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Abstract

We prove that the Hausdorff dimension of the record set of a fractional Brownian
motion with Hurst parameter H equals H.

Keywords: fractional Brownian motion; record set; Hausdorff dimension.

AMS MSC 2010: 60G22; 60G17; 60G18; 28A78; 28A80.

Submitted to ECP on September 19, 2017, final version accepted on February 27, 2018.
Supersedes arXiv:1706.09726v3.

1 Introduction

The statistics of records has been studied in both the physics and mathematics
literature, see for example [14, 13, 11, 12, 20, 10, 5]. The record set (denoted Rec) of
a random process X; is the set of times s at which X; = maxpg , X;. One of the most
basic properties of this set is the number of records occurring during a certain time
interval. This problem has been well studied for discrete processes such as sequences of
i.i.d. random variables [5, 12] or random walks on R [4, 11]. However, when considering
continuous processes (e.g., the Brownian motion) the question is ill defined. Indeed, an
interval will typically contain either zero or infinitely many records. In these cases, a
natural way to quantify the size of the record set is to evaluate its Hausdorff dimension.
For the Brownian motion, it is shown in [17] that this dimension is %

The fractional Brownian motion (fBm) is a continuous Gaussian process X;, depending
on a parameter H € (0,1) called the Hurst index. It has expected value 0 and covariances
given by

1
(XeX,) =5 ([P + 15 = J = ") .

The fBm is scale-invariant, namely (a*HXat)DO has the same law as (X;),, foralla >0
We emphasize that we will only consider H strictly smaller than 1, even though in general
the fBm could also be defined for H = 1.

The fractal properties of the fBm have been studied extensively (see [1, 21]). In this
paper, we show that the Hausdorff dimension of its record set is H.
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Figure 1: Two simulations of fBm, (a) with Hurst index %, and (b) with index 2. The fBm
path is in black. In red, for every time ¢, is the maximum up to time ¢. The blue points
represent the record set. Zooming in one of the blue clusters, one sees the fractal nature
of this set. For generating the fBm we used the algorithm of [9], for a system of size 22°.

2 Heuristics

To find the dimension of the record set, first fix a small ¢ > 0 and divide the time
interval [0,1] in N, = % small boxes, each of diameter . We will be interested in finding
the number M. of boxes in which a record has occurred. To do so, we first compute
the probability to find a record during the time interval [(n — 1) €, ne]. Stated differently,
this is the probability that the maximum of X; in [0, n¢] is attained in the time interval
[(n — 1) e, ne|. By time reversal symmetry this is the same as the probability to attain the
maximum of X; during [0, ne] in [0, £]. Since the maximum during the time interval [0, €]
scales like 7, following [8], we claim that this probability is controlled by the probability
that maxy . X; is of order ¢H . That probability, as shown in [15, 16, 6], scales like

1-m
(e#) ® =e'~H. Summing up the argument so far, we get:

P[Recn[(n—1)e,nel #0] = P |max X; is attained during [(n — 1)e, na]]

1 [0,ne]

= TP |max X; is attained during [0, 5]}

1 [0,ne€]

Q

P [ma)ﬁ X; is of order 5H]
0,ne
1-H

~ £

1-H H

Thus, the expected number of boxes containing a record scales as M, ~ N.¢ =e 7,
suggesting a fractal dimension H of the record set. This scaling is verified numerically
in figure 2, as well as in [3].

3 Notation and presentation of the result

We start by presenting some notations and definitions that will be used throughout
the proof. In order to give the definition of the Hausdorff dimension we first define the
a-value of a covering:
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Figure 2: In (a) we see a graph showing the relation between log, M. and log, ¢ for a fBm
sample with H = %. The relation is linear with slope —0.690 given by linear regression.
In (b), we have extracted this slope for different values of H (shown in blue), averaging
over 100 samples. The black line is Dim(Rec) = H. To generate a fBm we used the
algorithm of [9], for a system of size 2%°.

Definition 3.1. Let E a metric space, € = {E1, Es ...} a covering of E, and « > 0. Then
the a-value of € is

Sa(€) := i Diam(F;)*.

We can now define the Hausdorff dimension of a set.

Definition 3.2. Let E a metric space, and for every o > 0 consider the a-Hausdorff
measure of I:

Ho(E) = %ﬁ} inf {S, (&), € a covering of E and Diam(E;) < d}.

Then the Hausdorff dimension of F is

Dim(E) = inf{a > 0, Ho(E) < oo} =sup{a > 0, H(E) = o0} .

Recall the definition of the record set

Rec = {t >0, X; = max XS}.
s€[0,t]

The main result we present here is:
Theorem 3.3.
Dim(Rec) = H a.s. (3.1)

Finally, we will prove the following corollary, describing the scaling for the fBm
equivalent of the third arcsine law (for results in the physics literature beyond the
asymptotics see [19]):

Corollary 3.4. For all § > 0 there exists g > 0, such that for all positive ¢ < g,

c-HY < p (ArgmaX[OJ]Xt c [0,5}) < lH-S, (3.2)
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4 Proof of the result

We will follow the proof from [17], in which the Hausdorff dimension of the record
set is found for the (non-fractional) Brownian motion. The main difference comes from
the non-Markovian behavior of the fBm, a difficulty that we will control with Lemma 4.3
below.

First, we will get a lower bound on the record set dimension using Lemma 4.21 of
[17]:

Proposition 4.1. Let f : [0,1] — R, a-Hélder continuous, whose maximum is not
attained at 0. Then the Hausdorff dimension of its record set is greater or equal to a.
For the other bound, we will use the following result, essentially proven in [17]:

Proposition 4.2. Let A C [0,1] be a random set and ¥ > 0 such that for all b € (0,1),
there exists C, > 0 and a sequence of positive numbers ¢, converging to zero and
satisfying

Va=b, P[AN[a,a+eg] #0) < Cpep . (4.1)
Then, almost surely,

Dim(4) < 9. (4.2)

For completeness, we present here the proof:

Proof. Let b € (0,1), we will show that Dim(A N [b, 1]) < ¥ using assumption (4.1). The
result will then follow by the countable stability of the Hausdorff dimension.

In order to get an upper bound on the dimension, it is enough to find a family of
coverings of [b, 1] N A with diameter going to zero such that the -value of each covering
is finite. To construct such a covering, consider, for £ € IN,

Nj, = sup{b+ jei, < 1}.
jEN

Denote, for j = 0... N, — 1, I; := b+ [jeg, (j + 1)ex] and consider the collection of
intervals:
Jp = {Ij7 Ij NA # (Z)} @] {[b + Niek, 1]}

Let j € {0,..., N, — 1}. Taking a = b + jei in the assumption (4.1), we have
PIANI; # 0] < Cye} " (4.3)

Therefore the covering J; of AN [b, 1] has an expected ¥-value of

Nj—1
E[Sy(I)] = Y PIANI # 0] + (1 —b— Nier)” < 26,

Jj=0

Using Fatou’s lemma, we have

k—o0 k—o0

Hence, the liminf is almost surely finite. In particular, there exists a family of coverings

whose diameter is going to zero with bounded #-value, and we can conclude that almost
surely

Dim(A N [b,1]) < 9. (4.5)

O

To use this proposition, we will need the following lemma:
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Lemma 4.3. For all § > 0 and b > 0, there exists a constant C = C(b,d, H) > 0, such
that, for small enough ¢ > 0,

Ya>b, P[RecN[a,a+¢e]#0] <Cel™H72 (4.6)
Proof. We begin by introducing two inequalities concerning the supremum of X:

(i) For all &' > 0, there exists a constant M = M(§’, H) > 0, such that, for small
enough u > 0:

P [ sup X; < u] <Mu—m, (4.7)
0<t<1

(ii) There exists a constant M’ = M'(H) > 0, such that, for large enough v, we have

P [ sup X; > v} < M'z)l/H\Il(v)7 (4.8)
0<t<1

where ¥(v) = P(N > v) for N a standard normal random variable.

The first inequality is due to [15, 16] (see also corollary 2 of [6]). The statement of
the second inequality can be found in Theorem D.4. of [18] (see also [2]).

Let 4, ¢ be fixed and # < H to be chosen later. By time reversal symmetry, the process
t— Xt = X,t+e—t — Xa+e is again a fractional Brownian motion starting at 0 with Hurst
index H. Hence,

sup Xt: sup )Z't =P

[0,a+¢] [a,a+e]

P[RecNa,a+e| #0) =P

sup X; =sup X| .
[0,a+€] [0,e]

Decomposing this last term into the two terms

A. =P | sup X; <70 sup X, =supXy|,
[0,a+¢] [0,a+€] [0,e]

B. =P
[0,a+¢] [0,a+¢] [0,€]

sup Xy >ef7? sup X, = supth )

and using the scaling invariance of X, we get that

cH—0
sup Xy <

sup Xi e S
[0,1] (a+e)

A <P <
) 0ate (a+e) = (a+e)H

=P (4.9)

Therefore, for small enough ¢, we can apply inequality (4.7) with a positive parameter
0 <1—-H:
1-H-¢'

€ —0(1—H—§' —H-
Agngs 01-H=8)/H < o JA-H=5

)

where we now fix 6 and ¢’ sufficiently small, chosen to verify

1-H-¢
_ 5 _p___ - 7
d=-9 0 I7i s

and where, recalling that b < a, C; is defined as:

Cy(b,6, H) = M(6, H) b~ HH+",
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We then bound B, using again the scaling invariance and applying (4.8) for ¢ small
enough:

B.=P |supX; >0 sup X, =supX,| <P

[0,€] [0,a+€] [0,e] [0,1]

sup X; > 6_9‘|

< M'(H)e "Hwy(e=9)

< CQ 61—H—6’

with Cy = C3(d, H) and where the last inequality is a consequence of the rapid decay
of ¥ as ¢ tends to 0. Summing the bounds over A. and B. concludes the proof of the
lemma. O

Putting everything together, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. We first prove the lower bound using Proposition 4.1. Indeed, the
sample-paths of the fractional Brownian motion are almost surely a-Holder continuous
for any o < H (see Theorem 3.1 of [7]). Hence, we get that

Dim(Rec) > «

for any a < H. The lower bound follows letting o go to H.
In order to get the upper bound, we use Proposition 4.2 combined with Lemma 4.3 to
find:
Dim(Rec) < H+6

for all § > 0. The upper bound follows letting J go to zero. O
We can now give a proof of Corollary 3.4:

Proof. By the time reversibility property of the fractional Brownian motion, we can see
that (cf. proof of Lemma 4.3):

P | Argmaxy 1) X; € [0,5]] =P[RecnN[l—¢,1] #0].

Therefore, the upper bound in the inequality (3.2) is a direct consequence of Lemma
4.3 (taking g in order to absorb the constant C').
For the lower bound, we need to show that for all § > 0, there exists £y > 0 such that

Ve < gg, el THHO K P[Recn [l —e,1] #0]. (4.10)
Reasoning by contradiction, let § > 0 and (ex)x>0 such that e, — 0 and
P [Rec N [1 — &g, 1] # 0] < gp 0. (4.11)

Let b >0, a > b, and ¢}, to be chosen later on. Consider the rescaled process ¢t — Y; =
(a + E;C)H X(a+er)t- By scaling invariance, Y is a fractional Brownian motion of Hurst
index H whose record set Rec(Y) on [0, 1] is the rescaled record set of X. Hence,

P [Rec(X)Nla,a+e)] #0] =P [ReC(Y)O 1- ai%,l] 7&@]
k
<P [Recﬂ[l—bf‘%,l]#@} .

Choosing ¢, = 1b_€5kk , so that bi—’; = ¢y, (4.11) yields:
k

P [RecN[a,a+¢e}] # 0] < b 1o+ E/i—(H—é).
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This is exactly the assumption of Proposition 4.2, thus
Dim(Rec) < H — 4,

in contradiction with Theorem 3.3. O

5 Further questions

There are various topics for further research concerning the record statistics of
continuous processes. For example, one may study the duration of the longest record
or the waiting time for a first record to occur after some fixed positive time. It could
also be interesting to study non-Gaussian or non-stationary processes. Another question
would be to extend the study of records to fields of higher dimensions (both in space and
in time), given an appropriate order on these spaces.
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