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The greedy walk on an inhomogeneous Poisson process
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Abstract

The greedy walk is a deterministic walk that always moves from its current position
to the nearest not yet visited point. In this paper we consider the greedy walk on an
inhomogeneous Poisson point process on the real line. We prove that the property
of visiting all points of the point process satisfies a 0-1 law and determine explicit
sufficient and necessary conditions on the mean measure of the point process for
this to happen. Moreover, we provide precise results on threshold functions for the
property of visiting all points.
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1 Introduction and main results

Consider a simple point process II without accumulation points in a metric space
(E,d). We think of II either as an integer-valued measure or as a collection of points (the
support of the measure). With the latter viewpoint in mind, we define the greedy walk
on II as follows. Let Sy € E and Il = II. Define, for n > 0,

Spt1 = arg min{d(S,, X) : X € I, },
Hn+1 - Hn \ {Sn+1}'

The set II,, denotes the set of unvisited points of II up until (and including) time n. Once
the underlying environment II is fixed, the process (5,)22, is deterministic (except
possibly for ties which need to be broken, but these will almost surely not occur in our
setting). A typical problem to study is whether all points of I are eventually visited by
the greedy walk. If this happens, we say that the walk is recurrent. Otherwise we say
that it is transient.

The greedy walk has been studied before in the literature, with various choices of
the underlying point process. When II is a homogeneous Poisson process on R, one can
show, using a Borel-Cantelli-type argument, that the greedy walk does not visit all the
points of the underlying point process, with probability 1. More precisely, the expected
number of times the greedy walk starting from 0 changes sign is 1/2 [4]. Rolla et al. [7]
considered a related problem, in which each point in the process can be visited either
once, with probability 1 — p, or twice, with probability p. For any 0 < p < 1, they show
that every point is eventually visited. Another modification of the greedy walk on R
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is studied by Foss et al. [3]. The authors considered a dynamic version of the greedy
walk, where the times and positions of new points arriving in the system are given by
a Poisson process on the space-time half-plane. They show that the greedy walk still
diverges to infinity in one direction and does not visit all points. In the survey paper [2],
Bordenave et al. state several questions about the behaviour of the greedy walk on an
inhomogeneous Poisson process in R?. We resolve here the problem for d = 1.

In this paper we define II to be an inhomogeneous Poisson process on R (with the
Euclidean metric) given by some non-atomic mean measure p. For such a process, the
number of points in disjoint measurable subsets of R are independent and

P(TI(a,b) = k] = LZ; D) -ntey
for any a < b and any k£ > 0, where, for any measurable A C R, II(4) = IIA is the
cardinality of the restriction of II to the set A. This means that the number of points in
any interval (a, b) is distributed like Poi(u(a,b)). Sometimes, we assume that the mean
measure p is absolutely continuous and given in terms of a measurable intensity function
A:R — [0,00), so that

M(A):/A)\(x)dx

for any measurable A C R.
To avoid certain degenerate cases, we impose the following two conditions on the
measure fi.

(1) /L(—O0,0) = M(Oa OO) = 0.
(ii) p(A) < oo for all bounded measurable A C R.

Denote by M the set of all measures on R which satisfy (i) and (ii). If 4 € M is given in
terms of a intensity function )\, we abuse notation and write also A € M. Note that the
first condition is equivalent to II(—oo,0) = II(0, 00) = co with probability 1. The second
condition is equivalent to II(A) < oo with probability 1, for any bounded measurable
A C R, which implies that there are no accumulation points of the process. Indeed, if a
process has accumulation points, it is possible that the arg min in the definition of the
greedy walk is not well-defined.

Throughout we let Sy = 0 (note that 0 ¢ II with probability 1), so that the walk starts
in the origin. The process (S,,)22, will be referred to as GWIPP. If we want to emphasise
the underlying point process, the underlying mean measure, or the underlying intensity
function, we write GWIPP(II), GWIPP(u) or GWIPP()), respectively.

As mentioned, our interest is to study the recurrence or transience of GWIPP. Since
GWIPP is on the real line, it is recurrent if and only if it changes sign infinitely many
times. As |S, | increases, it becomes more difficult for GWIPP to change sign. Intuitively
speaking, recurrence is equivalent to the points of II eventually being sparse enough
that there are infinitely many “sufficiently long” empty intervals on both half-lines.

One of our main results is that recurrence (and consequently transience) satisfies a
0-1 law.

Theorem 1.1. Let u € M. Then GWIPP(u) is recurrent with probability 0 or 1.

The proof of this and the following theorem, which provides an analytic condition (in
terms of i) for when GWIPP is recurrent, is an application of Campbell’s theorem and the
Borel-Cantelli lemma.
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Theorem 1.2. Let i € M. Then GWIPP(u) is recurrent with probability 1 if and only if

oo 0
/0 exp(—p(z, 2z + R))u(dz) = oo  and / exp(—p(2z — R, z))u(dz) = oo,

forall R > 0.

It is a straightforward consequence of Theorem 1.2 that GWIPP on an underlying
homogeneous Poisson process is transient.

Our next result is a coupling result between different measures. Intuitively, adding
more points to an already transient process only makes it “more” transient, since
it will be more difficult to find long empty intervals which allow (S,,)52, to change
sign. Conversely, removing points from an already recurrent process makes it “more”
recurrent.

Lemma 1.3. Let u, i/ € M and suppose there is some K > 0 such that p/(A) > u(A)
for all measurable A C (—oo, —K) U (K, 00). If GWIPP(u) is transient with probability 1,
then GWIPP(y') is transient with probability 1. Conversely, if GWIPP(u') is recurrent with
probability 1, then GWIPP(u) is recurrent with probability 1.

When dealing with properties exhibiting dichotomous behaviour, it is common to
analyse the boundary or the phase transition between the two possible states. In our case,
this amounts to finding a threshold measure or threshold density function for recurrence
and transience. In the next proposition, we define a parametric family of density
functions, and we are able to determine precisely the region on which the corresponding
greedy walk is recurrent respectively transient. In particular, this parametric family
exhibits a sharp threshold behaviour.

Moreover, Lemma 1.3 provides a tool to move outside this parametric family and
determine the behaviour for other types of density functions. This can sometimes be
easier to use than the integral condition in Theorem 1.2.

To state the proposition, we need some notation. We define the iterated logarithm
log("), for n > 1, to be the function defined recursively by

0 otherwise,

where log is the ordinary natural logarithm, and, for any n > 2,
log™ ¢ := log™" (log("fl) t) .

Proposition 1.4. Let

n

1 .
A(t) i = —— il (l)t
()= riagz 2o los” I

=2
where n € {2,3,4,...} and a; > 0 for all 2 < i < n. Then GWIPP(}\) is transient with
probability 1 if and only if
* ay >1, or
e a,=1,a3 > 2, or
* ao = 1,a3 = 2, and there exists some m > 4 such thatay = 1,a5 =1,...,a,,, = 1
and a;p41 > 1.

Moreover, if

A(t)

1 —
= iTog? <1og(3) [t] + Zlog( ) |t> ,

1=2

then GWIPP()) is recurrent.
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The remainder of this paper is outlined as follow. In Section 2 we prove mainly
general results, including Theorem 1.1, Theorem 1.2 and Lemma 1.3. In Section 3 we
concentrate on threshold results, i.e. Proposition 1.4 along with related results.

2 Proofs of general results

Throughout we will write IT = {X, : i € Z \ {0}}, assuming as we may that
< X < X1 <0< X1 < X<
For k > 0, let
AR = {TI( X%, 2X5, + R) = 0} = {d(Xy, —R) < d(Xg, Xp41)}

and
BE = [II(2X_j, — R, X_3) = 0} = {d(X_4, R) < d(X_p, X_j_1)}.

The following lemma describes the connections between these events and recurrence
of GWIPP.

Lemma 2.1. With probability 1,

{GWIPP recurrent} = ﬂ {Afio. Bfio.}.
R>0

Proof. With probability 1, II(A) < oo for any finite set A and for all n there is a unique
point which is the closest unvisited point to .S,,. On this event, the walk is well-defined and
|Sn| — oo. Then, either {|S,| — oo but S,,S,,+1 < 01i.0.} occurs (i.e. GWIPP is recurrent),
or {S,, —» o} U{S,, = —oo} occurs (i.e. GWIPP is transient).

Suppose first that GWIPP is recurrent. For all R > 0, there exists infinitely many
n such that S,, > 0 and S,,+1 < —R. For all such n it holds that I1(S,,2S, + R) = 0
(otherwise S, 411 > 0), implying that A,f‘ occurs infinitely often. Similarly B,f occurs
infinitely often.

For the other direction, assume {Af i.0.} and {B} i.0.} occur for all R > 0. Choose
any n, and without loss of generality assume that S,, > 0. Let Y = max{X € II :
X < ming<g<n Sk} be the rightmost point on the negative half-line that was not visited
before time n. For R > |Y|, there exists £ > 0 such that X, > S,, and AkR. Then
d(Xy,Y) < d(Xk, —R) < d(Xk, Xi+1) and GWIPP visits Y on the negative half-line before
visiting Xg1. O

This characterisation suggests that the Borel-Cantelli lemmas will be useful. In
particular, we use the extended Borel-Cantelli Lemma.

Lemma 2.2 (Extended Borel-Cantelli lemma, [5, Corollary 6.20]). Let F,,, n > 0, be a
filtration and let A,, € F,,, n > 1. Then, with probability 1,

{A, io} = {ZIP[An | Fro1] = oo} .

The convergence or divergence of the associated random series will be determined
using Campbell’s theorem for sums of non-negative measurable functions, which provides
a zero-one law for the convergence of a random series.

Theorem 2.3 (Campbell’s theorem, [6, Section 3.2]). Let II be a Poisson process on S
with mean measure u and let f : S — [0, oo] be a measurable function. Then the sum

> HX)

Xell
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is convergent with probability 1 if and only if

/ min{ f(z), 1}u(dz) < co.
s

Moreover, the sum diverges with probability 1 if and only if the integral diverges.

We prove Theorem 1.1 and 1.2 together, as follows. We prove that GWIPP(u) is
recurrent with probability 1 if the integral conditions in Theorem 1.2 are true, and
transient with probability 1 otherwise. This immediately implies Theorem 1.1.

Proof of Theorem 1.1 and 1.2. From Lemma 2.1 it follows that the sufficient and neces-
sary conditions implying that the GWIPP is recurrent with probability 1, are the same as
those implying that {Af i.0.} and { B} i.0.} occur with probability 1 for all R > 0.

Let Fj, = 0(X1, X2, ..., X)). Then AF € Fi1; for any R > 0, and

P[AZ | Fi] = PII( Xy, 2Xy + R) = 0 | Fi] = exp(—pu( Xy, 2X, + R)),

where the final equality holds since X; € Fi, II N (X, o) is independent of Fj, and
the number of points in a measurable set A C R is distributed like Poi(u(A)). Applying
Theorem 2.3 with f(z) = exp(—u(z, 2z + R)), we obtain

S PIAF | Fil =) exp(—pu(Xk, 2Xg + R)) = o0
k=1 k=1

with probability 1 if and only if
| expl-nte 20+ R)ulds) = .
0

Moreover, Lemma 2.2 implies that Y-, P[AF | F;] = cc a.s. if and only if P[Af i.0.] = 1.
Thus, the integral above diverges if and only if P[AF i.0.] = 1.
Similarly, if the integral above converges, so does the sum

ZIP[AkR | Fi]

k=1

with probability 1, and then by Lemma 2.2, the event {AF i.0.} does not occur with
probability 1.

In the same way one can show that fi)oo exp(—p(2z — R, z))u(dz) = oo if and only if
P[Bfi.0.] = 1; and, conversely, if the integral converges, then P[B} i.0.] = 0.

In particular, the above proves that GWIPP is recurrent with probability 1 or 0, which
is Theorem 1.1. O

Remark 2.4. We lose no generality by assuming that the greedy walk on II starts from
the origin, since recurrence/transience does not depend on the starting point. One
explanation of this is that the distribution of the points in any finite interval around
the origin does not influence the behaviour of the greedy walk far away from the
origin. More precisely, suppose the walk starts from ¢ € R, a > 0 (one can argue
similarly for ¢ < 0). One can show that the events {II(X,2X; —a + R) = 0i.0.} and
{I(2X_r —a— R, X_j) = 01i.0.} occur for all R > 0 if and only if {Af i.0.} and {Bf} i.0.}
occur for all R > 0. By Lemma 2.1, GWIPP(II) is recurrent if these events occur.

A natural question is which conditions one needs to place on p (or A) so that {AkR io.}
for all R > 0 if and only if {A{ i.0.}. The reason why this is not an unreasonable demand
is that the events IT1( X}, 2X;, + R) = 0 and II(X}, 2X}) = 0 should not be too different for
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large X}, since the length of the interval (2X;,2X; + R) becomes negligible compared
to the length of (X}, 2X}) in the limit. However, the following example shows that some
extra conditions need to be placed, and that, in general, {A? i.o.} does not imply that
{Afio.} forall R > 0.

Remark 2.5. Let

At) =D a 12" —2<t<2"—1)
n=1

for some increasing sequence (a,)52 ;.
If X equals the rightmost point in the interval (2" — 2,2 — 1), then II(X,2X) = 0
almost surely. This implies that X is always closer to 0 than to the leftmost point in
(2ntl —2 27+ 1), Hence, {A? i.0.} occurs with probability 1.
However, for R = 3 we have {43 i.0.} C {II(2" —2,2" — 1) = 0 i.0.}. Choose now the
sequence (a,)%2; such that

S PR -22"-1)=0=) e ™ <o
n=1 n=1

By the Borel-Cantelli lemma, the probability of {II(2" — 2,2" — 1) = 0i.0} is 0, which
implies that also IP(A3 i.0.) = 0. Therefore GWIPP()) is transient even though A% occurs
infinitely often with probability 1.

Denote by M; C M those measures ;. € M with the property that for any R > 0, there
exists some constant C' = C'(R) > 0, such that u(z,z + R) < C and pu(—z — R,—2z) < C
for all x > 0. As the following lemma shows, this boundedness assumption disallows any
examples of the type in Remark 2.5.

Lemma 2.6. Let u € M. Then GWIPP(u) is recurrent with probability 1 if and only if

[e%s) 0
| expnte,20pun) =00 and [ expl-n(zo.0)u(ds) = .
0

— 00

Proof. Fix R > 0. We have
exp(=C) [ expl(—p(e 20)u(an) < [ exp(—ple. 20) — p(22, 20+ R)ulcl)
0 0
- / exp(—pu(z, 20 + R))u(dx)

</ " exp(—pu(, 22))u(dz).

The integral on the negative half-line can be similarly bounded. Therefore the integrals
in the statement of the lemma diverge if and only if the corresponding integrals in
Theorem 1.2 diverge. This proves the claim. O

For instance, if 4 € M and the maps =z — u(0,z) and & — p(—=2,0) from [0, 00) to
[0, 00) are Lipschitz, then pu € M,. Also, lim; .+ A(t) < oo implies that A € M, which
gives the following corollary.

Corollary 2.7. Suppose A € M and lim; 4, A(t) < co. Then GWIPP()) is recurrent with
probability 1 if and only if

/OOO exp (_ /:m A(t) dt) Az)dz =00 and /_00o exp <— /2: A(t) dt) A(z)dz = oo.

Next we prove Lemma 1.3.
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Proof of Lemma 1.3. Denote by II the point process with mean measure x and let (S,)22,
be GWIPP(II). Similarly, denote by I’ the point process with mean measure p' and let
(S1)5°, be GWIPP(IT'). Denote the points of IT and II' by

<X 9< X 1<0<X;<Xo<rand <X, <X <0< X <X <

respectively. Since u'(A) > p(A) for all measurable A C (—oo, —K) U (K, 00), we can
couple II and I’ together so that = € ((—oo, —K) U (K, o0)) N1I implies that = € IT'.

Assume GWIPP(IT) is transient. Without loss of generality, we may assume that
S, — oo as n — oo. Then there is some My > 1 such that Si; > Sy for all £ > M,
i.e. (S,)32; moves only to the right after time M,. Assume moreover that M, is large
enough that S;, > K, so that we are on the region where II and II' are coupled. Let
Y =max{X € I : X < ming<k<n, Sk}, thatis, let Y be the rightmost point of II that is
never visited. Note that Y is well-defined because of the transience of GWIPP(II) and the
assumption S,, — oo as n — oc.

Then there are 3 cases: (i) GWIPP(II') never visits a point in (—o0, Y], so S}, — oo and
GWIPP(II') is transient. (ii) GWIPP(II) visits a point in (—o0, Y] and never visits a point in
[Sn,, 00) after that, so S/, — —oo and GWIPP(IT') is transient. (iii) GWIPP(II') visits a point
in (—oo, Y] and visits a point in [Syy,, oo) after that. We claim that S’ , > S’ for all large
enough J, which implies that GWIPP(II) is transient. See Figure 1 for an illustration of
this case and the argument which follows.

Figure 1: An illustration of final part of the proof of Lemma 1.3. Note that both the
positive and negative axis have been rescaled logarithmically. The proof shows that
S 1 = X}, is forced.

By assumption, for all large enough J there exists some n < J such that S/, <Y
and S > Sy;,. Let S’ = X, and let ¢ be such that X, < X; < X,;,. Since GWIPP(II)
only moves to the right after time M,, we have d(Xy, X¢1+1) < d(X,,Y). The coupling
between IT and IT" on (K, 00) implies that X, < S < X; .| < X,,;. Hence d(S, X;_ ) <
d(Xe, Xeq1) < d(Xe,Y) < d(S5,Y). Hence S, | = X; ., > 5%, as claimed. Therefore
GWIPP(IT') is transient. O

3 Threshold results

In this section we study the threshold between transience and recurrence, proving
Propositions 1.4-3.5 and related results. We focus on symmetric intensity functions of
the form

_ log f(]t])
Ar(t) = [t|log2 ’
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where f : (0,00) — [1,00) is a regularly varying function with non-negative index £,
meaning that lim;_, ., f(at)/f(t) = a® for any a > 0. If 3 = 0, then f is said to be slowly
varying. For a thorough introduction to the theory of regular variation, we refer the
reader to [1].

Let M, be the set of all intensity functions A\; € M such that f : (0,00) — [1,00) is a
regularly varying function with index g > 0. Since

1
/ Af(z)dz < oo,
0

we necessarily have that f(z) — 1 as # — 0. (This also means that there is no issue
with integrability near 0 in the results that follow.) Moreover, one can show that
Ms C M, C M, so we may apply all results developed in Section 2. The intensity
functions in M are symmetric about 0, so it suffices to only look at the positive half-line.
However, the results in this section can easily be adapted to the case when ) is not
assumed to be symmetric.

We use the following standard notation. If f,g : R — R are two functions and
there exists C' > 0 such that |f(z)| < C|g(z)]| for all large enough xz, then we write
f(z) = O(g(2)). If f(z) = O(g(x)) and g(x) = O(f(z)), then we write f(z) = O(g(x)).
Lemma 3.1 ([1, Theorem 1.5.2]). If A C (0, 00) is a compact set and f : (0,00) — [0, 00)
is regularly varying with index 3, then f(az)/f(xz) — a® as © — oo, uniformly for all
a € A.

Lemma 3.2. Suppose Ay € M,. Then GWIPP()\;) is recurrent with probability 1 if and
only if

> log f(x) s
/o of@) T

Proof. The set [1,2] is compact and f is regularly varying. It follows by Lemma 3.1, that

2x 1
/x (ﬁo];(;) dt = log f(z) + O(1)

as r — oo. Hence

/0 exp (- i /\f(t)dt> )\f(“")dx_/o f(x) xlog2 dx_@(l)/o zf(x) o

The claim follows from Corollary 2.7. O

The next corollary states that if f is regularly varying with positive index, then we
obtain a transitive process with probability 1.

Corollary 3.3. Let f be a regularly varying function with index 8 > 0. Then GWIPP()\y)
is transient with probability 1.

Proof. There exists a slowly varying function ¢(z) such that f(z) = 2%/(z) (see, e.g. [1,
Theorem 1.4.1]). Then for z > 0,
log f(z) _ log f(z) _ L(x)

of(x) — xl+BL(x) = 8’ (3.1)

where L(z) = 1"%(’;()“”) is a slowly varying function (see, e.g. [1, Theorem 1.3.6]). The

function on the right hand side of (3.1) is integrable on (0, c0) whenever 5 > 0, and by
Lemma 3.2, GWIPP()y) is transient. O

ECP 23 (2018), paper 14. http://www.imstat.org/ecp/
Page 8/11


http://dx.doi.org/10.1214/18-ECP119
http://www.imstat.org/ecp/

The greedy walk on an inhomogeneous Poisson process

The intensity functions in Proposition 1.4 lie in M with f slowly varying, showing
that a transition between recurrence and transience occurs inside the subclass of Mg
for which f is slowly varying.

For notational convenience in the following proofs, we define the “power tower”
recursively by a 11 0 := 1 and a 11 n := a*T" (=1 for any a € [0, 00) and n > 1. Note that
log(") t=0foranyt<eft (n—1).

Proof of Proposition 1.4. Let

f(t) = max (H(log(il) ), 1) )

=2

so that \(t) = 1?%(;;, (;). Note that A € M,. Assume first that as > 0. Then

to t " g log® t loe®
/ e le) g, :/ z;f:ﬂ o dr=6 / I B
ettn 2f(2) ettn [ [;o(log" ™ x)ai ettn x [[;_o(log"' ™" x)ai

as t — oo, where the final integral is the leading order term of the sum. The final integral
is convergent precisely when one of the conditions in the statement is satisfied. (This is
seen by repeatedly using the change of variables z — e”.) By Lemma 3.2, the statement
follows. If ay = 0, then consider instead A (¢) := A\(t) + %l‘otg‘(lz)g‘él and use the above along
with Lemma 1.3 to conclude that GWIPP()) is recurrent in this case. This completes the
proof of the first part. The second part of the claim follows immediately from the more

general Proposition 3.4. O

In the next Proposition we consider a generalisation of Proposition 1.4.

Proposition 3.4. Letas =2 andas =1 =a4 =as = ... and let g : (0,00) — [1,00) be a
non-decreasing slowly varying function satisfying log(l) g(t) = O(log(Q) [t]) and let

1
M0 = Toga (

Forn >1, let b, := g(e 11 n). Then GWIPP()\) is reccurent with probability 1 if and only if
Yoo 5, 1/b, = <.

> ailog? |t] +log") g(lt)> :
=2

1=

Proof. Fort > 0 we have A(t) = l‘t)i]; (é) with

log f(t) = Z a; log® (t) + log g(t).
=2
Because of our definition of the iterated logarithm, this implies that

7(t) = TT (max(1, (tog® 1)*:+1)) g(1).
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Since b,—1 < g(z) for any e 11 (n — 1) < z < e 71 n, we obtain

/°° log f(x) o — > /eﬁn Yoy a; log(i) x + log g(z) dz

zf(z) B o Jett(n-1) T H?;ll (log(i) x)%i+1g(x)
0 ettn (2)
—omy. | L S —
n=2ett(n—1) irHi:l (1Og ‘r)aiJrlg(x)
oo et™n 1
<0e(1) / S W) dzx
n=2eMt(n—1) xH¢:1 (log"” )b, —1
=1 ettn
=0(1 log™ &
M) — bn—1 [ s ]eTT(n—l)
o0
1
=0(1) 2
n—2 n—1

Using instead the bound b,, > g(z) for any e 11 (n — 1) < x < e 11 n, we arrive at

| > log f(x) =1
— < dz < O(1 .
n—>2 bn - /e (L’f(.’E) - ( )7;2 bnfl
Applying Lemma 3.2 completes the proof. O

The following result provides a useful tool for investigating the behaviour of a given
intensity function. The idea behind the proof is essentially to find a suitable intensity
function for comparison, and apply Lemma 1.3 and Proposition 1.4.

Proposition 3.5. et A\ € M. Letaz =2 anda; =1 = a4 = a5 = .... If there exists
some n > 2 such that

tA(t)log2 — S L a;log ¢ tA#) log2 — St log® |t
lim (t)log2—> ", a;log “1 or lim tA(t) log2 — >0, ailog™ || -1

t—o0 an log'™ ¢ t——o0 an log™ |t

then GWIPP()\) is transient with probability 1. If there exists some n > 2 such that

— A log2 — 3"t a,;log ¢ — M) log2 — S "L a; log® |t
lim ( ) Og 2122 a Og < 1 aHd lim ‘ | ( ) Og ZZ:Z a Og | | < 1
t—00 an log™ ¢ t——o00 an log™ It]

then GWIPP()\) is recurrent with probability 1.

Proof. Suppose first that

n—1 i
lim tA(t)log2 — > a; log ¢

m >1
t—o0 an log™ ¢

for some n > 2. (Let n be minimal with this property.) Let

1 At log2 — S L a;log™ ¢
B

t—o0 an log™ ¢
and define
, At), t<0
N(t) = 1 n—1 (i) (n)
TiTiog2 (Ziﬂ a;log'" |t| + aay log |t\) , t>0.
ECP 23 (2018), paper 14. http://www.imstat.org/ecp/
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Proposition 1.4 implies that GWIPP()\’) is transient. (In Proposition 1.4 we assumed that
the intensity function be symmetric, but this does not change the evaluation of the
integral on the positive half-axis.) Since A(t) > N(¢) for all ¢ large enough, Lemma 1.3
implies that GWIPP()) is transient.

Now suppose the second condition holds for some n > 2. If

1 - ;
M= log2 (Z s '”) |
1=2

then A(t) < N(t) for all sufficiently large ¢. By Proposition 1.4, GWIPP()') is recurrent,
and Lemma 1.3 implies that GWIPP()) is recurrent. O

Proposition 3.5 does not answer what happens if, say,

tA\(H)1log2 — " a; log™ ¢ HA() log2 — 37 aslogt? |t
i 2@ log2 -5 0, ailog™t o [HA®)log2 — 50, ailog ]
t—00 an log™ ¢ t——00 an log(") It]

for all n > 2. As seen in Proposition 3.4, both recurrence and transience are possible in
this case.
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