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Abstract

We consider multidimensional quadratic BSDEs with bounded and unbounded terminal
conditions. We provide sufficient conditions which guarantee existence and uniqueness
of solutions. In particular, these conditions are satisfied if the terminal condition or
the dependence in the system are small enough.
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1 Introduction

Backward stochastic differential equations (BSDEs) are introduced in Bismut [1].
A BSDE is an equation of the form

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdWs, t ∈ [0, T ], (1.1)

whereW is a d-dimensional Brownian motion, the terminal condition ξ is an n-dimensional
random variable, and g : Ω× [0, T ]×Rn×Rn×d → Rn is the generator. A solution consists
of a pair of predictable processes (Y, Z) with values in Rn and Rn×d, called the value
and control process, respectively. The first existence and uniqueness result for BSDEs
with an L2-terminal condition and a generator satisfying a Lipschitz growth condition is
due to Pardoux and Peng [19]. In case that the generator satisfies a quadratic growth
condition in the control z, the situation is more involved and a general existence theory
does not exist. Frei and dos Reis [11] and Frei [10] provide counterexamples which
show that multidimensional quadratic BSDEs may fail to have a global solution. In
the one-dimensional case the existence of quadratic BSDE is shown by Kobylanski [16]
for bounded terminal conditions, and by Briand and Hu [3, 4] for unbounded terminal
conditions. Solvability results for superquadratic BSDEs are discussed in Delbaen et
al. [8], see also Masiero and Richou [18], Richou [20] and Cheridito and Nam [5].
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Multidimensional quadratic BSDEs with separated generators

The focus of the present work lies on multidimensional quadratic BSDEs. In case that
the terminal condition is small enough the existence and uniqueness of a solution was
first shown by Tevzadze [21]. Cheridito and Nam [6] and Hu and Tang [12] obtain local
solvability on [T − ε, T ] for some ε > 0 of systems of BSDEs with subquadratic generators
and diagonally quadratic generators respectively, which under additional assumptions
on the generator can be extended to global solutions. Cheridito and Nam [6] provide
solvability for Markovian quadratic BSDEs and projectable quadratic BSDEs . Frei [10]
introduced the notion of split solution and studied the existence of multidimensional
quadratic BSDEs by considering a special kind of terminal condition. In Bahlali et al. [2]
existence is shown when the generator g(s, y, z) is strictly subquadratic in z and satisfies
some monotonicity condition.

Our results are motivated by the recent work of Hu and Tang [12]. We focus on the
solvability of multidimensional quadratic BSDEs with generators that are independent of
the value process. More precisely, we study the coupled system of quadratic BSDEs

Y it = ξi +

∫ T

t

gi(s, Zs)ds−
∫ T

t

ZisdWs, t ∈ [0, T ], i = 1, . . . , n (1.2)

where gi(s, z) = f i(s, zi) + hi(s, z). As suggested by Hu and Tang [12], any solution of
(1.2) is a fixed point of the mapping I defined by z 7→ I(z) := Z where Z is given by the
decoupled system of BSDEs

Y it = ξi +

∫ T

t

f i(s, Zis) + hi(s, zs)ds−
∫ T

t

ZisdWs, t ∈ [0, T ], i = 1, . . . , n. (1.3)

In order to solve the decoupled BSDEs (1.3), we adapt the techniques of Briand and Hu
[3] and provide existence and uniqueness for the one-dimensional BSDEs with unbounded
terminal conditions. Under the quadratic growth assumptions |f i(t, zi) − f i(t, z̄i)| ≤
θi(|zi|+ |z̄i|)|zi − z̄i| and |hi(t, z)− hi(t, z̄)| ≤ ϑi(|z|+ |z̄|)|z − z̄| for some constants θi ≥ 0

and ϑi ≥ 0, i = 1, . . . , n, we state in Theorem 2.3 the sufficient conditions (2.1)–(2.2) on
the interplay between the size of θi, ϑi and ξi, which guarantees a unique BMO-solution
of (1.2). Similar results are given in Theorem 2.6 for unbounded terminal conditions. We
realize that the function

u(γ, x) =
1

(2γ)2
(
e2γx − 1− 2γx

)
introduced in Briand and Hu [3] plays an essential role in this setting. Indeed, the func-
tion u is a Lyapunov function which is used in the recent work of Xing and Žitković [23]
where the global solvability is obtained for a large class of multidimensional quadratic
BSDEs in the Markovian setting. The function u allows us to consider different cases:
(i) if θi = 0, the conditions (2.1)–(2.2) are satisfied under smallness of the terminal
condition, in which case we recover the condition in Tevzadze [21] for generators that
are independent of the value process, or the condition in Kramkov and Pulido [17];
(ii) for any θi and ξi the the conditions (2.1)–(2.2) are always satisfied if ϑi are small
enough. Our results could be applied to market making problems (see Kramkov and
Pulido [17]), nonzero-sum risk-sensitive stochastic differential games (see El Karoui and
Hamadène [9], Hu and Tang [12]) and non-zero sum differential games of BSDEs (see
Hu and Tang [13]).

The paper is organized as follows. In Section 2, we state the setting and main results.
An auxiliary result for 1-dimensional quadratic BSDEs is presented in the Appendix A.

2 Preliminaries and main results

Let W = (Wt)t≥0 be a d-dimensional Brownian motion on a probability space (Ω,F , P ).
Let (Ft)t≥0 be the augmented filtration generated by W . Throughout, we fix a T ∈
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Multidimensional quadratic BSDEs with separated generators

(0,∞). We endow Ω × [0, T ] with the predictable σ-algebra P and Rn with its Borel
σ-algebra B(Rn). Equalities and inequalities between random variables and processes
are understood in the P -a.s. and P ⊗ dt-a.e. sense, respectively. For two real numbers
a, b ≥ 0, their minimum is denoted by a ∧ b. The Euclidean norm is denoted by | · | and
‖ · ‖∞ denotes the L∞-norm. Let S∞(Rn) be the space of all n-dimensional continuous
adapted processes such that

‖Y ‖∞ := ‖ sup
0≤t≤T

|Yt|‖∞ <∞.

Let T be the set of all stopping times with values in [0, T ]. For any uniformly integrable
martingale M with M0 = 0, define

‖M‖BMO := sup
τ∈T
‖E[|〈M〉T − 〈M〉τ ||Fτ ]

1
2 ‖∞.

The class {M : ‖M‖BMO <∞} is denoted by BMO, which is written as BMO(P ) when
it is necessary to indicate the underlying probability measure P . For (α ·W )t :=

∫ t
0
αsdWs

in BMO, the corresponding stochastic exponential is denoted by Et(α ·W ). We recall a
classical result on BMO spaces (see [15, Theorem 3.6]).

Lemma 2.1. Let a ·W ∈ BMO be such that ‖a ·W‖BMO ≤ K for some K ≥ 0, and P̃ be

given by dP̃
dP := ET (a ·W ), under which W̃ = W −

∫ ·
0
asds is a Brownian motion. Then for

every b ·W ∈ BMO, there exist two constants l(K) and L(K) only depending on K such
that

l(K)‖b ·W‖2BMO ≤ ‖b · W̃‖2BMO(P̃ )
≤ L(K)‖b ·W‖2BMO.

In the following we define

h(K) :=
L2(K)

l(K)

for K ≥ 0. By [7, Theorem 2], we can choose l(K) = 2
(K+

√
2)2

. When K <
√

2, it follows

from [14, Lemma 3.1] that L(K) = 2
(
√
2−K)2

. As in Briand and Hu [3], for every γ ≥ 0, we

consider the function u(γ, ·) : R+ → R+ defined by

u(γ, x) =
1

(2γ)2
(
e2γx − 1− 2γx

)
.

Notice that u(0, x) = x2

2 . It is straightforward to check that x 7→ u(γ, |x|) is C2 and
u′′(γ, x)− 2γu′(γ, x) = 1. We consider the multidimensional quadratic BSDE (1.3) where
f i : Ω× [0, T ]×Rd → R and hi : Ω× [0, T ]×Rn×d → R are P ⊗B(Rn×d)-measurable. We
stipulate the following conditions. For each i = 1, . . . , n, there are constants θi ≥ 0 and
ϑi ≥ 0 such that

(A1) ξi ∈ L∞(FT );

(A2) f i(t, 0) = 0 and |f i(t, zi)− f i(t, z̄i)| ≤ θi(|zi|+ |z̄i|)|zi − z̄i|;
(A3) hi(t, 0) = 0 and |hi(t, z)− hi(t, z̄)| ≤ ϑi(|z|+ |z̄|)|z − z̄|.

Remark 2.2. The subsequent results can be extended to the case where f i(t, 0) and
hi(t, 0) are bounded, as well as

|f i(t, zi)− f i(t, z̄i)| ≤ θi(1 + |zi|+ |z̄i|)|zi− z̄i|, |hi(t, z)−hi(t, z̄)| ≤ ϑi(1 + |z|+ |z̄|)|z− z̄|.

The proof is along the same line of reasoning, however, for the sake of readability we
assume (A2) and (A3).

In the following we state our main existence and uniqueness result.
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Multidimensional quadratic BSDEs with separated generators

Theorem 2.3. Suppose (A1)–(A3) hold and the conditions∥∥∥∥ n∑
i=1

u(θi, |ξi|)
∥∥∥∥
∞

+ c

∥∥∥∥ n∑
i=1

ϑiu
′

(
θi,

1

2θi
log

(
E[e2θi|ξ

i||Ft]
1− 2θiϑic

))∥∥∥∥
∞
≤ 1

2
c (2.1)

n∑
i=1

16ϑ2i ch(2θi
√
c) < 1. (2.2)

are satisfied, where

c :=

(
min

1≤i≤n

1

4θiϑi

)
∧ 4

∥∥∥∥ n∑
i=1

u(θi, |ξi|)
∥∥∥∥
∞
.

Then the system (1.2) admits a unique solution (Y,Z) with Y ∈ S∞(Rn) and ‖Z ·
W‖2BMO ≤ c.

Proof. Let z ·W ∈ BMO be such that ‖z ·W‖2BMO ≤ c, by Lemma A.1, the BSDE

Y it = ξi +

∫ T

t

f i(s, Zis) + hi(s, zs)ds−
∫ T

t

ZisdWs,

admits a unique solution (Y i, Zi ·W ) ∈ S∞(R)×BMO with

|Y it | ≤ ‖ξi‖∞ +
1

2θi
log

(
1

1− 2θiϑi‖z ·W‖2BMO

)
≤ ‖ξi‖∞ +

1

2θi
log

(
1

1− 2θiϑic

)
and

1

2
E

[∫ T

t

|Zis|2ds
∣∣∣∣Ft
]
≤ E[u(θi, |ξi|)|Ft]

+ E

[∫ T

t

ϑiu
′

(
θi,

1

2θi
log

(
E[e2θi|ξ

i||Fs]
1− 2θiϑic

))
z2sds

∣∣∣∣Ft
]
.

Hence,

1

2
‖Z ·W‖2BMO ≤

∥∥∥∥ n∑
i=1

u(θi, |ξi|)
∥∥∥∥
∞

+ c

∥∥∥∥ n∑
i=1

ϑiu
′

(
θi,

1

2θi
log

(
E[e2θi|ξ

i||Ft]
1− 2θiϑic

))∥∥∥∥
∞
.

Consider the candidate set

M =
{
z : ‖z ·W‖2BMO ≤ c

}
.

For z ∈M , define I(z) = Z, where Z is given by

Y it = ξi +

∫ T

t

f i(s, Zis) + hi(s, zs)ds−
∫ T

t

ZisdWs, i = 1, . . . , n.

By (2.1), I maps M to itself. For z, z̄ ∈M , let Z = I(z) and Z̄ = I(z̄). Denote δZ := Z− Z̄,
δz := z − z̄, δY := Y − Ȳ . Then one has

δY it =

∫ T

t

f i(s, Zis)− f i(s, Z̄is) + hi(s, zs)− hi(s, z̄s)ds−
∫ T

t

δZisdWs

=

∫ T

t

aisδZ
i
s + hi(s, zs)− hi(s, z̄s)ds−

∫ T

t

δZisdWs

=

∫ T

t

hi(s, zs)− hi(s, z̄s)ds−
∫ T

t

δZisdW̃
i
s ,
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Multidimensional quadratic BSDEs with separated generators

where W̃ i
t := Wt−

∫ t
0
aisds is a Brownian motion under the equivalent probability measure

dP̃ i

dP = ET (ai ·W ), and the process a satisfies |ais| ≤ θi|Zis + Z̄is|. Using Itô’s formula to

|δY it |2, taking conditional expectation with respect to Ft and P̃ i and using 2ab ≤ 1
2a

2+2b2,
one has

|δY it |2 + Ẽi

[∫ T

t

|δZis|2ds
∣∣∣∣Ft
]
≤ 1

2
‖δY i‖2∞ + 2|ϑi|2

(
Ẽi

[∫ T

t

(|zs|+ |z̄s|) |δzs|ds
∣∣∣∣Ft
])2

.

Noting that

1

2

(
‖δY i‖2∞ + ‖δZi ·W‖2

BMO(P̃ i)

)
≤ ‖δY i‖2∞ ∨ ‖δZi ·W‖2BMO(P̃ i)

≤ ess sup
(ω,t)

{
|δY it |2 + Ẽi

[∫ T

t

|δZis|2ds
∣∣Ft]} ,

it follows from Hölder’s inequality that

‖δZi ·W‖2
BMO(P̃ i)

≤ 4|ϑi|2 ess sup
(ω,t)

(
Ẽi

[∫ T

t

(|zs|+ |z̄s|)2
∣∣∣∣Ft
]
Ẽi

[∫ T

t

|δzs|2ds
∣∣∣∣Ft
])

,

and therefore

‖δZi · W̃‖2
BMO(P̃ i)

≤ 8|ϑi|2
(
‖zs · W̃‖2BMO(P̃ i)

+ ‖z̄s · W̃‖2BMO(P̃ i)

)
‖δzs · W̃‖2BMO(P̃ i)

.

By Lemma 2.1, one has

l(2|θi|
√
c)‖δZi ·W‖2BMO ≤ 8L2(2θi

√
c)ϑ2i

(
‖zs ·W‖2BMO + ‖z̄s ·W‖2BMO

)
‖δzs ·W‖2BMO

≤ 16L2(2θi
√
c)ϑ2i c‖δzs ·W‖2BMO.

Therefore, it holds that

‖δZi ·W‖2BMO ≤ 16h(2θi
√
c)ϑ2i c‖δzs ·W‖2BMO.

By (2.2), I is a contraction mapping and the statement follows from the Banach fixed
point theorem.

Remark 2.4. In case θi = 0 for all i = 1, . . . , n, it follows that c = 2‖
n∑
i=1

|ξi|2‖∞. There-

fore, the conditions (2.1)–(2.2) reduce to∥∥∥∥E
[

n∑
i=1

ϑi|ξi||Ft

]∥∥∥∥
∞
≤ 1

4
,

32

(
n∑
i=1

ϑ2i

)
‖

n∑
i=1

|ξi|2‖∞ < 1.

Noting that ∥∥∥∥E
[

n∑
i=1

ϑi|ξi|
∣∣∣∣Ft
]∥∥∥∥
∞
≤
∥∥∥∥E
√√√√ n∑

i=1

ϑ2i

√√√√ n∑
i=1

|ξi|2
∣∣∣∣Ft
∥∥∥∥
∞

≤

√√√√ n∑
i=1

ϑ2i

√√√√∥∥∥∥ n∑
i=1

|ξi|2
∥∥∥∥
∞
,

it is enough to assume 32
(∑n

i=1 ϑ
2
i

)
‖
∑n
i=1 |ξi|2‖∞ < 1 to guarantee the solvability of

BSDE (1.2), improving the assumption in [22, Theorem 11.6], see also Tevzadze [21].
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Multidimensional quadratic BSDEs with separated generators

Remark 2.5. Given ξi and θi for i = 1, . . . , n, the conditions (2.1)–(2.2) are satis-
fied for sufficiently small ϑi, i = 1, . . . , n. Indeed, for ϑi small enough, one has c =

4‖
∑n
i=1 u(θi, |ξi|)‖∞, so that the conditions (2.1)–(2.2) reduce to∥∥∥∥ n∑

i=1

ϑiu
′

(
θi,

1

2θi
log

(
E[e2θi|ξ

i||Ft]
1− 2θiϑic

))∥∥∥∥
∞
≤ 1

4
,

n∑
i=1

(
16ϑ2i ch(2θi

√
c)
)
< 1.

Multidimensional quadratic BSDEs with unbounded terminal conditions are first
studied in Frei [10] and recently in Kramkov and Pulido [17]. By using the result in the
Appendix A, Theorem 2.3 extends to the unbounded case.

Theorem 2.6. Assume that ξi = E[ξi] +
∫ T
0
visdWs, where vi ·W ∈ BMO, for all i =

1, . . . , n. Denote

C =

(
min

1≤i≤n

1

8θiϑi

)
∧

n∑
i=1

4‖vi ·W‖2BMO

1− 16θi‖vi‖BMO
.

Suppose (A2)–(A3) hold and the conditions

‖vi ·W‖BMO <
1

16θi
, (2.3)

n∑
i=1

(
1

1− 16θi‖vi‖BMO
+

1

1− 4θiϑiC

)
‖vi ·W‖2BMO ≤

1

2
C, (2.4)

n∑
i=1

(
16ϑ2iCh(2θi

√
C)
)
< 1, (2.5)

are satisfied. Then the system (1.2) admits a unique solution (Y,Z) with ‖Z ·W‖2BMO ≤ C.

Proof. For z ·W ∈ BMO satisfying ‖z ·W‖2BMO ≤ C, from Lemma A.1 it follows that the
BSDE

Y it = ξi +

∫ T

t

f i(s, Zis) + hi(s, zs)ds−
∫ T

t

ZisdWs,

admits a unique solution (Y i, Zi ·W ) such that

1

2
‖Zi ·W‖2BMO ≤

(
1

1− 16θi‖vi ·W‖BMO
+

1

1− 4θi‖z ·W‖2BMO

)
‖vi ·W‖2BMO.

Let

M =
{
z : ‖z ·W‖2BMO ≤ C

}
.

For z ∈M , define I(z) = Z, where Z is given by

Y it = ξi +

∫ T

t

f i(s, Zis) + hi(s, zs)ds−
∫ T

t

ZisdWs, i = 1, . . . , n.

By similar arguments as in Theorem 2.3, under the conditions (2.3)–(2.5), it follows that
I is a contraction mapping.
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Multidimensional quadratic BSDEs with separated generators

Remark 2.7. In case θi = 0 for all i = 1, . . . , n, it follows that C =
n∑
i=1

4‖vi ·W‖2BMO.

Thereby the conditions (2.3)-(2.5) reduce to

n∑
i=1

2‖vi ·W‖2BMO ≤
1

2
C,

n∑
i=1

(
16ϑ2i

)
C < 1.

Therefore we have to assume 64
(∑n

i=1 ϑ
2
i

) (∑n
i=1 ‖vi ·W‖2BMO

)
< 1 to guarantee the

solvability of BSDE (1.2), providing the same bound as in Kramkov and Pulido [17].

Remark 2.8. In line with Remark 2.5, given ξi and θi satisfying (2.3), the conditions
(2.4)–(2.5) are satisfied for sufficiently small ϑi, i = 1, . . . , n.

A An auxiliary result for one-dimensional BSDEs

In this section, we provide an extension of [12, Lemma 2.5]. Consider the one-
dimensional BSDE

Yt = ξ +

∫ T

t

[f(s, Zs) + hs]ds−
∫ T

t

ZsdWs, t ∈ [0, T ], (A.1)

where f : Ω × [0, T ] × Rd → R is P ⊗ B(Rd)-measurable and h : Ω × [0, T ] → R is P-
measurable. We assume that f(ω, t, z) is continuous in z for P ⊗ dt-almost all (ω, t) ∈
Ω× [0, T ] and there exists a constant γ ≥ 0 such that

|f(·, z)| ≤ γ|z|2, for all z ∈ Rd.

Consider the following conditions:

(B1) There exists a constant θ ≥ 0 such that

|f(·, z)− f(·, z̄)| ≤ θ(|z|+ |z̄|)|z − z̄|, for all z, z̄ ∈ Rd.

(B2) E[e2γ|ξ+
∫ T
0
hsds|] <∞.

(B3) ξ ∈ L∞(FT ) and |hs| ≤ |zs|2 where z ·W is a BMO martingale with ‖z ·W‖BMO <
1√
2γ

.

(B4) ξ = E[ξ] +
∫ T
0
vsdWs and |hs| ≤ |zs|2 where v ·W and z ·W are BMO martingales

such that ‖v ·W‖BMO < 1
16γ and ‖z ·W‖BMO < 1√

4γ
.

Lemma A.1. (i) If (B1) holds, then the BSDE (A.1) has at most one solution (Y, Z)

such that Z ·W is a BMO martingale.

(ii) If (B2) holds, then the BSDE (A.1) has a solution (Y, Z) such that

− 1

2γ
logE

[
e−2γ(ξ+

∫ T
t
hsds)

∣∣Ft] ≤ Yt ≤ 1

2γ
logE

[
e2γ(ξ+

∫ T
t
hsds)

∣∣Ft] , (A.2)

for all t ∈ [0, T ].

(iii) If (B3) holds, then the BSDE (A.1) has a solution (Y, Z) such that Y ∈ S∞(R) and
Z ·W is a BMO martingale with

1

2
‖Z ·W‖2BMO

≤‖E[u (γ, |ξ|) |Ft]‖∞ +

∥∥∥∥u′(γ, 1

2γ
log

(
E[e2γ|ξ||Ft]

1− 2γ‖z ·W‖2BMO

))∥∥∥∥
∞
‖z ·W‖2BMO.
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(iv) If (B4) holds, then the BSDE (A.1) has a solution (Y,Z) such that Z ·W is a BMO
martingale with

1

2
‖Z ·W‖2BMO ≤

(
1

1− 16γ‖v ·W‖BMO
+

1

1− 4γ‖z ·W‖2BMO

)
‖v ·W‖2BMO.

Proof. (i) Let (Y,Z) and (Ỹ , Z̃) be two solutions of the BSDE (A.1) such that Z ·W and
Z̃ ·W are BMO martingales. Denote ∆Y := Ỹ − Y and ∆Z := Z̃ − Z. Then one has

∆Yt =

∫ T

t

(f(s, Z̃s)− f(s, Zs))ds−
∫ T

t

∆ZsdWs

=

∫ T

t

(bs∆Zs)ds−
∫ T

t

∆ZsdWs = −
∫ T

t

∆ZsdW̃s

where W̃t := Wt −
∫ t
0
bsds and b satisfies |bs| ≤ θ(|Zs| + |Z̃s|) which defines an

equivalent probability measure P̃ by dP̃
dP := ET (b ·W ). By taking the conditional

expectation with respect to P̃ and Ft, one has ∆Y = 0.

(ii) By [3, Theorem 2], the BSDE

Ȳt =

(
ξ +

∫ T

0

hsds

)
+

∫ T

t

f(s, Z̄s)ds−
∫ T

t

Z̄sdWs, t ∈ [0, T ],

admits a solution (Ȳ , Z̄) such that

− 1

2γ
logE

[
e−2γ(ξ+

∫ T
0
hsds)

∣∣Ft] ≤ Ȳt ≤ 1

2γ
logE

[
e2γ(ξ+

∫ T
0
hsds)

∣∣Ft] .
Defining Yt := Ȳt −

∫ t
0
hsds, the pairing (Y, Z̄) satisfies the BSDE (A.1) and Y

satisfies (A.2).

(iii) By the John-Nirenberg inequality [15, Theorem 2.2], one has E[exp(2γ
∫ T
t
z2sds)|Ft]

<∞ for all t ∈ [0, T ]. Therefore it follows from (A.2) that

|Yt| ≤
1

2γ
log

(
E[e2γ|ξ||Ft]

1− 2γ‖z ·W‖2BMO

)
. (A.3)

By Itô’s formula and the growth condition on f and (A3) it holds that

u(γ, |Yt|) = u(γ, |ξ|)−
∫ T

t

u′(γ, |Ys|)sgn(Ys)ZsdWs

+

∫ T

t

(
u′(γ, |Ys|)sgn(Ys)(f(s, Zs) + hs)−

1

2
u′′(γ, |Ys|)|Zs|2

)
ds

≤ u(γ, |YT |)−
∫ T

t

u′(γ, |Ys|)sgn(Ys)ZsdWs

+

∫ T

t

u′(γ, |Ys|)|zs|2ds−
1

2

∫ T

t

|Zs|2ds.

Taking conditional expectation with respect to Ft, using (A.3) and (B3), one obtains

1

2
E

[∫ T

t

|Zs|2ds
∣∣Ft] ≤ E[u (γ, |ξ|) |Ft]

+ E

[∫ T

t

u′
(
γ,

1

2γ
log

(
E[e2γ|ξ||Fs]

1− 2γ‖z ·W‖2BMO

))
z2sds

∣∣∣∣Ft
]
.
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(iv) By the John-Nirenberg inequality [15, Theorem 2.1], it follows from ‖v ·W‖BMO <
1

16γ that

E[e4γ|ξ|] ≤ e4γ|E[ξ]|

1− 16γ‖v ·W‖BMO
.

Combining the previous estimate with (A.2) we conclude that Ŷt := Yt −E[ξ|Ft] ∈
S∞(R). Indeed we have

|Ŷt| ≤
1

4γ
log

(
1

1− 16γ‖v ·W‖BMO

)
+

1

4γ
log

(
1

1− 4γ‖z ·W‖2BMO

)
.

Moreover, Ŷ satisfies the BSDE

Ŷt =

∫ T

t

(f(s, Zs) + hs)ds−
∫ T

t

(Zs − vs)dWs, t ∈ [0, T ].

Applying Itô’s formula and arguing as in (iii), and using additionally the inequality
(a− b)2 ≥ 1

2b
2 − a2, one obtains for all 0 ≤ t ≤ T

u(2γ, |Ŷt|)

= −
∫ T

t

u′(2γ, |Ŷs|)sgn(Ŷs)(Zs − vs)dWs

+

∫ T

t

(
u′(2γ, |Ŷs|)sgn(Ŷs)(f(s, Zs) + hs)−

1

2
u′′(2γ, |Ŷs|)|Zs − vs|2

)
ds

≤ −
∫ T

t

u′(2γ, |Ŷs|)sgn(Ŷs)(Zs − vs)dWs

+

∫ T

t

(
u′(2γ, |Ŷs|)sgn(Ŷs)(f(s, Zs) + hs)

+
1

2
u′′(2γ, |Ŷs|)|vs|2 −

1

4
u′′(2γ, |Ŷs|)|Zs|2

)
ds.

By a similar argument as in (iii), it holds that

1

2
‖Z ·W‖2BMO

≤ u′′
(

2γ,
1

4γ
log

(
1

1− 16γ‖v ·W‖BMO

)
+

1

4γ
log

(
1

1− 4γ‖z ·W‖2BMO

))
‖v ·W‖2BMO

≤
(

1

1− 16γ‖v ·W‖BMO
+

1

1− 4γ‖z ·W‖2BMO

)
‖v ·W‖2BMO.
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