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Abstract

In this work, we consider the stochastic Cauchy problem driven by the canonical
α-stable cylindrical Lévy process. This noise naturally generalises the cylindrical
Brownian motion or space-time Gaussian white noise. We derive a sufficient and
necessary condition for the existence of the weak and mild solution of the stochastic
Cauchy problem and establish the temporal irregularity of the solution.
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1 Introduction

One of the most fundamental stochastic partial differential equations is a linear
evolution equation perturbed by an additive noise of the form

dX(t) = AX(t) dt+ dL(t) for t ∈ [0, T ], (1.1)

where A is the generator of a strongly continuous semigroup (T (t))t≥0 on a Hilbert space
U . If L is the standard cylindrical Brownian motion in U then there exists a weak, or
equivalently mild, solution in U of (1.1) if and only if∫ T

0

‖T (s)‖2HS ds < ∞, (1.2)

where ‖·‖HS denotes the Hilbert-Schmidt norm; see [17, Th.7.1]. For the example of the
stochastic heat equation, in which A is chosen as the Laplace operator ∆, this result
implies that there exists a mild solution if and only if the spatial dimension equals one.
A natural next generalisation step is to replace the cylindrical Brownian motion by
an α-stable noise. Like the cylindrical Brownian motion this noise does not exist as a
genuine stochastic process in an infinite-dimensional space.

In the present article, we consider equation (1.1) driven by an α-stable cylindrical
noise and a generator A allowing a spectral decomposition. For this purpose, we
introduce the canonical α-stable cylindrical Lévy process as a natural generalisation
of the cylindrical Brownian motion. By evoking the recently introduced approach to
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Stable cylindrical Lévy processes

stochastic integration for deterministic integrands with respect to cylindrical Lévy
processes in [14], we derive that there exists a mild (or weak) solution in U if and only if∫ T

0

‖T (s)‖αHS ds < ∞. (1.3)

Obviously, this result “smoothly” extends the equivalent condition (1.2) in the Gaussian
setting. We demonstrate that in the case of the stochastic heat equation this result leads
to the sufficient and necessary condition

αd < 4 (1.4)

for the existence of a mild solution, where d denotes the spatial dimension. As already
observed in other examples of cylindrical Lévy processes as driving noise, we finish this
note by establishing that the solution has highly irregular paths.

Equation (1.1) in Banach spaces with an α-stable noise, or even slightly more gen-
eral with a subordinated cylindrical Brownian motion, has already been considered by
Brzeźniak and Zabczyk in [5]. However, their approach is based on embedding the
underlying Hilbert space U in a larger space such that the cylindrical noise becomes
a genuine Lévy process. This leads to the fact that their condition for the existence of
a solution not only lacks the necessity but also is in terms of the larger Hilbert space,
which per se is not related to equation (1.1). Moreover, they only show that the paths
of the solution are irregular in the sense that there does not exist a modification of the
solution with càdlàg paths in U .

Another approach to generalise the model of the driving noise is based on the
Gaussian space-time white noise leading to a Lévy space-time white noise; see Albeverio
et al. [1] or Applebaum and Wu [3]. In this framework, equation (1.1) (and even with a
multiplicative noise) driven by an α-stable Lévy white noise is considered in the work [4]
by Balan. We show that the α-stable Lévy white noise in [4] corresponds to a canonical
α-stable cylindrical Lévy process in the same way as it is known in the Gaussian setting
(see [7, Th.3.2.4]). However, and very much in contrast to the Gaussian setting, it
turns out that the corresponding cylindrical Lévy process is defined on a Banach space
different from the underlying Hilbert space U . This leads to the new phenomena that
the necessary and sufficient condition for the existence of a solution of the heat equation
in the space-time white noise approach differs from our condition (1.4) in the cylindrical
approach.

2 The canonical α-stable cylindrical Lévy process

Let U be a separable Banach space with dual U∗. The dual pairing is denoted by
〈u, u∗〉 for u ∈ U and u∗ ∈ U∗. For any u∗

1, . . . , u
∗
n ∈ U∗ we define the projection

πu∗
1 ,...,u

∗
n
: U → Rn, πu∗

1 ,...,u
∗
n
(u) =

(
〈u, u∗

1〉, . . . , 〈u, u∗
n〉
)
.

The Borel σ-algebra in U is denoted by B(U). For a subset Γ of U∗, sets of the form

C(u∗
1, . . . , u

∗
n;B) := π−1

u∗
1 ,...,u

∗
n
(B),

with u∗
1, . . . , u

∗
n ∈ Γ and B ∈ B(Rn) are called cylindrical sets with respect to Γ. The set

of all these cylindrical sets is denoted by Z(U,Γ); it is a σ-algebra if Γ is finite and it is an
algebra otherwise. If Γ = U∗ we write Z(U) := Z(U,U∗). A function µ : Z(U) → [0,∞]

is called a cylindrical measure on Z(U), if for each finite subset Γ ⊆ U∗ the restriction
of µ to the σ-algebra Z(U,Γ) is a measure. A cylindrical measure is called finite if
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Stable cylindrical Lévy processes

µ(U) < ∞ and a cylindrical probability measure if µ(U) = 1. The characteristic function
ϕµ : U∗ → C of a finite cylindrical measure µ is defined by

ϕµ(u
∗) :=

∫
U

ei〈u,u
∗〉 µ(du) for all u∗ ∈ U∗.

Let (Ω,A, P ) be a probability space. The space of equivalence classes of measurable
functions f : Ω → U is denoted by L0

P (Ω;U) and it is equipped with the topology of
convergence in probability. A cylindrical random variable in U is a linear and continuous
mapping

Z : U∗ → L0
P (Ω;R).

The characteristic function of a cylindrical random variable Z is defined by

ϕZ : U∗ → C, ϕZ(u
∗) = E

[
eiZu∗

]
.

If C = C(u∗
1, . . . , u

∗
n;B) is a cylindrical set for u∗

1, . . . , u
∗
n ∈ U∗ and B ∈ B(Rn) we obtain

a cylindrical probability measure µ by the prescription

µ(C) := P
(
(Zu∗

1, . . . , Zu∗
n) ∈ B

)
.

We call µ the cylindrical distribution of Z and the characteristic functions ϕµ and ϕZ of
µ and Z coincide.

A family (Z(t) : t ≥ 0) of cylindrical random variables Z(t) in U is called a cylindrical
process in U . In our work [2] with Applebaum, we extended the concept of cylindrical
Brownian motion to cylindrical Lévy processes:

Definition 2.1. A cylindrical process (L(t) : t ≥ 0) in U is called a cylindrical Lévy
process if for each n ∈ N and any u∗

1, . . . , u
∗
n ∈ U we have that(

(L(t)u∗
1, . . . , L(t)u

∗
n) : t ≥ 0

)
is a Lévy process in Rn.

The characteristic function of L(t) for each t ≥ 0 is of the form

ϕL(t) : U
∗ → C, ϕL(t)(u

∗) = exp
(
tΨ(u∗)

)
,

where Ψ: U∗ → C is called the cylindrical symbol of L and is of the form

Ψ(u∗) = ia(u∗)− 1
2 〈Qu∗, u∗〉+

∫
U

(
ei〈u,u

∗〉 − 1− i〈u, u∗〉1BR(〈u, u∗〉)
)
ν(du).

Here, a : U∗ → R is a continuous mapping with a(0) = 0, Q : U∗ → U is a positive and
symmetric operator and ν is a cylindrical measure on Z(U) satisfying∫

U

(
〈u, u∗〉2 ∧ 1

)
ν(du) < ∞ for all u∗ ∈ U∗.

The characteristic function of L is studied in detail in our work [13].
In this article we consider a specific example of a cylindrical Lévy process, which

is obtained by the usual generalisation of the characteristic function of the standard
normal distribution:

Definition 2.2. A cylindrical Lévy process (L(t) : t ≥ 0) is called canonical α-stable for
α ∈ (0, 2) if its characteristic function is of the form

ϕL(t) : U
∗ → C, ϕL(t)(u

∗) = exp
(
− t ‖u∗‖α

)
.
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Stable cylindrical Lévy processes

Let µ be the cylindrical probability measure on Z(U) defined by the characteristic
function

ϕµ : U
∗ → C, ϕµ(u

∗) = exp
(
− ‖u∗‖α

)
,

for some α ∈ (0, 2). The cylindrical probability measure µ is called the canonical α-stable
cylindrical measure. Bochner’s theorem for cylindrical measures ([16, Prop.IV.4.2])
guarantees that µ exists. For, the function ϕµ satisfies ϕµ(0) = 1 and is continuous and
positive-definite ([16, p.194]). Two possible constructions of the canonical α-stable Lévy
process such that its cylindrical distribution is given by µ are presented in Section 3.

The cylindrical probability measure µ is symmetric, i.e. it satisfies µ(C) = µ(−C) for
all C ∈ Z(U) and it is rotationally invariant, i.e. µ ◦ M−1 = µ for each linear unitary
operator M : U → U .

Remark 2.3. In [9] among other publications, a symmetric cylindrical measure ρ on
Z(U) is called α-stable if there exists a measure space (M,M, σ) and a linear, continuous
operator T : U∗ → Lα

σ(M,M) such that

ϕρ(u
∗) = exp

(
−‖Tu∗‖Lα

σ (M,M)

)
for all u∗ ∈ U∗. (2.1)

For the standard α-stable cylindrical measure µ, each image measure µ ◦ π−1
u∗ is a stable

measure on B(R) for each u∗ ∈ U∗. Thus, Theorem 6.8.5 in [9] guarantees that µ also
satisfies (2.1).

In the case of a separable Hilbert space we relate the characteristic function of the
canonical α-stable Lévy process with the well-known spectral representation on the
sphere S(Rn) := {β ∈ Rn : |β| = 1} of symmetric, rotationally invariant measures in Rn:

Lemma 2.4. Let U be a Hilbert space with orthonormal basis (en)n∈N and L be the
canonical α-stable cylindrical Lévy process in U . Then the characteristics of L is given
by (0, 0, ν) with the cylindrical Lévy measure ν satisfying for all n ∈ N:

ν ◦ π−1
e1,...,en(B) = α

cα

∫
S(Rn)

λn(dξ)

∫ ∞

0

1B(rξ)
1

r1+α
dr for B ∈ B(Rn),

where λn is uniformly distributed on the sphere S(Rn) with

λn

(
S(Rn)

)
=

Γ( 12 )Γ(
n+α
2 )

Γ(n2 )Γ(
1+α
2 )

and the constant cα is defined in Theorem A.1.

Proof. For each n ∈ N and β = (β1, . . . , βn) ∈ Rn we obtain

ϕL(1)e1,...,L(1)en(β) = ϕL(1)

(
β1e1 + · · ·+ βnen

)
= exp

(
−
(
‖β1e1 + · · ·+ βnen‖2

)α/2)
= exp (− |β|α) . (2.2)

It follows that the distribution of the random vector (L(1)e1, . . . , L(1)en) is symmetric and
rotationally invariant. As the Lévy measure of (L(1)e1, . . . , L(1)en) is given by ν ◦π−1

e1,...,en ,
Theorem A.1 implies

ν ◦ π−1
e1,...,en(B) = α

cα

∫
S(Rn)

λn(dξ)

∫ ∞

0

1B(rξ)
1

r1+α
dr,
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Stable cylindrical Lévy processes

where λn is uniformly distributed on the sphere S(Rn) and is defined by λn(C) =

cα(ν ◦ π−1
e1,...,en)((1,∞)C) for all C ∈ B(S(Rn)). From Part (d) of Theorem A.1 and (2.2)

we deduce that for each ξ0 ∈ S(Rn) we have

1 =

∫
S(Rn)

|〈ξ0, ξ〉|α λn(ξ) = rn

∫
S(Rn)

|〈ξ0, ξ〉|α λ1
n(ξ), (2.3)

where λ1
n := 1

rn
λn and rn := λn(S(R

n)). Let Yn = (Yn,1, . . . , Yn,n) be uniformly distributed
on S(Rn). By choosing ξ0 = (1, 0, . . . , 0) in (2.3) and applying Lemma A.2 we obtain

1 = rnE[|Yn,1|α] =
Γ(n2 )Γ(

1+α
2 )

Γ( 12 )Γ(
n+α
2 )

,

which completes the proof.

3 Two representations

The first representation of the canonical α-stable cylindrical Lévy process is by
subordination. For this purpose, let W be the standard cylindrical Brownian motion on
the Banach space U , i.e. a cylindrical Lévy process with characteristics (0, Id, 0) where
Id denotes the identity on U . Its characteristic function is given by

ϕW (t) : U
∗ → C, ϕW (t)(u

∗) = exp
(
− 1

2 ‖u
∗‖2
)
.

Lemma 3.1. Let W be the standard cylindrical Brownian motion on a separable Banach
space U and let ` be an independent, real-valued α/2-stable subordinator with Lévy

measure ν`(dy) =
2α/2α/2
Γ(1−α/2)y

−1−α/2 dy for α ∈ (0, 2). Then

L(t)u∗ := W
(
`(t)
)
u∗ for all u∗ ∈ U∗,

defines a canonical α-stable cylindrical Lévy process (L(t) : t ≥ 0) in U .

Proof. By using independence of W and `, Lemma 3.8 in [2] shows that L is a cylindrical
Lévy process. The characteristic function of the subordinator ` can be analytically
continued, such that

E[exp(−β`(t))] = exp(−tτ(β)) for all β > 0,

where the Laplace exponent τ is given by

τ(β) =

∫ ∞

0

(1− e−βs) ν`(ds) = βα/2;

see [15, Th.24.11]. Independence of W and ` implies that for each t ≥ 0 and u∗ ∈ U∗ the
characteristic function ϕL(t) of L(t) is given by

ϕL(t)(u
∗) =

∫ ∞

0

E
[
eiW (s)u∗

]
P`(t)(ds)

=

∫ ∞

0

e−
1
2 s‖u

∗‖2

P`(t)(ds) = exp
(
−tτ

(
1
2 ‖u

∗‖2
))

= exp
(
− t ‖u∗‖α

)
,

which shows that L is canonical α-stable.

The second representation of the canonical α-stable cylindrical Lévy process is based
on the approach by Lévy space-time white noise, as it is defined for example in [1] and
[3].
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Stable cylindrical Lévy processes

Definition 3.2. Let (M,M, ν) be a σ-finite measure space. A Lévy white noise on a
σ-finite measure space (E, E , σ) with intensity ν is a random measure Y : E × Ω → R of
the form

Y (B) = W (B) +

∫
B×M

a(x, y)N(dx, dy) +

∫
B×M

b(x, y) (σ ⊗ ν)(dx, dy),

where (1) W : E × Ω → R is a Gaussian white noise;

(2) N : (E ⊗ M) × Ω → N0 ∪{∞} is a Poisson random
measure on E ×M with intensity measure σ ⊗ ν;

(3) a, b : E × U → R are measurable functions.

In the above Definition 3.2 we take M = R, M = B(R) and

ν(dy) =
1

c

1

|y|α+1 dy for c := 2Γ(α) cos(πα2 ).

For some setO ⊆ Rd letN be a Poisson randommeasure on
(
[0,∞)×O

)
×Rwith intensity

measure σ⊗ ν where σ := dt⊗ dx. We call the Lévy white noise Y : B([0,∞)×O)×Ω →
[0,∞) defined by

Y (B) =


∫
B×R

y N(dt, dx, dy), if α < 1,∫
B×R

y
(
N(dt, dx, dy)− dt dx ν(dy)

)
, if α ≥ 1,

the canonical α-stable space-time Lévy white noise on O.

Lemma 3.3. Let Y be the canonical α-stable Lévy space-time white noise on a set
O ⊆ Rd for α ∈ (1, 2). Then there exists a canonical α-stable cylindrical Lévy process L
in Lα′

(O) for α′ := α
α−1 such that

L(t)1A = Y ([0, t]×A) for all t ≥ 0 and bounded sets A ∈ B(O).

Proof. Let S(O) be the space of simple functions in Lα(O) of the form

u∗ :=

n∑
k=1

βk 1Ak
, (3.1)

for some βk ∈ R+ and disjoint sets Ak ∈ B(O). For u∗ ∈ S(O) and t ≥ 0 we define

L(t)u∗ :=

n∑
k=1

βkY ([0, t]×Ak). (3.2)

Define the function mβ : R → R by mβ(x) = βx for some β ∈ R+. Then by using the
invariance β−α(ν ◦m−1

β ) = ν, see [15, Th.14.3], the independence of the Lévy white noise
and the symmetry of ν, we obtain

ϕL(t)(u
∗)

=

n∏
k=1

exp

(∫
[0,t]×Ak×R

(
eiβky − 1− iβky 1BR(y)

)
ν(dy) dx ds

)

=

n∏
k=1

exp

(
t

(∫
O
1Ak

(x) dx

)
βα
k

∫
R

(
eiy − 1− iy 1BR(β

−α
k y)

)
β−α
k (ν ◦m−1

βk
)(dy)

)

=

n∏
k=1

exp

(
t

(∫
O
βα
k 1Ak

(x) dx

)∫
R

(
eiy − 1− iy 1BR(y)

)
ν(dy)

)
= exp

(
t

(∫
O
|u∗(x)|α dx

)∫
R

(
eiy − 1− iy 1BR(y)

)
ν(dy)

)
.
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Stable cylindrical Lévy processes

By applying Lemma 14.11 in [15] we obtain ϕL(t)(u
∗) = exp(−t ‖u∗‖αLα) for all simple

functions u∗ ∈ S(O). By using the linearity of L(t) we derive that L(t) : S(O) → L0
P (Ω) is

a linear and continuous operator which shows that L can be continued to a linear and
continuous operator on Lα(O) satisfying

ϕL(t)(u
∗) = exp(−t ‖u∗‖αLα) for all u∗ ∈ Lα(O).

Let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn and u∗
j ∈ S(O). By independence of the Lévy white noise for

disjoint sets it follows that

L(t1)u
∗
1,
(
L(t2)− L(t1)

)
u∗
2 . . . ,

(
L(tn)− L(tn−1)

)
u∗
n

are independent. By approximating an arbitrary function u∗ ∈ Lα(O) by simple functions
it follows that L has independent increments. Moreover, from the very definition in
(3.2) it follows that for each u∗ ∈ S(O), the stochastic process (L(t)u∗ : t ≥ 0) is a
Lévy process in R. Again, by approximating an arbitrary function u∗ ∈ Lα(O) by simple
functions, the same conclusion holds for (L(t)u∗ : t ≥ 0) and u∗ ∈ Lα(O). Together with
the independent increments derived above, this implies by Corollary 3.8 in [2] that L is
a cylindrical Lévy process in Lα′

(O).

Remark 3.4. The canonical α-stable space-time Lévy white noise corresponds to the
noise considered in [4] in the symmetric case. Although the construction in Lemma
3.3 follows the corresponding relation between space-time Gaussian white noise and
cylindrical Brownian motion, the resulting cylindrical Lévy process does not live in a
Hilbert space, such as L2(O) for O ⊆ Rd.

4 The stochastic Cauchy problem

In this section we consider the stochastic Cauchy problem

dX(t) = AX(t) dt+ dL(t) for t ∈ [0, T ],

X(0) = x0,
(4.1)

where A is the generator of a strongly continuous semigroup (T (t))t≥0 on a separable
Hilbert space U and x0 ∈ U denotes the initial condition. The random noise L is a
canonical α-stable cylindrical Lévy process as introduced in the previous section.

A theory of stochastic integration for deterministic functions with respect to cylindri-
cal Lévy processes is introduced in our work [14]. Based on this theory, we obtain that if
the stochastic convolution integral

Y (t) :=

∫ t

0

T (t− s)L(s) for t ∈ [0, T ],

exists, the stochastic process (T (t)x0 +Y (t) : t ≥ 0) can be considered as a mild solution.
By a result in [8] it also follows that the mild solution is a weak solution; however, this is
of less concern in this work.

More precisely, if L is a cylindrical Lévy processes with characteristics (0, 0, ν), then
a function f : [0, T ] → L(U,U) is stochastically integrable if and only if

lim sup
m→∞

sup
n≥m

∫ T

0

∫
U

(
n∑

k=m

〈u, f∗(s)ek〉2 ∧ 1

)
ν(du) ds = 0, (4.2)

for an orthonormal basis (ek)k∈N of U ; see [14, Th.5.10]. In our case of a canonical
α-stable cylindrical Lévy process as driving noise we obtain the following equivalent
conditions:
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Stable cylindrical Lévy processes

Theorem 4.1. Assume that there exist an orthonormal basis (ek)k∈N of U and (λk)k∈N ⊆
[0,∞) with T ∗(t)ek = e−λktek for all t ≥ 0 and k ∈ N. Then there exists a mild (and weak)
solution of (4.1) if and only if ∫ T

0

‖T (s)‖αHS ds < ∞.

Proof. Lemma 2.4 implies for each m,n ∈ N with m ≤ n that∫ T

0

∫
U

(
n∑

k=m

〈u, T ∗(s)ek〉2 ∧ 1

)
ν(du) ds

=

∫ T

0

∫
U

(
n∑

k=m

e−2λks〈u, ek〉2 ∧ 1

)
ν(du) ds

=

∫ T

0

∫
Rn−m+1

(
n∑

k=m

e−2λksβ2
k ∧ 1

)
ν ◦ π−1

em,...,en(dβ) ds

= α
cα

∫ T

0

∫
S(Rn−m+1)

∫ ∞

0

(
n∑

k=m

e−2λksr2ξ2k ∧ 1

)
1

r1+α
dr λn−m+1(dξ) ds

= 2
cα(2−α)

∫ T

0

∫
S(Rn−m+1)

(
n∑

k=m

e−2λksξ2k

)α/2

λn−m+1(dξ) ds

=: Im,n.

In the following, we establish that for all m, n ∈ N we have

2
cα(2−α)

∫ T

0

(
n∑

k=m

‖T ∗(s)ek‖2
)α/2

ds ≤ Im,n ≤ cn−m

∫ T

0

(
n∑

k=m

‖T ∗(s)ek‖2
)α/2

ds, (4.3)

where cn−m → 1 as m,n → ∞.
Define λ1

n−m+1 := 1
rn−m+1

λn−m+1 where rn−m+1 := λn−m+1

(
S(Rn−m+1)

)
. By applying

Jensen’s inequality to the concave function β 7→ βα/2 it follows from Lemma A.2 that

∫ T

0

∫
S(Rn−m+1)

(
n∑

k=m

e−2λksξ2k

)α/2

λn−m+1(dξ) ds

≤ rn−m+1

∫ T

0

(
n∑

k=m

e−2λks

∫
S(Rn−m+1)

ξ2k λ
1
n−m+1(dξ)

)α/2

ds

= rn−m+1

∫ T

0

(
1

n−m+ 1

n∑
k=m

e−2λks

)α/2

ds

=
rn−m+1

(n−m+ 1)α/2

∫ T

0

(
n∑

k=m

‖T ∗(s)ek‖2
)α/2

ds.

Consequently, we obtain the upper bound in (4.3) with cn−m := rn−m+1

(n−m+1)α/2 . Since
Γ(x+β)
Γ(x)xβ → 1 as x → ∞, Lemma 2.4 implies cn−m → 1 as m,n → ∞.

For establishing the lower bound, define cm,n(s) := e−2λms + · · ·+ e−2λns. We again
apply Jensen’s inequality to the same concave function β 7→ βα/2 but with respect to the
discrete probability measure {c−1

m,n(s)e
−2λms, . . . , c−1

m,n(s)e
−2λns}. In this way, by applying
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Lemma 2.4 and A.2 we deduce∫ T

0

∫
S(Rn−m+1)

(
n∑

k=m

e−2λksξ2k

)α/2

λn−m+1(dξ) ds

≥
∫ T

0

∫
S(Rn−m+1)

(cm,n(s))
α/2

n∑
k=m

e−2λks

cm,n(s)
ξαk λn−m+1(dξ) ds

= rn−m+1

∫ T

0

(cm,n(s))
α/2

n∑
k=m

e−2λks

cm,n(s)

∫
S(Rn−m+1)

ξαk λ1
n−m+1(dξ) ds

= rn−m+1

Γ( 1+α
2 )Γ(n2 )

Γ( 12 )Γ(
n+α
2 )

∫ T

0

(cm,n(s))
α/2 ds

=

∫ T

0

(
n∑

k=m

‖T ∗(s)ek‖2
)α/2

ds.

An application of [14, Th.5.10], as summarised in (4.2), completes the proof.

Example 4.2. We consider the stochastic heat equation on a bounded domain O ⊆ Rd

with smooth boundary ∂O for some d ∈ N. In this case, the generator A is given
by the Laplace operator ∆ on U := L2(O). Thus, there exists an orthonormal basis
(ek)k∈N of U consisting of eigenvectors of A. According to Weyl’s law, the eigenvalues λk

satisfy λk ∼ ck2/d for k → ∞ and a constant c > 0. Consequently, we can assume that
λk = ckk

2/d for constants ck with ck ∈ [a, b] for all k ∈ N and 0 < a < b.
By the integral test for convergence of series we obtain for each s > 0 that

‖T (s)‖2HS =

∞∑
k=1

e−2sckk
d/2

≤
∫ ∞

0

e−2saxd/2

dx =
2Γ(d2 )

d(2a)d/2sd/2
.

Analogously, we conclude for each s > 0 that

‖T (s)‖2HS =

∞∑
k=1

e−2sckk
d/2

≥ −1 +

∫ ∞

0

e−2sbxd/2

dx = −1 +
2Γ(d2 )

d(2b)d/2sd/2
.

Consequently, we can deduce from Theorem 4.1 that there exists a mild solution of (4.1)
for A = −∆ if and only if αd < 4. In accordance with other works, e.g. [4] or [11], the
smaller the stable index α is the larger dimensions d can be chosen in the condition for
guaranteeing the existence of a weak solution. This is due to the smoother trajectories
of stable processes for smaller stable index α.

Note that the sufficiency of the condition αd < 4 can also be derived from results in
[5]. Due to the approach of embedding the cylindrical Lévy process L in a larger space
in [5], the derivation is less direct than here; see Corollary 6.5 in [14]. However, the
work [5] provides further results on the spatial regularity of the weak solution; see e.g.
Theorem 5.14.

5 Irregularities of the trajectories

In the work [5] it was observed that the solution of (4.1) does not have a modification
with càdlàg paths in the underlying Hilbert space U . We strengthen this result that the
solution does not even have a càdlàg modification in a much weaker sense:

Theorem 5.1. Assume that there exist an orthonormal basis (ek)k∈N of U and (λk)k∈N ⊆
[0,∞) with T ∗(t)ek = e−λktek for all t ≥ 0 and k ∈ N. Then there does not exists a
modification X̃ of the mild solution of (4.1) such that for each u∗ ∈ U∗ the stochastic
process (〈X̃(t), u∗〉 : t ∈ [0, T ]) has càdlàg paths.
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Proof. (The proof is based on ideas from [10]). For every n ∈ N and t ∈ [0, T ] define
Ln(t) :=

(
L(t)e1, . . . , L(t)en

)
and Xn(t) :=

(
〈X(t), e1〉, . . . , 〈X(t), en〉

)
. As

〈X(t), ek〉 = 〈x0, ek〉e−λkt +

∫ t

0

e−λk(t−s) d(L(s)ek),

it follows that Xn is the solution of the stochastic differential equation

dX(t) = −DX(t) dt+ dLn(t) for t ≥ 0,

where D ∈ Rn×n is a diagonal matrix with entries λ1, . . . , λn. We conclude that the
n-dimensional processes (Xn(t) : t ∈ [0, T ]) and (Ln(t) : t ∈ [0, T ]) jump at the same time
by the same magnitude, which implies

sup
t∈[0,T ]

|∆Ln(t)|2 = sup
t∈[0,T ]

|∆Xn(t)|2 ≤ 4 sup
t∈[0,T ]

|Xn(t)|2 ,

where ∆f(t) := f(t)− f(t−) for càdlàg functions f : [0, T ] → Rn. It follows that

P

(
sup

t∈[0,T ]

∞∑
k=1

〈X(t), ek〉2 < ∞

)
= P

(
sup
n∈N

sup
t∈[0,T ]

n∑
k=1

〈X(t), ek〉2 < ∞

)

= lim
c→∞

P

(
sup
n∈N

sup
t∈[0,T ]

n∑
k=1

〈X(t), ek〉2 ≤ 1

4
c2

)

= lim
c→∞

lim
n→∞

P

(
sup

t∈[0,T ]

n∑
k=1

〈X(t), ek〉2 ≤ 1

4
c2

)

= lim
c→∞

lim
n→∞

P

(
sup

t∈[0,T ]

|Xn(t)|2 ≤ 1

4
c2

)

≤ lim
c→∞

lim
n→∞

P

(
sup

t∈[0,T ]

|∆Ln(t)|2 ≤ c2

)
= lim

c→∞
lim
n→∞

exp
(
−Tνn

(
{β ∈ Rn : |β| > c}

))
, (5.1)

where νn denotes the Lévy measure of the Rn-valued Lévy process Ln. Since νn =

ν ◦ π−1
e1,...,en due to [2, Th.2.4], we obtain for every n ∈ N by Lemma 2.4 that(

ν ◦ π−1
e1,...,en

)(
{β ∈ Rn : |β| ≥ c}

)
=

α

cα

∫
S(Rn)

∫ ∞

0

1{β∈Rn:|β|≥c}(rξ)
1

r1+α
dr λn(dξ)

=
α

cα

∫
S(Rn)

∫ ∞

c

1

r1+α
dr λn(dξ)

=
1

cαcα
λn(S(R

n))

=
1

cαcα
Γ( 12 )Γ(

n+α
2 )

Γ(n2 )Γ(
1+α
2 )

.

Since Γ(m+β)
Γ(m)mβ → 1 as m → ∞ for all β ∈ R, we obtain from (5.1) that

P

(
sup

t∈[0,T ]

∞∑
k=1

〈X(t), ek〉2 < ∞

)
= 0.

An application of Theorem 2.3 in [12] completes the proof.
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A Appendix

For the present work it is essential to know which constants in the various presenta-
tions of the characteristic function of a multi-dimensional α-stable distribution depend
on the dimension. Thus, we present the following well-known theorem with the constants
given explicitly:

Theorem A.1. Let µ be an infinitely divisible probability measure on B(Rn) with char-
acteristics (0, 0, ν) and define λn(B) = cαν

(
(1,∞)B

)
for B ∈ B(S(Rn)) and α ∈ (0, 2)

where

cα :=

{
−α cos( 12απ)Γ(−α), if α 6= 1,
π
2α, if α = 1.

Then the following are equivalent:

(a) µ is symmetric, rotationally invariant and α-stable;

(b) the Lévy measure ν is of the form

ν(B) = α
cα

∫
S(Rn)

λn(dξ)

∫ ∞

0

1B(rξ)
1

r1+α
dr for all B ∈ B(Rn),

and λn is uniformly distributed on the sphere S(Rn).

(c) the characteristic function ϕµ : R
n → C of µ is of the form

ϕµ(β) = exp

(
−
∫
S(Rn)

|〈β, ξ〉|α λn(dξ)

)
,

and λn is uniformly distributed on the sphere S(Rn).

(d) the characteristic function ϕµ : R
n → C of µ is of the form

ϕµ(β) = exp
(
− dα |β|α

)
,

where dα :=
∫
S(Rn)

|〈ξ0, ξ〉|α λn(dξ) for an arbitrary fixed vector ξ0 ∈ S(Rn).

Proof. The proof follows from the Theorems 14.2, 14.10, 14.13, 14.14 and their proofs
in [15].

Lemma A.2. Let (Y1, . . . , Yn) be uniformly distributed on the sphere S(Rn) for some
n ∈ N. Then we have for p ∈ (0, 2) and each k ∈ {1, . . . , n} that

E[Y 2
k ] =

1

n
, E[|Yk|p] =

Γ(n2 )Γ(
1+p
2 )

Γ( 12 )Γ(
n+p
2 )

Proof. Since Y 2
1 + · · ·+ Y 2

n = 1 we have E[Y 2
k ] =

1
n for all k ∈ {1, . . . , n} due to symmetry.

As Y 2
k is distributed according to the Beta distribution with parameters a := 1

2 and
b := n−1

2 , see [6], we obtain

E[|Yk|p] = E[
∣∣Y 2

k

∣∣p/2] = 1

B(a, b)

∫ 1

0

xa+p/2−1(1− x)b−1 dx

=
B(a+ p/2, b)

B(a, b)
=

Γ(n2 )Γ(
1+p
2 )

Γ( 12 )Γ(
n+p
2 )

,

which completes the proof.
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