2}}{K_{N}} \cdot \log ^{1+\varepsilon}\left(2^{2+\varepsilon} N / \log ^{1+\varepsilon}(N)\right) \tag{2.4}\\
& \geq 2 N \cdot \frac{K_{N}-K_{N}^{1 / 2}}{K_{N}} \cdot \frac{\log ^{1+\varepsilon}\left(2^{2+\varepsilon} N / \log ^{1+\varepsilon}(N)\right)}{\log ^{1+\varepsilon}(N)}
\end{align*}
$$

Noting that $K_{N} \rightarrow \infty$ as $N \rightarrow \infty$ and that

$$
\lim _{N \rightarrow \infty} \frac{\log ^{1+\varepsilon}\left(\log ^{1+\varepsilon}(N)\right)}{\log ^{1+\varepsilon}(N)}=\lim _{N \rightarrow \infty}(1+\varepsilon)^{1+\varepsilon}\left[\frac{\log (\log (N))}{\log (N)}\right]^{1+\varepsilon}=0
$$

for sufficiently large N

$$
\begin{equation*}
\sum_{i=1}^{K_{N}} \log ^{1+\varepsilon}(i) \geq 2 N \cdot \frac{K_{N}-K_{N}^{1 / 2}}{K_{N}} \cdot \frac{\log ^{1+\varepsilon}\left(2^{2+\varepsilon} N / \log ^{1+\varepsilon}(N)\right)}{\log ^{1+\varepsilon}(N)}>N \tag{2.5}
\end{equation*}
$$

which implies $C_{N}<K_{N}$ and finishes the proof of the upper bound. On the other hand, note that

$$
\sum_{i=1}^{k} \log ^{1+\varepsilon}(i) \leq \int_{1}^{k+1} \log ^{1+\varepsilon}(x) d x \leq k \log ^{1+\varepsilon}(k+1)
$$

So for any $k \leq 2^{-1-\varepsilon} N \log ^{-1-\varepsilon}(N)$,

$$
\sum_{i=1}^{k} \log ^{1+\varepsilon}(i) \leq k \log ^{1+\varepsilon}(k+1) \leq 2^{-1-\varepsilon} N \frac{\log ^{1+\varepsilon}\left(2^{-1-\varepsilon} N \log ^{-1-\varepsilon}(N)+1\right)}{\log ^{1+\varepsilon}(N)}<N
$$

Thus we have shown the lower bound and the proof of Lemma 2.1 is complete.
Next using Lemma 2.1 we can show that $\tilde{\mathcal{D}}_{\infty}$ is transient for 3 dimensional simple random walk:
Lemma 2.2. For 3 dimensional simple random walk $\left\{X_{3, n}\right\}_{n=0}^{\infty}, \tilde{\mathcal{D}}_{\infty}$ is a transient subset. Proof. According to Wiener's test (see Corollary 6.5.9 of [3]), it is sufficient to show that

$$
\begin{equation*}
\sum_{k=1}^{\infty} 2^{-k} \operatorname{cap}\left(A_{k}\right)<\infty \tag{2.6}
\end{equation*}
$$

where $A_{k}=\tilde{\mathcal{D}}_{\infty} \cap\left[B_{2}\left(0,2^{k}\right) \backslash B_{2}\left(0,2^{k-1}\right)\right]$. Then according to the definition of capacity (see Section 6.5 of [3]), we have for all $k \geq 1$

$$
\begin{equation*}
\operatorname{cap}\left(A_{k}\right) \leq\left|A_{k}\right| \leq\left|\tilde{\mathcal{D}}_{\infty} \cap B_{2}\left(0,2^{k}\right)\right| \leq\left|\tilde{\mathcal{D}}_{2^{k}}\right|=C_{2^{k}} \tag{2.7}
\end{equation*}
$$

By Lemma 2.1,

$$
\begin{equation*}
\operatorname{cap}\left(A_{k}\right) \leq C_{2^{k}} \leq \frac{C_{\varepsilon}}{\log ^{1+\varepsilon}(2)} \frac{2^{k}}{k^{1+\varepsilon}} \tag{2.8}
\end{equation*}
$$

Thus we have

$$
\sum_{k=1}^{\infty} 2^{-k} \operatorname{cap}\left(A_{k}\right) \leq \frac{C_{\varepsilon}}{\log ^{1+\varepsilon}(2)} \sum_{k=1}^{\infty} \frac{1}{k^{1+\varepsilon}}<\infty
$$

which implies that $\tilde{\mathcal{D}}_{\infty}$ is transient.

3 Uniform upper bound on returning probability

Now we have $\tilde{\mathcal{D}}_{\infty}$ is transient, i.e.,

$$
P\left(X_{n} \in \tilde{\mathcal{D}}_{\infty} \text { i.o. }\right)=0
$$

which immediately implies that there must be some $\bar{x} \in \mathbb{Z}^{3} \backslash \tilde{\mathcal{D}}_{\infty}$ such that

$$
\begin{equation*}
P_{\bar{x}}\left(T_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)<1 \tag{3.1}
\end{equation*}
$$

where $T_{\tilde{\mathcal{D}}_{\infty}}$ is the first time a simple random walk visits $\tilde{\mathcal{D}}_{\infty}$, and $P_{x}(\cdot)$ is the distribution of the simple random walk conditioned on starting at x. Then note that $\tilde{\mathcal{D}}_{\infty}$ is a subset of the diagonal line, which implies $\tilde{\mathcal{D}}_{\infty}$ has no interior point while $\mathbb{Z}^{3} \backslash \tilde{\mathcal{D}}_{\infty}$ is connected. Thus for any $x_{k} \in \tilde{\mathcal{D}}_{\infty}$, there exists a nearest neighbor path

$$
\mathcal{Y}=\left\{y_{0}, y_{1}, \cdots y_{m}\right\}
$$

with $y_{0}=x_{k}, y_{m}=\bar{x}$ while $y_{i} \in \mathbb{Z}^{3} \backslash \tilde{\mathcal{D}}_{\infty}$, for all $i=1,2, \cdots, m-1$. Combining this with the fact that

$$
P_{x}\left(T_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)=\frac{1}{6} \sum_{i=1}^{3}\left[P_{x+e_{i}}\left(T_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)+P_{x-e_{i}}\left(T_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)\right]
$$

for all $x \in \mathbb{Z}^{3} \backslash \tilde{\mathcal{D}}_{\infty}$, we have

$$
P_{y_{i}}\left(T_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)<1
$$

for all $i \geq 1$, which in turns implies that

$$
\begin{equation*}
P_{x_{k}}\left(\bar{T}_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)<1 \tag{3.2}
\end{equation*}
$$

for all k, where $\bar{T}_{\tilde{\mathcal{D}}_{\infty}}$ is the first returning time, i.e. the stopping time a simple random walk first visits $\tilde{\mathcal{D}}_{\infty}$ after its first step.

However, in order to use the transient set $\tilde{\mathcal{D}}_{\infty}$ in our proof, (3.2) is not enough. We need to show that starting from each point $x_{k}=\left(n_{k}, n_{k}, n_{k}\right) \in \tilde{\mathcal{D}}_{\infty}$, the probability $P_{x_{k}}\left(\bar{T}_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)$ is uniformly bounded away from 1. And this is not generally true for all transient subsets A. First of all, when A has interior points, the return probability of those points are certainly one. And even if A has no interior point and $\mathbb{Z}^{3} \backslash A$ is connected, we have the following counter example:

Counterexample 1: Consider subsets

$$
A_{k}=\left\{\left(2^{k}, 1, n\right),\left(2^{k},-1, n\right),\left(2^{k}+1,0, n\right),\left(2^{k}-1,0, n\right)\right\}_{n=-k}^{k} \cup\left\{\left(2^{k}, 0,0\right)\right\}
$$

and

$$
A=\bigcup_{k=1}^{\infty} A_{k}
$$

where the 2 dimensional projection of A is illustrated in Figure 1 (the distances between A_{k} 's are not exact in the figure):

Figure 1: A counter example to uniform upper bound on returning probability
Using Wiener's test, it is easy to see A is a transient subset. However, for points $a_{k}=\left(2^{k}, 0,0\right) \in A, k \geq 1$, in order to have a simple random walk starting at a_{k} never returns to A, we must have the first k steps of the random walk be along the z-coordinate. Thus

$$
P_{a_{k}}\left(T_{A}=\infty\right)<\frac{1}{3^{k}},
$$

which implies that

$$
\lim _{k \rightarrow \infty} P_{a_{k}}\left(T_{A}<\infty\right) \geq \lim _{k \rightarrow \infty}\left(1-\frac{1}{3^{k}}\right)=1
$$

Remark 3.1. It would be interesting to characterize uniformly transient sets i.e. sets with uniformly bounded return probabilities.

Fortunately, for the specific transient subset $\tilde{\mathcal{D}}_{\infty}$, since it becomes more and more sparse as $x \rightarrow \infty$, we can still have:
Lemma 3.2. For any $\varepsilon>0$, there is a $c_{\varepsilon, 1}>0$ such that

$$
\begin{equation*}
\sup _{k \geq 1} P_{x_{k}}\left(\bar{T}_{\tilde{\mathcal{D}}_{\infty}}<\infty\right) \leq 1-c_{\varepsilon, 1} \tag{3.3}
\end{equation*}
$$

On covering paths with 3 dimensional random walk

Proof. With (3.2) showing all returning probabilities are strictly less than 1, it is sufficient for us to show that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} P_{x_{k}}\left(\bar{T}_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)<1 \tag{3.4}
\end{equation*}
$$

Actually, here we prove a stronger statement

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P_{x_{k}}\left(\bar{T}_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)=P_{0}\left(\bar{T}_{0}<\infty\right)<1 \tag{3.5}
\end{equation*}
$$

Note that for each k

$$
\begin{aligned}
& P_{x_{k}}\left(\bar{T}_{\tilde{\mathcal{D}}_{\infty}}<\infty\right)>P_{x_{k}}\left(\bar{T}_{x_{k}}<\infty\right)=P_{0}\left(\bar{T}_{0}<\infty\right), \\
& P_{x_{k}}\left(\bar{T}_{\tilde{\mathcal{D}}_{\infty}}<\infty\right) \leq P_{x_{k}}\left(\bar{T}_{x_{k}}<\infty\right)+P_{x_{k}}\left(T_{\tilde{\mathcal{D}}_{\infty} \backslash\left\{x_{k}\right\}}<\infty\right),
\end{aligned}
$$

and that

$$
P_{x_{k}}\left(\bar{T}_{\tilde{\mathcal{D}}_{\infty} \backslash\left\{x_{k}\right\}}<\infty\right) \leq \sum_{i=1}^{k-1} P_{x_{k}}\left(T_{x_{i}}<\infty\right)+\sum_{i=k+1}^{\infty} P_{x_{k}}\left(T_{x_{i}}<\infty\right) .
$$

It suffices for us to show that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{i=1}^{k-1} P_{x_{k}}\left(T_{x_{i}}<\infty\right)=0 \tag{3.6}
\end{equation*}
$$

and that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{i=k+1}^{\infty} P_{x_{k}}\left(T_{x_{i}}<\infty\right)=0 \tag{3.7}
\end{equation*}
$$

To show (3.6) and (3.7), we first note the well known result that there is a $C<\infty$ such that for any $x \neq y \in \mathbb{Z}^{3}$,

$$
P_{x}\left(T_{y}<\infty\right) \leq \frac{C}{|x-y|}
$$

First, to show (3.6) recall that $x_{k}=\left(n_{k}, n_{k}, n_{k}\right)$, which implies that for any i and k, $\left|x_{k}-x_{i}\right| \geq\left|n_{k}-n_{i}\right|$. We have according to (2.2), for any $k \geq 8$

$$
\begin{equation*}
\sum_{i=1}^{k-1} P_{x_{k}}\left(T_{x_{i}}<\infty\right) \leq \sum_{i=1}^{k-1} \frac{C}{\left|x_{k}-x_{i}\right|} \leq 2 C \sum_{i=1}^{k-1} \frac{1}{\int_{i}^{k} \log ^{1+\varepsilon}(x) d x} \tag{3.8}
\end{equation*}
$$

Thus it is again sufficient to show that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{i=1}^{k-1} \frac{1}{\int_{i}^{k} \log ^{1+\varepsilon}(x) d x}=0 \tag{3.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sum_{i=1}^{k-1} \frac{1}{\int_{i}^{k} \log ^{1+\varepsilon}(x) d x}=\sum_{i=1}^{\left[k^{1 / 2}\right]} \frac{1}{\int_{i}^{k} \log ^{1+\varepsilon}(x) d x}+\sum_{i=\left\lceil k^{1 / 2}\right\rceil}^{k-1} \frac{1}{\int_{i}^{k} \log ^{1+\varepsilon}(x) d x} \tag{3.10}
\end{equation*}
$$

For each $k \geq 8$ and $i \leq\left[k^{1 / 2}\right]$, we have

$$
\int_{i}^{k} \log ^{1+\varepsilon}(x) d x \geq \int_{k / 2}^{k} \log ^{1+\varepsilon}(x) d x \geq \int_{k / 2}^{k} 1 d x=k / 2
$$

Thus

$$
\begin{equation*}
\sum_{i=1}^{\left[k^{1 / 2}\right]} \frac{1}{\int_{i}^{k} \log ^{1+\varepsilon}(x) d x} \leq \sum_{i=1}^{\left[k^{1 / 2}\right]} \frac{2}{k} \leq \frac{2}{k^{1 / 2}}=o(1) \tag{3.11}
\end{equation*}
$$

Then for each $k \geq 8$ and $i \in\left[\left\lceil k^{1 / 2}\right\rceil, k-1\right]$,

$$
\int_{i}^{k} \log ^{1+\varepsilon}(x) d x \geq \int_{i}^{k} \log ^{1+\varepsilon}\left(k^{1 / 2}\right) d x=\frac{1}{2^{1+\varepsilon}}(k-i) \log ^{1+\varepsilon}(k) .
$$

Thus

$$
\begin{equation*}
\sum_{i=\left\lceil k^{1 / 2}\right\rceil}^{k-1} \frac{1}{\int_{i}^{k} \log ^{1+\varepsilon}(x) d x} \leq \frac{2^{1+\varepsilon}}{\log ^{1+\varepsilon}(k)} \sum_{i=1}^{k} \frac{1}{i} \tag{3.12}
\end{equation*}
$$

Noting that

$$
\sum_{i=1}^{k} \frac{1}{i} \leq 1+\int_{1}^{k} \frac{1}{x} d x=1+\log (k)
$$

one can immediately have

$$
\begin{equation*}
\sum_{i=\left\lceil k^{1 / 2}\right\rceil}^{k-1} \frac{1}{\int_{i}^{k} \log ^{1+\varepsilon}(x) d x} \leq \frac{2^{1+\varepsilon}}{\log ^{1+\varepsilon}(k)} \sum_{i=1}^{k} \frac{1}{i} \leq \frac{2^{1+\varepsilon}[1+\log (k)]}{\log ^{1+\varepsilon}(k)}=o(1) \tag{3.13}
\end{equation*}
$$

Combining (3.9), (3.11) and (3.13), we obtain (3.6).
Then, to show (3.7) we have according to (2.2), for any $k \geq 8$

$$
\begin{equation*}
\sum_{i=k+1}^{\infty} P_{x_{k}}\left(T_{x_{i}}<\infty\right) \leq \sum_{i=k+1}^{\infty} \frac{C}{\left|x_{i}-x_{k}\right|} \leq 2 C \sum_{i=k+1}^{\infty} \frac{1}{\int_{k}^{i} \log ^{1+\varepsilon}(x) d x} \tag{3.14}
\end{equation*}
$$

Thus it is again sufficient to show that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \sum_{i=k+1}^{\infty} \frac{1}{\int_{k}^{i} \log ^{1+\varepsilon}(x) d x}=0 \tag{3.15}
\end{equation*}
$$

Now for each k we separate the infinite summation in (3.15) as

$$
\begin{equation*}
\sum_{i=k+1}^{\infty} \frac{1}{\int_{k}^{i} \log ^{1+\varepsilon}(x) d x}=\sum_{i=k+1}^{k^{2}} \frac{1}{\int_{k}^{i} \log ^{1+\varepsilon}(x) d x}+\sum_{i=k^{2}+1}^{\infty} \frac{1}{\int_{k}^{i} \log ^{1+\varepsilon}(x) d x} \tag{3.16}
\end{equation*}
$$

For its first term we use similar calculation as in (3.12) and have

$$
\begin{equation*}
\sum_{i=k+1}^{k^{2}} \frac{1}{\int_{k}^{i} \log ^{1+\varepsilon}(x) d x} \leq \frac{1}{\log ^{1+\varepsilon}(k)} \sum_{i=k+1}^{k^{2}} \frac{1}{i-k} \leq \frac{1}{\log ^{1+\varepsilon}(k)} \sum_{i=1}^{k^{2}} \frac{1}{i} \tag{3.17}
\end{equation*}
$$

And since

$$
\sum_{i=1}^{k^{2}} \frac{1}{i} \leq 1+\int_{1}^{k^{2}} \frac{1}{x} d x=1+2 \log (k)
$$

we have

$$
\begin{equation*}
\sum_{i=k+1}^{k^{2}} \frac{1}{\int_{k}^{i} \log ^{1+\varepsilon}(x) d x} \leq \frac{1+2 \log (k)}{\log ^{1+\varepsilon}(k)}=o(1) \tag{3.18}
\end{equation*}
$$

At last for the second term in (3.16), we have for each $k \geq 8$ and $i \geq k^{2}+1$,

$$
\int_{k}^{i} \log ^{1+\varepsilon}(x) d x \geq \int_{i^{1 / 2}}^{i} \log ^{1+\varepsilon}(x) d x \geq\left(i-i^{1 / 2}\right) \log ^{1+\varepsilon}\left(i^{1 / 2}\right) \geq \frac{1}{2^{2+\varepsilon}} i \log ^{1+\varepsilon}(i)
$$

Thus

$$
\begin{equation*}
\sum_{i=k^{2}+1}^{\infty} \frac{1}{\int_{k}^{i} \log ^{1+\varepsilon}(x) d x} \leq 2^{2+\varepsilon} \sum_{i=k^{2}+1}^{\infty} \frac{1}{i \log ^{1+\varepsilon}(i)} \tag{3.19}
\end{equation*}
$$

On covering paths with 3 dimensional random walk

Finally, noting that

$$
\sum_{i=3}^{\infty} \frac{1}{i \log ^{1+\varepsilon}(i)} \leq \int_{2}^{\infty} \frac{1}{x \log ^{1+\varepsilon}(x)} d x=\frac{1}{\varepsilon \log ^{\varepsilon}(2)}<\infty
$$

we have the tail term

$$
\begin{equation*}
\sum_{i=k^{2}+1}^{\infty} \frac{1}{i \log ^{1+\varepsilon}(i)}=o(1) \tag{3.20}
\end{equation*}
$$

as $k \rightarrow \infty$. Thus combining (3.15)- (3.20), we have shown (3.7) and thus finished the proof of this lemma.

Proof of Theorem 1.3. With Lemma 3.2, and recalling that

$$
\tilde{\mathcal{D}}_{N}=\tilde{\mathcal{D}}_{\infty} \cap \mathcal{D}_{N}
$$

and

$$
C_{N}=\left|\tilde{\mathcal{D}}_{N}\right|=\sup \left\{k: n_{k} \leq N\right\}
$$

we can define the stopping times $\bar{T}_{\tilde{\mathcal{D}}_{[N / 3]}, 0}=0$,

$$
\bar{T}_{\tilde{\mathcal{D}}_{[N / 3]}, 1}=\inf \left\{n>0, X_{3, n} \in \tilde{\mathcal{D}}_{[N / 3]}\right\}
$$

and for all $k \geq 2$

$$
\bar{T}_{\tilde{\mathcal{D}}_{[N / 3]}, k}=\inf \left\{n>\bar{T}_{\tilde{\mathcal{D}}_{[N / 3]}, k-1}, X_{3, n} \in \tilde{\mathcal{D}}_{[N / 3]}\right\}
$$

Then by Lemma 3.2, one can immediately see that for any $k \geq 0$
and thus

$$
\begin{align*}
P\left(T_{\tilde{\mathcal{D}}_{[N / 3]}, C_{[N / 3]}}<\infty\right) & =\prod_{k=0}^{C_{[N / 3]}-1} P\left(T_{\tilde{\mathcal{D}}_{[N / 3]}, k+1}<\infty \mid \bar{T}_{\tilde{\mathcal{D}}_{[N / 3]}, k}<\infty\right) \tag{3.21}\\
& \leq\left(1-c_{\varepsilon, 1}\right)^{C_{[N / 3]}} .
\end{align*}
$$

By Lemma 2.1 we have

$$
\begin{equation*}
C_{[N / 3]} \geq 2^{-\varepsilon-1}[N / 3] \log ^{-1-\varepsilon}([N / 3]) \geq \frac{2^{-\varepsilon-2}}{3} N \log ^{-1-\varepsilon}(N) \tag{3.22}
\end{equation*}
$$

for all $N \geq 4$. Thus combining (3.21) and (3.22)

$$
\begin{align*}
P\left(\tilde{\mathcal{P}} \subseteq \operatorname{Trace}\left(\left\{X_{3, n}\right\}_{n=0}^{\infty}\right)\right) & \leq P\left(\mathcal{D}_{[N / 3]} \subseteq \operatorname{Trace}\left(\left\{X_{3, n}\right\}_{n=0}^{\infty}\right)\right) \\
& \leq P\left(\tilde{\mathcal{D}}_{[N / 3]} \subseteq \operatorname{Trace}\left(\left\{X_{3, n}\right\}_{n=0}^{\infty}\right)\right) \tag{3.23}\\
& \leq P\left(T_{\tilde{\mathcal{D}}_{[N / 3]}, C_{[N / 3]}}<\infty\right) \\
& \leq \exp \left(-c_{\varepsilon} N \log ^{-1-\varepsilon}(N)\right)
\end{align*}
$$

where $c_{\varepsilon}=-\frac{2^{-\varepsilon-2}}{3} \log \left(1-c_{\varepsilon, 1}\right)$. And the proof of Theorem 1.3 is complete.

On covering paths with 3 dimensional random walk

Figure 2: log-plot of covering probabilities of $\mathcal{D}_{i}, i=1,2, \cdots, 9$

4 Discussions

In Conjecture 1.4, we conjecture that the cover probability should have exponential decay just as the $d \geq 4$ case. This conjecture seems to be supported by the following preliminary simulation which shows the log-plot of probabilities that the first 5000 steps of a 3 dimensional simple random walk starting at 0 cover $\mathcal{D}_{i}=\{(0,0,0),(1,1,1), \cdots,(i, i, i)\}$ for $i=1,2, \cdots, 9$.

The simulation result above seems to indicate that after taking logarithm, the covering probability decays almost exactly as a linear function, which implies the exponential decay we predicted, indicating that the upper bound we found in Theorem 1.3 is not sharp.

Another possible approach towards a sharp asymptotic is noting that although $\left\{\hat{X}_{2, n}\right\}_{n=0}^{\infty}$ is recurrent and will return to 0 with probability 1 , the expected time between each two successive returns is ∞. Moreover, in order to cover $\overline{\mathcal{P}}$, only those returns to diagonal before that $\left\{X_{3, n}\right\}_{n=0}^{\infty}$ has left $B_{2}(0, N) \supset B_{1}(0, N)$ forever could possibly help. This observation, together with the tail probability asymptotic estimations using local central limit theorem and techniques in [1] and [2] applied on the non simple random walk $\left\{\hat{X}_{2, n}\right\}_{n=0}^{\infty}$, and some large deviation argument, enable us to find a proper value of T such that

- with high probability $\left\{X_{3, n}\right\}_{n=T}^{\infty} \cap B_{2}(0, N)=\emptyset$,
- with high probability $\left\{\hat{X}_{2, n}\right\}_{n=0}^{T}$ will not return to 0 for $[N / 3]$ times or more.

Right now this approach can only give us the following weaker upper bound (a detailed proof can be found in technical report [4]):
Proposition 4.1. There are $c, C \in(0, \infty)$ such that for any nearest neighbor path $\mathcal{P}=\left(P_{0}, P_{1}, \cdots, P_{K}\right) \subset \mathbb{Z}^{3}$ connecting 0 and $\partial B_{1}(0, N)$,

$$
P\left(\operatorname{Trace}(\mathcal{P}) \subseteq \operatorname{Trace}\left(\left\{X_{3, n}\right\}_{n=0}^{\infty}\right)\right) \leq C \exp \left(-c N^{1 / 3}\right)
$$

However, this seemingly worse approach might have the potential to fully use the geometric structure of path $\widehat{\mathcal{P}}$ to minimize the covering probability. Note that in order to cover $D_{[N / 3]}$ we not only need $\left\{\hat{X}_{2, n}\right\}_{n=0}^{\infty}$ to return to 0 for at least $[N / 3]$ times before leaving $B_{2}(0, N)$, but also must have that the locations of $X_{3, n}$ at such visits cover each

On covering paths with 3 dimensional random walk
point on the diagonal. I.e., define the stopping times $\tau_{l_{3}, 0}=0$

$$
\tau_{l_{3}, 1}=\inf \left\{n \geq 1: \hat{X}_{2, n}=0\right\}
$$

and for all $i \geq 2$

$$
\tau_{l_{3}, i}=\inf \left\{n>\tau_{l_{3}, i-1}: \hat{X}_{2, n}=0\right\}
$$

Define

$$
\left\{Z_{3, n}\right\}_{n=0}^{\infty}=\left\{X_{3, \tau_{l_{3}, n}}^{1}+X_{3, \tau_{l_{3}, n}}^{2}+X_{3, \tau_{l_{3}, n}}^{3}\right\}_{n=0}^{\infty}
$$

Noting that $\tau_{l_{3}, i}<\infty$ for any i, and that $\left\{X_{3, n}\right\}_{n=0}^{\infty}$ is translation invariant, $\left\{Z_{3, n}\right\}_{n=0}^{\infty}$ is a well defined one dimensional random walk with infinite range. And we have

$$
P\left(\operatorname{Trace}(\mathcal{P}) \subseteq \operatorname{Trace}\left(\left\{X_{3, n}\right\}_{n=0}^{\infty}\right)\right) \leq P\left((0,1, \cdots,[N / 3]) \subseteq \operatorname{Trace}\left(\left\{Z_{3, n}\right\}_{n=0}^{\infty}\right)\right)
$$

Thus Conjecture 1.4 would follow from the techniques described above for Proposition 4.1 if the following conjecture is proved.

Conjecture 4.2. There is a $c \in(0, \infty)$ such that for any $N \geq 2$

$$
P\left((0,1, \cdots,[N / 3]) \subseteq \operatorname{Trace}\left(\left\{Z_{3, n}\right\}_{n=0}^{N^{3}}\right)\right) \leq \exp (-c N)
$$

References

[1] Aryeh Dvoretzky and Paul Erdős. Some problems on random walk in space. In Proc. 2nd Berkeley Symp, pages 353-367, 1951. MR-0047272
[2] Paul Erdős and James S. Taylor. Some problems concerning the structure of random walk paths. Acta Mathematica Hungarica, 11(1-2):137-162, 1960. MR-0121870
[3] Gregory F. Lawler and Vlada Limic. Random walk: a modern introduction. Cambridge Univ Pr, 2010. MR-2677157
[4] Eviatar B. Procaccia and Yuan Zhang. Alternative approach on covering probability when d=3 (technical report: http://www.math.tamu.edu/ procaccia/dimension3technical.pdf).
[5] Eviatar B. Procaccia and Yuan Zhang. On covering monotonic paths with simple random walks. arXiv: 1704.05870.
[6] Frank Spitzer. Principles of random walk. Springer-Verlag, New York-Heidelberg, second edition, 1976. Graduate Texts in Mathematics, Vol. 34. MR-0388547

Acknowledgments. The authors would like to thank an anonymous referee for comments that helped to improve the article.

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS ${ }^{1}$)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by $\mathrm{IMS}^{3}, \mathrm{BS}^{4}$, ProjectEuclid ${ }^{5}$
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *Texas A\&M University www.math.tamu.edu/~procaccia
 E-mail: eviatarp@gmail.com
 ${ }^{\dagger}$ Research supported by NSF grant DMS-1407558
 ${ }^{\ddagger}$ Peking University
 E-mail: zhangyuan@math.pku.edu.cn
 ${ }^{\S}$ The manuscript of this paper was first done when YZ was a visiting assistant professor at Texas A\&M University

[^1]: ${ }^{1}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{2}$ EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
 ${ }^{3}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{4}$ BS: Bernoulli Society http://www.bernoulli-society .org/
 ${ }^{5}$ Project Euclid: https://projecteuclid.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

