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Abstract

We continue the study, begun in [6], of the critical radius of embeddings, via deter-
ministic spherical harmonics, of fixed dimensional spheres into higher dimensional
ones, along with the associated problem of the distribution of the suprema of random
spherical harmonics. Whereas [6] concentrated on spherical harmonics of a common
degree, here we extend the results to mixed degrees, en passant improving on the
lower bounds on critical radii that we found previously.

Keywords: Spherical harmonics; spherical ensemble; critical radius; reach; curvature; asymp-
totics; large deviations.
AMS MSC 2010: Primary 33C55; 60G15, Secondary 60F10; 60G60.
Submitted to ECP on September 26, 2017, final version accepted on July 24, 2018.

1 Introduction

The spherical harmonics of degree ` ≥ 0 on the d-dimensional unit sphere Sd are the

collection of (real) eigenfunctions {φ`,d
j }k

d
`

j=1 of the Laplacian ∆g
Sd

on Sd, satisfying

∆g
Sd
φ`,d
j (x) = −`(`+ d− 1)φ`,d

j (x), (1.1)

where kd` is

kd`
∆
=

2`+ d− 1

`+ d− 1

(
`+ d− 1

d− 1

)
. (1.2)

In [6], we studied the map

ĩd` : Sd → Skd
`−1, x →

√
sd
kd`

(
φ`,d
1 (x), · · · , φ`,d

kd
`

(x)
)
, (1.3)

defined by the spherical harmonics of degree `, where, sd denotes the surface area of
the unit sphere Sd. For large enough `, the image ĩd` (S

d) is diffeomorphic to Sd if ` is
odd, and to RP d if ` is even.
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Critical radius

As shown in [6], and explained again below, the behavior of this deterministic map
has significant implications for random spherical harmonics1

Φ̃d
` (x) =

kd∑̀
j=1

a`jφ
`,d
j (x), (1.4)

where the a`j are either standard Gaussian variables (in which case we talk about the

“Gaussian ensemble") or (a`1, . . . , a
`
kd
`

) is uniform on Skd
`−1 (in which case we talk about

the “spherical ensemble"). In particular, one of the most important aspects of the
deterministic mapping vis a vis the random process is the critical radius, or reach, of its
image in the ambient sphere.

What made the study in [6] most interesting was the fact that the pull back of the
standard round metric under ĩd` grows with order `2, indicating that the image ĩd` (S

d)

in Skd
`−1 becomes more and more ‘twisted’ as ` grows. Intuitively, if a sequence of sets

become more twisted in their ambient space, it seems natural that their critical radii,
as a measure of smoothness, will tend to zero. (Think of the critical radii of the graphs
of (x, sin `x) in R2, which tend to 0 as ` → ∞.) Rather surprisingly, the main results of

[6] showed that there is a lower bound for the critical radius of the ĩd` (S
d) in Skd

`−1, as
` → ∞. In some sense, this was a result of competition between the ‘twistiness’ of the
image and the ‘extra space’ available as the ambient spaces Skd

`−1 changed.
As a direct consequence of these deterministic results [6] derived an explicit formula

for the distribution of the suprema of the random spherical harmonics Φ̃d
` of (1.4) under

the spherical ensemble, by exploiting Weyl’s tube formula. (For the Gaussian ensemble,
see [1, 8, 10] on the connections between spherical and Gaussian ensembles, Weyl’s tube
formula, suprema of random fields, and the expected Euler characteristic of excursion
sets.)

The aim of the present paper is to extend the analysis of [6] to a related, but somewhat
different embedding, given by the deterministic map

idL : Sd → Sπd
L−1, x →

√
sd
πd
L

(
φ`,d
j (x)

)
`=0,...,L, j=1,...,kd

`

, (1.5)

where

πd
L

∆
=

L∑
`=0

kd` =
2L+ d

d

(
L+ d− 1

d− 1

)
. (1.6)

For large enough L (either odd or even) this map is an embedding; viz. idL(S
d) ∼= Sd [11].

Following the ideas and proofs in [6], we will prove the existence of a lower bound for
the critical radius of idL(S

d) in Sπd
L−1. This will allow us to also derive an exact formula

for the distribution of the suprema of the family of random spherical harmonics under
the spherical ensemble, viz.

Φd
L(x)

∆
=

L∑
`=0

Φ̃d
` (x) =

L∑
`=0

kd∑̀
j=1

a`jφ
`,d
j (x), (1.7)

with (a`j)`,j uniform on Sπd
L−1.

1As is common, we shall allow the term “spherical harmonics" to take two meanings, either one of which
will always be clear from the context. The first is the collection of eigenfunctions given by (1.1). The second is
the collection of functions satisfying Laplace’s equation, and then restricted to a sphere. The first collection
provides a basis for the second. See Section 2.1 for a more formal description of this.
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Critical radius

The differences between the two random processes Φd
L and Φ̃d

` are subtle but impor-
tant, and best understood in spectral terms. For a fixed `, all the spherical harmonics
φ`,d
j are associated with the same eigenvalue, often called ‘frequency’. In these terms,

Φ̃d
` is a single, or ‘pure’ frequency random process, whereas the spectrum of Φd

L contains
(a discrete collection of) frequencies between 0 and L(L+ d− 1). In terms of the original
motivation for studying random spherical harmonics (the ‘Berry conjecture’ of [4]), mixed
spectra processes play a more central role than pure spectra ones. This is one of the
main motivations behind the current paper.

Acknowledgement: We would like to thank the referee for many helpful suggestions.

2 Main results

2.1 Spherical harmonics and the deterministic embedding

Let the unit sphere Sd be equipped with the round metric gSd , and write ∆g
Sd

for
the associated Laplacian. Let Hd

` be the eigenspace spanned by eigenfunctions (1.1) of
degree ` ≥ 0. Then the dimension ofHd

` is k
d
` given in (1.2). Since L2(Sd) = ⊕`≥0Hd

` , if we
normalize the eigenfunctions so that their L2-norm is 1, the expansion of L2(Sd) functions
in the orthonormal basis of spherical harmonics provides a natural generalization of

Fourier series expansions. Let Hd
`≤L

∆
=
⊕L

`=0 Hd
` be the space of spherical harmonics of

degree at most L.
For L large enough, the map (1.5) is an embedding [11] i.e. idL(S

d) ∼= Sd. Furthermore,

it follows from the properties of spectral projection kernels that the Rπd
L norm of idL(x) is

identically 1, so that idL is actually a map between spheres; viz.

idL : Sd → Sπd
L−1. (2.1)

In addition, the pull-back of the Euclidean metric satisfies [11]

(idL)
∗(gE) ∼= cdL

2gSd (2.2)

where cd is a constant depending only on d.
Our interest in this section lies in the critical radius of iL(Sd) in Rπd

L .
Recall that if M is a smooth manifold embedded in an ambient manifold M̃ , then

the local critical radius, or reach, at a point x ∈ M is the furthest distance one can
travel, along any geodesic in M̃ based at x but normal to M in M̃ , without meeting a
similar vector originating at another point in M . The (global) critical radius of M is then
the infimum of all the local ones. We refer the reader to Section 3 of [6] for additional
background and for formal definitions.

We can now state our first result.

Theorem 2.1. For sufficiently large L, the critical radius of the embedding iL(S
d) in

Rπd
L has a strictly positive, uniform in L, lower bound which depends only on d.

Let

Tubeπd
L
(idL(S), ρ)

∆
=

{
x ∈ Rπd

L : min
p∈idL(S)

‖x− p‖ ≤ ρ

}

be the tube around iL(S
d) in Rπd

L , where ρ is less than the critical radius of idL(S) in R
πd
L .

Then, by (2.1), the intersection Tubeπd
L
(idL(S), ρ)∩Sπd

L−1 will be a tube of iL(Sd) in Sπd
L−1

without self-intersection. This fact immediately implies

Corollary 2.2. Theorem 2.1 continues to hold, with a similar lower bound, when iL(S
d)

is considered as an embedding in Sπd
L−1.
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2.2 Random spherical harmonics and exceedence probabilities

In this section we turn our attention to the random spherical harmonics under the
spherical ensemble, which are defined by (1.7). As opposed to the simpler Φ̃d

L of (1.4),
and as explained in the final paragraph of the Introduction, Φd

L has a broader and flatter
spectrum than does Φ̃d

L.
If we now let ρd denote the uniform lower bound for the critical radius of idL(S

d) in

the ambient space Sπd
L−1 appearing in Corollary 2.2, then this corollary and the same

arguments as adopted in Section 6 of [6] prove the following result.

Theorem 2.3. Let Φd
L be the random spherical harmonics under the spherical ensemble

as in (1.7). Then there exists constants ρd > 0 such that, for sufficiently large L, and for

all u >
√

πd
L

sd
cos(ρd),

Pµd
L

{
sup
Sd

Φd
L(x) > u

}

=
1

sπd
L−1

d∑
j=0

fπd
L,j

cos−1

u/

√
πd
L

sd

(L(L+ d)

d+ 2

)j/2

Lj(S
d),

(2.3)

where sπd
L−1 is the surface area of the unit sphere Sπd

L−1, the fπd
L,j(ρ) are explicit

functions given in Theorem 10.5.7 of [1] and (6.6) of [6], and the Lj(S
d) are the standard

j-th Lipschitz-Killing curvatures of the unit sphere Sd, given explicitly, for example, in
(6.10) of [6].

Note that although Theorem 2.3 gives an exact result under the spherical ensemble,
analogous (but approximate) results can also be formulated under the Gaussian ensemble
(i.e. when the a`j are all independent, standard, Gaussian random variables). This
follows from the rich literature relating mean Euler characteristics of excursion sets and
exceedence probabilities for Gaussian processes; e.g. [1, 5, 7, 8, 10]. We will not repeat
this here.

3 Proof of Theorem 2.1 for S2

In this section, we will prove Theorem 2.1 for the 2-sphere.

3.1 Spectral projection kernels

We will drop the index 2 in this section whenever it does not lead to ambiguities. Thus
H`≤L is now the space of spherical harmonics of S2 of degree at most L. Its dimension
is πL = (L+ 1)2 by (1.6). The spectral projection kernel is now given, for x, y ∈ S2, by
the Christoffel-Darboux formula [2],

KL(x, y) =

L∑
`=0

∑̀
j=−`

φ`
j(x)φ

`
j(y) =

L+ 1

4π
P

(1,0)
L (cosΘ(x, y)),

where Θ(x, y) is the angle between the vectors x and y on S2, and P
(1,0)
L is a Jacobi

polynomial. In general, the Jacobi polynomials are defined by

P
(α,β)
L (x) =

L∑
s=0

(
L+ α

s

)(
L+ β

L− s

)(
x− 1

2

)L−s(
x+ 1

2

)s

.

We will need the following facts about P (1,0):

P
(1,0)
L (1) = L+ 1, P

(1,0)′
L (1) =

L(L+ 1)(L+ 2)

4
.
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We will also need the fact that, on the diagonal, the kernel KL is given by

KL(x, x) =
L+ 1

4π
P

(1,0)
L (1) =

(L+ 1)2

4π
.

Defining the normalized kernel

ΠL(x, y)
∆
=

4π

(L+ 1)2
KL(x, y) =

1

L+ 1
P

(1,0)
L (cosΘ(x, y)),

we have that the norm of iL(x), defined at (1.5), is given by

‖iL(x)‖2 =
4π

(L+ 1)2

∑
j,`

|φ`
j(x)|2 = ΠL(x, x) = 1,

so that iL is actually a map iL : S2 → SL2+2L. Following the computations in [6], the
pull back of the Euclidean metric under this mapping is gL = i∗L(gE) = L2+2L

4 gS2 .

3.2 Critical radius of iL(S2)

A useful formula for the critical radius of a smooth manifold embedded in Euclidean
space was derived in [10].

Following the calculations in Section 3 of [6], the critical radius of the embedding of
iL(S

2) can be rewritten as

rL = inf
θ∈[0,π]

1− 1
L+1P

(1,0)
L (cos θ)√

2− 2
L+1P

(1,0)
L (cos θ)− 1

L+1

[P
(1,0)′
L (cos θ) sin θ]2

P
(1,0)′
L (1)

. (3.1)

3.3 Proof of Theorem 2.1 for S2

The proof is then based on classical asymptotic estimates for Jacobi polynomials.
We start with an asymptotic formula of Hilb’s type ([9], Theorem 8.21.12):(

sin
θ

2

)
P

(1,0)
L (cos θ) =

(
θ

sin θ

) 1
2

J1((L+ 1)θ) +R1,L(θ), (3.2)

where

R1,L(θ) =

{
θ3O(L), 0 ≤ θ ≤ c/L,

θ
1
2O(L− 3

2 ), c/L ≤ θ ≤ π − ε,
(3.3)

and c, ε are uniform constants, independent of L.
We also have the Darboux formula ([9], Theorem 8.21.13):

P
(1,0)
L (cos θ) = L− 1

2 k(θ) cos

(
(L+ 1)θ − 3

4
π

)
+R2,L(θ), (3.4)

if c′/L ≤ θ ≤ π − c′/L, where c′ is a uniform constant and

k(θ) =
1√
π

(
sin

θ

2

)−3/2(
cos

θ

2

)−1/2

, (3.5)

R2,L(θ) = L− 1
2 k(θ)(L sin θ)−1O(1). (3.6)

Near the right end point π, the asymptotic behavior of the Jacobi polynomials is given
by the Mehler-Heine formula

lim
L→∞

P
(1,0)
L

(
cos
(
π − x

L

))
= J0(x), (3.7)
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where the limit is uniform on compact subsets of R (see equation (3) in [3]) and the Jν
are the Bessel functions of the first kind of order ν.

In order to prove Theorem 2.1, we divide [0, π] into the four subintervals

[0, c/L], [c/L, L−4/5], [L−4/5, π − c′/L], [π − c′/L, π], (3.8)

and replace the global infimum in (3.1) as

min {IL, IIL, IIIL, IVL}
∆
= min

{
inf

[0,c/L]
, inf
[c/L,L−4/5]

, inf
[L−4/5,π−c′/L]

, inf
[π−c′/L,π]

}
. (3.9)

We now treat each of the four infima in (3.9), starting with

IL = inf
[0,c/L]

1− 1
L+1P

(1,0)
L (cos θ)√

2− 2
L+1P

(1,0)
L (cos θ)− 1

L+1

[P
(1,0)′
L (cos θ) sin θ]2

P
(1,0)′
L (1)

.

To treat this term, we study a rescaling limit via a new parameter x, where x = Lθ,
so that x ∈ [0, c]. By the Hilb’s type asymptotic (3.2) on 0 ≤ θ ≤ c/L,

1

L
P

(1,0)
L

(
cos

x

L

)
=

1

L

(
sin

x

2L

)−1
(

x/L

sinx/L

) 1
2

J1

(
x+

x

L

)
+O(L−2)

=
1

L

( x

2L
+O(L−3)

)−1 (
1 +O(L−2)

)1/2
×
(
J1(x) +O(L−1)

)
+O(L−2)

=
2

x
J1(x) +O(L−1).

Next, for the rescaling of P (1,0)′
L

(
cos x

L

)
, note the following two standard facts about

Jacobi polynomials and Bessel functions:

P
(1,0)′
L (x) =

1

2
(L+ 2)P

(2,1)
L−1 (x), ([9], (4.5.5))(

2

x
J1(x)

)′

= − 2

x
J2(x). ([9], (1.71.5))

Applying these facts and the Hilb’s asymptotic for P (2,1)
L (cos θ) given below in (4.3), we

have

1

L2
P

(1,0)′
L (cos θ) sin θ

=
1

L2

{
1

2
sin θ · (L+ 2)P

(2,1)
L−1 (cos θ)

}
=

L+ 2

L2

(
sin

θ

2

)−1
{

L

L+ 1

(
θ

sin θ

) 1
2

J2((L+ 1)θ) +O(L−2)

}

=
L+ 2

L2

(
sin

x

2L

)−1
{

L

L+ 1

(
x/L

sinx/L

) 1
2

J2

(
x+

x

L

)
+O(L−2)

}

=
2

x
J2(x) +O(L−1)

= −
(
2

x
J1(x)

)′

+O(L−1).
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We rescale
1

L+ 1

[P
(1,0)′
L (cos θ) sin θ]2

P
(1,0)′
L (1)

to obtain

4
((

2
xJ1(x)

)′
L2 +O(L)

)2
L(L+ 1)2(L+ 2)

= 4

((
2

x
J1(x)

)′

+O(L−1)

)2

.

Hence, as L → ∞, IL is asymptotic to

I∞ = inf
[0,c]

1− 2
xJ1(x)√

2− 4
xJ1(x)− 4(( 2xJ1(x))

′)2
. (3.10)

For the second term, IIL, we again use the Hilb’s type asymptotic formula (3.2),
this time on the interval [c/L, L−4/5] ⊂ [c/L, π − ε]. We also rescale to x = Lθ, so that
x ∈ [c, L1/5], and will need the following three basic properties of Bessel functions ([9],
Pages 15–16), for ν real but ν 6= −1,−2,−3, . . . .

Jν(x) =

(
2

πx

) 1
2

cos(x− πν

2
− π

4
) +O(x− 3

2 ), as x → ∞,

Jν(x) ∼ xν , as x → 0+,

J ′
1(x) =

1

x
J1(x)− J2(x).

Applying these properties, we have, uniformly in x ∈ [c, L1/5],

J1

(
x+

x

L

)
= J1(x) +

x

L
J ′
1(x) + . . . = J1(x) +O(L−4/5). (3.11)

Consequently,

1

L
P

(1,0)
L

(
cos

x

L

)
=

1

L

(
sin

x

2L

)−1
(

x/L

sinx/L

) 1
2

J1

(
x+

x

L

)
+O(L− 19

10 )

=
1

L

( x

2L
+O(L−12/5)

)−1 (
1 +O(L−8/5)

)1/2
×
(
J1(x) +O(L−4/5)

)
+O(L− 19

10 )

=
2

x
J1(x) +O(L−4/5).

Hence, we have the rescaling limit

1

L+ 1
P

(1,0)
L

(
cos

x

L

)
=

2

x
J1(x) +O(L−4/5), (3.12)

for x ∈ [c, L1/5]. Similarly, the rescaling of 1
L+1

[P
(1,0)′
L (cos θ) sin θ]2

P
(1,0)′
L (1)

will be dominated by the

leading term 4(( 2xJ1(x))
′)2 for L large enough. Thus IIL will converge, as L → ∞, to the

same expression that we had for IL, viz.

II∞ = inf
[c,∞]

1− 2
xJ1(x)√

2− 4
xJ1(x)− 4(( 2xJ1(x))

′)2
. (3.13)

For IIIL, since θ ∈ [L−4/5, π − c′/L] ⊂ [c′/L, π − c′/L], we can apply the Darboux
formula (3.4) on [L−4/5, π − c′/L] and define

ML(θ) =
1√
L
k(θ) cos

(
(L+ 1)θ − 3

4
π

)
,
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giving P
(1,0)
L (cos θ) = ML(θ) +R2,L(θ). Since k′( 2π3 ) = 0 and k′′(θ) > 0 for θ ∈ (0, π), it is

simple to check that

max k(θ) = max{k(L−4/5), k(π − c′/L)} = O(L6/5),

so that
1

L
ML(θ) = L−3/2 ·O(L6/5) = O(L−3/10).

Similarly, we have
1

L
R2,L(θ) = L−5/2 ·O(L2) = O(L−1/2),

so that
1

L+ 1
P

(1,0)
L (cos θ) = O(L−3/10).

Note now the fact that, for c′/L ≤ θ ≤ π − c′/L, it follows from bounds on the derivatives
of Jacobi polynomials ([9], P. 236, 8.8.1) that

d

dθ
P

(1,0)
L (cos θ) = L

1
2 k(θ)

{
− sin((L+ 1)θ − 3π/4) + (L sin θ)−1O(1)

}
.

Also, on the interval [L−4/5, π − c′/L], we have

d

dθ
P

(1,0)
L (cos θ) = L

1
2 ·O(L6/5) = O(L17/10).

This implies that

1

L+ 1

[P
(1,0)′
L (cos θ) sin θ]2

P
(1,0)′
L (1)

= O(L−3/5).

Thus the L → ∞ limit of IIIL is

III∞ =
1√
2
. (3.14)

We treat the final term, IVL, a little differently, bounding it from below. Firstly, we
have

IVL = inf
[π−c′/L,π]

1− 1
L+1P

(1,0)
L (cos θ)√

2− 2
L+1P

(1,0)
L (cos θ)− 1

L+1

[P
(1,0)′
L (cos θ) sin θ]2

P
(1,0)′
L (1)

≥ inf
[π−c′/L,π]

√
1

2

(
1− 1

L+ 1
P

(1,0)
L (cos θ)

)

= inf
[0,c′]

√
1

2

(
1− 1

L+ 1
P

(1,0)
L

(
cos(π − x

L
)
))

.

By the Mehler-Heine formula (3.7), we have the uniform estimate

1

L+ 1
P

(1,0)
L

(
cos(π − x

L
)
)

→ 0

for x ∈ [0, c′]. Hence, as L → ∞, we have

IV∞ ≥ 1√
2
. (3.15)

The limits and lower bound for IL–IVL established above show that the critical radius
of the iL(S

2), as L → ∞, have a non-zero lower bound in the ambient space R(L+1)2 . That
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a similar lower bound holds in the ambient space SL2+2L is implied by the discussion
before Corollary 2.2, and this completes the proof of Theorem 2.1 for S2.

Before moving on to the proof for the general case, it is interesting to actually
compute the asymptotic lower bound to the critical radius for the two-dimensional case.
The necessary information for this is contained in the three functions in Figure 1.

The red curve in Figure 1 is the plot of

f(x)
∆
=

1− 2
xJ1(x)√

2− 4
xJ1(x)− 4(( 2xJ1(x))

′)2
. (3.16)

The black one is the plot of

g(x)
∆
=

1− J0(x)√
2− 2J0(x)− 2[J0(x)′]2

, (3.17)

and the blue one is the plot of

h(x)
∆
=

1 + J0(x)√
2 + 2J0(x)− 2[J0(x)′]2

. (3.18)

Figure 1: Graphs of the functions (3.16)–(3.18). See text for details.

However, from the proof of Theorem 2.1 above we know that the critical radius of the
embeddings of iL(S2) in R(L+1)2 is asymptotic to

min

{
inf

x∈[0,∞)
f(x),

1√
2

}
.

On the other hand, we know from (4.9), (4.10) in [6] that, for ` odd where we have
ĩ`(S

2) ∼= S2 (1.3), the limit is

min

{
inf

x∈[0,∞)
g(x), inf

x∈[0,∞)
h(x),

1√
2

}
;

for ` even where the map is an immersion ĩ`(S
2) ∼= RP 2, the limit is

min

{
inf

x∈[0,∞)
g(x),

1√
2

}
.

It thus immediately follows from the Figure 1 that the asymptotic lower bounds for
the critical radii of the embeddings of S2 by iL we established here are larger than those
for the embeddings ĩ` treated in [6]. This is consistent with the expectations discussed
in the Introduction.
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4 Proof of Theorem 2.1 for the general case

The arguments for S2 can be generalized to higher dimensions in a straightforward
fashion, which we now describe.

The kernel Kd
L(x, y) of Hd

`≤L can now be expressed as [3]

Kd
L(x, y) =

L∑
`=0

kd∑̀
j=1

φ`
j(x)φ

`
j(y) =

πd
L/sd(

L+d/2
L

)P (1+λ,λ)
L (cosΘ(x, y)),

for x, y ∈ Sd, where λ = d−2
2 . We first note that [2],

P
(1+λ,λ)
L (1) =

(
L+ d/2

L

)
=

Γ(L+ d/2 + 1)

Γ(L+ 1)Γ(d/2 + 1)
;

and

P
(1+λ,λ)′
L (1) =

L+ d

2

(
L+ d/2

L− 1

)
.

We define the normalized spectral projection kernel as

Πd
L(x, y) =

sd
πd
L

Kd
L(x, y) =

(
L+ d/2

L

)−1

P
(1+λ,λ)
L (cosΘ(x, y)).

Thus the norm of the map (1.5) is ‖idL(x)‖2 = Πd
L(x, x) = 1, i.e.,

idL : Sd → Sπd
L−1. (4.1)

Following the arguments of [6], the pull-back of the Euclidean metric is

(idL)
∗(gE) =

(
L+ d/2

L

)−1

P
(1+λ,λ)′
L (1)gSd =

L(L+ d)

d+ 2
gSd . (4.2)

Following the computations in [6], the critical radius of the embedding is

inf
θ∈[0,π]

1−
(
L+d/2

L

)−1
P

(1+λ,λ)
L (cos θ)√

2− 2
(
L+d/2

L

)−1
P

(1+λ,λ)
L (cos θ)−

(
L+d/2

L

)−1 [P
(1+λ,λ)′
L (cos θ) sin θ]2

P
(1+λ,λ)′
L (1)

.

We still have the following classical asymptotic estimate about the Jacobi polynomials.
Firstly, we have the asymptotic formula of Hilb’s type below ([9], Theorem 8.21.12):(

sin
θ

2

)α(
cos

θ

2

)β

P
(α,β)
L (cos θ)

= N−αΓ(L+ α+ 1)

L!

(
θ

sin θ

) 1
2

Jα(Nθ) +R1,L(θ),

(4.3)

where N = L+ (α+ β + 1)/2,

R1,L(θ) =

{
θα+2O(Lα), 0 ≤ θ ≤ c/L,

θ
1
2O(L− 3

2 ), c/L ≤ θ ≤ π − ε,
(4.4)

and c, ε are uniform constants, independent of L. In our case α = 1 + λ and β = λ.
On the subinterval c′/L ≤ θ ≤ π − c′/L, another asymptotic estimate is given by the
Darboux formula ([9], Theorem 8.21.13)

P
(1+λ,λ)
L (cos θ) = L− 1

2 k(θ) cos((L+ λ+ 1)θ + γ) +R2,L(θ), (4.5)
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where c is a large enough, but uniform, constant, γ = −(λ+ 3/2)π/2 and

k(θ) =
1√
π

(
sin

θ

2

)−λ−3/2(
cos

θ

2

)−λ−1/2

,

R2,L(θ) = L− 1
2 k(θ)(L sin θ)−1O(1).

Near the end points, the asymptotic behavior of the Jacobi polynomials is given by
the Mehler-Heine formulas ([9], p. 192)

lim
L→∞

L−1−λP
(1+λ,λ)
L

(
cos

x

L

)
=

(x
2

)−1−λ

J1+λ(x),

lim
L→∞

L−λP
(1+λ,λ)
L

(
cos
(
π − x

L

))
=

(x
2

)−λ

Jλ(x),

where the limits are uniform on compact subsets of R and the Jν are Bessel functions of
the first kind with order ν.

Again, following the arguments in Section 3.3, one can prove the following lower
bound for the critical radius, as L → ∞:

inf
[0,∞]

1−
(
x
2

)−d/2
Jd/2(x)√

2−
(
x
2

)−d/2
Jd/2(x)− 2Γ(d2 + 2)

(((
x
2

)−d/2
Jd/2(x)

)′)2
.

This completes the proof of Theorem 2.1 for the general case.

References

[1] R. J. Adler, J. E. Taylor: Random Fields and Geometry. Springer Monographs in Mathematics.
Springer, New York, 2007. MR-2319516

[2] K. Atkinson, W. Han: Spherical Harmonics and Approximations on the Unit Sphere: An
Introduction. Lecture Notes in Mathematics, 2044. Springer, Heidelberg, 2012. MR-2934227

[3] C. Beltrán, J. Marzo, J. Ortega-Cerdà: Energy and discrepancy of rotationally invariant
determinantal point processes in high dimensional spheres. J. Complexity 37, (2016), 76-109.
MR-3550366

[4] M. V. Berry: Regular and irregular semiclassical wavefunctions. J. Phys. A 10, (1977), no. 12,
2083-2091. MR-0489542

[5] D. Cheng, Y. Xiao: Excursion probability of Gaussian random fields on sphere. Bernoulli 22,
(2016), no. 2, 1113-1130. MR-3449810

[6] R. Feng, R. J. Adler: Critical radius and supremum of random spherical harmonics.
arXiv:1702.02767, Ann. Probab. To appear.

[7] D. Marinucci, S. Vadlamani: High-frequency asymptotics for Lipschitz-Killing curvatures of
excursion sets on the sphere. Ann. Appl. Probab. 26, (2016), no. 1, 462-506. MR-3449324

[8] J. Sun: Tail probabilities of the maxima of Gaussian random fields. Ann. Probab. 21, (1993),
no. 1, 34-71. MR-1207215

[9] G. Szegö: Orthogonal Polynomials. American Mathematical Society Colloquium Publications,
23. American Mathematical Society, New York, 1939. MR-0000077

[10] A. Takemura, S. Kuriki: On the equivalence of the tube and Euler characteristic methods
for the distribution of the maximum of Gaussian fields over piecewise smooth domains. Ann.
Appl. Probab. 12, (2002), no. 2, 768-796. MR-1910648

[11] S. Zelditch: Local and global analysis of eigenfunctions on Riemannian manifolds. Handbook
of geometric analysis. Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA, (2008), no. 1,
545-658. MR-2483375

ECP 23 (2018), paper 50.
Page 11/11

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=2319516
http://www.ams.org/mathscinet-getitem?mr=2934227
http://www.ams.org/mathscinet-getitem?mr=3550366
http://www.ams.org/mathscinet-getitem?mr=0489542
http://www.ams.org/mathscinet-getitem?mr=3449810
http://arXiv.org/abs/1702.02767
http://www.ams.org/mathscinet-getitem?mr=3449324
http://www.ams.org/mathscinet-getitem?mr=1207215
http://www.ams.org/mathscinet-getitem?mr=0000077
http://www.ams.org/mathscinet-getitem?mr=1910648
http://www.ams.org/mathscinet-getitem?mr=2483375
http://dx.doi.org/10.1214/18-ECP156
http://www.imstat.org/ecp/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Main results
	Spherical harmonics and the deterministic embedding
	Random spherical harmonics and exceedence probabilities

	Proof of Theorem 2.1 for S2
	Spectral projection kernels
	Critical radius of iL(S2)
	Proof of Theorem 2.1 for S2

	Proof of Theorem 2.1 for the general case
	References

