
Electron. Commun. Probab. 23 (2018), no. 40, 1–12.
https://doi.org/10.1214/18-ECP141
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Approximating diffusion reflections at elastic boundaries

Dirk Becherer Todor Bilarev* Peter Frentrup†

Abstract

We show a probabilistic functional limit result for one-dimensional diffusion processes
that are reflected at an elastic boundary which is a function of the reflection local
time. Such processes are constructed as limits of a sequence of diffusions which
are discretely reflected by small jumps at an elastic boundary, with reflection local
times being approximated by ε-step processes. The construction yields the Laplace
transform of the inverse local time for reflection. Processes and approximations of
this type play a role in finite fuel problems of singular stochastic control.
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1 Introduction

The classical Skorokhod problem is that of reflecting a path at a boundary. It is a
standard tool to construct solutions to SDEs with reflecting boundary conditions. The
fundamental example is Brownian motion with values in [0,∞) being reflected at a
constant boundary at zero, solved by Skorokhod [16]. Starting with Tanaka [17], well-
known generalizations concern diffusions in multiple dimensions with normal or oblique
reflection at the boundary of some given (time-invariant) domain in the Euclidean space
of certain smoothness or other kinds of regularity, cf. e.g. [10, 3]. Other generalizations
admit for an a-priori given but time-dependent boundary, see for instance [11].

Our contribution is a functional limit result for reflection at a boundary which is a
function of the reflection local-time L, for general one-dimensional diffusions X. Because
of the mutual interaction between boundary and diffusion, see Figure 1a, we call the
boundary elastic. Such elastic boundaries appear typically in solutions to singular control
problems of finite fuel type, where the optimal control is the reflection local time that
keeps a diffusion process within a no-action region, cf. Karatzas and Shreve [5]. In order
to explicitly construct the control (pathwise via Skorokhod’s Lemma), finite fuel studies
typically assume that the dynamics of the diffusion can be expressed without reference
to the control (see e.g. [7, 4]). This is different to our setup, where the non-linear mutual
interdependence between diffusion and control (local time) subverts direct construction
by Skorokhod’s lemma, already for OU processes [18, Remark 1]. We relate to a concrete
application in context of optimal liquidation for a financial asset position in Remark 3.4.
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Approximating diffusion reflections at elastic boundaries

(a) X against real time t. (b) X against local time L.

Figure 1: Example. Brownian motion Xt (blue) reflected at the elastic boundary
g(L) =

√
L (purple), where L is the reflection local time of X at boundary g(L).

A natural idea for approximation is to proxy ’infinitesimal’ reflections by small ε-jumps
∆Lε, thereby inducing jumps of the elastic reflection boundary, see Figure 2. This allows
to express excursion lengths of the approximating diffusion Xε in terms of independent
hitting times for continuous diffusions, what naturally leads to an explicit expression
(3.9) for the Laplace transform of the inverse local time of X. In our singular control
context, Lε is asymptotically optimal at first order if L is optimal, see Remark 3.4. Our
main result is Theorem 3.2. We prove ucp-convergence of (Xε, Lε) to (X,L) by showing
in Section 4 tightness of the approximation sequence (Xε, Lε)ε and using Kurtz–Protter’s
notion of uniformly controlled variations (UCV), introduced in [8].

2 Elastic reflection: model and notation

We consider a filtered probability space
(
Ω,F , (Ft)t≥0,P

)
with one-dimensional

(Ft)-Brownian motion W and filtration (Ft) satisfying the usual conditions of right-
continuity and completeness. Let σ : R→ (0,∞) and b : R→ R be Lipschitz-continuous
and such that the continuous R-valued (b, σ)-diffusion dZt = b(Zt) dt + σ(Zt) dWt with

generator G := 1
2σ(x)

2 d2

dx2 + b(x) d
dx is regular and recurrent. Moreover, let X be a

(b, σ)-diffusion with reflection at an elastic boundary. This means that for a given non-
decreasing g ∈ C1([0,∞)), the processes (X,L) satisfy

dXt = b(Xt) dt+ σ(Xt) dWt − dLt , X0 = g(0) , (2.1)

with the reflection local time L being a continuous non-decreasing process L that only
grows when X is at the (local-time-dependent) boundary g(L), i.e.

dLt = 1{Xt=g(Lt)} dLt , L0 = 0 , with Xt ≤ g(Lt) for all t ≥ 0. (2.2)

Note that the reflecting boundary is not deterministic in real time and space coordinates.
Instead, the boundary g(L), at which the diffusion X is being reflected, is elastic in the
sense that it is itself a stochastic process which retracts when being hit, cf. Figure 1b.
Strong existence and uniqueness of (X,L) follow from classical results (cf. Remark 3.3)
and are also an outcome of our explicit construction below, see Lemma 4.9.

We are particularly interested (see Remark 3.4) in the inverse local time

τ` := inf{t > 0 | Lt > `}. (2.3)

Remark 2.1. Note that {t ≥ 0 | Xt = g(Lt)} is a.s. of Lebesgue measure zero by [13,
ex. VI.1.16]. For a constant boundary g(`) ≡ a, Tanaka’s formula for symmetric local
times [13, ex. VI.1.25] hence shows that the process L, that we obtain as a solution
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Approximating diffusion reflections at elastic boundaries

to the SDE with reflection (2.1) – (2.2), is the symmetric local time of the continuous
semimartingale X at given level a ∈ R, i.e. Lt = limε↘0

1
2ε

∫ t

0
1(a−ε,a+ε)(Xs) d〈X,X〉s.

We denote by Hy the first hitting time of a point y by a (b, σ)-diffusion, and write
Hx→ y for the hitting time when the diffusion starts in x. Note that P[Hx→ y < ∞] = 1

for all x, y by our assumption on the diffusion being regular and recurrent.

3 Approximation by small ε-reflections

Figure 2: Approximating processes Xε and g(Lε) =
√
Lε for ε = 4.

We construct solutions to (2.1) – (2.2) and derive an explicit representation (3.9) of
the Laplace transform of the inverse local time at boundary g by approximating reflection
by jumps in the following system of SDEs:

dXε
t = b(Xε

t ) dt+ σ(Xε
t ) dWt − dLε

t , Xε
0− := g(0) , (3.1)

Lε
t :=

∑
0≤s≤t

∆Lε
s with ∆Lε

t :=

{
ε if Xε

t− = g(Lε
t−),

0 otherwise,
Lε
0− := 0 , (3.2)

τε` := inf{t > 0 | Lε
t > `} for ` ≥ 0. (3.3)

As soon as process Xε hits the boundary, it is reflected by a jump of fixed size ε > 0.
We will speak of Lε as discrete local time, as it is approximating L in the sense of
Theorem 3.2. Since the target reflected diffusion X starts at the boundary g, we now
have Xε

0 = g(0)− ε after an initial jump ∆Lε
0 = ε away from Xε

0− := g(0).

Lemma 3.1. For any ε > 0, the SDE (3.1)–(3.2) has a unique (up to indistinguishability)
strong global solution (Xε

t , L
ε
t )t≥0. Moreover, uniqueness in law holds.

Proof. Indeed, one can argue by results [14, V.9–11, V.17] for classical diffusion SDEs
with Lipschitz coefficients (b, σ) by inductive construction on [[0, τn[[ where for n ≥ 1,
τn := inf{t > τn−1 | Xε

t− = g(nε)} = τεεn with τ0 := 0. Clearly Lε
t equals Lε

τn−1
for

t ∈ [[τn−1, τn[[ and Lε
τn =L

ε
τn−1

+ ε, while Xε
u = F (Xε

τn−1
, (Wτn−1+s)s≥0)u−τn−1 on [[τn−1, τn[[

holds for a suitable functional representation F of strong solutions to (b, σ)-diffusions
[14, Theorem V.10.4]. Such construction extends to [[0, τ∞[[ for τ∞ := limn τn.

It suffices to show τ∞ = ∞ (a.s.). To this end, let g∞ := limn g(nε) ∈ R ∪ {∞}.
In the case g∞ < ∞ , one can find x, y ∈ R with g∞ − ε < x < y < g∞. By re-
currence of (b, σ)-diffusions, we have (a.s.) finite times τy0 := inf{t > 0 | Xε

t = y},
τxn := inf{t > τyn−1 | Xε

t = x}, τyn := inf{t > τxn | Xε
t = y}, for n ∈ N. The durations

τyn − τxn , n ∈ N, for upcrossings of the interval [x, y] are i.i.d., by the strong Markov prop-
erty of the time-homogeneous diffusion. Moreover, Xε is continuous on all [[τxn , τ

y
n ]]. By

the law of large numbers, 1
n

∑n
i=1 exp(−λ(τ

y
i − τxi )) converges almost surely for n→ ∞

ECP 23 (2018), paper 40.
Page 3/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP141
http://www.imstat.org/ecp/


Approximating diffusion reflections at elastic boundaries

to the Laplace transform Ex[exp(−λHy)], λ ≥ 0, of the time Hy for hitting y by the
(b, σ)-diffusion process (started at x). This expectation is strictly less than 1 for λ > 0,
as Hy > 0 Px-a.s. for y > x, whereas the limit of 1

n

∑n
i=1 exp(−λ(τ

y
i − τxi )) equals 1 on

{τ∞ <∞}, where limi→∞(τyi − τxi ) = 0. Hence P [τ∞ <∞] = 0.
If g∞ = ∞, let τ ′n := inf{t > τn−1 | Xε

t−=g((n−1)ε)}, for n ≥ 1, so that τn−1 < τ ′n ≤ τn

and Xε
τ ′
n− = g((n− 1)ε) = Xε

(τn−1)−. Using the time change ϕt :=
∫ t

0

∑∞
n=1 1[[τ ′

n,τn[[
du with

inverse st := inf{u | ϕu > t}, we get (cf. [14, IV.30.10]) that X ′
t := Xε

st , t ≥ 0, solves the
SDE dX ′

t = b(X ′
t) dt+σ(X

′
t) dW

′
t , X

′
0 = g(0), on [[0, ϕ∞[[ for ϕ∞ := supt ϕt, with respect to

W ′
t =

∫ st
0

∑∞
n=1 1[[τ ′

n,τn[[
dWu. We haveW ′

t = Bt∧ϕ∞ for some Brownian motion B on [0,∞)

by the Dambis-Dubins-Schwarz theorem, cf. [6, Thm. 3.4.6, Prob. 3.4.7]. So X ′ solves the
(b, σ)-diffusion SDE w.r.t. B on [[0, ϕ∞[[. Consider a (b, σ)-diffusion X̃ w.r.t. B on [0,∞).
By the usual Gronwall argument for uniqueness of SDE solutions, we get X ′ = X̃ on all
[[0, ϕτn ]] and henceX ′ = X̃ on [[0, ϕ∞[[. In particular,X ′ remains a.s. bounded on any finite
time interval [[0, T [[ with T ≤ ϕ∞. However, in the event {τ∞ <∞} ⊂ {ϕ∞ <∞}, we get
from X ′

ϕτn
= g(nε) → ∞ that supt<ϕ∞

X ′
t = ∞. Hence, we must have P[τ∞ <∞] = 0.

By (3.1) – (3.3), we have τε0 = τε0− = 0 and τε` = τε(k−1)ε for ` ∈ [(k − 1)ε, kε) with
k ∈ N, and τεkε is the k-th jump time of Xε and Lε within period (0,∞). For ` = kε, the
approximating process Xε is a continuous (b, σ)-diffusion on stochastic intervals [[τε`−, τ

ε
` [[,

and Xε
τε
`
= Xε

τε
(`−)

− ε = g(Lε
τε
(`−)

)− ε = g(`− ε)− ε. For such ` = kε, we shall call τε` − τε`−
the length of the (k-th) excursion of Xε away from the boundary. Note that this excursion
length is independent of Fε

τε
(`−)

and its (conditional) distribution is

τε` − τε`− ∼ Hg(`) under Pg(`−ε)−ε , (3.4)

what is also denoted as τε` − τε`−
d
= Hg(`−ε)−ε→ g(`). The Laplace transform of first hitting

times Hx→ z is well-known, see e.g. [14, V.50]: for x, z ∈ R and λ > 0,

E
[
e−λHx→ z]

≡ Ex

[
e−λHz]

=

{
Φλ,−(x)/Φλ,−(z) if x < z,

Φλ,+(x)/Φλ,+(z) if x > z,
(3.5)

where functions Φλ,± are uniquely determined up to a constant factor as the increasing
(Φλ,−) respectively decreasing (Φλ,+) positive solutions Φ of the differential equation

GΦ = λΦ with generator G = 1
2σ(x)

2 d2

dx2 + b(x)
d
dx of the (b, σ)-diffusion. Since we assume

the boundary function g to be non-decreasing, only Φλ,− is of interest for our purpose.
Due to independence of Brownian increments over disjoint time intervals, the Laplace

transform of the inverse local time can be calculated from a sum of (independent)
excursion lengths at (discrete) local times `n := εn as

E
[
exp
(
−λτε`

)]
= E

[
exp

(
−λ

b`/εc∑
n=1

(
τε`n − τε`n−

))]
=

b`/εc∏
n=1

E
[
exp
(
−λ
(
τε`n − τε`n−

))]

=

b`/εc∏
n=1

Eg(`n−ε)−ε

[
exp
(
−λHg(`n)

)]
=

b`/εc∏
n=1

Φλ,−
(
g(`n − ε)− ε

)
Φλ,−

(
g(`n)

)
= exp

(b`/εc∑
n=1

log

(
Φλ,−

(
g(`n − ε)− ε

)
Φλ,−

(
g(`n)

) ))
, (3.6)

for ` ≥ 0 and λ > 0. With hn(ξ) := Φλ,−
(
g(`n − ξ)− ξ

)
, each summand in (3.6) equals

log hn(ε)− log hn(0) =

∫ ε

0

h′n(ξ)

hn(ξ)
dξ = −

∫ ε

0

(
g′(`n − ξ) + 1

)Φ′
λ,−
(
g(`n − ξ)− ξ

)
Φλ,−

(
g(`n − ξ)− ξ

) dξ
= −

∫ `n

`n−1

(
g′(a) + 1

)Φ′
λ,−
(
g(a) + a− `n

)
Φλ,−

(
g(a) + a− `n

) da . (3.7)
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Approximating diffusion reflections at elastic boundaries

Therefore, we obtain

E
[
exp
(
−λτε`

)]
= exp

(
−
∫ εb`/εc

0

(
g′(a) + 1

)Φ′
λ,−
(
g(a) + a− εda/εe

)
Φλ,−

(
g(a) + a− εda/εe

) da). (3.8)

Intuitively, this already suggests the formula (3.9) when taking ε→ 0.

Theorem 3.2. The approximations (Xε
t , L

ε
t )t≥0 from (3.1)–(3.2) converge uniformly in

probability for ε → 0 to a pair (Xt, Lt)t≥0 of continuous adapted processes with non-
decreasing L, which is the unique strong solution (globally on [0,∞)) to the reflected SDE
(2.1)–(2.2). The inverse local time τ` := inf{t > 0 | Lt > `} has the Laplace transform

E
[
e−λτ`

]
= exp

(
−
∫ `

0

(
g′(a) + 1

)Φ′
λ,−
(
g(a)

)
Φλ,−

(
g(a)

) da) for λ > 0, ` ≥ 0, (3.9)

where Φλ,− is the (up to a constant factor) unique positive increasing solution of the
differential equation GΦ = λΦ, for G denoting the generator of the (b, σ)-diffusion.

Proof. Existence and uniqueness of (X,L) is shown in Lemma 4.9 below. Corollary 4.10
gives uniform convergence in probability. Using dominated convergence for the right-

hand side of equation (3.8), we find limε→0E[e
−λτε

` ] = exp
(
−
∫ `

0
(g′(a) + 1)

Φ′
λ,−(g(a))

Φλ,−(g(a)) da
)
.

For the left-hand side, it suffices to prove weak convergence τε` ⇒ τ` as ε → 0 for all
` ≥ 0. This is done in Corollary 4.11 below.

Remark 3.3. Existence and uniqueness for (X,L) can also be concluded from classical
results, cf. [3, suitably extended to non-bounded domains], by considering the pair
(X,L) as a degenerate diffusion in R2 with oblique reflection in direction (−1,+1) at a
smooth boundary, see Figure 1b. This uses an iteration argument involving the Skohorod-
map and yields another approximation by a sequence of continuous processes. Yet,
these do not satisfy the target diffusive dynamics inside the domain, except at the
limiting fixed point (unless (b, σ) are constant). In contrast, (Xε, Lε) adheres to the same
dynamics as (X,L) between jump times, cf. (2.1) and (3.1), is Markovian and has a
natural interpretation.

Remark 3.4. An application example for (3.9) and elastically reflected diffusions is the
optimal execution for the sale of a financial asset position if liquidity is stochastic, see
[1]. A large trader with adverse price impact seeks to maximize expected proceeds from
selling θ risky assets in an illiquid market. His trading strategy A (predictable, càdlàg,
non-decreasing) affects the asset price St = f(Y A

t )S̄t via a volume impact process
dY A

t = −βY A
t dt + σ̂ dBt − dAt with S̄t = E(σW )t for an increasing function f , and

Brownian motions (B,W ) with correlation ρ. The gains to maximize in expectation are

GT (A) :=

∫ T

0

e−δtf(Y A
t )S̄t dA

c
t +

∑
0≤t≤T
∆At 6=0

e−δtS̄t

∫ ∆At

0

f(Y A
t− − x) dx.

The optimal strategy turns out to be the local time L of a reflected Ornstein-Uhlenbeck
process X (with b(x) := ρσσ̂ − βx and σ(x) = σ > 0) at a suitable elastic boundary g, as
in (2.1)–(2.2), see [1, Section 3]. After a change of measure argument, one can write the
expected proceeds from such strategies as E[G∞(L)] =

∫ θ

0
f
(
g(`)

)
E
[
e−δτ`

]
d`. To find the

optimal free boundary g, one can then apply (3.9) to express the proceeds as a functional
of the boundary g, and optimize over all possible boundaries by solving a calculus of
variations problem. This is key to the proof in [1]. The discrete local time Lε has a natural
interpretation as the step process which approximates the continuous optimal strategy
L by doing small block trades, as they would be realistic in an actual implementation,
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Approximating diffusion reflections at elastic boundaries

with identical (no-)action region. The approximation is asymptotically optimal for the
control problem. Indeed, straightforward calculations similar to the derivation of (3.8)
show that Lε is asymptotically optimal in first order, i.e. E[G∞(L)] = E[G∞(Lε)] +O(ε).

4 Tightness and convergence

To show convergence of (τε` )ε, we will prove that the pair of càdlàg processes (Xε, Lε)

forms a tight sequence in ε → 0. Applying weak convergence theory for SDEs by
Kurtz and Protter [9], we show that any limit point (for ε → 0) satisfies (2.1) and (2.2).
Uniqueness in law for solutions of (2.1) – (2.2) will then allow to conclude Theorem 3.2.

Let (εn)n∈N be a sequence with εn → 0 and consider the sequence (Xεn , Lεn)n. To
show tightness, we will apply the following criterion due to Aldous.

Proposition 4.1 ([2, Cor. to Thm. 16.10]). Let (E, |·|) be a separable Banach space. If
a sequence (Y n)n∈N of adapted, E-valued càdlàg processes satisfies the following two
conditions, then it is tight.

(a) The sequences
(
JT (Y

n)
)
n
and (Y n

0 )n are tight (in R, resp. E) for any T ∈ (0,∞),
with JT (Y n) := sup0<t≤T

∣∣Y n
t − Y n

t−
∣∣ denoting the largest jump until time T .

(b) For any T ∈ (0,∞) and ε0, η > 0 there exist δ0 > 0 and n0 ∈ N such that for all
n ≥ n0, all (discrete) Y n-stopping times τ̂ ≤ T and all δ ∈ (0, δ0] we have

P
[
|Y n

τ̂+δ − Y n
τ̂ | ≥ ε0

]
≤ η .

To get tightness one needs to control both jump size and, regarding (Lε
n)n, the

frequency of jumps simultaneously. As we are considering processes with jumps of
size ±εn → 0, only the latter is not yet clear. To this end, the next lemma provides a
technical bound on Xεn , Lεn , while a second lemma constricts the probability that Xεn

(respectively Lεn) performs a number of Nn jumps in a time interval of fixed length.

Lemma 4.2 (Upper bound). Fix a time horizon T ∈ (0,∞) and η ∈ (0, 1]. Then there
exists a constant M ∈ R such that P[∃n : g(Lεn

T − εn) > M ] ≤ η, with the domain of
definition for the function g being extended by g(−x) := g(0) for −x < 0.

Proof. Consider a continuous (b, σ)-diffusion Y that starts at time t = 0 at g(0). For
n ∈ N and k = 0, 1, 2, . . ., let `(n, k) := kεn. By induction over k, using comparison for
diffusion SDEs, cf. [6, Theorem 5.2.18], one obtains that (a.s.) Xεn

t ≤ Yt for t ∈ [[0, τ εn`(n,k)[[

for all k ≥ 1, and hence Xεn ≤ Y on [0,∞) (a.s.) because limk→∞ τεn`(n,k) = ∞ for any n

by Lemma 3.1. Hence, on the event {∃n : g(Lεn
T − εn) > M} we have supt∈[0,T ] Yt ≥ M ,

and hence Hg(0)→M ≤ T . Thus P[∃n : g(Lεn
T − εn) > M ] ≤ P[Hg(0)→M ≤ T ] . Now the

claim follows since limM→∞P[H
g(0)→M ≤ T ] = 0.

Lemma 4.3 (Frequency of jumps). Fix T ∈ (0,∞), ε0, η > 0, and set Nn := dε0/εne. Then
there exists δ > 0 and n0 ∈ N such that for every bounded stopping time τ̂ ≤ T we have
P
[
Jεn
τ̂ ,δ ≥ Nn

]
≤ η for all n ≥ n0, where J

εn
τ̂ ,δ := inf{k | Lεn

τ̂ + kεn ≥ Lεn
τ̂+δ} is the number

of jumps of Xεn , respectively Lεn , in time ]]τ̂ , τ̂ + δ]].

Proof. We will first find an estimate for the jump count probability for arbitrary but fixed
δ > 0, n ∈ N, Nn ∈ N and τ̂ ≤ T . Only in part 2) of the proof we will consider (Nn)n∈N
as stated, to study the limit n→ ∞. More precisely, we will show in part 1) that, given
Fτ̂ , for every λ > 0 there exist kn,λ ∈ {0, 1, . . . , Nn − 1} s.t. for xn := g(Lεn

τ̂ + εnkn,λ),

P
[
Jεn
τ̂ ,δ ≥ Nn

∣∣ Fτ̂

]
≤ eλδ

(
Φλ,−(xn − εn)

Φλ,−(xn)

)Nn−1

. (4.1)
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Approximating diffusion reflections at elastic boundaries

1) In this part, fix arbitrary δ > 0, n ∈ N, Nn ∈ N and τ̂ ≤ T . We enumerate the jumps
and estimate the sum of excursion lengths by δ. Let `k := Lεn

τ̂ + kεn be the (discrete)
local time at the k-th jump after time τ̂ . If Xεn has at least Nn jumps in the interval
]]τ̂ , τ̂ + δ]], it is doing at least Nn − 1 complete excursions (cf. (3.4)), so that, noting that
τεn
Lεn

t −εn
≤ t < τ εn

Lεn
t

(for all t ≥ 0) and `Nn−1 + εn ≤ Lεn
τ̂+δ, we have

δ = (τ̂ + δ)− τ̂ ≥ τεn
Lεn

τ̂+δ−εn
− τεn

Lεn
τ̂

≥
Nn−1∑
k=1

(
τεn`k − τεn`k−1

) d
=

Nn−1∑
k=1

Hk

with the last equality being in distribution conditionally on Fτ̂ , for Hk being conditionally
independent and distributed as Hg(`k−1)−εn → g(`k). Clearly, `k is Fτ̂ -measurable. By the
Laplace transform (3.5) of Hk and the Markov inequality, we get for λ > 0

P
[
Jεn
τ̂ ,δ ≥ Nn

∣∣ Fτ̂

]
≤ P

[Nn−1∑
k=1

Hk ≤ δ

∣∣∣∣ Fτ̂

]
≤ eλδE

[
exp

(
−λ

Nn−1∑
k=1

Hk

) ∣∣∣∣ Fτ̂

]

= eλδ
Nn−1∏
k=1

E
[
exp
(
−λHg(`k−1)−εn → g(`k)

) ∣∣∣ Fτ̂

]
= eλδ

Nn−1∏
k=1

Φλ,−
(
g(`k−1)− εn

)
Φλ,−

(
g(`k)

) ≤ eλδ
Nn−1∏
k=1

Φλ,−
(
g(`k)− εn

)
Φλ,−

(
g(`k)

)
≤ eλδ

(
max

0≤k<Nn

Φλ,−
(
g(`k)− εn

)
Φλ,−

(
g(`k)

) )Nn−1

= eλδ
(
Φλ,−(xn − εn)

Φλ,−(xn)

)Nn−1

where xn := g(`k) for the index k = kn,λ attaining the maximum.
2) For given δ > 0 and τ̂ ≤ T , let us now consider the sequence Nn = dε0/εne, n ∈ N.

To investigate the limit n→ ∞, first observe that by Taylor expansion

log
Φλ,−(x− εn)

Φλ,−(x)
= −εn

Φ′
λ,−(x)

Φλ,−(x)
+ εnr(x, εn),

where r(·, εn) → 0 converges uniformly on compacts for εn → 0. Since τ̂ + δ ≤ T + δ is
bounded, Lemma 4.2 yields a constantM ∈ R such that P

[
∃n : xn > M

]
≤ η

2 for the xn
from above. On the event {∀n : xn ∈ I} with compact I := [g(0),M ], we have uniform
convergence of r(xn, εn) and thereby get

lim sup
n→∞

eλδ
(
Φλ,−(xn − εn)

Φλ,−(xn)

)Nn−1

= exp

(
λδ + lim sup

n→∞
(Nn − 1) log

Φλ,−(xn − εn)

Φλ,−(xn)

)
= exp

(
λδ + lim sup

n→∞
(Nnεn − εn)

(
r(xn, εn)−

Φ′
λ,−(xn)

Φλ,−(xn)

))
≤ exp

(
λδ − ε0 inf

x∈I

Φ′
λ,−(x)

Φλ,−(x)

)
= sup

x∈I
exp

(
λδ − ε0

Φ′
λ,−(x)

Φλ,−(x)

)
.

By [12, Theorem 1], ψx(λ) := 1
2Φ

′
λ,−(x)/Φλ,−(x) is the Laplace exponent of Ax(κx· ),

where κx` is the inverse local time at constant level x of a (b, σ)-diffusion Zx starting at

x, and Ax(t) is the occupation time Ax(t) :=
∫ t

0
1{Zx

s ≤x} ds . So we get for λ → ∞ that
exp
(
−2ε0ψ

x(λ)
)
= Ex

[
exp
(
−λAx(κx2ε0)

)]
→ 0. By compactness of I and Dini’s theorem

there exists λ = λε0,η,M such that for δ := 1/λ we have

lim sup
n→∞

eλδ
(
Φλ,−(xn − εn)

Φλ,−(xn)

)Nn−1

≤ eλδ sup
x∈I

exp
(
−2ε0ψ

x(λ)
)
≤ η

2
(4.2)

on the event {xn ≤ M for all n}. By equation (4.1) and P[∃n : xn > M ] ≤ η/2, this
completes the proof.
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Approximating diffusion reflections at elastic boundaries

Using the preceding two lemmas, we will first prove tightness of (Lεn)n and of (Xεn)n
separately. Tightness of the pair (Xεn , Lεn)n is handled afterwards.

Lemma 4.4 (Tightness of the local time approximations). The sequence (Lεn)n of càdlàg
processes defined by (3.1) and (3.2) satisfies Aldous’ criterion and thus is tight.

Proof. Part (a) of Proposition 4.1 is clear, as the initial value Lεn
0 = εn is deterministic

and JT (Lεn) ≤ εn. For part (b), consider T, η, ε0 > 0 and any bounded Lεn -stopping time
τ̂ ≤ T . The event |Lεn

τ̂+δ−L
εn
τ̂ | ≥ ε0 means that Lεn performs at least Nn := dε0/εne jumps

in the stochastic interval ]]τ̂ , τ̂ + δ]]. Lemma 4.3 yields some n0 and δ0 = δ0(ε0) such that
Aldous’ criterion is satisfied for all n ≥ n0. Hence, (Lεn)n is tight by Proposition 4.1.

Next we show boundedness of (Xεn)n, needed for Lemma 4.6 to prove tightness.

Lemma 4.5 (Bounding the diffusion approximations). Let T ∈ (0,∞) and η > 0. Then
there existsM ∈ R such that P[supt∈[0,T ]|X

εn
t | > M ] < η for all n ∈ N.

Proof. By Lemma 4.2, for every n ∈ N the process Xεn on [0, T ] is bounded from above
by a constant M with probability at least 1 − η/2. It remains to show that it is also
bounded from below with high probability. To this end, we will construct a process Y
that is a lower bound for all Xεn and then argue for Y .

For ε̂ := supn εn consider a (b, σ)-diffusion Y which is discretely reflected by jumps of
size −ε̂ at a constant boundary c := g(0)− ε̂, with Y0 = y := g(0)− 2ε̂. Such Y is a special
case of (3.1)–(3.2), for a constant boundary function: dYt = b(Yt) dt+σ(Yt) dWt−LY

t with
LY
t :=

∑
0≤s≤t ∆L

Y
t and ∆LY

t := ε̂1{Yt−=c}. Let τ
Y
k := inf{t > 0 | LY

t > kε̂} be the k-th

hitting time of Y at the boundary c. So on all [[τYk , τ
Y
k+1[[, Y is a continuous (b, σ)-diffusion

starting in y. Now for fixed n, ε := εn, note that Xε
τε
mε

= g((m − 1)ε) − ε ≥ c ≥ Yτε
mε

by monotonicity of g. As τεmε → ∞ for m → ∞ by Lemma 3.1, induction over the
inverse (discrete) local times τεmε, m ∈ N, yields Xε ≥ Y on [[τYk , τ

Y
k+1]] if X

ε
τY
k

≥ YτY
k
by

comparison results [6, Thm. 5.2.18]. Since Xε
0 ≥ Y0, the latter follows by induction over

k. As τYk → ∞ for k → ∞ by Lemma 3.1, we get Xεn ≥ Y on [0,∞) for all n. So it suffices
to show P[inft∈[0,T ] Yt < −M ] < η/2 for someM , which directly follows from the càdlàg
property of Y .

Lemma 4.6 (Tightness of the reflected diffusion approximations). The sequence (Xεn)n
of càdlàg processes from (3.1) and (3.2) satisfies Aldous’ criterion and thus is tight.

Proof. Condition (a) of Proposition 4.1 holds. To verify part (b), let η > 0, T ∈ (0,∞), and
τ̂ ≤ T be a stopping time. By Lemma 4.5, |Xεn

τ̂ | is with a probability of at least 1− η/4

bounded by some constant M (not depending on n and τ̂ ). Let us consider the events
{Xεn

τ̂+δ ≤ Xεn
τ̂ − ε0} ∪ {Xεn

τ̂+δ ≥ Xεn
τ̂ + ε0} = {|Xεn

τ̂+δ −Xεn
τ̂ | ≥ ε0} separately.

1) First consider {Xεn
τ̂+δ ≤ Xεn

τ̂ − ε0}. For ξ := Xεn
τ̂ we construct a reflected process

Y ξ such that Y ξ
t ≤ Xεn

τ̂+t for all t ≥ 0. We then estimate P[Xεn
τ̂+δ ≤ Xεn

τ̂ − ε0] by means
of P[Y x

δ ≤ x − ε0] in (4.3), uniformly for all n large enough. We estimate the latter in
(4.4) using the probability of a down-crossing in time δ of intervals [x− ε0, x− 2ε̂] by a
continuous diffusion. Covering

⋃
x[x− ε0, x− 2ε̂] by finitely many intervals [yk, yk+1] in

(4.5) then allows us to choose δ > 0 sufficiently small.
To this end, choose ε̂ ≤ ε0/4 and n large enough such that εn ≤ ε̂, and let (Y ξ

t )t≥0 be
the (b, σ)-diffusion w.r.t. the Brownian motion (Wτ̂+t −Wτ̂ )t≥0 with Y

ξ
0 = ξ − 2ε̂, which is

discretely reflected by jumps of size −ε̂ at a constant boundary at level ξ − ε̂. More pre-
cisely, dY ξ

t = b(Y ξ
t ) dt+ σ(Y ξ

t ) dWτ̂+t −Kξ
t with (discrete) local time Kξ

t :=
∑

0≤s≤t ∆K
ξ
s

for ∆Kξ
t := ε̂1{Y ξ

t−=ξ−ε̂}. Global existence and uniqueness of (Y ξ,Kξ) follows from

the proof of Lemma 3.1. By comparison arguments and induction as in the proof of
Lemma 4.5, one verifies Y ξ

t ≤ Xεn
τ̂+t for t ∈ [0,∞). Indeed, [6, Theorem 5.2.18] gives
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Y ξ
· ≤ Xεn

τ̂+· on [[0, τ1[[ until the first jump of either Y ξ
· or Xεn

τ̂+· at time τ1 > 0. If only Y ξ

jumps, we have Y ξ
τ1 = Y ξ

(τ1)− − ε̂ ≤ Xεn
(τ1)− − ε̂ = Xεn

τ1 − ε̂, but if Xεn
τ̂+· jumps, we have

Xεn
τ̂+τ1

= g(Lεn
(τ̂+τ1)−)−εn ≥ g(Lεn

τ̂ )−εn = ξ ≥ Y ξ
τ1 . Now Y ξ

τ1 ≤ Xεn
τ̂+τ1

, so we get Y ξ
· ≤ Xεn

τ̂+·

on [[τk, τk+1[[ by induction for all jump times τk of (Y ξ
· , X

εn
τ̂+·).

Using Y ξ
δ ≤ Xεn

τ̂+δ and the strong Markov property of Y ξ w.r.t. (Fτ̂+t)t≥0, we get

P
[
Xεn

τ̂+δ ≤ Xεn
τ̂ − ε0, |Xεn

τ̂ | ≤M
]
≤ sup

−M≤x≤M
P[Y x

δ ≤ x− ε0] . (4.3)

By construction Y ξ depends on n and τ (through ξ), while the right-hand side of (4.3)
does not. Thus one only needs to bound the probability of an (ε0 − 2ε̂)-displacement of
diffusions Y x with starting points x − 2ε̂ from a compact set, which are reflected (by
(−ε̂)-jumps) at constant boundaries x− ε̂. By the arguments in the proof of Lemma 4.3
(here applied for Y x which is reflected at a constant boundary), for δ = δ0 > 0

there exists N ∈ N with the following property: for every x ∈ [−M,M ], the number
Jx
δ := inf{k | kε̂ ≥ Kx

δ } of jumps of Y x until time δ is bounded by N − 1 with probability
at least 1− η/8.

Indeed, by (4.1), fixing δ > 0, λ := 1/δ, one gets for any x that P[Jx
δ ≥ dN(x)e] ≤ η/8

where N(x) := 1 +
(
log(η/8) − 1

)
/
(
log Φλ,−(x − ε̂) − log Φλ,−(x)

)
∈ R. Compactness of

[−M,M ] and continuity of N(x) gives N := dsupx∈[−M,M ]N(x)e <∞. Hence,

sup
x∈[−M,M ]

P[Y x
δ ≤ x− ε0, J

x
δ ≤ N − 1] ≤ N sup

x∈[−M,M ]

P[Hx−2ε̂→ x−ε0 ≤ δ], (4.4)

since for the event under consideration, the process Y x would have to move at least once
(in at most N occasions) continuously from x−2ε̂ to x−ε0. Let d := (ε0−2ε̂)/2 ≥ ε0/4 > 0,
K := b2M/dc and yk := kd−M . For x ∈ [yk, yk+1], we haveHyk−2 → yk−2−d ≤ Hx−ε0 → x−2ε̂

since [yk−2 − d, yk−2] ⊂ [x− ε0, x− 2ε̂], so by [−M,M ] ⊂ [y0, yK+1] we get

P
[
HXεn

τ̂ −εn →Xεn−ε0 ≤ δ, |Xεn
τ̂ | ≤M

]
≤ η/8 +N sup

x∈[−M,M ]

P[Hx−2ε̂→ x−ε0 ≤ δ]

= η/8 +N max
k=0,...,K

sup
x∈[kd−M,(k+1)d−M ]

P
[
Hx−2ε̂→ x−ε0 ≤ δ

]
≤ η/8 +N max

k=−2,...,K
P
[
Hyk → yk−d ≤ δ

]
. (4.5)

For a sufficiently small δ = δ1 ∈ (0, δ0] the right-hand side of (4.5) can be made smaller
than η/4. The above holds for all n such that εn ≤ ε̂, meaning that there is some n0 such
that is holds for all n ≥ n0. Note that δ1 only depends on T (viaM and K) and on n0 but
not on n. Hence, for all δ ∈ (0, δ1], all n ≥ n0 and all τ̂ ≤ T we have

P[Xεn
τ̂+δ ≤ Xεn

τ̂ − ε0] ≤
η

2
. (4.6)

2) For the alternative second case Xεn
τ̂+δ ≥ Xεn

τ̂ + ε0, consider the solution (Yt)t≥τ̂

on [[τ̂ ,∞[[ of dYt = b(Yt) dt + σ(Yt) dWt with Yτ̂ = Xεn
τ̂ . Using comparison results for

continuous diffusions [6, Theorem 5.2.18] inductively over times [[τεn(k−1)εn
, τ εnkεn [[, we find

Yt ≥ Xεn
t for all t ∈ [[τ̂ ,∞[[, a.s. Hence, arguing like in the previous case

P
[
Xεn

τ̂+δ ≥ Xεn
τ̂ + ε0, |Xεn

τ̂ | ≤M
]
≤ P

[
Yτ̂+δ ≥ Yτ̂ + ε0, |Yτ̂ | ≤M

]
≤ sup

−M≤y≤M
P
[
Hy→ y+ε0 ≤ δ

]
. (4.7)

As in (4.5) we find a δ2 > 0 such that for all δ ∈ (0, δ2] the right side of (4.7) is bounded by
η/4. Hence we have P[Xεn

τ̂+δ ≥ Xεn
τ̂ + ε0] ≤ η/2, so with (4.6), Proposition 4.1 applies.
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Now, to prove joint tightness of (Xεn , Lεn)n, we can utilize the fact that both processes
satisfy Aldous’ criterion and that their jump times and jump magnitudes are identical.

Lemma 4.7 (Tightness of joint approximations). The sequence (Xεn , Lεn)n of càdlàg
R2-valued processes defined by (3.1) and (3.2) is tight.

Proof. In view of Proposition 4.1, choose the space E := R2 equipped with Euclidean
norm |·| and let Y n := (Xεn , Lεn) ∈ D

(
[0,∞), E

)
. Then Y n

0 = (g(0) − εn, εn) and
JT (Y

n)=
√
2εn form tight sequences in E and R, respectively. Furthermore,

P
[
|Y n

τ̂+δ − Y n
τ̂ | ≥ ε0

]
≤ P

[
|Xεn

τ̂+δ −Xεn
τ̂ | ≥ ε0

2

]
+ P

[
|Lεn

τ̂+δ − Lεn
τ̂ | ≥ ε0

2

]
.

Hence Y n also satisfies Aldous’s criterion and therefore is tight.

Tightness only implies weak convergence of a subsequence. It remains to show
(in Lemma 4.9) that every limit point satisfies (2.1) and (2.2) and that uniqueness
in law holds. The latter will follow from pathwise uniqueness results for SDEs with
reflection, while for the former we apply results from [9] on weak converges of SDEs.
For that purpose, note that the approximated local times form a good sequence of
semimartingales (cf. [9, Definition 7.3]), as shown in the following lemma.

Lemma 4.8. The sequence (Lεn)n is of uniformly controlled variation and thus good.

Proof. Let δ := supn εn. Then all processes Lεn have jumps of size at most δ < ∞. Fix
some α > 0. By tightness, there exists some C ∈ R such that P[Lεn

α > C] ≤ 1/α. So the
stopping time τn,α := inf{t ≥ 0 | Lεn

t > C} satisfies P[τn,α ≤ α] = P[Lεn
α > C] ≤ 1/α .

Moreover, by monotonicity of Lεn we have E
[∫ t∧τn,α

0
d|Lεn |s

]
= E[Lεn

t∧τn,α
] ≤ C < ∞ .

Hence (Lεn) is of uniformly controlled variation in the sense of [9, Definition 7.5]. So by
[9, Theorem 7.10] it is a good sequence of semimartingales.

We have gathered all necessary results to prove convergence of our approximating
diffusions and local times to the continuous counterpart.

Lemma 4.9 (Weak convergence of the approximations). The sequence (Xεn , Lεn)n of
càdlàg processes defined by (3.1) – (3.2) converges weakly to the unique continuous
strong solution (X,L) of (2.1) – (2.2).

Proof. By Prokhorov’s theorem, tightness of (Xεn , Lεn ,W )n implies weak convergence
of a subsequence to some limit point, (Xεnk , Lεnk ,W )k ⇒ (X̃, L̃, W̃ ) ∈ D

(
[0,∞),R3

)
.

Continuity of (X̃, L̃) is clear since εn → 0 is the maximum jump size. First we prove that
(X̃, L̃) satisfies the asserted SDEs. Afterwards, we will prove uniqueness of the limit
point. To ease notation, let w.l.o.g. the subsequence (nk) be (n).

By [9, Theorem 8.1] we get that (X̃, L̃) satisfy (2.1) for the semimartingale W̃ . That
W̃ is a Brownian motion follows from standard arguments, cf. [11, proof of Theorem 1.9].
As D

(
[0,∞),R3

)
is separable we find, by an application of the Skorokhod representation

theorem, that L̃ is non-decreasing and X̃t ≤ g(L̃t) for all t ≥ 0, P-a.s. because these
properties already hold for (Xεn , Lεn).

To prove that L̃ grows only at times t with X̃t = g(L̃t), we have to approximate the
indicator function by continuous functions. For δ > 0 define

hδ(x, `) :=


(
x− g(`)

)
/δ + 1 for g(`)− δ ≤ x ≤ g(`),

1−
(
x− g(`)

)
/δ for g(`) ≤ x ≤ g(`) + δ,

0 otherwise,

h0(x, `) := 1{x=g(`)} and H
δ,n
t := hδ(X

εn
t , Lεn

t ) and H̃δ
t := hδ(X̃t, L̃t) .
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For δ ↘ 0 the functions hδ ↘ h0 converge pointwise monotonically. Continuity of
hδ implies weak convergence (Hδ,n, Lεn) ⇒ (H̃δ, L̃). By Lemma 4.8, (Lεn) is a good se-
quence. So for every δ > 0 the stochastic integrals

∫ ·
0
Hδ,n

s− dLεn
s ⇒

∫ ·
0
H̃δ

s− dL̃s converge

weakly. Note that dLεn
t = H0,n

t− dLεn
t . Hence, for every δ > 0 we have∫ ·

0

Hδ,n
s− dLεn

s =

∫ ·

0

Hδ,n
s−H

0,n
s− dLεn

s =

∫ ·

0

H0,n
s− dLεn

s = Lεn .

By the weak convergence Lεn ⇒ L̃ it follows for every δ > 0 that L̃t =
∫ t

0
H̃δ

s− dL̃s .

By monotonicity of L̃, dL̃t defines a random measure on [0,∞). Hence monotone
convergence of H̃δ

t ↘ H̃0
t yields dL̃t = h0(X̃t, L̃t) dL̃t .

Thus, we showed that (Xε, Lε) converges in distribution to a weak solution (X̃, L̃) of
the reflected SDE, i.e. it might be defined on a different probability space with its own
Brownian motion. Note that (X̃, L̃) is continuous on [0,∞) and that τ̃∞ := supk τ̃k = ∞
a.s., where τ̃k := inf{t > 0 | |X̃t| ∨ L̃t > k}. To show the existence and uniqueness of a
strong solution as stated in the theorem, we will use the results from [3]. Consider the
domain Ḡ := {(x, `) ∈ R2 | x ≤ g(`), ` ≥ 0}. We may interpret the process (Xt, Lt) as a
continuous diffusion in Ḡ with oblique reflection in direction (−1,+1) at the boundary,
although the notion of a two-dimensional reflection seems unusual here, because (X,L)

only varies in one dimension in the interior of G. The unbounded domain G can be
exhausted by bounded domains Gk :=

{
(x, `) ∈ G

∣∣ |x|, |`| < k
}
, which might have a

non-smooth boundary especially at (g(0), 0), but still satisfy [3, Cond. (3.2)]. Hence, by
[3, Cor. 5.2] the process (X,L) exists (up to explosion time) on the initial probability
space and is (strongly) unique on [[0, τk[[ with exit time τk := inf{t > 0 | |Xt| ∨ Lt > k},
for all k ∈ N. So (X,L) is unique until explosion time τ∞ := supk τk. Moreover, by [3,
Theorem 5.1] we have the following pathwise uniqueness result: for any two continuous
solutions (X1, L1) and (X2, L2) with explosion times τ1∞ and τ2∞, respectively defined
on the same probability space with the same Brownian motion and the same initial
condition, we have that X1 = X2 and L1 = L2 on [[0, τ1k ∧ τ2k ]] for every k ∈ N a.s. Using
a known argument due to Yamada and Watanabe, ideas being as in [6, Ch. 5.3.D], one
can bring the two (weak) solutions (X̃, L̃, W̃ ) and (X,L,W ) to a canonical space with a
common Brownian motion. By pathwise uniqueness there, one concludes that τ∞ = ∞
a.s. (as τ̃∞ = ∞). Hence the strong solution (X,L) does not explode in finite time. In
addition, we conclude uniqueness in law like in [6, Prop. 5.3.20] and thus any weak limit
point of the approximating sequence (Xε, Lε) will have the same law as (X,L).

This convergence result can be strengthened as follows.

Corollary 4.10 (Convergence in probability). The sequence (Xεn , Lεn)n of càdlàg pro-
cesses defined by (3.1)–(3.2) converges in probability to (X,L) defined by (2.1)–(2.2).

Proof. Following the proof of [8, Cor. 5.6], we will strengthen weak convergence
(Xεn , Lεn) ⇒ (X,L) to convergence in probability. First, note that Lemma 4.9 implies
weak convergence of the triple (Xεn , Lεn ,W ) ⇒ (X,L,W ) by e.g. [15, Corollary 3.1].
Hence, for every bounded continuous F : D([0,∞);R2) → R and every bounded con-
tinuous G : C([0,∞);R) → R, we have limn→∞E[F (X

εn , Lεn)G(W )] = E[F (X,L)G(W )] .

Now, the previous equation even holds for all bounded measurableG by L1-approximation
of measurable functions by continuous functions. By strong uniqueness of (X,L), there
exists a measurable function H : C([0,∞);R) → C([0,∞);R2) such that (X,L) = H(W ).
In particular, G(W ) := F (H(W )) = F (X,L) is bounded and measurable, so we conclude

lim
n→∞

E
[
(F (Xεn , Lεn)− F (X,L))

2]
= lim

n→∞

(
E
[
F (Xεn , Lεn)2

]
− 2E

[
F (Xεn , Lεn)F (X,L)

]
+ E

[
F (X,L)2

])
= 0
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and hence convergence in probability follows.

Corollary 4.11 (Weak convergence of the inverse local times). For any ` > 0, the
sequence (τεn` )n from (3.3) converges in law to the inverse local time τ` defined by (2.3).

Proof. Convergence Lεn ⇒ L implies Lεn
t ⇒ Lt at all continuity points of L, i.e. at all

points, hence P
[
τεn` ≤ t

]
= P

[
Lεn
t ≥ `

]
→ P[Lt ≥ `] = P[τ` ≤ t] .

This completes the proof of Theorem 3.2.
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