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We prove a Hermitian matrix version of Bougerol’s identity. Moreover, we construct
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1 Introduction

We begin this introduction, by recalling Bougerol’s celebrated identity, first estab-
lished in [6] in his study of convolution powers of probabilities on certain solvable groups.
Let (βt; t ≥ 0) and (γt; t ≥ 0) be two independent standard Brownian motions starting
from 0. Then, for fixed t ≥ 0, we have the following equalities in law,

sinh (βt)
law
=

∫ t

0

eβsdγs
law
= γ

(∫ t

0

e2βsds

)
. (1.1)

Moreover, if we denote by
(
β

(−ν)
t ; t ≥ 0

)
and

(
γ

(−µ)
t ; t ≥ 0

)
two independent standard

Brownian motions with drifts −ν and −µ respectively, the law of the functional, for ν > 0,∫ ∞
0

eβ
(−ν)
t dγ

(−µ)
t (1.2)

has density, with respect to Lebesgue measure, given by,

fν,µ(x) = cν,µ
e−2µ arctan(x)

(1 + x2)
ν+ 1

2

.

Note that this belongs to the much-studied type IV family of Pearson distributions. Both
these statements, have been given simple and quite elegant diffusion theoretic proofs
by Marc Yor and co-authors in [1] and [3] respectively (see also Marc Yor’s monograph
[21] and the survey [20] for more recent developments). The purpose of this note is
to obtain the Hermitian matrix analogues of these results. We will establish these by
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adapting the strategy in the references above to the matrix setting. The real crux here,
is understanding what the right matrix analogue should be.

We should also mention that, Marc Yor had an ongoing program for some time,
trying to obtain higher dimensional generalizations of Bougerol’s identity and study
their ramifications ([7]). In the last few years, some interesting progress was made in
his joint work with Bertoin and Dufresne ([4]), where a generalization involving a (still)
one-dimensional process and its local time was discovered. However, our contribution
provides the first truly multi-dimensional extension, moreover making a connection
between stochastic analysis and the celebrated Hua-Pickrell measures coming from
random matrix theory and harmonic analysis on groups.

Before continuing, let us explain a bit further the initial motivation behind the study
undertaken here. There is a closely related and equally well-known identity in one
dimension, originally proven by Dufresne in [11]: Consider the functional,

a
(−ν)
t =

∫ t

0

e2β(−ν)
s ds.

Then, for ν > 0,

a(−ν)
∞

law
=

1

2ξν
(1.3)

where ξν is a Gamma distributed random variable with density 1
Γ(ν)x

ν−1e−x. Recently,
Rider and Valko in [18] have proven a matrix version of this result, obtaining in place of an
inverse Gamma random variable, the inverse Wishart laws. The present paper grew out
of my attempt, to both better understand their result and investigate whether other well
known matrix laws can be constructed by this diffusion theoretic approach, or “Dufresne
procedure” as referred to in [18]. We finally note that, the second equality in law in
(1.1), obtained by a time-change, that links Bougerol’s and Dufresne’s (one-dimensional)
identities, does not appear to have a matrix counterpart.

In order to proceed to state our results, we first need to introduce the Hermitian
analogues of the Pearson distribution, of

(
eβt ; t ≥ 0

)
and (sinh (βt) ; t ≥ 0).

We consider the following measure, denoted by Ms,N
HP , on the space H(N), of N ×N

Hermitian matrices, with s being a complex parameter such that <(s) > − 1
2 ,

Ms,N
HP (dX) = const× det

(
(I + iX)−s−N

)
det
(
(I − iX)−s̄−N

)
× dX, (1.4)

where dX denotes Lebesgue measure on H(N). The restriction <(s) > − 1
2 is so that the

measure Ms,N
HP can be normalized to a probability measure. Its significance in terms of

the stochastic processes we shall consider will also be clarified in Lemma 2.2 below.
Looking at the radial part of Ms,N

HP (dX) we get a probability measure on the Weyl
chamber WN = {(x1, · · · , xN ) ∈ RN : x1 ≤ x2 ≤ · · · ≤ xN} of log-gas type, which we will
denote by µs,NHP , and is given explicitly by,

µs,NHP (dx) = const×∆2
N (x)

N∏
j=1

(1 + ixj)
−s−N (1− ixj)−s̄−Ndxj

= const×∆2
N (x)

N∏
j=1

(1 + x2
j )
−<(s)−Ne2=(s) arg(1+ixj)dxj , (1.5)

where x = (x1, · · · , xN ) and ∆N (x) =
∏

1≤i<j≤N (xj − xi) is the Vandermonde determi-
nant.

Before introducing our stochastic dynamics, we briefly give some of the history
of the measures Ms,N

HP . They were first introduced by Hua Luogeng in the 50’s in his
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monograph [15] on harmonic analysis in several complex variables and were later in the
80’s rediscovered independently by Pickrell [17] in the context of Grassmann manifolds.
Around the turn of the millennium, they were further studied by Neretin in [16] and
Borodin and Olshanski investigated their N →∞ limits as determinantal point processes
in [5]. The reader is referred to [5] and the more recent study [8] for more of their truly
remarkable properties.

We now move on to the matrix stochastic processes we will be dealing with. First
some notation. We will denote by A† the complex conjugate of a matrix A and in case it is

invertible we write A−† for
(
A†
)−1

and also write Tr(A) for the trace of A. Throughout

this paper, (W t; t ≥ 0) will be an N ×N complex Brownian matrix. More precisely, its
entries consist of independent (scalar) complex Brownian motions.

We will denote by
(
M

(ν)
t ; t ≥ 0

)
the matrix analogue of the exponential of complex

Brownian motion with drift ν (the choice of the diffusivity constant is dictated once we
fix the normalization of the equation (1.6) below), given by the solution to the following
matrix Stochastic Differential Equation (SDE), starting from M

(ν)
0 = I,

dM
(ν)
t =

1√
2
M

(ν)
t dW t + νM

(ν)
t dt.

Moreover, consider the following matrix SDE taking values in H(N) (if X0 ∈ H(N)),
where (Γt; t ≥ 0) denotes a complex Brownian matrix,

dXt = dΓt

√
I + X2

t

2
+

√
I + X2

t

2
dΓ†t + [(−N − 2<(s))Xt + 2=(s)I + Tr (Xt) I] dt.

(1.6)

This is a Hermitian analogue of (a general version of) sinh(βt). To see the analogy more
clearly, note that,

d sinh(βt) =
(
1 + sinh2(βt)

) 1
2 dβt +

1

2
sinh(βt)dt.

Hence, to arrive at (1.6) we simply replaced the scalar (quadratic, with no real roots)
diffusion and (linear) drift coefficients by their (symmetrized) matrix analogues. The
appearance of the trace drift term is natural and can partly be explained by the calcula-
tions required in Propositions 2.3 and 2.4 below. Moreover, our choice of both drift and
diffusivity constants, is so that (1.6) has both Ms,N

HP as its unique invariant measure and
its eigenvalue evolution satisfies a stochastic equation with a certain normalization; this
is made precise in Proposition 2.4 and its proof.

One final piece of notation; we will write throughout
(
B

(µ)
t ; t ≥ 0

)
for a drifting

complex Brownian matrix with drift µ ∈ R, given by,

B
(µ)
t = Bt + µIt

for a complex Brownian matrix (Bt; t ≥ 0) which is independent of (W t; t ≥ 0).
We are now ready to state our two main results. First, the law of the Hermitian

analogue of the functional (1.2), is given by the Hua-Pickrell measure Ms,N
HP .

Theorem 1.1. Let <(s) > − 1
2 . With ν = <(s) + N

2 , µ =
√

2=(s), then,

∫ ∞
0

M
(−ν)
t

dB(µ)
t + d

(
B

(µ)
t

)†
√

2

(M (−ν)
t

)†
(1.7)

is distributed as Ms,N
HP .
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Remark 1.2. Comparing with [18], the matrix analogue of Dufresne’s identity is given
by, ∫ ∞

0

M
(−ν)
t dt

(
M

(−ν)
t

)†
which is distributed as an inverse Wishart random matrix. To obtain the Hua-Pickrell
measures, we have replaced the dt integration by a stochastic integral with respect to

an independent (drifting) Hermitian Brownian motion,

(
B

(µ)
t +

(
B

(µ)
t

)†
; t ≥ 0

)
.

Finally, we have the following Hermitian version of Bougerol’s identity (1.1).

Theorem 1.3. With ν = <(s) + N
2 , µ =

√
2=(s), denote by X̃

µ,ν

t the unique solution of
(1.6) starting from the 0 matrix. Then, for fixed t > 0,

X̃
µ,ν

t
law
=

∫ t

0

M (−ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (−ν)
u

)†
. (1.8)

2 Preliminaries, auxiliary results and proofs of theorems

As in the introduction, we denote by
(
M

(ν)
t ; t ≥ 0

)
the matrix analogue of the ex-

ponential of complex Brownian motion with drift ν (and diffusivity 1√
2
), starting from

M
(ν)
0 = I,

dM
(ν)
t =

1√
2
M

(ν)
t dW t + νM

(ν)
t dt,

d
(
M

(ν)
t

)†
=

1√
2
dW †

t

(
M

(ν)
t

)†
+ ν

(
M

(ν)
t

)†
dt.

A simple application of Itô’s formula gives the following SDE for
(

det
(
M

(ν)
t

)
; t ≥ 0

)
,

ddet
(
M

(ν)
t

)
= det

(
M

(ν)
t

)( 1√
2

tr (dW t) + νNdt

)
.

Solving it, we get,

det
(
M

(ν)
t

)
= exp

(
1√
2

tr (W t) + νNt

)
.

Thus,
(
M

(ν)
t ; t ≥ 0

)
is almost surely invertible. Moreover, by applying Itô’s formula

to the identity M
(ν)
t

(
M

(ν)
t

)−1

= I, we easily obtain the following description of the

dynamics of its inverse

((
M

(ν)
t

)−1

; t ≥ 0

)
,

d
(
M

(ν)
t

)−1

= − 1√
2
dW t

(
M

(ν)
t

)−1

− ν
(
M

(ν)
t

)−1

dt,

d
(
M

(ν)
t

)−†
= − 1√

2

(
M

(ν)
t

)−†
dW †

t − ν
(
M

(ν)
t

)−†
dt.

We will also need the notion and a precise description of the evolution of the time-

reversal of
(
M

(ν)
t ; t ≥ 0

)
. For T ≥ 0 fixed, we will denote this time-reversed process by(

N
(ν)
t ; 0 ≤ t ≤ T

)
=

((
M

(ν)
T

)−1

M
(ν)
T−t; 0 ≤ t ≤ T

)
. Then, we have the following lemma.
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Lemma 2.1.
(
N

(ν)
t ; 0 ≤ t ≤ T

)
satisfies,

dN
(ν)
t =

1√
2
N

(ν)
t dW̃ t − νN (ν)

t dt,

for a complex Brownian matrix W̃ . In particular, it is distributed as
(
M

(−ν)
t ; 0 ≤ t ≤ T

)
starting from I.

Furthermore, we have the following result for the rate of growth of
(
M

(−ν)
t ; t ≥ 0

)
as

t→∞; this ensures the convergence of the various matrix integrals we have encountered
under the assumption <(s) > − 1

2 .

Lemma 2.2. Let
(
η

(−ν)
1 (t) ≤ · · · ≤ η(−ν)

N (t); t ≥ 0
)

denote the squared singular values of(
M

(−ν)
t ; t ≥ 0

)
. Then, almost surely,

lim
t→∞

1

t
log η

(−ν)
N (t) ≤ −2ν +N − 1.

In particular, if ν = <(s) + N
2 for <(s) > − 1

2 we have,

lim
t→∞

1

t
log η

(−ν)
N (t) < 0

and hence, for any matrix norm ‖ · ‖ we have,

lim
t→∞

1

t
log
∥∥∥M (−ν)

t

∥∥∥ < 0, almost surely.

It is a remarkable fact, that the solution of (1.6), for any initial condition X0, can be
written out explicitly:

Proposition 2.3. With ν = <(s) + N
2 , µ =

√
2=(s), then the unique strong solution of

(1.6), starting from X0 ∈ H(N) is given explicitly by,

(
M

(ν)
t

)−1

X0 +

∫ t

0

M (ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (ν)
u

)†(M (ν)
t

)−†
. (2.1)

The final ingredient that we will make use of is the following.

Proposition 2.4. Let <(s) > − 1
2 . Then, the unique strong solution (Xt; t ≥ 0) to (1.6)

has Ms,N
HP as its unique invariant measure.

We are now in position to quickly prove our two main results.

Proof of Theorem 1.3. This follows immediately from Proposition 2.3, by making the

change of variables u 7→ t−u, using the time-reversal Lemma 2.1 for

((
M

(ν)
t

)−1

M
(ν)
t−u ;

0 ≤ u ≤ t
)

and finally noting invariance under time-reversal of the matrix Brownian

motion B.

Proof of Theorem 1.1. From Theorem 1.3 we have that,

X̃
µ,ν

t
law
=

∫ t

0

M (−ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (−ν)
u

)†
. (2.2)
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Moreover, by Lemma 2.2 we have that for <(s) > − 1
2 almost surely,

∫ t

0

M (−ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (−ν)
u

)†

−→
t→∞

∫ ∞
0

M (−ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (−ν)
u

)†
.

Thus, we have the following convergence in law (in fact for any initial condition X0 ∈
H(N) and not just for the 0 matrix),

X̃
µ,ν

t
law−→
t→∞

∫ ∞
0

M (−ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (−ν)
u

)†
.

But by Proposition 2.4, for <(s) > − 1
2 , Ms,N

HP is the unique invariant probability measure
of (1.6) and so,

∫ ∞
0

M (−ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (−ν)
u

)†
is distributed as Ms,N

HP .

3 Proofs of auxiliary results

Proof of Proposition 2.3. The fact that (1.6) has a unique strong solution has been proven
in Section 8 of [2] (by a standard argument found also in [9] and [10] for example). It
suffices to check that,

(
M

(ν)
t

)−1

X0 +

∫ t

0

M (ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (ν)
u

)†(M (ν)
t

)−†

indeed solves (1.6) for ν = <(s) + N
2 , µ =

√
2=(s). The initial condition is immediate and

in order to ease notation, we will suppress any dependence on it in what follows. Let
X̃
µ,ν

t denote the expression above. Then, applying Itô’s formula we get,

dX̃
µ,ν

t = d

((
M

(ν)
t

)−1
)X0 +

∫ t

0

M (ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (ν)
u

)†(M (ν)
t

)−†

+
(
M

(ν)
t

)−1

X0 +

∫ t

0

M (ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (ν)
u

)† d((M (ν)
t

)−†)

+
(
M

(ν)
t

)−1

M (ν)
t

dB(µ)
t + d

(
B

(µ)
t

)†
√

2

(M (ν)
t

)†(M (ν)
t

)−†

+ d

((
M

(ν)
t

)−1
)X0 +

∫ t

0

M (ν)
u

dB(µ)
u + d

(
B(µ)
u

)†
√

2

(M (ν)
u

)† d((M (ν)
t

)−†)
.
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Note that, the terms of the form,

d

((
M

(ν)
t

)−1
)M (ν)

t

dB(µ)
t + d

(
B

(µ)
t

)†
√

2

(M (ν)
t

)†(M (ν)
t

)−†
= 0,

(
M

(ν)
t

)−1

M (ν)
t

dB(µ)
t + d

(
B

(µ)
t

)†
√

2

(M (ν)
t

)† d((M (ν)
t

)−†)
= 0,

by independence of B and the driving Brownian motion W of M (ν). Moreover, using
the fact that for a (scalar) complex Brownian motion β we have the following quadratic
covariation rules: dβdβ = 0, dβdβ̄ = 2; we easily obtain (we will do a similar and more
complicated calculation below) for a matrix A and matricial complex Browian motion W ,

dW tAdW
†
t = 2Tr(A)Idt.

Hence,

dX̃
µ,ν

t =− 1√
2
dW tX̃

µ,ν

t +
dBt√

2
− 1√

2
X̃
µ,ν

t dW †
t +

dB†t√
2
− 2νX̃

µ,ν

t dt+
2√
2
µIdt+ Tr(X̃

µ,ν

t )Idt.

=

[
− 1√

2
dW tX̃

µ,ν

t +
dBt√

2

]I +
(
X̃
µ,ν

t

)2

2


− 1

2

√√√√I +
(
X̃
µ,ν

t

)2

2
+

√√√√I +
(
X̃
µ,ν

t

)2

2

I +
(
X̃
µ,ν

t

)2

2


− 1

2 [
− 1√

2
dW tX̃

µ,ν

t +
dBt√

2

]
+

− 2νX̃
µ,ν

t dt+
2√
2
µIdt+ Tr(X̃

µ,ν

t )Idt.

Writing, dΓt =
[
− 1√

2
dW tX̃

µ,ν

t + dBt√
2

](
I+(X̃µ,ν

t )
2

2

)− 1
2

and then using Levy’s charac-

terization and (dΓt)ij(dΓt)i′j′ = 0, (dΓt)ij( ¯dΓt)i′j′ = 2δi,i′δj,j′dt we deduce that (Γt; t ≥ 0)

is a complex Brownian matrix. The fact that (dΓt)ij(dΓt)i′j′ = 0 is immediate; to check

(dΓt)ij( ¯dΓt)i′j′ = 2δi,i′δj,j′dt, writing Y t =

(
I +

(
X̃
µ,ν

t

)2
)− 1

2

we have,

(dΓt)ij( ¯dΓt)i′j′ =

∑
k,l

−dW i,k
t

(
X̃
µ,ν

t

)kl
Y lj
t +

∑
l

dBil
t Y

lj
t

×
×

∑
k′,l′

−dW̄ i′,k′

t

(
X̃
µ,ν

t

)k′l′
Ȳ
l′j′

t +
∑
l′

dB̄
i′l′

t Ȳ
l′j′

t


=

2δi,i′
∑

k,k′,l,l′

δk,k′
(
X̃
µ,ν

t

)kl
Y lj
t

(
X̃
µ,ν

t

)k′l′
Ȳ
l′j′

t + 2δi,i′
∑
l,l′

δl,l′Y
lj
t Ȳ

l′j′

t

 dt
=

2δi,i′
∑
l,l′

[∑
k

(
X̃
µ,ν

t

)kl (
X̃
µ,ν

t

)kl′]
Y lj
t Ȳ

l′j′

t + 2δi,i′
∑
l,l′

δl,l′Y
lj
t Ȳ

l′j′

t

 dt
ECP 23 (2018), paper 7.
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=

2δi,i′
∑
l,l′

[∑
k

(
X̃
µ,ν

t

)kl (
X̃
µ,ν

t

)l′k]
Y lj
t Y

j′l′

t + 2δi,i′
∑
l,l′

δl,l′Y
lj
t Y

j′l′

t

 dt
=

2δi,i′
∑
l,l′

Y j′l′

t

[(
X̃
µ,ν

t

)2

l′l
+ I l′l

]
Y lj
t

 dt
=

[
2δi,i′

(
Y t

(
I +

(
X̃
µ,ν

t

)2
)
Y t

)
j′j

]
dt = 2δi,i′δj,j′dt,

where we have used the fact that both X̃
µ,ν

t and Y t are Hermitian in the fourth equality.
Thus,

dX̃
µ,ν

t = dΓt

√√√√I +
(
X̃
µ,ν

t

)2

2
+

√√√√I +
(
X̃
µ,ν

t

)2

2
dΓ†t − 2νX̃

µ,ν

t dt+
2√
2
µIdt+ Tr(X̃

µ,ν

t )Idt.

Finally, to match with (1.6), we just need to take ν = <(s) + N
2 , µ =

√
2=(s).

Proof of Proposition 2.4. This has already been observed in Section 8 of [2]. The
argument goes as follows. Let U(N) denote the N × N unitary group. Then, by
U(N)-invariance of the law of the dynamics of (1.6) (invariance under conjugation,
x 7→ U†xU , for U ∈ U(N)), it suffices to show that its spectral evolution, denoted
by (x1(t), · · ·xN (t); t ≥ 0) has µs,NHP (dx) as its unique invariant probability measure. Us-
ing Theorem 4 of [13] for example, we obtain that (x1(t), · · ·xN (t); t ≥ 0) follows the
stochastic differential system,

dxi(t) =
√

2(1 + x2
i (t))dβi(t) +

2=(s) + (2− 2N − 2<(s))xi(t) +
∑
j 6=i

2
(
1 + x2

i (t)
)

xi(t)− xj(t)

 dt,

1 ≤ i ≤ N,

for some independent standard (real) Brownian motions {βi}Ni=1. It was proven in Lemma
4.3 of [2], using the general results of [14], that this system of SDEs has a unique strong
solution, with no explosions or collisions, even if started from a degenerate point (when

xi(0) = xj(0) for i 6= j). Let
(
P s,NHP (t); t ≥ 0

)
denote the Markov semigroup associated

with it. Then, checking invariance µs,NHPP
s,N
HP (t) = µs,NHP , t ≥ 0 is particularly simple,

since the argument becomes essentially one-dimensional. This is because the kernel,

P s,NHP (t)(x, dy) in WN , of the semigroup
(
P s,NHP (t); t ≥ 0

)
has a determinantal structure,

given by an h-transform of a Karlin-McGregor semigroup. Namely,

P s,NHP (t)(x, dy) = e−ct
∆N (x)

∆N (y)
det
(
ps,Nt (xi, yj)

)N
i,j=1

dy1 · · · dyN

where x = (x1, · · · , xN ), y = (y1, · · · , yN ), ps,Nt (z, w) is the strictly positive transition
density, with respect to Lebesgue measure in R, of the one-dimensional diffusion process
with generator,

L(N)
s = (w2 + 1)

d2

dw2
+ [(2− 2N − 2<(s))w + 2=(s)]

d

dw
,

which is furthermore, reversible with respect to the measure,

m(N)
s (w)dw = (1 + w2)−<(s)−Ne2=(s)arg(1+iw)dw
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and finally c is a constant. Invariance and uniqueness of µs,NHP then follow easily. The
reader is referred to Proposition 4.4 of [2] for the details.

We can alternatively argue for uniqueness of the invariant measure Ms,N
HP (dX), by

noting that the diffusion matrix of (1.6) is uniformly positive definite, from which we
deduce (see [19] for example) that if GX denotes the generator of the unique solution of
(1.6), then ∂t − G∗X is hypoelliptic.

Proof of Lemma 2.1. Let T > 0 be fixed. For 0 ≤ t ≤ T , we have that,

M
(ν)
T = M

(ν)
T−t +

∫ T

T−t
M (ν)

u dW u + ν

∫ T

T−t
M (ν)

u du.

Hence, by multiplying by
(
M

(ν)
T

)−1

and making the change of variables u 7→ T − u in

the Lebesgue integral,

N
(ν)
t = I −

∫ T

T−t

(
M

(ν)
T

)−1

M (ν)
u dW u − ν

∫ T

T−t

(
M

(ν)
T

)−1

M (ν)
u du

= I −
∫ T

T−t

(
M

(ν)
T

)−1

M (ν)
u dW u − ν

∫ t

0

N (ν)
u du.

Now, to treat the stochastic integral term, begin by writing W̃ t = W T−t −W T for the
time-reversed Brownian motion. We note that, this is again a Brownian motion with
filtration given by,

FW̃
r,s = σ

(
W̃ s − W̃ r|r ≤ s ≤ T

)
= σ (W u|T − s ≤ u ≤ T − r) = FW

T−s,T−r.

Using an approximation by Riemann sums, see for example Proposition 7.2.11 of [12]
where this is done, we can write the stochastic integral in consideration as an Itô integral
with respect to the time-reversed Brownian motion W̃ , namely,∫ T

T−t

(
M

(ν)
T

)−1

M (ν)
u dW u = −

∫ t

0

N (ν)
u dW̃ u −

∫ t

0

d
〈
N (ν), W̃

〉
u
.

Observe that, the martingale part of dN (ν) is −N (ν)dW̃ and thus,∫ t

0

d
〈
N (ν), W̃

〉
u

=

∫ t

0

N (ν)
u d

〈
W̃ , W̃

〉
u

= 0,

since we are dealing with complex Brownian motions (in case we were working with
real Brownian matrices we would have picked up an extra drift term). The result then
follows.

Proof of Lemma 2.2. This is essentially an adaptation of Lemma 11 of [18]. We con-

sider the following stochastic process
(
Z

(−ν)
t ; t ≥ 0

)
=

(
M

(−ν)
t

(
M

(−ν)
t

)†
; t ≥ 0

)
. By

developing d

(
M

(−ν)
t

(
M

(−ν)
t

)†)
we get the following closed matrix SDE,

dZ
(−ν)
t =

1√
2

√
Z

(−ν)
t dW t

√
Z

(−ν)
t +

1√
2

√
Z

(−ν)
t dW †

t

√
Z

(−ν)
t + (N − 2ν)Z

(−ν)
t dt,

for a complex matrix Brownian motion (W t; t ≥ 0). By Theorem 4 of [13] the eigenvalue

evolution
(
η

(−ν)
1 (t) ≤ · · · ≤ η(−ν)

N (t); t ≥ 0
)

of

(
M

(−ν)
t

(
M

(−ν)
t

)†
; t ≥ 0

)
, which form the
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squared singular values of
(
M

(−ν)
t ; t ≥ 0

)
, satisfies,

dη
(−ν)
i (t) =

√
2η

(−ν)
i (t)dβi(t) +

(N − 2ν) η
(−ν)
i (t) +

∑
k 6=i

2η
(−ν)
i (t)η

(−ν)
k (t)

η
(−ν)
i (t)− η(−ν)

k (t)

 dt, 1 ≤ i ≤ N,

for some independent standard (real) Brownian motions {βi}Ni=1. Moreover, by making

the change of variables δ(−ν)
i = log

(
η

(−ν)
i

)
we arrive at,

dδ
(−ν)
i (t) =

√
2dβi(t) +

(N − 1− 2ν) +
∑
k 6=i

2eδ
(−ν)
k (t)

eδ
(−ν)
i (t) − eδ

(−ν)
k (t)

 dt
=
√

2dβi(t) +

−2ν +
∑
k 6=i

eδ
(−ν)
i (t) + eδ

(−ν)
k (t)

eδ
(−ν)
i (t) − eδ

(−ν)
k (t)

 dt 1 ≤ i ≤ N.

As in the proof of Lemma 11 of [18], we observe the following: First,

∑
k 6=1

eδ
(−ν)
1 (t) + eδ

(−ν)
k (t)

eδ
(−ν)
1 (t) − eδ

(−ν)
k (t)

≤ 1−N

and furthermore, that changing i to i+ 1 the interaction term changes by at most,

2
eδ

(−ν)
i+1 (t) + eδ

(−ν)
i (t)

eδ
(−ν)
i+1 (t) − eδ

(−ν)
i (t)

.

Thus, for i = 1, . . . , N − 1, the difference δ(−ν)
i+1 − δ

(−ν)
i is bounded above by the solution

of,

dyi(t) =
√

2 (dβi+1(t)− dβi(t)) + 2

(
1 + e−yi(t)

1− e−yi(t)

)
dt

and similarly, δ(−ν)
1 by the solution of,

dδ̃
(−ν)
1 (t) =

√
2dβ1(t) + (−2ν + 1−N)dt.

Hence,

lim
t→∞

δ
(−ν)
N (t)

t
≤ lim
t→∞

δ̃
(−ν)
1 (t)

t
+

N−1∑
i=1

lim
t→∞

yi(t)

t
= (−2ν+1−N)+2(N−1) almost surely.
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