Stationary distributions of the Atlas model*

Li-Cheng Tsai ${ }^{\dagger}$

Abstract

In this article we study the Atlas model, which consists of Brownian particles on \mathbb{R}, independent except that the Atlas (i.e., lowest ranked) particle $X_{(1)}(t)$ receives drift $\gamma d t, \gamma \in \mathbb{R}$. For any fixed shape parameter $a>2 \gamma_{-}$, we show that, up to a shift $\frac{a}{2} t$, the entire particle system has an invariant distribution ν_{a}, written in terms an explicit Radon-Nikodym derivative with respect to the Poisson point process of density $a e^{a \xi} d \xi$. We further show that ν_{a} indeed has the product-of-exponential gap distribution π_{a} derived in [ST17]. As a simple application, we establish a bound on the fluctuation of the Atlas particle $X_{(1)}(t)$ uniformly in t, with the gaps initiated from π_{a} and $X_{(1)}(0)=0$.

Keywords: rank-based diffusion; Atlas model; stationary.
AMS MSC 2010: Primary 60J60, Secondary 60H10.
Submitted to ECP on February 14, 2017, final version accepted on January 29, 2018.
Supersedes arXiv:1702.02043.

1 Introduction

In this article we study the (infinite) Atlas model. Such a model consists of a semiinfinite collection of particles $X_{i}(t), i=1,2, \ldots$, performing independent Brownian motions on \mathbb{R}, except that the Atlas (i.e., lowest ranked) particle receives a drift of strength $\gamma \in \mathbb{R}$. To rigorously define the model, we recall that $x=\left(x_{i}\right)_{i=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ is rankable if there exists a ranking permutation $p: \mathbb{N} \rightarrow \mathbb{N}$ such that $x_{p(i)} \leq x_{p(j)}$, for all $i<j \in \mathbb{N}$. To ensure that such a ranking permutation is unique, we resolve ties in lexicographic order. That is, if $x_{p(i)}=x_{p(j)}$ for $i<j$, then $p(i)<p(j)$. We then let $p_{x}(\cdot): \mathbb{N} \rightarrow \mathbb{N}$ denote the unique ranking permutation for a given, rankable x. Fix independent standard Brownian motions W_{1}, W_{2}, \ldots. For suitable initial conditions, the infinite Atlas model $X(t)=\left(X_{i}(t)\right)_{i=1}^{\infty}$ is given by the unique weak solution of the following system of Stochastic Differential Equations (SDEs)

$$
\begin{equation*}
d X_{i}(t)=\gamma \mathbf{1}\left\{p_{X(t)}(i)=1\right\} d t+d W_{i}(t), \quad i \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

To state the well-posedness results of (1.1), consider the following configuration space

$$
\begin{equation*}
\mathcal{U}=\left\{x=\left(x_{i}\right)_{i=1}^{\infty}: \lim _{i \rightarrow \infty} x_{i}=\infty, \text { and } \sum_{i=1}^{\infty} e^{-a x_{i}^{2}}<\infty, \forall a>0\right\} \tag{1.2}
\end{equation*}
$$

[^0]and note that $\lim _{i \rightarrow \infty} x_{i}=\infty$ necessarily implies that x is rankable. It is shown in [Sar17a, Theorem 3.2], for any fixed $\gamma \in \mathbb{R}$ and any given $x \in \mathcal{U}$, the system (1.1) admits a unique weak solution $X(t)$ starting from the initial condition x, such that $\mathbf{P}(X(t) \in \mathcal{U}, \forall t \geq 0)=1$. See also [Shk11, IKS13].

The interest of the Atlas model originates from the study of diffusions with rankbased drifts [Fer02, FK09]. In particular, the Atlas model was first introduced, in finite dimensions, as a simple special case of rank-based diffusions [Fer02]. Due to their intriguing properties, rank-based diffusions have been intensively studied in various generality. See [BFK05, BFI ${ }^{+} 11$, IKS13, Sar17b] and the references therein. The infinitedimensional system (1.1) considered here was introduced by Pal and Pitman [PP08]. Parts of the motivation was to understand the effect of a drift exerted on a large (but finite) collection of Brownian particles [Ald02, TT15]. In particular, it was shown in [PP08] that, for $\gamma>0$, the system (1.1) admits a stationary gap distribution of i.i.d. $\operatorname{Exp}(2 \gamma)$, which indicates that the drift $\gamma d t$ is balanced by the push-back of a crowd of particles of density 2γ. To state the previous result more precisely, given a rankable $x=\left(x_{i}\right)_{i=1}^{\infty}$, we let $\left(x_{(1)} \leq x_{(2)} \leq \ldots\right)$ denote the corresponding ranked points, i.e., $x_{(i)}=x_{\left(p_{x}\right)^{-1}(i)}$, and consider the corresponding gaps $z_{i}:=x_{(i+1)}-x_{(i)}$. It was shown in [PP08] that $\pi:=\bigotimes_{i=1}^{\infty} \operatorname{Exp}(2 \gamma)$ is a stationary distribution of the gap process $Z(t):=\left(X_{(i+1)}(t)-X_{(i)}(t)\right)_{i=1}^{\infty}$ of the Atlas model (1.1).

It addition to the i.i.d. $\operatorname{Exp}(2 \gamma)$ distribution, it was recently shown in [ST17] that the Atlas model has a different type of stationary gap distributions. That is, for each $a>2 \gamma_{-}, \pi_{a}:=\bigotimes_{i=1}^{\infty} \operatorname{Exp}(2 \gamma+i a)$ is also a stationary gap distribution of the Atlas model. Unlike π, the distribution π_{a} has exponentially growing particle density away from the Atlas particle. In this article, we go one step further and show that, in fact, up to a deterministic shift $\frac{a t}{2}$ of each particle, the entire particle system $\left\{X_{i}(t)+\frac{a t}{2}\right\}_{i=1}^{\infty}$ has a stationary distribution. This extends the result of [ST17] on stationary gap distributions. In the following we use $\left\{x_{i}\right\}_{i=1}^{\infty} \subset \mathbb{R}$ to denote a configuration of indistinguishable particles, in contrast with $\left(x_{i}\right)_{i=1}^{\infty}$, which denotes labeled (named) particles. Let

$$
\mathcal{V}=\left\{\left\{x_{i}\right\}_{i=1}^{\infty}:\left(x_{i}\right)_{i=1}^{\infty} \in \mathcal{U}\right\}
$$

denote the corresponding configuration space, and let μ_{a} denote the Poisson point process on \mathbb{R} with density $a e^{a \xi} d \xi$. It is standard to show (e.g., using techniques from [Pan13, Section 2.2]) that μ_{a} is supported on \mathcal{V}. Let $\Gamma(\alpha):=\int_{0}^{\infty} \xi^{-1-\alpha} e^{-\xi} d \xi$ denote the Gamma function, and let $\operatorname{Gamma}(\alpha, \beta) \sim \frac{1}{\Gamma(\alpha)} \beta^{\alpha} \xi^{-1-\alpha} e^{-\beta \xi} \mathbf{1}_{\{\xi>0\}} d \xi$ denote the Gamma distribution. The following is the main result.

Theorem 1.1.

(a) For any fixed $\gamma \in \mathbb{R}$ and $a>2 \gamma_{-}, \mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}}\right)=\Gamma\left(\frac{2 \gamma}{a}+1\right) \in(0, \infty)$, so that

$$
\begin{equation*}
\nu_{a}(\cdot):=\frac{1}{\Gamma\left(\frac{2 \gamma}{a}+1\right)} \mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}} \cdot\right) \tag{1.3}
\end{equation*}
$$

defines a probability distribution supported on \mathcal{V}. Furthermore, under ν_{a}, we have that $e^{a X_{(1)}} \sim \operatorname{Gamma}\left(\frac{2 \gamma}{a}+1,1\right)$, and that

$$
\begin{equation*}
Z:=\left(X_{(i+1)}-X_{(i)}\right)_{i=1}^{\infty} \sim \pi_{a}=\bigotimes_{i=1}^{\infty} \operatorname{Exp}(2 \gamma+i a) \tag{1.4}
\end{equation*}
$$

(b) The distribution ν_{a} is a stationary distribution of $\left\{X_{i}(t)+\frac{a t}{2}\right\}_{i=1}^{\infty}$, where $\left(X_{i}(t)\right)_{i=1}^{\infty}$ evolves under (1.1).

Remark 1.2. Under ν_{a}, the Atlas particle $X_{(1)}$ and the gap process $Z=\left(Z_{i}\right)_{i=1}^{\infty}$ are not independent.

For the special case $\gamma=0$, the Atlas model (1.1) reduces to independent Brownian motions. In this case, it is well known that the Poisson point process μ_{a} is quasi-stationary [Lig78], and the shift $-\frac{a}{2} t$ can be easily calculated from the motion of independent Brownian particles. Here we show that, with a drift $\gamma d t$ exerted on the Atlas particle $X_{(1)}(t)$, a stationary distribution is obtained by taking $V(x):=2 \gamma x_{(1)}$ to be the potential. Indeed, under such a choice of $V(x)$, we have that $\gamma \mathbf{1}\left\{p_{x}(i)=1\right\}=\frac{1}{2} \partial_{x_{i}} e^{V(x)}$. This explains why we should expect the stationary distribution ν_{a} as in (1.3). The proof of Theorem 1.1 amounts to justifying the aforementioned heuristic in the setting of infinite dimensional diffusions with discontinuous drift coefficients. We achieve this through finite-dimensional, smooth approximations, and using the explicit expressions of semigroups from Girsanov's theorem to take limits.

Due to their simplicity, product-of-exponential stationary gap distributions have been intensively searched within competing Brownian particle systems, in both finite and infinite dimensions. See [Sar17a] and the references therein. To date, derivations of product-of-exponential stationary gap distributions have been relying on the theory of Semimartingale Reflecting Brownian Motions (SRBM), e.g., [Wil95]. On the other hand, given the expression (1.3) of ν_{a}, the gap distribution (1.4) follows straightforwardly from Rényi's representation [Rén53]. Theorem 1.1 hence provides an alternative derivation of the product-of-exponential distribution π_{a} without going through SRBM.

Our methods should generalize to the case of competing Brownian particle systems with finitely many non-zero drift coefficients, i.e.,

$$
d X_{i}(t)=\sum_{j=1}^{m} \gamma_{j} \mathbf{1}\left\{p_{X(t)}(i)=j\right\} d t+d W_{i}(t), \quad i \in \mathbb{N},
$$

yielding the stationary distribution $\nu_{a}(\cdot):=\frac{1}{J} \mathbf{E}_{\mu_{a}}\left(e^{2 \sum_{j=1}^{m} \gamma_{j} X_{(j)}} \cdot\right)$, for some normalizing constant $J<\infty$. Here we consider only the Atlas model for simplicity of notations.

A natural question, following the discovery a stationary gap distribution, is the longtime behavior of the Atlas particle $X_{(1)}(t)$ under such a gap distribution. For the i.i.d. $\operatorname{Exp}(2)$ gap distribution π, this question was raised in [PP08] and answered in [DT17]. It was shown in [DT17] that $X_{(1)}(t)$ fluctuates at order $t^{\frac{1}{4}}$ around its starting location, and scales to a $\frac{1}{4}$-fractional Brownian motion, as $t \rightarrow \infty$. As a simple application of Theorem 1.1, under the stationary gap distribution π_{a} and $X_{(1)}(0)=0$, we establish an exponential tail bound, uniformly in t, of the fluctuation Atlas particle around its expected location $-\frac{a t}{2}$. This shows that the fluctuation of $X_{(1)}(t)$ stays bounded under π_{a}, in sharp contrast with the $t^{\frac{1}{4}}$ fluctuation obtained in [DT17].
Corollary 1.3. Fix $\gamma \in \mathbb{R}$ and $a>2 \gamma_{-}$. Starting the Atlas model (1.1) from the initial distribution $X_{(i)}(0)=0,\left(X_{(i+1)}(0)-X_{(i)}(0)\right)_{i=1}^{\infty} \sim \pi_{a}$, we have that

$$
\mathbf{P}\left(\left|X_{(1)}(t)+\frac{a t}{2}\right| \geq \xi\right) \leq c e^{-\frac{1}{2}(2 \gamma+a) \xi}, \quad \forall t, \xi \in \mathbb{R}_{+}
$$

for some constant $c=c(a, \gamma)<\infty$ depending only on a, γ.

Acknowledgements

I thank Amir Dembo, Ioannis Karatzas, Andrey Sarantsev and Ofer Zeitouni for enlightening discussions. I am grateful to Andrey Sarantsev for many useful comments on the presentation of this article.

2 Proof

2.1 Theorem 1.1(a)

Fix $\gamma \in \mathbb{R}, a>2 \gamma_{-}$, and let $\left\{X_{i}\right\}_{i=1}^{\infty}$ denote a sample from the Poisson point process μ_{a}. Let $N(\xi):=\#\left\{X_{i} \in(-\infty, \xi]\right\}$ denote the number of particles in $(-\infty, \xi]$, whereby $N(\xi) \sim \operatorname{Pois}\left(e^{a \xi}\right)$. Indeed, $\mathbf{P}_{\mu_{a}}\left(X_{(1)}>\xi\right)=\mathbf{P}(N(\xi)=0)=e^{-e^{a \xi}}$. From this we calculate

$$
\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}} \mathbf{1}\left\{X_{(1)} \leq \xi\right\}\right)=\int_{-\infty}^{\xi} e^{2 \gamma \zeta} \frac{d}{d \zeta}\left(1-e^{-e^{a \zeta}}\right) d \zeta
$$

Performing the change of variable $\zeta^{\prime}:=e^{a \zeta}$, we see that $\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}} \mathbf{1}\left\{e^{a X_{(1)}} \leq e^{\xi}\right\}\right)=$ $\int_{0}^{e^{\xi}} \zeta^{\frac{2 \gamma}{a}} e^{-\zeta^{\prime}} d \zeta^{\prime}$. From this it follows that $\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}}\right)=\Gamma\left(\frac{2 \gamma}{a}+1\right)$ and that $e^{a X_{(1)}} \sim$ $\operatorname{Gamma}\left(\frac{2 \gamma}{a}+1,1\right)$ under ν_{a}.

Turning to showing (1.4), we let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be sampled from μ_{a} and let $\left(Z_{k}\right)_{k=1}^{\infty}=$ $\left(X_{(i+1)}-X_{(i)}\right)_{i=1}^{\infty}$ denote the gap process. Fix arbitrary $m<\infty$. Our goal is to show that

$$
\begin{equation*}
\frac{\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}} \prod_{i=1}^{m-1} \mathbf{1}\left\{Z_{i} \geq \xi_{i}\right\}\right)}{\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}}\right)}=\prod_{i=1}^{m-1} e^{-(2 \gamma+i a) \xi_{i}}=: \eta \tag{2.1}
\end{equation*}
$$

For any given threshold $\xi \in \mathbb{R}$, we let $\mu_{a, \xi}$ denote the restriction of the Poisson point process μ_{a} onto $(-\infty, \xi]$. For the restricted process, we have $\mu_{a, \xi} \sim\left\{\xi-Y_{1}, \ldots, \xi-\right.$ $\left.Y_{N(\zeta)}\right\}$, where Y_{1}, Y_{2}, \ldots are i.i.d. $\operatorname{Exp}(a)$ variables, independent of $N(\xi)$. Let $Y_{(1)}<$ $Y_{(2)}<\ldots<Y_{(n)}$ denote the ranking of $\left(Y_{1}, \ldots, Y_{n}\right)$. We then have that, conditionally on $N(\xi) \geq m,\left(X_{(1)}, \ldots, X_{(m)}\right)=\left(\xi-Y_{N(\xi)}, \ldots, \xi-Y_{N(\xi)-m+1}\right)$. Further, by Rényi's representation [Rén53],

$$
\left(Y_{(k)}\right)_{k=1}^{n} \stackrel{\mathrm{~d}}{=}\left(\sum_{i=k}^{n} G_{i}\right)_{k=1}^{n}, \quad \text { where }\left(G_{i}\right)_{i=1}^{n} \sim \prod_{i=1}^{n} \operatorname{Exp}(i a)
$$

Using this we calculate

$$
\begin{aligned}
\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}}\right. & \left.\prod_{i=1}^{m-1} \mathbf{1}\left\{Z_{i} \geq \xi_{i}\right\} \mid N(\xi) \geq m\right) \\
& =\mathbf{E}\left(e^{2 \gamma\left(N(\xi) \xi-\sum_{i=m}^{N(\xi)} G_{i}\right)} \prod_{i=1}^{m-1} e^{-2 \gamma G_{i}} \mathbf{1}\left\{G_{i} \geq \xi_{i}\right\} \mid N(\xi) \geq m\right) \\
& \left.=\mathbf{E}\left(e^{2 \gamma\left(N(\xi) \xi-\sum_{i=m}^{N(\xi)} G_{i}\right.}\right) \mid N(\xi) \geq m\right) \prod_{i=1}^{m-1} \frac{i a e^{-(a i+2 \gamma) \xi_{i}}}{a i+2 \gamma} .
\end{aligned}
$$

Further use $\frac{i a}{a i+2 \gamma}=\mathbf{E} e^{-2 \gamma G_{i}}$ to write $\prod_{i=1}^{m-1} \frac{i a e^{-(a i+2 \gamma) \xi_{i}}}{a i+2 \gamma}=\mathbf{E}\left(e^{-2 \gamma\left(G_{1}+\ldots+G_{m-1}\right)}\right) \eta$, We then obtain

$$
\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}} \prod_{i=1}^{m-1} \mathbf{1}\left\{Z_{i} \geq \xi_{i}\right\} \mid N(\xi) \geq m\right)=\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}} \mid N(\xi) \geq m\right) \eta
$$

Taking into account the case $N(\xi)<m$, we write

$$
\begin{align*}
& \mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}} \prod_{i=1}^{m-1} \mathbf{1}\left\{Z_{i} \geq \xi_{i}\right\}\right) \\
& \left.=\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}} \mathbf{1}\{N(\xi) \geq m\}\right) \eta+\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{(1)}} \prod_{i=1}^{m-1} \mathbf{1}\left\{Z_{i} \geq \xi_{i}\right\}\right) \mathbf{1}\{N(\xi)<m\}\right) \tag{2.2}
\end{align*}
$$

Since $a>-2 \gamma$, fixing $q>1$ with $|q-1|$ small enough, we have

$$
\begin{equation*}
\mathbf{E}_{\mu_{a}}\left(e^{2 q \gamma X_{(1)}}\right)=\mathbf{E}_{\mu_{a}}\left(\mid e^{\left.2 \gamma X_{(1)}\right|^{q}}\right)=\Gamma\left(\frac{2 q \gamma}{a}+1\right)<\infty \tag{2.3}
\end{equation*}
$$

That is, $e^{2 q \gamma X_{(1)}}$ has bounded q-th moment with $q>1$, so in particular $\left\{e^{2 \gamma X_{(1)}} \mathbf{1}\{N(\xi) \geq\right.$ $m\}\}_{\xi>0}$ is uniformly integrable. For fixed $m<\infty, \mathbf{1}\{N(\xi)<m\} \rightarrow_{\mathrm{P}} 0$, as $\xi \rightarrow \infty$. Using this to take the limit $\xi \rightarrow \infty$ in (2.2), we thus obtain $\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{1}} \prod_{i=1}^{m-1} \mathbf{1}\left\{Z_{i} \geq \xi_{i}\right\}\right)=$ $\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma X_{1}}\right) \eta$. This concludes (2.1).

2.2 Theorem 1.1(b)

Samples from μ_{a} have, almost surely, no repeated points, i.e., $X_{(1)}<X_{(2)}<X_{(3)}<\ldots$. Fix arbitrary $m<\infty$ and $\phi \in C_{c}^{\infty}(\mathcal{W})$, where $\mathcal{W}:=\left\{\left(x_{1}<x_{2}<\ldots<x_{m}\right)\right\}$ denote the Weyl chamber. Let $\bar{X}_{i}(t):=X_{i}(t)+\frac{a}{2} t$, and $\bar{X}_{(i)}(t):=X_{(i)}(t)+\frac{a}{2} t$ denote the compensated particle locations. It then suffices to show that

$$
\begin{equation*}
\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma \bar{X}_{(1)}(0)} \phi\left(\bar{X}_{(1)}(t), \ldots, \bar{X}_{(m)}(t)\right)\right)=\mathbf{E}_{\mu_{a}}\left(e^{2 \gamma \bar{X}_{(1)}(0)} \phi\left(\bar{X}_{(1)}(0), \ldots, \bar{X}_{(m)}(0)\right)\right) \tag{2.4}
\end{equation*}
$$

As will be convenient for notations, for $n \geq m$, we consider the symmetric extension ϕ^{s} of ϕ, defined for $n \geq m$ as

$$
\begin{equation*}
\phi^{\mathrm{s}}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad \phi^{\mathrm{s}}(x):=\phi\left(x_{(1)}, \ldots, x_{(m)}\right) . \tag{2.5}
\end{equation*}
$$

We have slightly abused notations by using the same symbol $\phi^{\text {s }}$ to denote the function for all $n \in \mathbb{N}_{\geq m} \cup\{\infty\}$. Note that, by definition, the function ϕ vanishes near the boundary $\left\{\left(x_{1} \leq \ldots x_{i}=x_{i+1} \ldots \leq x_{m}\right): i=1, \ldots, n-1\right\}$ of \mathcal{W}, so, for $n<\infty, \phi^{\mathrm{s}} \in C_{\mathrm{C}}^{\infty}\left(\mathbb{R}^{n}\right)$.

The strategy of proving (2.4) is to approximate the infinite system $\bar{X}(t)$ by finite systems. Fixing $m \leq n<\infty$, we consider the following n-dimensional analog of $\bar{X}(t)$:

$$
\begin{equation*}
\bar{X}_{i}^{n}(t)=x_{i}+\int_{0}^{t}\left(\gamma \mathbf{1}\left\{p_{\bar{X}^{n}(s)}(i)=1\right\}+\frac{a}{2}\right) d s+W_{i}(t), \quad i=1, \ldots, n \tag{2.6}
\end{equation*}
$$

where the ranking permutation $p_{x}(\cdot):\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is defined similarly to the case of infinite particles. As the discontinuity of $x \mapsto \mathbf{1}\left\{p_{x}(i)=1\right\}$ imposes unwanted complication in the subsequence analysis, we consider further the mollified system as follows. Fix a mollifier $r \in C^{\infty}\left(\mathbb{R}^{n}\right)$, i.e., $r \geq 0,\left.r\right|_{\|x\| \geq 1}=0$ and $\int_{\mathbb{R}^{n}} r(y) d y=1$. Let $V(x):=2 \gamma x_{(1)}=2 \gamma \min \left(x_{1}, \ldots, x_{n}\right)$. For $\varepsilon \in(0,1)$, we define the mollified potential as $V^{\varepsilon}(x):=\int_{\mathbb{R}^{n}} V(y) r\left(\varepsilon^{-1}(x-y)\right) \varepsilon^{-n} d y$. Under these notations, we have that

$$
\begin{equation*}
\frac{1}{2} \partial_{i} V^{\varepsilon}(x)=\gamma \mathbf{1}\left\{p_{\bar{X}^{n}(s)}(i)=1\right\}, \quad \text { on } \Omega_{\varepsilon}:=\left\{x \in \mathbb{R}^{n}:\left|x_{i}-x_{j}\right|>\varepsilon, \forall i<j\right\} . \tag{2.7}
\end{equation*}
$$

We then consider the following mollified system

$$
\begin{equation*}
\bar{X}_{i}^{n, \varepsilon}(t)=x_{i}+\int_{0}^{t}\left(\frac{1}{2} \partial_{i} V^{\varepsilon}\left(\bar{X}^{n, \varepsilon}(s)\right)+\frac{a}{2}\right) d s+W_{i}(t), \quad i=1, \ldots, n . \tag{2.8}
\end{equation*}
$$

With $\partial_{i} V^{\varepsilon}$ being smooth and bounded, the well-posedness of (2.8) follows from standard theory, e.g., [SV07]. Furthermore, letting $u(t, x):=\mathbf{E}_{x}\left(\phi^{\mathrm{s}}\left(\bar{X}^{n, \varepsilon}(t)\right)\right)$, we have that $u \in$ $C^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$, and that u solves the following PDE:

$$
\begin{equation*}
\partial_{t} u=\sum_{i=1}^{n}\left(\frac{1}{2} \partial_{i i}+\frac{a}{2} \partial_{i}+\frac{1}{2} \partial_{i} V^{\varepsilon}\right) u, \quad u(0, x)=\phi^{\mathrm{s}}(x) . \tag{2.9}
\end{equation*}
$$

With $\partial_{i} V^{\varepsilon}$ being bounded and ϕ^{s} being compactly supported, applying the Feynman-Kac formula to the solution u of (2.9), we see that u decays exponentially as $|x| \rightarrow \infty$, i.e.,

$$
\begin{equation*}
\sup _{s \leq t, x \in \mathbb{R}^{n}}\left\{|u(t, x)| e^{\xi\left(\left|x_{1}\right|+\ldots+\left|x_{n}\right|\right)}\right\}<\infty, \quad \forall \xi, t<\infty \tag{2.10}
\end{equation*}
$$

Such an exponential estimate (2.10) progresses to higher order derivatives of u. More precisely, with $\partial_{i} V^{\varepsilon} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $u \in C^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$, taking derivative ∂_{i} in (2.9), we see that $\partial_{i} u$ solves the following equation:

$$
\begin{align*}
\partial_{t}\left(\partial_{i} u\right)=\sum_{j=1}^{n}\left(\left(\frac{1}{2} \partial_{j j}+\frac{a}{2} \partial_{j}+\partial_{j} V^{\varepsilon}\right)\left(\partial_{i} u\right)+\left(\partial_{i j} V^{\varepsilon}\right) u\right), & \tag{2.11}\\
& \partial_{i} u(0, x)=\partial_{i} \phi^{s}(x) \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right),
\end{align*}
$$

A similarly procedure applied to the solution $\partial_{i} u$ of (2.11) yields

$$
\sup _{s \leq t, x \in \mathbb{R}^{n}, i=1, \ldots, n}\left\{\left|\partial_{i} u(t, x)\right| e^{\xi\left(\left|x_{1}\right|+\ldots+\left|x_{n}\right|\right)}\right\}<\infty, \quad \forall \xi, t<\infty
$$

Iterating this argument to higher order derivatives, we obtain

$$
\begin{equation*}
\sup _{s \leq t, x \in \mathbb{R}^{n},|\beta| \leq k}\left\{\left|\partial_{\beta} u(t, x)\right| e^{\xi\left(\left|x_{1}\right|+\ldots+\left|x_{n}\right|\right)}\right\}<\infty, \quad \forall \xi, t, k<\infty . \tag{2.12}
\end{equation*}
$$

The PDE (2.9) has stationary distribution $e^{V^{\varepsilon}(x)} \prod_{i=1}^{n} e^{a x_{i}} d x_{i}$ (not a probability distribution, since the total mass is infinite). More precisely, integrate $u(t, x)$ against the aforementioned distribution to get

$$
v(t):=\int_{\mathbb{R}^{n}} u(t, x) e^{V^{\varepsilon}(x)} \prod_{i=1}^{n} e^{a x_{i}} d x_{i}
$$

Taking time derivative using (2.9) and (2.12), followed by integrations by parts

$$
\int_{\mathbb{R}^{n}} \frac{1}{2}\left(\partial_{i i} u(t, x)\right) e^{V^{\varepsilon}(x)} \prod_{j=1}^{n} e^{a x_{j}} d x_{j}=-\int_{\mathbb{R}^{n}}\left(\partial_{i} u(t, x)\right)\left(\frac{1}{2} \partial_{i} V^{\varepsilon}(x)+\frac{a}{2}\right) e^{V^{\varepsilon}(x)} \prod_{j=1}^{n} e^{a x_{j}} d x_{j}
$$

we obtain that $\frac{d}{d t} v(t)=0$. Consequently,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \mathbf{E}_{x}\left(\phi^{\mathrm{s}}\left(\bar{X}^{n, \varepsilon}(t)\right)\right) e^{V^{\varepsilon}(x)} \prod_{i=1}^{n} e^{a x_{i}} d x_{i}=\int_{\mathbb{R}^{n}} \phi^{\mathrm{s}}(x) e^{V^{\varepsilon}(x)} \prod_{i=1}^{n} e^{a x_{i}} d x_{i} \tag{2.13}
\end{equation*}
$$

The next step is to take the limit $\varepsilon \rightarrow 0$ in (2.13), for fixed n. This amounts to establishing the convergence of the term $\mathbf{E}_{x}\left(\phi^{s}\left(\bar{X}^{n, \varepsilon}(t)\right)\right)$. To this end, we use Girsanov's theorem to write

$$
\begin{align*}
\mathbf{E}_{x}\left(\phi^{\mathrm{s}}\left(\bar{X}^{n}(t)\right)\right) & =\mathbf{E}_{x}\left(\phi^{\mathrm{s}}(H(t)) F(t)\right) \tag{2.14}\\
\mathbf{E}_{x}\left(\phi^{\mathrm{s}}\left(\bar{X}^{n, \varepsilon}(t)\right)\right) & =\mathbf{E}_{x}\left(\phi^{\mathrm{s}}(H(t)) F^{\varepsilon}(t)\right) \tag{2.15}
\end{align*}
$$

where $H(t):=\left(W_{i}(t)+\frac{a t}{2}+x_{i}\right)_{i=1}^{n}$ consists of independent, drifted Brownian motions starting from $x=\left(x_{i}\right)_{i=1}^{n}$, and the terms $F(t)$ and $F^{\varepsilon}(t)$ are stochastic exponentials given by

$$
\begin{array}{rlrl}
F(t) & :=\exp \left(M(t)-\frac{1}{2}\langle M\rangle(t)\right), & M(t):=\int_{0}^{t} \sum_{i=1}^{n} \gamma \mathbf{1}\left\{p_{H(t)}(i)=1\right\} d W_{i}(s), \\
F^{\varepsilon}(t) & :=\exp \left(M^{\varepsilon}(t)-\frac{1}{2}\left\langle M^{\varepsilon}\right\rangle(t)\right), & M^{\varepsilon}(t) & :=\int_{0}^{t} \sum_{i=1}^{n} \frac{1}{2} \partial_{i} V^{\varepsilon}(H(s)) d W_{i}(s) . \tag{2.17}
\end{array}
$$

Taking the difference of (2.14)-(2.15), followed by using the Cauchy-Schwarz inequality, we obtain

$$
\left|\mathbf{E}_{x}\left(\phi^{\mathrm{s}}\left(\bar{X}^{n}(t)\right)\right)-\mathbf{E}_{x}\left(\phi^{\mathrm{s}}\left(\bar{X}^{n, \varepsilon}(t)\right)\right)\right|=\left|\mathbf{E}_{x}\left(\phi^{\mathrm{s}}(H(t)) F(t)\left(1-\frac{F^{\varepsilon}(t)}{F(t)}\right)\right)\right|
$$

$$
\begin{equation*}
\leq\left(\mathbf{E}_{x}\left(\phi^{\mathrm{s}}(H(t))^{2} F(t)^{2}\right)\right)^{\frac{1}{2}}\left(\mathbf{E}_{x}\left(1-\frac{F^{\varepsilon}(t)}{F(t)}\right)^{2}\right)^{\frac{1}{2}} \tag{2.18}
\end{equation*}
$$

For the two terms in (2.18), we next show that: i) the first term is bounded; and ii) the second term vanishes as $\varepsilon \rightarrow 0$. Hereafter, we use $c\left(a_{1}, a_{2}, \ldots\right)$ to denote a finite, deterministic constant, that may change from line to line, but depends only on the designated variables a_{1}, a_{2}, \ldots.
i) Recall that ϕ^{s} is defined in terms of ϕ through (2.5). We fix $\lambda<\infty$, independently of n, such that $\operatorname{supp}\left(\phi^{\mathrm{s}}\right) \subset[-\lambda, \lambda]^{n}$. Under these notations,

$$
\begin{align*}
\mathbf{E}_{x}\left(\phi^{\mathrm{s}}(H(t))^{2} F(t)^{2}\right) & \leq\|\phi\|_{L^{\infty}}^{2} \mathbf{E}_{x}\left(\mathbf{1}_{\left\{H(t) \in[-\lambda, \lambda]^{n}\right\}} F(t)^{2}\right) \\
& \leq\|\phi\|_{L^{\infty}}^{2}\left(\mathbf{E} F(t)^{4}\right)^{\frac{1}{2}} \mathbf{P}_{x}\left(H(t) \in[-\lambda, \lambda]^{n}\right)^{\frac{1}{2}} \tag{2.19}
\end{align*}
$$

With $F(t)$ defined in (2.16), and $\langle M\rangle(t)=\gamma^{2} t$, it follows that

$$
\mathbf{E}_{x}\left(F(t)^{4}\right)=\mathbf{E}_{x}\left(e^{4 M(t)} e^{-2\langle M\rangle(t)}\right)=e^{\frac{1}{2}(16-4) \gamma^{2} t}=c(\gamma, t)
$$

Let $\Phi(x):=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} d y$ denote the Gaussian distribution function. With $H_{i}(t)=$ $x_{i}+\frac{a}{2} t+W_{i}(t)$, we have

$$
\mathbf{P}_{x}\left(H(t) \in[-\lambda, \lambda]^{n}\right) \leq \prod_{i=1}^{n} \Phi\left(\frac{\lambda-\frac{a}{2} t-x_{i}}{\sqrt{t}}\right)
$$

Inserting these bounds into (2.19), we obtain

$$
\begin{align*}
\mathbf{E}_{x}\left(\phi^{\mathrm{s}}(H(t))^{2} F(t)^{2}\right) & \leq c(a, \gamma, \lambda, t) \prod_{i=1}^{n} \Phi\left(\frac{\lambda-\frac{a}{2} t-x_{i}}{\sqrt{t}}\right) \tag{2.20}\\
& \leq c(a, \gamma, \lambda, t, n) \exp \left(-\frac{x_{1}^{2}+\ldots+x_{n}^{2}}{4(t+1)}\right) \tag{2.21}
\end{align*}
$$

ii) Expand the expression $\mathbf{E}_{x}\left(1-\frac{F^{\varepsilon}(t)}{F(t)}\right)^{2}$ into

$$
\begin{equation*}
\mathbf{E}_{x}\left(1-\frac{F^{\varepsilon}(t)}{F(t)}\right)^{2}=1+\mathbf{E}_{x}\left(\frac{F^{\varepsilon}(t)}{F(t)}\right)^{2}-2 \mathbf{E}_{x} \frac{F^{\varepsilon}(t)}{F(t)} . \tag{2.22}
\end{equation*}
$$

From (2.16)-(2.17), we have

$$
\begin{equation*}
\frac{F^{\varepsilon}(t)}{F(t)}=\exp \left(M(t)-M^{\varepsilon}(t)\right) \exp \left(\frac{1}{2}\langle M\rangle(t)-\frac{1}{2}\left\langle M^{\varepsilon}\right\rangle(t)\right) \tag{2.23}
\end{equation*}
$$

Set $b_{i}^{\varepsilon}(s):=\frac{1}{2} \partial_{i} V^{\varepsilon}(H(s))$ to simplify notations. As $V(x)$ is Lipschitz with Lipschitz seminorm $2|\gamma|$, (i.e., $|V(x)-V(y)| \leq 2 \gamma|x-y|, \forall x, y \in \mathbb{R}^{n}$), we have $\left|b_{i}^{\varepsilon}(s)\right| \leq|\gamma|$. Consequently,

$$
\begin{equation*}
\langle M\rangle(t)=\gamma^{2} t, \quad\left\langle M^{\varepsilon}\right\rangle(t) \leq n \gamma^{2} t \tag{2.24}
\end{equation*}
$$

To estimate the expression (2.23), we use (2.7) and $\left|b_{i}^{\varepsilon}(s)\right| \leq|\gamma|$ to write

$$
\begin{equation*}
\left|\left\langle M-M^{\varepsilon}\right\rangle(t)\right|=\int_{0}^{t} \sum_{i=1}^{n}\left(b_{i}^{\varepsilon}(s)-\gamma \mathbf{1}\left\{p_{H(s)}(i)=1\right\}\right)^{2} d s \leq 4 n \gamma^{2} \int_{0}^{t} \mathbf{1}\left\{H(s) \notin \Omega_{\varepsilon}\right\} d s \tag{2.25}
\end{equation*}
$$

Let $L_{i, j}(s, \xi)$ denote the localtime process of $H_{i}(s)-H_{j}(s)=W_{i}(s)-W_{j}(s)+\left(x_{j}-x_{i}\right)$ at a given level ξ. We further bound the r.h.s. of (2.25) as

$$
\int_{0}^{t} 1\left\{H(s) \notin \Omega_{\varepsilon}\right\} d s \leq \sum_{i<j} \int_{0}^{t} \int_{|\xi| \leq \varepsilon} L_{i, j}(s, \xi) d \xi d s \longrightarrow_{\mathrm{P}} 0, \quad \text { as } \varepsilon \rightarrow 0
$$

Consequently, $\left|\left\langle M-M^{\varepsilon}\right\rangle(t)\right| \rightarrow_{\mathrm{P}} 0$. Since, by (2.24), $\langle M\rangle(t)$ and $\left\langle M^{\varepsilon}\right\rangle(t)$ are bounded (for fixed t), it also follows that $\mathbf{E}_{x}\left|\left\langle M-M^{\varepsilon}\right\rangle(t)\right| \rightarrow 0$ and hence $M(t)-M^{\varepsilon}(t) \rightarrow_{\mathrm{P}} 0$. Referring back to the expression (2.23), we see that $\frac{F^{\varepsilon}(t)}{F(t)} \rightarrow_{\mathrm{P}} 1$. Using again the fact that $\langle M\rangle(t)$ and $\left\langle M^{\varepsilon}\right\rangle(t)$ are bounded, (which implies the uniform integrability of $\left(\frac{F^{\varepsilon}(t)}{F(t)}\right)^{k}$, $k=1,2$), we obtain $\mathbf{E}_{x}\left(\frac{F^{\varepsilon}(t)}{F}\right), \mathbf{E}_{x}\left(\frac{F^{\varepsilon}(t)}{F}\right)^{2} \rightarrow 1$. Inserting these into (2.22) yields

$$
\begin{equation*}
\mathbf{E}_{x}\left(1-\frac{F^{\varepsilon}(t)}{F(t)}\right)^{2} \rightarrow 0, \text { as } \varepsilon \rightarrow 0, \quad \text { for any fixed } x \in \mathbb{R}^{n} \tag{2.26}
\end{equation*}
$$

Now, combine (2.21), (2.26) with (2.18), and insert the result into the l.h.s. of (2.13). After taking the $\varepsilon \rightarrow 0$ limit with $n<\infty$ being fixed, we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \mathbf{E}_{x}\left(\phi^{\mathrm{s}}\left(\bar{X}^{n}(t)\right)\right) e^{2 \gamma x_{(1)}} \prod_{i=1}^{n} e^{a x_{i}} d x_{i}=\int_{\mathbb{R}^{n}} \phi^{\mathrm{s}}(x) e^{2 \gamma x_{(1)}} \prod_{i=1}^{n} e^{a x_{i}} d x_{i} . \tag{2.27}
\end{equation*}
$$

Recall that $\mu_{a, \zeta}$ denote the restriction of the Poisson point process μ_{a} on $(-\infty, \zeta]$ and that $N(\zeta)$ denote the number of particles on $(-\infty, \zeta]$. As mentioned previously, $\mu_{a, \zeta} \sim\left\{\zeta-Y_{1}, \ldots, \zeta-Y_{N(\zeta)}\right\}$, where Y_{1}, Y_{2}, \ldots are i.i.d. $\operatorname{Exp}(a)$ variables, independent of $N(\zeta)$. Conditionally on $N(\zeta)=n$, the process $\left\{\zeta-Y_{1}, \ldots, \zeta-Y_{N(\zeta)}\right\}$ have joint distribution $\prod_{i=1}^{n} a e^{a\left(x_{i}-\zeta\right)} d x_{i} \mathbf{1}_{\left\{x_{i} \leq \zeta\right\}}$. With this, multiplying both sides of (2.27) by $a^{n} e^{-a n \zeta}$, and averaging over $\{N(\zeta) \geq m\}$, we obtain that

$$
\begin{align*}
& \mathbf{E}_{\mu_{a, \zeta}}\left(\phi^{\mathrm{s}}\left(\bar{X}^{N(\zeta)}(t)\right) e^{2 \gamma \bar{X}_{(1)}^{N(\zeta)}(0)} \mathbf{1}\{N(\zeta) \geq m\}\right)+\mathbf{E}\left(R_{N(\zeta)}(\zeta) \mathbf{1}\{N(\zeta) \geq m\}\right) \\
= & \mathbf{E}_{\mu_{a, \zeta}}\left(\phi^{\mathrm{s}}\left(\bar{X}^{N(\zeta)}(0)\right) e^{2 \gamma \bar{X}_{(1)}^{N(\zeta)}(0)} \mathbf{1}\{N(\zeta) \geq m\}\right)+\mathbf{E}\left(S_{N(\zeta)}(\zeta) \mathbf{1}\{N(\zeta) \geq m\}\right), \tag{2.28}
\end{align*}
$$

where the terms $R_{n}(\zeta)$ and $S_{n}(\zeta)$ are given by

$$
\begin{align*}
R_{n}(\zeta) & :=\int_{\cup_{i=1}^{n}\left\{x_{i}>\zeta\right\}} \mathbf{E}_{x}\left(\phi^{\mathrm{s}}\left(\bar{X}^{n}(t)\right)\right) e^{2 \gamma x_{(1)}} \prod_{i=1}^{n} a e^{a\left(x_{i}-\zeta\right)} d x_{i}, \tag{2.29}\\
S_{n}(\zeta) & :=\int_{\cup_{i=1}^{n}\left\{x_{i}>\zeta\right\}} \mathbf{E}_{x}\left(\phi^{\mathrm{s}}(x)\right) e^{2 \gamma x_{(1)}} \prod_{i=1}^{n} a e^{a\left(x_{i}-\zeta\right)} d x_{i} .
\end{align*}
$$

Recall that $\operatorname{supp}\left(\phi^{\mathrm{s}}\right) \subset[-\lambda, \lambda]^{n}$. Hence

$$
\begin{equation*}
S_{n}(\zeta)=0, \quad \text { for all } \zeta>\lambda \tag{2.30}
\end{equation*}
$$

As for $R_{n}(\zeta)$, inserting the bound (2.20) into (2.29) gives

$$
\left|R_{n}(\zeta)\right| \leq c(a, \gamma, \lambda, t) \int_{\cup_{i=1}^{n}\left\{x_{i}>\zeta\right\}} e^{2 \gamma x_{(1)}} \prod_{i=1}^{n} \Phi\left(\frac{\lambda-\frac{a}{2} t-x_{i}}{\sqrt{t}}\right) a e^{a\left(x_{i}-\zeta\right)} d x_{i}
$$

Indeed, $x_{(1)} \leq \zeta+\sum_{i=1}^{n}\left(x_{i}-\zeta\right)_{+}$, so, after a change of variable $x_{i}-\zeta \mapsto x_{i}$, we obtain

$$
\left|R_{n}(\zeta)\right| \leq c(a, \gamma, \lambda, t) e^{\zeta} \int_{\cup_{i=1}^{n}\left\{x_{i}>0\right\}} \prod_{i=1}^{n} \Phi\left(\frac{\lambda-\frac{a}{2} t-x_{i}-\zeta}{\sqrt{t}}\right) a e^{a x_{i}+a\left(x_{i}\right)+} d x_{i} .
$$

To bound the last integral, we split the integration over x_{i} into $\left\{x_{i}>0\right\}$ and $\left\{x_{i} \leq 0\right\}$ for each x_{i}, and thereby express the integral as

$$
\sum_{k=1}^{n} \sum_{\left\{i_{1}, \ldots, i_{k}\right\}}\left(\prod_{j \in\left\{i_{1}, \ldots, i_{k}\right\}} \int_{\left\{x_{j}>0\right\}}(\cdots) d x_{j}\right)\left(\prod_{j \notin\left\{i_{1}, \ldots, i_{k}\right\}} \int_{\left\{x_{j} \leq 0\right\}}(\cdots) d x_{j}\right),
$$

where $\left\{i_{1}, \ldots, i_{k}\right\}$ ranges over all distinct k-indices from $\{1, \ldots, n\}$. Further, for each integral over $\{x>0\}$ and over $\{x \leq 0\}$, we have that

$$
\begin{aligned}
& \int_{\{x>0\}} \Phi\left(\frac{\lambda-\frac{a}{2} t-x-\zeta}{\sqrt{t}}\right) a e^{a x+a(x)_{+}} d x \leq c(a, \lambda, \gamma, t) e^{-\frac{\zeta^{2}}{4(t+1)}} \\
& \int_{\{x \leq 0\}} \Phi\left(\frac{\lambda-\frac{a}{2} t-x-\zeta}{\sqrt{t}}\right) a e^{a x+a(x)_{+}+} d x<\int_{\{x \leq 0\}} a e^{a x} d x=1
\end{aligned}
$$

Consequently,

$$
\left|R_{n}(\zeta)\right| \leq c(a, \gamma, \lambda, t) e^{\zeta} \sum_{k=1}^{n}\binom{n}{k} c(a, \gamma, \lambda, t)^{k} e^{-\frac{k \zeta^{2}}{4(t+1)}}
$$

Now, with $N(\zeta) \sim \operatorname{Pois}\left(e^{a \zeta}\right)$, we have $\mathbf{E}\left(\binom{N(\zeta)}{k}\right)=\frac{1}{k!} \mathbf{E}(N(\zeta) \cdots(N(\zeta)-k+1))=\frac{1}{k!} e^{k a \zeta}$. Given this identity, setting $n=N(\zeta)$ and taking expected value, we obtain

$$
\begin{equation*}
\mathbf{E}\left|R_{N(\zeta)}(\zeta)\right| \leq c(a, \gamma, \lambda, t) e^{\zeta} \sum_{k=1}^{\infty} \frac{1}{k!} c(a, \lambda, t)^{k} e^{k a \zeta-\frac{k \zeta^{2}}{4(t+1)}}, \tag{2.31}
\end{equation*}
$$

which converges to zero as $\zeta \rightarrow \infty$.
Using (2.30)-(2.31) in (2.28), and taking the limit $\zeta \rightarrow \infty$, we arrive at

$$
\begin{align*}
\lim _{\zeta \rightarrow \infty} & \left(\mathbf{E}_{\mu_{a, \zeta}}\left(\phi^{\mathrm{s}}\left(\bar{X}^{N(\zeta)}(t)\right) e^{2 \gamma \bar{X}_{(1)}^{N(\zeta)}(0)} \mathbf{1}\{N(\zeta) \geq m\}\right)\right. \\
& \left.-\mathbf{E}_{\mu_{a, \zeta}}\left(\phi^{\mathrm{s}}\left(\bar{X}^{N(\zeta)}(0)\right) e^{2 \gamma \bar{X}_{(1)}^{N(\zeta)}(0)} \mathbf{1}\{N(\zeta) \geq m\}\right)\right)=0 . \tag{2.32}
\end{align*}
$$

It remains to show that, under the limit $\zeta \rightarrow \infty$, we can exchange the finite system $\bar{X}^{N(\zeta)}$ for the infinite system \bar{X} within the expressions in (2.32). As $\zeta \rightarrow \infty$, we have that

$$
\begin{equation*}
\bar{X}_{(i)}^{N(\zeta)}(t) \Rightarrow \bar{X}_{(i)}(t), \quad \text { as } \zeta \rightarrow \infty, \quad i=1, \ldots, m \tag{2.33}
\end{equation*}
$$

where $\bar{X}^{N(\zeta)}(0) \sim \mu_{a, \zeta}$ and $\bar{X}(0) \sim \mu_{a}$. Such a statement (2.33) can be proven by techniques from [Sar17a] and [ST17, Section 3(a)]. We omit repeating the standard arguments here. Combining (2.33) and (2.3), we obtain that

$$
\begin{align*}
\lim _{\zeta \rightarrow \infty} \mathbf{E}_{\mu_{a, \zeta}}\left(\phi^{\mathrm{s}}\left(\bar{X}^{N(\zeta)}(t)\right) e^{2 \gamma \bar{X}_{(1)}^{N(\zeta)}(0)}\right) & =\mathbf{E}_{\mu_{a}}\left(\phi^{\mathrm{s}}(\bar{X}(t)) e^{2 \gamma \bar{X}_{(1)}(0)}\right) \tag{2.34}\\
\lim _{\zeta \rightarrow \infty} \mathbf{E}_{\mu_{a, \zeta}}\left(\phi^{\mathrm{s}}\left(\bar{X}^{N(\zeta)}(0)\right) e^{2 \gamma \bar{X}_{(1)}^{N(\zeta)}(0)}\right) & =\mathbf{E}_{\mu_{a}}\left(\phi^{\mathrm{s}}(\bar{X}(0)) e^{2 \gamma \bar{X}_{(1)}(0)}\right) \tag{2.35}
\end{align*}
$$

Combining (2.34)-(2.35) with (2.32), we thus obtain (2.4), and hence complete the proof.

2.3 Corollary 1.3

Fixing $\gamma \in \mathbb{R}$ and $a>2 \gamma_{-}$, we let $c=c(a, \gamma)<\infty$ denote a generic finite constant that depends only on these two variables. Let $Y(t)=\left(Y_{i}(t)\right)_{i=1}^{\infty}$ be a solution to (1.1) starting from the distribution $\left\{Y_{i}(0)\right\}_{i=1}^{\infty} \sim \nu_{a}$, so that $\left\{Y_{i}(t)+\frac{a t}{2}\right\}_{i=1}^{\infty} \sim \nu_{a}$, for all $t \in \mathbb{R}_{+}$. Since, by (1.4), the gap process $\left(Y_{(i+1)}(0)-Y_{(i)}(0)\right)_{i=1}^{\infty}$ is distributed as π_{a}, setting $X_{i}(t)=Y_{i}(t)-Y_{(1)}(0)$, we have that $X(t)$ is a solution to (1.1) with the designated initial distribution as in Corollary 1.3. Under these notations, for any given $\xi \geq 0$,

$$
\begin{align*}
\mathbf{P}\left(\left|X_{(1)}(t)\right| \geq \xi\right) & =\mathbf{P}\left(\left|Y_{(1)}(t)-Y_{(1)}(0)\right| \geq \xi\right) \\
& \leq \mathbf{P}\left(\left|Y_{(1)}(0)\right| \geq \frac{\xi}{2}\right)+\mathbf{P}\left(\left|Y_{(1)}(t)\right| \geq \frac{\xi}{2}\right)=2 \mathbf{P}\left(\left|Y_{(1)}(0)\right| \geq \frac{\xi}{2}\right) \tag{2.36}
\end{align*}
$$

Stationary distributions of the Atlas model

With $e^{a Y_{(1)}} \sim \operatorname{Gamma}\left(\frac{2 \gamma}{a}, 1\right)$, we have that

$$
\begin{aligned}
\mathbf{P}\left(Y_{(1)}(0) \leq-\frac{\xi}{2}\right) & =\frac{1}{\Gamma\left(\frac{2 \gamma}{a}\right)} \int_{0}^{e^{-\frac{1}{2} a \xi}} \zeta^{\frac{2 \gamma}{a}} e^{-\zeta} d \zeta \leq c \int_{0}^{e^{-\frac{1}{2} a \xi}} \zeta^{\frac{2 \gamma}{a}} d \zeta=c e^{-\frac{1}{2}(2 \gamma+a) \xi}, \\
\mathbf{P}\left(Y_{(1)}(0) \geq \frac{\xi}{2}\right) & =\frac{1}{\Gamma\left(\frac{2 \gamma}{a}\right)} \int_{e^{\frac{1}{2} a \xi}}^{\infty} \zeta^{\frac{2 \gamma}{a}} e^{-\zeta} d \zeta \leq c \int_{e^{\frac{1}{2} a \xi}}^{\infty} e^{-\frac{1}{2} \zeta} d \zeta=c e^{-\frac{1}{2} e^{\frac{1}{2} a \xi}} \leq c e^{-\frac{1}{2}(2 \gamma+a) \xi} .
\end{aligned}
$$

Combining these bounds with (2.36) yields the desired result.

References

[Ald02] D. Aldous. Unpublished, available at http://www.stat.berkeley.edu/~aldous/ Research/OP/river.pdf. 2002.
[$\mathrm{BFI}^{+} 11$ A. D. Banner, E. R. Fernholz, T. Ichiba, I. Karatzas, and V. Papathanakos. Hybrid Atlas models. Ann. Appl. Probab, 21(2):609-644, 2011.
[BFK05] A. D. Banner, R. Fernholz, and I. Karatzas. Atlas models of equity markets. Ann. Appl. Probab., 15(4):2296-2330, 2005.
[DT17] A. Dembo and L.-C. Tsai. Equilibrium fluctuation of the Atlas model. Ann Probab, 45(6b):4529-4560, 2017.
[Fer02] E. R. Fernholz. Stochastic portfolio theory. In Stochastic Portfolio Theory, pages 1-24. Springer, 2002.
[FK09] R. Fernholz and I. Karatzas. Stochastic portfolio theory: an overview. Handbook of numerical analysis, 15:89-167, 2009. MR-1894767
[IKS13] T. Ichiba, I. Karatzas, and M. Shkolnikov. Strong solutions of stochastic equations with rank-based coefficients. Probab Theory Related Fields, 156(1-2):229-248, 2013. MR-3055258
[Lig78] T. M. Liggett. Random invariant measures for Markov chains, and independent particle systems. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 45(4):297313, 1978.
[Pan13] D. Panchenko. The Sherrington-Kirkpatrick model. Springer Science \& Business Media, 2013.
[PP08] S. Pal and J. Pitman. One-dimensional Brownian particle systems with rank-dependent drifts. Ann. Appl. Probab., 2008.
[Rén53] A. Rényi. On the theory of order statistics. Acta Mathematica Academiae Scientiarum Hungarica, 4(3-4):191-231, 1953.
[Sar17a] A. Sarantsev. Infinite systems of competing Brownian particles. Ann Inst H Poincaré Probab Statist, 53(4):2279-2315, 2017.
[Sar17b] A. Sarantsev. Two-sided infinite systems of competing Brownian particles. ESAIM: Probability and Statistics, 21:317-349, 2017.
[Shk11] M. Shkolnikov. Competing particle systems evolving by interacting Lévy processes. Ann. Appl. Probab., 21(5):1911-1932, 2011. MR-2884054
[ST17] A. Sarantsev and L.-C. Tsai. Stationary gap distributions for infinite systems of competing Brownian particles. Electron J Probab, 22, 2017.
[SV07] D. W. Stroock and S. S. Varadhan. Multidimensional diffusion processes. Springer, 2007.
[TT15] W. Tang and L.-C. Tsai. Optimal surviving strategy for drifted Brownian motions with absorption. arXiv:1512.04493, to appear in Ann Probab, 2015.
[Wil95] R. J. Williams. Semimartingale reflecting Brownian motions in the orthant. IMA Volumes in Mathematics and its Applications, 71:125-125, 1995. MR-1381009

[^0]: *This work was partially supported by a Junior Fellow award from the Simons Foundation to Li-Cheng Tsai.
 ${ }^{\dagger}$ Columbia University, United States of America. E-mail: lcstai.math@gmail.com

