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Abstract

In this note we answer a question of G. Lecué, by showing that column normalization
of a random matrix with iid entries need not lead to good sparse recovery properties,
even if the generating random variable has a reasonable moment growth. Specifically,
for every 2 ≤ p ≤ c1 log d we construct a random vector X ∈ Rd with iid, mean-zero,
variance 1 coordinates, that satisfies supt∈Sd−1 ‖

〈
X, t

〉
‖Lq ≤ c2

√
q for every 2 ≤ q ≤ p.

We show that if m ≤ c3
√
pd1/p and Γ̃ : Rd → Rm is the column-normalized matrix

generated by m independent copies of X, then with probability at least 1−2 exp(−c4m),
Γ̃ does not satisfy the exact reconstruction property of order 2.
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1 Introduction

Sparse Recovery is one of the most important research topics in modern signal
processing. It focuses on the possibility of identifying a sparse signal—i.e., a signal that
is supported on relatively few coordinates in Rd relative to the standard basis—using
linear measurements. We refer the reader to the books [2, 3] for extensive surveys on
sparse recovery and related topics.

In a basic sparse recovery problem one pre-selects an m× d matrix Γ that generates
the given data. For an unknown (sparse) vector v, the coordinates of the vector Γv are
the m linear measurements of v one may use for recovery. The hope is that for a well
chosen Γ, the resulting m linear measurements are enough to identify v, and because
v is sparse, the number of measurements required for recovery is significantly smaller
than the dimension d.

One of the main achievements of the theory of sparse recovery was the introduction
of a convex optimization problem called basis pursuit, which is an effective recovery
procedure: it selects t ∈ Rd that solves the minimization problem

min ‖t‖1 subject to Γv = Γt, (1.1)

where we denote by ‖x‖p = (
∑d
j=1 |xj |p)1/p.

The question of finding conditions on the measurement matrix Γ that ensure the
recovery of any sparse vector has been studied extensively. Specifically, one would like
to guarantee that for every s-sparse vector v, the `1 minimization problem (1.1) has a
unique solution—v itself.
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Column normalization of a random measurement matrix

Definition 1.1. Let Σs be the set of s-sparse vectors in Rd. A matrix Γ : Rd → Rm

satisfies the exact reconstruction property of order s if for every v ∈ Σs there is a unique
solution to the minimization problem (1.1) and that unique solution is v.

Because measurements are ‘expensive’, one would like to find matrices Γ that satisfy
the exact reconstruction property of order s with the smallest number of measurements
(rows) possible. One may show that if Γ satisfies the exact reconstruction property of
order s, then it must have at least m ∼ s log(ed/s) rows. Moreover, typical realizations of
various random matrices with ∼ s log(ed/s) rows indeed satisfy the exact reconstruction
property of order s (see, e.g., [3]). Therefore, the optimal number of measurements
required for the exact reconstruction property of order s is m ∼ s log(ed/s), and that
number serves as the benchmark for an optimal measurement matrix.

The question we are interested in has to do with the normalization of the columns of
the measurement matrix. It is often assumed in literature that the columns of Γ have unit
Euclidean norm (see, for example, [2] and [3] and references therein); i.e., if {e1, ..., ed}
is the standard basis in Rd then ‖Γej‖2 = 1 for 1 ≤ j ≤ d. Column normalization appears
frequently in various notions used in the study of the exact reconstruction property.
Among these well-studied notions are coherence [3]; the restricted eigenvalues condition
[1]; and the compatibility condition [2]. Moreover, in many real-world applications,
measurement matrices with normalized columns tends to perform better than matrices
whose columns have not been normalized.

While column normalization seems a natural idea, it adds substantial technical
difficulties to the analysis of basis pursuit when random measurement matrices are
used: normalizing the columns of a matrix with independent rows introduces additional
dependencies. Despite the added difficulties, the results of [5] highlight the possibility
that column normalization may still have a significant role to play in the context of
random measurement matrices, particularly in heavy-tailed situations.

Before we formulate the results of [5], let us introduce some notation. Throughout,
absolute constants are denoted by c, c1, ....; their value may change from line to line. c(L)

denotes a constant that depends only on the parameter L. We write a ∼ b if there are
absolute constants c and C such that ca ≤ b ≤ Ca. Finally, Bd2 denotes the Euclidean unit
ball in Rd and Sd−1 is the corresponding unit sphere.

Definition 1.2. Let x be a random variable. Given an integer m ≤ d, let (xij), 1 ≤ i ≤ m,
1 ≤ j ≤ d be md independent copies of x. The random matrix generated by x is
Γ = (xij)1≤i≤m,1≤j≤d. Also, we denote by X = (xj)

d
j=1 a vector with d independent copies

of x; thus the rows of Γ are m independent copies of X.

The following result from [5] (Theorem C’ there) is a construction of random matrices
generated by seemingly nice random variables, but despite that the matrices exhibit
poor reconstruction properties.

Theorem 1.3. There exist absolute constants c1, c2 and c3 for which the following holds.
For every 2 < p ≤ c1 log d there is a mean-zero, variance one random variable x that
satisfies

• For every 2 ≤ q ≤ p and every t ∈ Sd−1,

‖
〈
X, t

〉
‖Lq ≤ c2

√
q‖
〈
X, t

〉
‖L2 = c2

√
q.

• If m ≤ c3
√
p(d/ log d)1/p then with probability 1/2, Γ does not satisfy the exact recon-

struction property of order 1.

Theorem 1.3 implies that without assuming that each
〈
X, t

〉
has a subgaussian mo-
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ment growth1 up to the p-moment for p close to log d, the resulting measurement matrix
is suboptimal. Indeed, under a modest assumption, say that ‖

〈
X, t

〉
‖L4
≤ c‖

〈
X, t

〉
‖L2

for every t ∈ Rd, the recovery of 1-sparse vectors requires at least ∼ (d/ log d)1/4 mea-
surements. And, if p = (log d)/(β log log d) for β large enough, then the number of
measurements required for the recovery of 1-sparse vectors is at least ∼ logcβ d, which
is suboptimal when cβ > 1.

To put Theorem 1.3 in some perspective, it is complemented by a positive result, once
linear forms have enough subgaussian moments. Indeed, the following is an immediate
corollary of Theorem A from [5].

Theorem 1.4. Let x be a mean-zero, variance one random variable. Assume that for
every 2 ≤ q ≤ c1 log d and every t ∈ Sd−1,

‖
〈
X, t

〉
‖Lq
≤ L√q‖

〈
X, t

〉
‖L2

= L
√
q. (1.2)

If

m ≥ c2s log(ed/s),

then with probability at least 1−1/dc3 −2 exp(−c4m), Γ satisfies the exact reconstruction
property of order s. Here, c1 in an absolute constant and c2, c3 and c4 are constants that
depend only on L.

Theorem 1.4 implies that if X has a slightly better moment growth condition than in
Theorem 1.3—a subgaussian growth up to p ∼ log d—the random measurement matrix
generated by x satisfies the exact reconstruction property of order s, for the optimal
number of measurements m ∼ s log(ed/s).

The connection with column-normalization arises from the main observation used in
the proof of Theorem 1.4 (see Theorem B in [5]).

Lemma 1.5. Recall that Σs denotes the set of s-sparse vectors in Rd. Let Γ : Rd → Rm.
If

(a) ‖Γx‖2 ≥ α‖x‖2 for every x ∈ Σs,

(b) ‖Γej‖2 ≤ β for every j ∈ {1, ..., d},

and s1 = bα2(s−1)/(4β2)c−1, then Γ satisfies the exact reconstruction property of order
s1.

Lemma 1.5 gives a clear motivation for considering column-normalized random
measurement matrices, and that motivation grows stronger when one examines the
proof of Theorem 1.4. It turns out that the ‘bottleneck’ in the proof is the upper bound on
max1≤j≤d ‖Γej‖2, while guaranteeing (a) requires a rather minimal small-ball assumption.
Therefore, the seemingly more restrictive condition (a) is almost universally true (see
[7, 5] for more details) whereas (b) is the only place in which the moment growth
assumption is used in the proof of Theorem 1.4.

Clearly, column normalization resolves the issue of an upper estimate on
max1≤j≤d ‖Γej‖2. That, and the fact that (a) is true under minimal assumptions has
led G. Lecué [4] to ask whether with column normalization, the moment growth condition
(1.2) can be relaxed significantly, leading to a much stronger version of Theorem 1.4.

Question 1.6. Let x be a mean-zero, variance 1 random variable, set Γ to be the m× d
matrix generated by x and let Γ̃ be the column-normalized matrix generated by x; thus,

1Recall that a characterization of an L-subgaussian random variable is that ‖z‖Lp ≤ L
√
p‖z‖L2 for every

p ≥ 2.
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the entries of Γ̃ are

Γ̃ij =
xij(∑m

`=1 x
2
`j

)1/2
=

Γij
‖Γej‖2

.

If ‖
〈
X, t

〉
‖L4
≤ L‖

〈
X, t

〉
‖L2

for every t ∈ Rd and m = c(L)s log(ed/s), does Γ̃ satisfy the
exact reconstruction property of order s with high probability?

Our main result is a version of Theorem 1.3 for a column-normalized matrix generated
by well chosen random variable, showing that the answer to Question 1.6 is negative.

Theorem 1.7. There exist absolute constants c1, c2 and c3 for which the following holds.
For every 2 ≤ p ≤ log d there is a symmetric, variance 1 random variable x with the
following properties:

• If x1, ..., xd are independent copies of x and X = (xj)
d
j=1, then for every t ∈ Sd−1 and

every 2 ≤ q ≤ p, ‖
〈
X, t

〉
‖Lq ≤ c1

√
q‖
〈
X, t

〉
‖L2 .

• If m ≤ c2
√
pd1/p, then with probability at least 1 − 2 exp(−c3m), the m × d column-

normalized matrix generated by x does not satisfy the exact reconstruction property
of order 2.

Theorem 1.7 implies that column normalization does not improve the poor behaviour
described in Theorem 1.3. Indeed, for p = 4, linear forms

〈
X, t

〉
satisfy an L2 − L4

norm equivalence, but the recovery of 2-sparse vectors using Γ̃ requires at least m ∼
d1/4 measurements — significantly larger than the optimal number of measurements,
m ∼ log d. Moreover, if β > 1 and p = (log d)/β log log d, then although ‖

〈
X, t

〉
‖Lq .

√
q‖
〈
X, t

〉
‖L2

for every 2 ≤ q ≤ p, the recovery of 2-sparse vectors using Γ̃ requires at

least m ∼ logcβ d measurements, which, again, is suboptimal when cβ > 1.

Remark 1.8. Theorem 1.7 actually improves the estimates established in [5]: a logarith-
mic factor in the bound on the number of measurements is removed, and the probability
estimate is significantly better: 1− 2 exp(−cm) rather than constant probability.

Let us mention the straightforward observation that a version of Theorem 1.4 holds
for column-normalized matrices as well.

Theorem 1.9. Let x and L be as in Theorem 1.4 and let Γ̃ be the column-normalized
measurement matrix generated by x. If m ≥ c1(L)s log(ed/s), then with probability at
least 1− 1/dc2(L)− 2 exp(−c3(L)m), Γ̃ satisfies the exact reconstruction property of order
s.

Theorem 1.9 is an immediate consequence of the proof of Theorem 1.4; its proof is
presented in Appendix A merely for the sake of completeness.

2 Proof of Theorem 1.7

Let ε be a symmetric, {−1, 1}-valued random variable, set η to be a {0, 1}-valued
random variable with mean δ and let R > 0; the values of δ and R are specified in what
follows. Set

x = ε ·max{1, ηR},

let x1, ..., xd be independent copies of x and put X = (x1, ..., xd).
Let us identify conditions under which X satisfies the first part of Theorem 1.7.

Lemma 2.1. There exists an absolute constant c0 for which the following holds. Assume
that δ < 1/2 and that there is L ≥ 1 such that for every 2 ≤ q ≤ p, Rδ1/q ≤ L√q. Then for
every t ∈ Rd and every 2 ≤ q ≤ p,

‖
〈
X, t

〉
‖Lq
≤ c0L

√
q‖
〈
X, t

〉
‖L2

.
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Moreover, for every t ∈ Rd, ‖
〈
X, t

〉
‖L2

= c1‖t‖2, and 1/
√

2 ≤ c1 ≤ 2L.
In particular, X/c1 is an isotropic random vector and for every t ∈ Rd,

〈
X, t

〉
exhibits

a c0L-subgaussian moment growth up to the p-th moment.

The proof of Lemma 2.1 is based on a simple comparison argument:

Lemma 2.2. Let x1, ..., xd be symmetric, independent random variables and assume
z1, ..., zd are also symmetric and independent. If p is even and for every 1 ≤ j ≤ d and
every 1 ≤ q ≤ p, ‖xi‖Lq

≤ L‖zi‖Lq
, then for every t ∈ Rd,

‖
d∑
j=1

tjxj‖Lp
≤ L‖

d∑
t=1

tjzj‖Lp
.

Proof. Observe that

E(

d∑
j=1

tjxj)
p = E

∑
~β

c~β

d∏
j=1

t
βj

j x
βj

j =
∑
~β

c~β

d∏
j=1

t
βj

j Ex
βj

j ,

with the sum taken over all choices of ~β = (β1, ..., βd) ∈ {0, ..., p}d, where
∑d
j=1 βj = p

and c~β is the appropriate multinomial coefficient. Since x1, ..., xd are symmetric, the only
products that do not vanish are when β1, ..., βd are even, and if β1, ..., βd are even then

d∏
j=1

t
βj

j Ex
βj

j ≤
d∏
j=1

t
βj

j L
βjEz

βj

j .

Therefore, ∑
~β

c~β

d∏
j=1

t
βj

j Ex
βj

j ≤ L
p
∑
~β

c~β

d∏
j=1

t
βj

j Ez
βj

j = LpE(

d∑
j=1

tjzj)
p.

Proof of Lemma 2.1. Note that x = εmax{1, Rη} is symmetric and that Ex2 = 1 · (1 −
δ) + R2δ. Hence, if δ ≤ 1/2 and R2δ ≤ 2L2 then 1/2 ≤ Ex2 ≤ 4L2—and the “moreover”
part of the claim follows.

Turning to the first part of the claim, let x1, ..., xd be independent copies of x, set g
to be a standard gaussian random variable and let g1, ..., gd be independent copies of g.
Recall that for every 2 ≤ q ≤ p, Rδ1/q ≤ L√q; thus

(E|x|q)1/q ≤ 1 +Rδ1/q ≤ 2L
√
q ≤ c1L(E|g|q)1/q,

implying that (x1, ..., xd) and (g1, ..., gd) satisfy the conditions of Lemma 2.2 with a con-
stant c1L. Applying Lemma 2.2, it follows that for every t ∈ Sd−1 and every 2 ≤ q ≤ p,

‖
d∑
j=1

tjxj‖Lq
≤ c1L‖

d∑
j=1

tjgj‖Lq
≤ c2L

√
q.

Hence, ‖
〈
X, t

〉
‖Lq
≤ c3L

√
q‖
〈
X, t

〉
‖L2

, as claimed.

Now let ηij be independent copies of η and put xij = εij max{1, ηijR} as above. The
key part in the construction is the following lemma which describes the typical structure
of the matrix generated by x,

Γ = (xij)1≤i≤m,1≤j≤d : Rd → Rm.
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Lemma 2.3. There exist absolute constants c1, c2, c3 and c4 for which the following holds.
Let δ = c1/d and R ≥ c2m. Then, with probability at least 1− 2 exp(−c3m):

(1) there are indices j1 6= j2 ∈ {1, ..., d} and 1 ≤ ` ≤ m such that η`j1 = η`j2 = 1 and for
i 6= `, η`j1 = η`j2 = 0;

(2) there is a subset J ⊂ {1, ..., d} of cardinality |J | = 2m such that ηij = 0 for every
j ∈ J and 1 ≤ i ≤ m;

(3) Moreover, for the subset J from (2) we have that c4Bm2 ⊂ ΓBJ1 , where BJ1 = {x =∑
j∈J xjej : ‖x‖1 ≤ 1}.

Corollary 2.4. If Γ satisfies Lemma 2.3 then its column-normalized version Γ̃ does not
satisfy the exact reconstruction property of order 2.

Proof. Using the notation of Lemma 2.3 and by its first part, ‖Γej1‖2 = ‖Γej2‖2 =

(R2 +m− 1)1/2; hence, if we denote by {f1, ..., fm} the standard basis of Rm,

Γ̃ej1 =
1

(R2 +m− 1)1/2

(
ε`j1Rf` +

∑
i 6=`

εij1fi
)

and

Γ̃ej2 =
1

(R2 +m− 1)1/2

(
ε`j2Rf` +

∑
i6=`

εij2fi
)
.

If ε`j1 6= ε`j2 set v = (ej1 + ej2)/2; otherwise, set v = (ej1 − ej2)/2. In either case, v is
2-sparse. Let w = Γ̃v and observe that the coordinates of w satisfy that

w` = 0 and w2
i ≤

1

R2 +m− 1
for i 6= `;

therefore,

Γ̃v ∈
√
m

R
Bm2 . (2.1)

Next, let J be the set of coordinates given by the second part of Lemma 2.3. Clearly,
j1, j2 6∈ J and

ΓJ = (xij)1≤i≤m,j∈J = (εij)1≤i≤m,j∈J

is an m× 2m Bernoulli matrix. Therefore,

Γ̃J = (Γ̃ij)1≤i≤m,j∈J =
ΓJ√
m
.

Observe that Γ̃BJ1 = Γ̃JBJ1 and by the third part of Lemma 2.3 there is an absolute
constant c such that

cBm2 ⊂ ΓBJ1 =
√
mΓ̃BJ1 . (2.2)

Combining (2.1) with (2.2) it follows that if
√
m/R ≤ c/

√
m then Γ̃v ∈ Γ̃BJ1 . Since

‖v‖1 = 1 and v 6∈ BJ1 , it is evident that v is not the unique solution of the minimization
problem

min ‖t‖1 subject to Γ̃v = Γ̃t

and Γ̃ does not satisfy the exact reconstruction property of order 2.

The proof of the first two parts of Lemma 2.3 is based on a standard fact that
follows from Bernstein’s inequality: if W1, ...,Wd are independent copies of a {0, 1}-
valued random variable W and EW = µ then with probability at least 1− 2 exp(−cµd),
µd/2 ≤ |{j : Wj = 1}| ≤ 3µd/2.
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Proof of Lemma 2.3. Let η1, ..., ηm be independent copies of η and let Y be the indicator
of the event

∃` ∈ {1, ...,m} η` = 1 and ηi = 0 for every i 6= `.

Observe that EY = mδ(1 − δ)m−1 and that if Y1, ..., Yd are independent copies of Y
and EY ≥ 2m/d then with probability at least 1 − 2 exp(−c1m), |{i : Yi = 1}| > m. In
particular, on that event, the matrix (ηij)1≤i≤m,1≤j≤d has at least two identical columns,
each with a single entry of 1. Therefore, the first part of Lemma 2.3 holds if

mδ(1− δ)m−1 ≥ 2m

d
(2.3)

For the second part of the lemma, let Z be the indictor of the event

ηi = 0 for every 1 ≤ i ≤ m

and note that EZ = (1− δ)m. If Z1, ..., Zd are independent copies of Z and EZ ≥ 4m/d

then with probability at least 1− 2 exp(−c2m), |{i : Zi = 1}| ≥ 2m. Hence, if

(1− δ)m ≥ 4m

d
, (2.4)

then with probability at least 1− 2 exp(−c2m), there is J ⊂ {1, ..., d} and for every j ∈ J
and every 1 ≤ i ≤ m, ηij = 0.

Turning to the third part of the lemma, and by applying the second part, we have
that conditioned on (ηij), xij = εij for (i, j) ∈ {1, ...,m} × J . Let ΓJ = (εij)1≤i≤m,j∈J and
recall that (εij) are independent of (ηij). Therefore, by Corollary 4.1 from [6], applied
conditionally on (ηij) there are absolute constants c3 and c4 for which, with probability
at least 1− 2 exp(−c3m),

c4B
m
2 ⊂ ΓBJ1 .

Finally, all that remains is to see when (2.3) and (2.4) are satisfied, which clearly
holds with the choice of δ = c/d and as long as m ≤ c′d for suitable absolute constants
c > 1 and 0 < c′ < 1.

To complete the proof of Theorem 1.7, let δ = c1/d for c1 > 1 large enough as above,
set p > 2 and put R =

√
pd1/p—a choice that complies with the conditions of Lemma 2.3

as long as
m ≤ c2

√
pd1/p. (2.5)

It follows from Corollary 2.4 that with probability at least 1− 2 exp(−c3m), the column-
normalized matrix Γ̃ generated by x = εmax{1, Rη} does not satisfy the exact reconstruc-
tion property of order 2. All that remains is to show that x also satisfies the assumptions
of Lemma 2.1: that Rδ1/q ≤ L√q for every 2 ≤ q ≤ p and for an absolute constant L.

To that end, let φ(x) =
√
x(d/c1)1/x and observe that φ(x) is decreasing when 2 ≤ x ≤

2 log(d/c1); hence, φ(p)/φ(q) ≤ 1 for every 2 ≤ q ≤ p as long as p ≤ 2 log(d/c1). If we set
L = c1 then Rδ1/q ≤ √q for every q ≤ p, as required.
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A Proof of Theorem 1.9

The proof is a direct consequence of the argument used in the proof of Theorem 1.4.
Thanks to column normalization, Γ̃ satisfies (b) in Lemma 1.5 for β = 1. All that is left to
verify is (a) for α which is a constant that depends only on L.

The proof of Theorem 1.4 reveals two fact: firstly, if Γ has m ≥ c1(L)s log(ed/s) inde-
pendent rows that are distributed as X then with probability at least 1− 2 exp(−c2(L)m),

inf
t∈Σs

‖Γt‖22 = inf
t∈Σs

m∑
i=1

〈
Xi, t

〉2 ≥ c3(L)m‖t‖22;

and secondly, with probability at least 1− 1/dc4(L),

max
1≤j≤d

‖Γej‖2 ≤ c5(L)
√
m.

For every t ∈ Σs, set

t̃ =

d∑
j=1

tj
‖Γej‖2

ej ,

which is also an s-sparse vector. Observe that Γ̃t = Γt̃, implying that

‖Γ̃t‖22 ≥ c3m
d∑
j=1

t2j
‖Γej‖22

≥ c3
c25
‖t‖22,

and (a) from Lemma 1.5 is verified for the matrix Γ̃ for α = c6(L).
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