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Abstract

Consider a list of labeled objects that are organized in a heap. At each time, object j is
selected with probability pj and moved to the top of the heap. This procedure defines
a Markov chain on the set of permutations which is referred to in the literature as
Move-to-Front rule. The present contribution focuses on the stationary search cost,
namely the position of the requested item in the heap when the Markov chain is in
equilibrium. We consider the scenario where the number of objects is infinite and the
probabilities pj ’s are defined as the normalization of the increments of a subordinator.
In this setting, we provide an exact formula for the moments of any order of the
stationary search cost distribution. We illustrate the new findings in the case of a
generalized gamma subordinator and deal with an extension to the two–parameter
Poisson–Dirichlet process, also known as Pitman–Yor process.
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1 Introduction

The Move-to-Front (MtF) rule, also known as Tsetlin library or Heaps process, identi-
fies a well–known stochastic process, which arises in various applied research areas. It is
used to describe an experiment whereby objects are requested at a random instant with
a certain probability from a finite set of items in a serial list; when an object is requested,
it is moved to the front of the list and the positions of the remaining items are unchanged.
This procedure defines an underlying Markov chain on the set of permutations and an
important goal that has been pursued in this area is the determination of the probability
distribution of the search cost, which is defined as the depth of the requested item in
the list. The investigation of the MtF rule has attracted considerable interest of several
authors working at the interface of Computer Science and Probability. For example, [9],
[10] and [11] are important reference works in the area and investigated the model under
different assumptions for the request probabilities. A noteworthy extension occurs when
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Stationary search cost distribution driven by a GG process

the number of items is infinite. In this context, [2], [3] and [4] studied the behaviour
of the search cost distribution for random request probabilities defined by normalized
positive independent and identically distributed (i.i.d.) random variables. [13] illustrate
a link between sales ranks of online shops and the MtF rule. [14] considered different
scaling limits for the search cost when suitable optimality conditions in the list are
specified. In [1] the behaviour of the search cost distribution for an infinite number of
objects is studied under the assumption that a law of large numbers is satisfied on the
unnormalized weights that are used to identify the probability masses with which items
are requested; additionally, some connections with results of [15] are displayed. Finally,
it is worth remarking that the stationary distribution of the MtF Markov chain has been
employed for modeling partial ranking data drawn from a finite collection of items. Such
a model has been named after R.L. Plackett and R.D. Luce, see [23] and [21]. A nice
recent application, within a Bayesian nonparametric framework, has been proposed in
[7]. See also references therein.

The focus of the present paper will be on the determination of the stationary search
cost distribution when the number of objects goes to infinity and the random request
probabilities arise from the normalization of the increments of a subordinator. We will
show that the limiting Laplace transform of the search cost distribution can be expressed
in terms of the Laplace exponent of the underlying subordinator. As a by–product of
this main result, we will be able to evaluate the moments of any order for the stationary
search cost distribution. We will test our findings on the normalized generalized gamma
process. Not only this includes as special cases other noteworthy instances of random
discrete probability measures, such as the Dirichlet process and the normalized γ–stable
subordinator, but it has also been extensively applied in the Bayesian nonparametric
inference literature. See, e.g., [19]. We will also provide a pointer to the two–parameter
Poisson–Dirichlet process, also known as Pitman–Yor process, see [26], thanks to its
representation as a mixture of generalized gamma processes with a base measure having
random total mass.

Outline of the paper

In Section 2 we will provide some preliminary notions about the stationary search cost
distribution and recall a few relevant results which will be used in the paper. In Section
3 we will provide an expression for the limiting Laplace transform when an infinite–
activity subordinator is used to model the request probabilities. As a consequence,
we will be able to derive a general expression for the moments of any order of the
search cost distribution. In Section 4 we will specify the moment formula when the
request probabilities arise from normalization of a generalized gamma process or a
two–parameter Poisson–Dirichlet process. As a byproduct, we will be able to recover
results in [16] and [18] as special cases.

2 The stationary search cost distribution

In this Section we recall some preliminary definitions and results about the stationary
search cost distribution. This part is also helpful since it sets up some notation that will
be used henceforth. In order to describe the experiment that gives rise to the search
cost distribution, consider a collection of items I1, I2, . . . , In that are organized in a heap.
For instance, books on a library shelf, files stored in a computer, etc. Suppose that
the probability of requesting item Ij is pj , j = 1, . . . , n. At each time, if Ij is selected
it is placed at the top of the heap. Successive requests are independent and, at each
time, only one item may be removed from the heap. The underlying stochastic process
is a Markov chain on permutations of the elements of the list and it is known as the
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Move-to-Front rule. See, e.g., [8]. The stationary distribution of this Markov chain is

P (σ = σ) = pσ1

pσ2

1− pσ1

pσ3

1− (pσ1
+ pσ2

)
· · · pσn

1− (pσ1
+ · · ·+ pσn−1

)

where σ = (σ1, . . . , σn) is a random permutation of (1, . . . , n). In general, it is assumed
that the chain starts deterministically in permutation.

The search cost is the position of the requested item in the heap or, equivalently,
the number of items to be removed from the heap in order to find the requested one.
In this setting, it might be of interest to determine the distribution of the search cost
when the underlying Markov chain is at equilibrium. In order to do so, we assume
that the probabilities p1, . . . , pn are random. In particular, if w1, . . . , wn is a sequence of
independent random variables, one can define

pi =
wi∑n
i=1 wi

, i = 1, . . . , n.

In [16] the pi’s are expressed as the normalized increments of a stochastic process

wi = ξti − ξti−1
, i = 1, . . . , n (2.1)

where 0 = t0 < t1 < · · · < tn = 1 and ξ = {ξt: t ∈ [0, 1]} is a subordinator, i.e. a process
with independent increments, almost surely increasing paths and such that P[ξ0 = 0] = 1.
In particular, it is assumed that ξ is a Gamma subordinator, i.e.

φi,n(s) = E
[
e−swi

]
= (1 + s)−(ti−ti−1) s ≥ 0, (2.2)

or a γ-stable subordinator for some γ ∈ (0, 1), i.e.

φi,n(s) = E
[
e−swi

]
= e−(ti−ti−1)s

γ

s ≥ 0. (2.3)

In both cases, an expression of the expected stationary search cost has been determined
in [16], when the number of items n is taken to diverge to ∞ in such a way that
max1≤i≤n(ti − ti−1)→ 0. Such a result has been extended by [20] to any subordinator
and to the case where the list contains a finite number of items. In [18] the limiting
behaviour of the moments of any order of the stationary search cost distribution is
investigated with a γ–stable subordinator defining the weights wi as in (2.1). Usually,
when move-to-front processes are considered, the moves are done at each discrete
unit of time. Nonetheless, for illustrative purposes it may be convenient to consider
a continuous time specification of the process. For instance, [11] considered the case
where the moves are done at the time points of a Poisson process of intensity 1 on [0,∞).
This yields a continuized Markov chain, which has the same stationary distributions as
the one arising in the discrete move–to–front case. In this setting, let

Iji(t) =

{
1 if item Ij precedes item Ii in the list at time t
0 otherwise

The search cost for item Ii at time t is defined as

Sn,i(t) =
∑
j 6=i

Iji(t).

Letting R denote a random variable independent of the MtF Markov chain that identifies
the label of the selected item, namely P (R = i) = pi, then search cost at time t equals
Sn(t) = Sn,R(t). The random variable

Sn ≡ Sn(∞) = lim
t→+∞

Sn(t).
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is termed the stationary search cost. It is worth noting that the stationary search cost
can be seen as a size-biased pick from a size-biased permutation of a random discrete
distribution on the positive integers minus one. To this end, the reader may refer to
[24] for a thorough investigation on size-biased permutations of ranked jumps of a
subordinator; see also [25]. More recently, [27] have investigated a finite dimensional
analogue of the discrete random probability measure studied in [24].

In [18] one can find an explicit expression for the moments of any order k ≥ 1

of Sn, when the request probabilities pi are the normalized increments of a γ–stable
subordinator, as n→∞. In particular, one has

Theorem 2.1. ([18]) If the (p1, . . . , pn) are determined by normalizing the increments of
a γ-stable subordinator as in (2.3), with ti − ti−1 = 1/n for each i ∈ {1, . . . , n}, then

lim
n→∞

E(Skn) =

{ ∑k
l=1

(l!)2

( 1
γ−l−1)l

a
(k)
l if γ < 1

k+1

∞ otherwise

where a(k)l , l = 1, . . . , k, are the Stirling numbers of second kind.

The main tool for achieving the previous result is the Laplace transform of Sn, which
can be determined according to the following

Theorem 2.2. ([4]) If {wi : i = 1, . . . , n} are non–negative independent random variables
and pi = wi/

∑n
j=1 wj for each i = 1, . . . , n, then

φSn(s) =

n∑
i=1

∫ ∞
0

∫ ∞
t

φ′′i,n(r)
∏
j 6=i

ht,s,j,n(r) dr

 dt , (2.4)

for all s > 0, where φj,n(s) = E[e−swj ] and

ht,s,j,n(r) = φj,n(r) + e−s(φj,n(r − t)− φj,n(r)) , t > 0, r > t .

In the next section we will tackle the problem of the determination of the moments
by considering a more general setting.

3 Subordinators–based search cost distribution

Suppose ξ = {ξt : t ∈ [0, 1]} is a stochastic process defined on some probability space
(Ω,F ,P) such that

(i) for any n ≥ 1 and 0 = t0 < t1 · · · < tn ≤ 1, the random variables ξti − ξti−1
are

independent (i = 1, . . . , n);
(ii) P[ξ0 = 0] = 1 and ξt − ξs

d
= ξt−s for any 1 ≥ t ≥ s ≥ 0;

(iii) t 7→ ξt is right–continuous and non–decreasing, with P–probability 1;

Henceforth ξ is termed subordinator and there exists a measure ν on R+ such that∫∞
0

min{1, y} ν(dy) <∞ and

ψ(s) := −1

t
log
(
E[e−sξt ]

)
=

∫ ∞
0

[
1− e−sy

]
ν(dy) (3.1)

for any s ≥ 0. The measure ν is often referred to as the Lévy measure of ξ, whereas ψ is
the so–called Laplace exponent of ξ. Noteworthy examples the Gamma process, which is
identified by

ν(dy) = y−1 e−y dy, (3.2)
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and the γ–stable process, with γ ∈ (0, 1), whose Lévy measure is

ν(dy) =
γ

Γ(1− γ)
y−1−γ dy. (3.3)

It is obvious that ψ fully characterizes ξ. Hence, in order to identify the cost search
distribution, with request probabilities obtained as transformations of increments of
subordinators, we can target the determination of the Laplace transform as a function of
ψ. Indeed, we provide a closed form expression for

φS(s) = lim
n→∞

φSn(s)

and for the moments E[Skn] as n→∞, for any k ≥ 1, in terms of the Laplace exponent
ψ of the underlying subordinator ξ. In order to state the main result of the paper, it is
convenient to introduce the following quantity,

In(l) =

∫ ∞
0

e−
n−2
n ψ(r)

∫ ∞
0

[ψ′(r + t)]2e−
2
nψ(r+t)[ψ(r + t)− ψ(r)]l−1dtdr. (3.4)

for every l = 1, . . . , k.

Theorem 3.1. If the (p1, . . . , pn) are determined by normalizing the increments of a
subordinator in (2.1), with ti − ti−1 = 1/n for each i ∈ {1, . . . , n}, then

φS(s) = −
∫ ∞
0

∫ ∞
0

ψ′′(x+ y)e−ψ(x+y)e−e
−s[ψ(x)−ψ(x+y)] dxdy. (3.5)

For any positive integer k such that supn In(l) <∞, l = 1, . . . , k, one has

lim
n→∞

E[Skn] =

k∑
l=1

a
(k)
l Ψ(l), (3.6)

where a(k)l , l = 1, . . . , k, are the Stirling numbers of second kind and

Ψ(l) = −
∫ ∞
0

∫ ∞
0

[ψ(x+ y)− ψ(x)]lψ′′(x+ y) e−ψ(x) dx dy. (3.7)

Proof. If ti − ti−1 = 1/n, for every i = 1, . . . , n, then one obviously has φi,n(r) = φn(r) =

e−ψ(r)/n. If one, now, considers the expression of the Laplace transform in (2.4), it is
apparent that ht,s,i,n = ht,s,n, for any i = 1, . . . , n and

φS(s) = lim
n→∞

φSn(s) = lim
n→∞

n

∫ ∞
0

∫ ∞
t

φ′′n(r)hn−1t,s,n(r)dr dt

As one trivially has

φ′′n(r) =

[
(ψ′(r))2

n2
− ψ′′(r)

n

]
φn(r),

then limn→∞ nφ′′n(r) = −ψ′′(r). On the other hand,

hn−1t,s,n(r) = φn(r)n−1
[
1 + e−s

(
φn(r − t)
φn(r)

− 1

)]n−1
Since {φn(r)}n−1 → e−ψ(r) and

φn(r − t)
φn(r)

− 1 = e−(ψ(r−t)−ψ(r))/n − 1 ∼ −ψ(r − t)− ψ(r)

n
+ o

(
1

n

)
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as n→∞, we conclude that

lim
n→∞

hn−1t,s,n(r) = e−ψ(r) e−e
−s[ψ(r−t)−ψ(r)].

Then

φS(s) = −
∫ ∞
0

∫ ∞
t

ψ′′(r)e−ψ(r)e−e
−s[ψ(r−t)−ψ(r)] dr dt

and the conclusion follows from the simple change of variable x = r − t. So far, we have
proved the weak convergence of Sn to S. As far as the determination of the moments
of the limiting variable S is concerned, note that the Laplace transform φS(s) can be
rewritten as

φS(s) =

∫ ∞
0

∫ ∞
0

f(x, y)e−(1−e
−s)[ψ(x+y)−ψ(x)] dxdy,

where
f(x, y) = −ψ′′(x+ y)e−ψ(x).

Hence, S is equal in distribution to a mixture of Poisson distributions with parameter
ψ(x + y) − ψ(x) where f(x, y) is the mixing law. In view of this representation, one
can determine the moments of S as a mixture of moments of the underlying Poisson
distributions. It is well known that the k-th moment of a Poisson distribution with
parameter λ is

∑k
l=1 a

(k)
l λl. This immediately yields that the k-th moment of S coincides

with the right hand side of equation (3.6). According to the Corollary of Theorem
25.12 in [5], in order to establish the equality in equation (3.6), we need to prove that
supnE[Skn] <∞. Following [18], one has

E(Skn) =

k∑
l=1

a
(k)
l Ml,n(0), (3.8)

where

Ml,n(0) = l · n(n− 1) · · · (n− l)
∫ ∞
0

[φn(r)]n−l−1
∫ ∞
0

φ′n(r + t)φ′n(r + t)

× [φn(r)− φn(r + t))]l−1dtdr.

The above equation suggests that it is enough to prove that supnMl,n(0) <∞, for every
l = 1, . . . , k. Hence,

Ml,n(0) = l
(n− 1) · · · (n− l)

n

∫ ∞
0

e−
n−l−1
n ψ(r)

∫ ∞
0

[ψ′(r + t)]2e−
2
nψ(r+t)

× [e−ψ(r)/n − e−ψ(r+t)/n]l−1dtdr

= l
(n− 1) · · · (n− l)

n

∫ ∞
0

e−
n−2
n ψ(r)

∫ ∞
0

[ψ′(r + t)]2e−
2
nψ(r+t)

× [1− e−[ψ(r+t)−ψ(r)]/n]l−1dtdr

By using the well known inequality 1− e−x ≤ x we get

Ml,n(0) ≤ l (n− 1) · · · (n− l)
nl

In(l),

and hence, the convergence in equation (3.6) follows from the assumption that supn In(l)<

∞.

In the next Section we will use the previous result to derive the expression of the
limiting moments when the pi’s are obtained by means of a normalized generalized
gamma process or of a two–parameter Poisson–Dirichlet process.
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4 The generalized gamma process and the two-parameter Pois-
son-Dirichlet process

The generalized gamma process has been introduced in [6] for constructing shot
noise Cox processes. It is characterized by the following Lévy measure

ν(dy) = Γ(1− γ)−1y−(1+γ)e−uydy, (4.1)

where γ ∈ (0, 1) and u ≥ 0. It turns out that the Laplace exponent, evaluated at any s ≥ 0,
is

ψ(s) =
(u+ s)γ − uγ

γ
.

In this case ξ̄ = {ξt/ξ1 : t ∈ [0, 1]} identifies the normalized generalized gamma process
and it will be denoted with the notation NGG(γ, u). This random probability measure has
been used for density estimation in Bayesian nonparametric mixture models and, when
its distribution is the directing measure of a sequence of exchangeable random elements,
the associated predictive distributions can be determined in closed form. See [19]. It is
also worth stressing that it includes as special cases both the normalized γ–stable (u = 0)
and the Dirichlet processes (γ → 0). Furthermore, mixtures of normalized generalized
gamma processes induce a two–parameter Poisson–Dirichlet process. Specifically, let Z
be a random variable with density function

fZ(z) =
1

Γ(θ/γ)
z(θ/γ)−1 e−z,

for any θ > 0 and γ ∈ (0, 1), i.e. Z is a Gamma random variable with parameters (θ/γ)

and 1. If ξ̄ is a NGG(γ, 1) independent from Z, from Proposition 21 in [26], one has that
the normalized process ξZt/ξZ has the same distribution as a Poisson–Dirichlet process
with parameters (γ, θ). Hence, one can define weights

wi = ξZti − ξZti−1 i = 1, . . . , n (4.2)

which, in turn, entail

φi,z(s) = E
[
e−swi

∣∣∣ z] = e−z(ti−ti−1)[(1+s)
γ−1].

As we will see in the proof of Theorem 4.1, marginalization with respect to Z allows
to derive the monents of the stationary search cost distribution when the request
probabilities come from a two–parameter Poisson–Dirichlet process.

Theorem 4.1. If the (p1, . . . , pn) are determined by normalizing the increments of a
generalized gamma subordinator with ti − ti−1 = 1/n for each i ∈ {1, . . . , n}, then

Ψ(l) =

{
(l!)2

((1/γ)−l−1)l

∑l
m=0

umγ

m!γm if γ < 1
k+1

∞ otherwise
(4.3)

If (p1, . . . , pn) are determined by the increments wi’s in equation (4.2) then

Ψ(l) =

{
l! (θ/γ+1)l

( 1
γ−l−1)l

if γ < 1
k+1

∞ otherwise
(4.4)

Proof. First of all, note that, in both cases, it is immediate to check that supn In(l) <∞,
for every l = 1, . . . , k, with k such that γ < 1

k+1 . From equation (3.7), it is easy to see that

Ψ(l) = −γ − 1

γl
eu
γ/γ

×
∫ +∞

0

∫ +∞

0

[(u+ x+ y)γ − (u+ x)γ ]l(u+ x+ y)γ−2e−(u+x)
γ/γ dxdy.
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A simple change of variable along with the integrability condition γ < 1
k+1 lead to

Ψ(l) = −(1− γ) eu
γ/γ Γ(l + 1, uγ/γ)

l∑
r=0

(
l

r

)
(−1)l−r

1

(r + 1)γ − 1

where Γ(a, x) =
∫∞
x
za−1e−zdz is the incomplete gamma function, for any x > 0. From

0.160.2 in [12] it follows that

Ψ(l) =
1− γ
γ

eu
γ/γΓ(l + 1, uγ/γ)B(l + 1, (1/γ)− l − 1)

=
l!

((1/γ)− l − 1)l+1
eu
γ/γ Γ(l + 1, uγ/γ)

Since l ∈ N, then Γ(l + 1, uγ/γ) is a polynomial in (uγ/γ), i.e.

Γ(l + 1, uγ/γ) = e−u
γ/γ

l∑
m=0

l!

m!

(uγ
γ

)m
and this concludes the proof of equation (4.3). Equation (4.4) is proved by using the
characterization of the two-parameter Poisson-Dirichlet process through mixture of
generalized Gamma processes. It is straightforward to see that

lim
n→∞

E[Skn|Z = z] =

k∑
l=1

akl
(l!)2

( 1
γ − l − 1)l

l∑
m=0

zm

m!
(4.5)

Integrating over z, and noting that

l∑
m=0

(θ/γ)m
m!

=
(θ/γ + 1)l

l!

provides the desired result.

Just to give an idea of the behaviour of the role of the parameters (θ, γ) in determining
the search cost distribution, we plot in Figure 1 the first and the second moment of the
stationary search cost.

Figure 1: The left figure shows the limiting behaviour of the first moment when 0 < θ < 10

and 0.1 < γ < 0.4. The right figure shows the limiting behaviour of the first moment
when 0 < θ < 10 and 0.1 < γ < 0.3.

Remark: It is possible to recover the result in [18] displayed in Theorem 1. Indeed,
u = 0 in equation (4.3) leads to their result. On the other hand, when γ goes to zero, it is
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Stationary search cost distribution driven by a GG process

easy to see, in equation (4.4), that

lim
n→+∞

E[Skn] =

k∑
l=1

a
(k)
l

θl

l!
.

From the equation above, one can recover the result for k = 1 provided in [16].
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[14] Jelenković, P. R.: Asymptotic approximation of the move-to-front search cost distribution
and least-recently used caching fault probabilities. Ann. Appl. Probab., 9, (1999), 430–464.
MR-1687406
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