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Abstract

We prove a Donsker-type theorem for vector processes of functionals of correlated
Wiener integrals. This includes the case of correlated geometric fractional Brownian
motions of arbitrary Hurst parameters in (0, 1) driven by the same Brownian motion.
Starting from a Donsker-type approximation of Wiener integrals of Volterra type by
disturbed binary random walks, the continuous and discrete Wiener chaos represen-
tation in terms of Wick calculus is effective. The main result is the compatibility of
these continuous and discrete stochastic calculi via these multivariate limit theorems.
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1 Introduction

A fractional Brownian motion BH = (BHt )t≥0 with Hurst parameter H ∈ (0, 1)

is a continuous zero mean Gaussian process with covariance function E[BHt B
H
s ] =

1/2
(
t2H + s2H − |t− s|2H

)
, s, t ≥ 0. It is the unique Gaussian H-self-similar process

with stationary increments. The process B1/2 is a standard Brownian motion, but BH

is not a semimartingale for H 6= 1/2. The corresponding fractional Gaussian noise
(BHn+1 − BHn )n∈N for H > 1/2 exhibits long-range dependence and is commonly used
in modeling phenomena in economy, finance, physics or neuroscience (see e.g. the
monographs [8] and [21] and the references therein). There is a powerful representation
as a Wiener integral of Volterra type

BHt = I(zH)t :=

∫ t

0

zH(t, s)dBs, (1.1)

for some kernel zH(t, ·) ∈ L2([0, t]), t ≥ 0 and Brownian motion B (cf. [23, 5.2] or
[24, Section 5.1.3]). Exemplary, suppose three fractional Brownian motions with the
Hurst parameters H1, H2, H3 ∈ (0, 1) driven by the same Brownian motion according to
(1.1). The goal of this article is a Donsker-type approximation of processes with highly
correlated components like (

BH1
t , exp(BH2

t ), sin(BH3
t )
)
t≥0

. (1.2)
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Donsker-type theorems for correlated GFBMs and related processes

The functionals involved can be represented in terms of geometric fractional Brownian
motions exp(BHt − t2H/2)t≥0 and reformulations of the Wiener chaos expansion. This
Donsker theorems extend the Fractional Donsker theorem in [28, 25] and the results in
[5] to multivariate functional type Donsker theorems.

More generally, we consider Wiener integrals of Volterra type as in (1.1), denoted by
I(f), and the corresponding stochastic exponentials as

exp

(
I(f)− 1

2

∫ ∞
0

f2(s)ds

)
. (1.3)

As a primary result we obtain a Donsker theorem for vector processes of such stochastic
exponentials and related functionals.

In particular, we are interested in approximating sequences which rely on disturbed
random walks converging to the Wiener integrals I(f) as in [28, 25] and an appropriate
discrete stochastic calculus which is justified by these convergence results, cf. [5, 6].

In contrast to related multivariate invariance principles based on discrete chaos as in
[2, 3, 4], we consider elements with an infinite chaos expansion as in (1.3).

We note that the convergence of finite-dimensional distributions is for example a
consequence of a functional limit theorem in [26]. Here the main effort is assigned to the
tightness of such general processes. This is handled by checking a well-known tightness
criterion and some combinatorial reformulations of Lp-norms of discrete counterparts of
functionals as (1.3) applied on correlated Volterra-type discrete Wiener integrals.

The article is organized as follows. In Section 2 we give a brief description of the
class of functionals extending the stochastic exponentials in (1.3). Section 3 is devoted
to the analogue in a disturbed random walk setting. In Section 4 we state and prove the
main result. The technical lemmas are postponed to Section 5.

2 Wick-analytic functionals

We suppose a Brownian motion (Bt)t≥0 on the probability space (Ω,F , P ), where the
σ-field F is generated by the Brownian motion and completed by null sets. Therefore
the stochastic calculus is based on the Gaussian Hilbert space {I(f) : f ∈ L2([0,∞))} ⊂
L2(Ω), where I(f) =

∫∞
0
f(s)dBs denotes the Wiener integral. We denote the norm

and inner product on L2([0,∞)) by ‖ · ‖ and 〈·, ·〉. Due to the totality of the stochastic
exponentials

exp
(
I(f)− ‖f‖2/2

)
, f ∈ L2([0,∞)),

in L2(Ω), (see e.g. [16, Corollary 3.40]), for every X ∈ L2(Ω,F , P ) and f ∈ L2([0, 1]), the
S-transform of X at f is defined as

(SX)(f) := E[X exp
(
I(f)− ‖f‖2/2

)
].

The S-transform (S·)(·) is a continuous and injective function on L2(Ω,F , P ) (see e.g.
[16, Chapter 16] for more details). As an example, for f, g ∈ L2([0, 1]), we have
(S exp

(
I(f)− ‖f‖2/2

)
)(g) = exp (〈f, g〉). In particular the characterization of random

variables via the S-transform can be used to introduce the Skorokhod integral, an exten-
sion of the Itô integral to nonadapted integrands (cf. e.g. [16, Section 16.4]). For more
information on the S-transform and Skorokhod integral we refer to [16], [18] or [24].
Similarly, the S-transform can be used to define the Skorokhod integral with respect to
fractional Brownian motion, see e.g. [21]. We recall that for the Hermite polynomials

hkα(x) = (−α)k exp

(
x2

2α

)
dk

dxk
exp

(
−x2

2α

)
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and every k ∈ N, the k-th Wiener chaos H :k: is the L2-completion of {hk‖f‖2(I(f)) :

f ∈ L2([0, 1])} in L2(Ω) and these subspaces are orthogonal and fulfill L2(Ω,F , P ) =⊕
k≥0H

:k:. Thus, for the projections

πk : L2(Ω)→ H :k:,

for every random variable X ∈ L2(Ω), we denote the Wiener chaos decomposition as

X =

∞∑
k=0

πk(X).

We refer to [16, 15] for further details and a reformulation in terms of multiple Wiener
integrals.

The S-transform is closely related to a product imitating uncorrelated random vari-
ables as E[X � Y ] = E[X]E[Y ], which is implicitly contained in the Skorokhod integral
and a fundamental tool in stochastic analysis. Due to the injectivity of the S-transform,
the Wick product can be introduced via

∀g ∈ L2([0, 1]) : S(X � Y )(g) = (SX)(g)(SY )(g)

on a dense subset in L2(Ω) × L2(Ω). For more details on Wick product we refer to
[16, 15, 18]. For example, for a Wiener Integral I(f), Hermite polynomials play the role
of monomials in standard calculus as

I(f)�k = hk‖f‖2(I(f)).

Therefore the stochastic exponential is also knows as Wick exponential:

exp
(
I(f)− ‖f‖2/2

)
=: exp�(I(f)) =

∞∑
k=0

1

k!
I(f)�k. (2.1)

The Wick exponential exp�(I(f)t)t≥0 is the unique solution of the Doléans-Dade equation

Yt = f(t)YtdBt, Y0 = 1,

(cf. [19, Section 8.7]). Following [15, 10], we denote the Wiener chaos decomposition
in terms of Wick products as the Wick-analytic representation. In particular, for fixed
f1, . . . , fK ∈ L2([0,∞)), g : RK → R and a square integrable left hand side, there exist
al1,...,lK ∈ R, l1, . . . , lK ≥ 0, such that

g(I(f1), . . . , I(fK)) =
∑

l1,...,lK≥0

al1,...,lK I(f1)�l1 � · · · � I(fK)�lK . (2.2)

This is a reformulation of the the Wiener chaos decomposition in terms of generalized
Hermite polynomials, see e.g. [12, 1].

Definition 2.1. We define the class of Wick-analytic functionals as

F � :=

∞∑
k=0

a1,kI(f1)�k � · · · �
∞∑
k=0

aK,kI(fK)�k, max
i≤K

sup
k≥0

k

√
k!|ai,k| =: C <∞. (2.3)

Remark 2.2. These Wick analytic functionals are very close to the finite chaos elements:
All moments are finite and all (finite) Wick products of Wick-analytic functionals exist
in Lp(Ω) for all p ∈ N (see Proposition 9 in [22]). Moreover, the analytic representa-
tion G(I(f1), . . . , I(fK)) = F � for fixed f1, . . . , fK ∈ L2([0,∞)) fulfills G ∈ C∞(RK+ ,R)

(see Proposition 10 in [22]). One advantage of the Wick-analytic reformulation is the
characterization of Skorokhod integrands which allow exact simulation [22, Theorem 17].
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3 Discrete stochastic calculus

As a discrete counterpart of B we consider, for every n ∈ N, a random walk approxi-
mation

Bnt :=
1√
n

bntc∑
i=1

ξni , t ≥ 0,

on some probability space (Ωn,Fn, Pn), where ξn1 , ξ
n
2 , . . . is a sequence of i.i.d. random

variables with Pn(ξn1 = ±1) = 1/2 (i.e. a Rademacher sequence). The counterpart of the
Gaussian Hilbert space is {In(fn) : f ∈ L2

n(N)} ⊂ L2(Ωn), where

In(fn) :=
1√
n

∞∑
i=1

fn(i)ξni

is the discrete Wiener integral and L2
n(N) := {fn : N→ R : 1

n

∑∞
i=1(fn(i))2 <∞}. As a

counterpart, due to the discrete analogue of the Doléans-Dade equation

Y ni = Y ni−1

(
1 +

1√
n
fn(i)ξni

)
, Y n0 = 1,

the discrete Wick exponential is given by

exp�n(In(fn)) :=

∞∏
i=1

(
1 +

1√
n
fn(i)ξni

)
(cf. [6]). A representation in terms of Hermite polynomials is not possible anymore, but
there exists a discrete Hermite recursion formula for discrete Wick products of discrete
Wiener integrals, cf. [26, Lemma 3.2].

Remark 3.1. Analogously to the continuous setting, a discrete S-transform with similar
properties can be defined via

(SnXn)(fn) := E[Xn exp�n(In(fn))]

and used to introduce discrete Malliavin operators, in particular a discrete Skorokhod
integral (see [7]).

The discrete Wick product is introduced via

exp�n(In(fn)) �n exp�n(In(gn)) = exp�n(In(fn + gn)), (3.1)

where In(fn) and In(gn) are two, possibly correlated, discrete Wiener integrals. Then,
(3.1) extends bilinearly to a dense subset of L2(Ωn,Fn, Pn)×L2(Ωn,Fn, Pn) and is equiv-
alent to the characterization in terms of the canonical basis

{ΞnA :=
∏
i∈A

ξni , A ⊆ N, |A| <∞}

as introduced in [14] via
ΞnA �n ΞnB := ΞnA∪B1A∩B=∅. (3.2)

For example, we have the simple discrete Wiener chaos expansion

In(fn)�nN = N !
∑

A⊂N,|A|=N

(∏
i∈A

1√
n
fn(i)

)
ΞnA, (3.3)

(cf. [26, Example 3.1]).
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Remark 3.2. In contrast to the continuous setting, the discrete Wick product does not
fulfill

(Sn(Xn �n Y n))(fn) = (SnXn)(fn)(SnY n)(fn)

in general, as illustrated by Xn = In(gn) and Y n = In(hn) for gn, hn ∈ L2
n(N). Moreover,

the discrete Wick product has zero divisors, but the continuous Wick product is free of
zero divisors even in more general spaces (cf. [13]).

For more information on the discrete calculus we refer to [6, 11] or the monographs
[27, 29]. In particular, the discrete counterpart of (2.1) is true for all fn ∈ L2

n(N) as

exp�n(In(fn)) =

∞∑
k=0

1

k!
In(fn)�nk.

Definition 3.3. We define the class of discrete Wick-analytic functionals as (n ∈ N fixed)

F �n :=

∞∑
k=0

an1,kI
n(fn1 )�nk �n · · · �n

∞∑
k=0

anK,kI
n(fnK)�nk, max

i≤K
sup
k≥0

k

√
k!|ani,k| =: C <∞.

4 The main result

We denote a function f(t, s)t,s≥0 with f(t, ·) ∈ L2([0,∞)) for all t and f(t, s) = 0 for
t ≤ s as an integrand of Volterra type. Analogously, the discrete integrand of Volterra
type is given by fn(l, i)l,i∈N such that fn(l, ·) ∈ L2

n(N) for all l ∈ N with fn(l, i) = 0 for
l < i.

We specified the conditions on the continuous and discrete integrands for a Donsker
theorem for Volterra type Wiener integrals in Theorem 3 of [25]. This can be reformulated
for the weak convergence

(In(fn1 ), . . . , In(fnm))
d→ (I(f1), . . . , I(fm))

as the following variant of the multivariate central limit theorem:

Proposition 4.1. Suppose the constants α > 0 and L > 0, the Volterra integrands
f1, . . . , fm, and fn1 , . . . , f

n
m satisfy for all j, j′ ∈ {1, . . . ,m} and s, t, t1, . . . , tk ∈ [0, 1], k ∈ N,

the following conditions of infinite smallness, convergence of the variance and tightness:

lim
n→∞

max
l≤k

max
i≤bntlc

1√
n
|fnj (bntlc , i)| = 0, (4.1)

lim
n→∞

1

n

∞∑
i=1

fnj (bntc , i)fnj′(bnsc , i) =

∞∫
0

fj(t, u)fj′(s, u)du, (4.2)

∀n ∈ N :
1

n

∞∑
i=1

(
fnj (bntc , i)− fnj (bnsc , i)

)2 ≤ L ∣∣∣∣bntcn − bnsc
n

∣∣∣∣α . (4.3)

Then, for every Γ ∈ Rm (with inner product 〈·, ·〉),

In (〈Γ, (fn1 , . . . , fnm)〉) d→ I (〈Γ, (f1, . . . , fm)〉)

in the Skorokhod space D([0, 1],R) as n tends to infinity. We notice that the normalizing
term 1/

√
n is implicitly contained in the discrete Wiener integral.

Remark 4.2. Our main result is that this weak convergence is compatible with the con-
tinuous and discrete Wick-analytic functionals. This is not trivial due to the differences
of the calculi and the different correlations of discrete and continuous Wiener integrals.
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Remark 4.3. In the following we restrict ourselves on the time horizon [0, 1]. The
proof on [0, T ] for some T > 1 is analogous. Due to the tightness in Proposition 4.1
and the Kolmogorov-Chentsov theorem, we obtain the Hölder-continuity of the paths
of the Gaussian processes I(fi). Then, due to Remark 2.2, the limit processes in the
following main theorem 4.4 have continuous paths as well. Hence, by [20], it is possible
to conclude the tightness and weak convergence in the Skorokhod space D([0,∞),R).

We denote the abbreviations for the continuous (discrete) Wick-analytic functionals
involved

F �j :=

∞∑
k=0

aj,k(I(fj))
�k, F �nj :=

∞∑
k=0

anj,k(In(fnj ))�nk, F
�(n)

A,t :=
(
�(n)

)
j∈A F

�(n)

j ,

(from Definitions 2.1 and 3.3). To simplify the notations, we assume

C := sup
k,n∈N,j=1,...,m

{
k

√
k!|anj,k|,

k

√
k!|aj,k|

}
<∞, ∀j : lim

n→∞
anj,k = aj,k. (4.4)

In the following we use a total order on the power set P({1, . . . ,m}) = {A1, . . . , A2m}
to define vectors Γ ∈ RP({1,...,m}) (with inner product 〈·, ·〉) and the vector processes(
F
�(n)

A1,t
, . . . , F

�(n)

A2m ,t

)
.

Theorem 4.4. Suppose the Volterra integrands f1, . . . , fm, and fn1 , . . . , f
n
m satisfy the

assumptions (4.1)-(4.3) in Proposition 4.1 and the Wick-analytic functionals satisfy
Condition (4.4). Then, for every vector of constants Γ ∈ RP({1,...,m}),〈

Γ,
(
F �nA1,t

, . . . , F �nA2m ,t

)〉
t∈[0,1]

d→
〈
Γ,
(
F �A1,t, . . . , F

�
A2m ,t

)〉
t∈[0,1]

in the Skorokhod space D([0, 1],R) as n tends to infinity.

Remark 4.5. (i) According to the Cramér-Wold device and [17, Theorem 16.16], the
assertion is equivalent to the weak convergence of the vector processes(

F �nA1,t
, . . . , F �nA2m ,t

)
t∈[0,1]

d→
(
F �A1,t, . . . , F

�
A2m ,t

)
t∈[0,1] .

(ii) The assumptions (4.1)-(4.3) for the kernel (1.1) of the fractional Brownian motion
with H ∈ (0, 1) are checked in [25] ((4.2) for the kernels follows as [25, Remark 3 (ii)]).
In this case it is L = 1 and α = 2H. Similarly to the Wick exponential (2.1), there is the
representation

sin�(I(f)) :=

∞∑
k=1

(−1)k−1

(2k − 1)!
(I(f))�(2k−1) = exp(‖f‖2/2) sin(I(f))

(cf. p. 107 in [15]). As an example, for arbitrary H1, H2, H3 ∈ (0, 1), the process with
correlated components

(exp�(BH1 +BH2), (BH1 +BH3)�10, sin�(BH1 +BH3)),

is the weak limit of the sequence of processes

(exp�n(Bn,H1 +Bn,H2), (Bn,H1 +Bn,H3)�n10, sin�n(Bn,H1 +Bn,H3)),

where Bn,Ht := In(znH(bntc, ·))t≥0 is a disturbed random walk (discrete Wiener integral of

Volterra type) in a fractional Donsker theorem and znH(bntc, i) :=
∫ i/n
(i−1)/n zH(bntc/n, s)ds

is the discrete Volterra type integrand (see [25, Theorem 4]). The exponentials involved
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are geometric fractional Brownian motion and discrete geometric fractional Brownian
motion, cf. [5]. Similarly, thanks to the continuous mapping theorem, we conclude that
the sequence of processes(

Bn,H1

t , exp(−t2H2/2) exp�n(Bn,H2

t ), exp(−t2H3/2) sin�n(Bn,H3

t )
)
t≥0

converges weakly to the process (1.2) as n tends to infinity.

The proof of Theorem 4.4 relies on the following estimate. The technical proof is
postponed to Section 5.

Lemma 4.6. Suppose the Volterra integrands f1, . . . , fm, and fn1 , . . . , f
n
m satisfy (4.1)-

(4.3) in Proposition 4.1 and the Wick-analytic functionals satisfy Condition (4.4). Then,
for all K ∈ N and A ⊆ {1, . . . ,m} there exists a constant c = c(K,C,L, |A|) such that

∀s, t ∈ [0, 1] : E

[(
F �nA,t − F

�n
A,s

)2K]
≤ c

∣∣∣∣bntcn − bnsc
n

∣∣∣∣Kα . (4.5)

Moreover we make use of the following variant of a well-known tightness criterion
Theorem 15.6 in [9]. See e.g. Remark 1 in [25] for the connection.

Lemma 4.7. Suppose Xn, n ∈ N, are processes with paths in the Skorokhod space
D([0, 1],R) and X is a process with paths in C([0, 1],R). We suppose furthermore the
following conditions:

1. The sequence Xn converges weakly in finite-dimensions to X, i.e.

∀t1, . . . , tk ∈ [0, 1] : (Xn
t1 , . . . , X

n
tk

)
d→ (Xt1 , . . . , Xtk).

2. There exist constants β > 1 and K,L > 0 such that for all s ≤ t in [0, 1], n ∈ N,

E
[
|Xn

t −Xn
s |
K
]
≤ L

∣∣∣∣bntcn − bnsc
n

∣∣∣∣β .
Then Xn converges weakly to X in the Skorokhod space D([0, 1],R).

Proof of Theorem 4.4. In [26, Theorem 4.1] we derived a Wick functional limit theorem
which gives the convergence of the finite-dimensional distributions. Suppose s, t ∈ [0, 1]

and Γ = (γA1 , . . . , γA2m
) ∈ RP({1,...,m}). Thanks to the Hölder inequality and Lemma 4.6,

we obtain

E

[(〈
Γ,
(
F �nA1,t

, . . . , F �nA2m ,t

)
−
(
F �nA1,s

, . . . , F �nA2m ,s

)〉)2K]

= E


 ∑
A⊆{1,...,m}

γA

(
F �nA,t − F

�n
A,s

)2K


≤

 ∑
A⊆{1,...,m}

γ
2K

2K−1

A

2K−1 ∑
∅6=A⊆{1,...,m}

E

[(
F �nA,t − F

�n
A,s

)2K]
≤ L

∣∣∣∣bntcn − bnsc
n

∣∣∣∣Kα

for some constant L = L(K,C,L,Γ) > 0. Thus, for every α > 0 we find some K ∈ N with
Kα > 1 and it suffices to apply the tightness criterion in Lemma 4.7.
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5 Proof of Lemma 4.6

Firstly we note some expansion formulae and an inequality. We denote by
⋃̇

the
disjoint union.

Suppose n,K ∈ N, aj , bj , cj , a
(i)
j , b

(i)
j ∈ R and A,Ai, D ⊆ {1, . . . , n} for all i, j ∈ N. We

make use of the shorthand notations for products as

aA :=
∏
j∈A

aj , a
(i)
A :=

∏
j∈A

a
(i)
j .

The following formula is clear by expansion:∏
j∈D

(
a
(1)
j + a

(2)
j + . . .+ a

(K)
j

)
=

∑
⋃̇

i=1,...,KAi=D

a
(1)
A1
· · · a(K)

AK
. (5.1)

Via the expansion
∏
i∈A ai −

∏
i∈A bi =

∑
i∈A(ai − bi)

∏
k∈A,k<i ai

∏
k∈A,k>i bi and the

Cauchy-Schwarz inequality, we observe(∏
i∈A

ai −
∏
i∈A

bi

)2

≤ |A|
∑
i∈A

(ai − bi)2
∏

k∈A,k<i

a2i
∏

k∈A,k>i

b2i . (5.2)

The generalized Cauchy-Schwarz inequality follows easily by induction:

n∑
j=1

a
(1)
j . . . a

(K)
j ≤

K∏
i=1

 n∑
j=1

(a
(i)
j )2

1/2

. (5.3)

Proposition 5.1.

∑
D⊆{1,...,n}

∑
A⊆D

(aA − bA)2c2D\A ≤ 2 exp

 n∑
j=1

(a2j + b2j + c2j )

 n∑
j=1

(aj − bj)2. (5.4)

Proof. Firstly, thanks to (5.1) we observe

∑
A⊆{1,...,n}

b2A =

n∏
i=1

(1 + b2i ). (5.5)

The inequality

∑
A⊆{1,...,n}

(aA − bA)2 ≤ 2

(
n∏
i=1

(
1 + a2i + b2i

)) n∑
i=1

(ai − bi)2 (5.6)

is clearly true for n = 1 and then proved by induction: W.l.o.g. let a2n+1 ≤ b2n+1. Due

to (an+1aA − bn+1bA)
2 ≤ 2a2n+1(aA − bA)2 + 2b2A(an+1 − bn+1)2, (5.5) and the induction

hypothesis, we obtain∑
A⊆{1,...,n+1}

(aA − bA)2 =
∑

n+1/∈A⊆{1,...,n+1}

(aA − bA)2 +
∑

n+1∈A⊆{1,...,n+1}

(aA − bA)2

≤ (1 + 2a2n+1)
∑

A⊆{1,...,n}

(aA − bA)2 + 2

n∏
i=1

(1 + b2i )(an+1 − bn+1)2

≤ 2

(
n+1∏
i=1

(
1 + a2i + b2i

)) n+1∑
i=1

(ai − bi)2.
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Donsker-type theorems for correlated GFBMs and related processes

Via interchanging sums, for functions P,Q on P({1, . . . , n}) , we have∑
D⊆{1,...,n},

A⊆D

P (A)Q(D \A) =
∑

A,B∈{1,...,n}
A∩B=∅

P (A)Q(B) =
∑

A⊆{1,...,n},
B⊆{1,...,n}\A

P (A)Q(B). (5.7)

Hence, via (5.7), (5.5) and (5.6),∑
D⊆{1,...,n}

∑
A⊆D

(aA − bA)2c2D\A =
∑

A⊆{1,...,n}

(aA − bA)2
∑

B⊆{1,...,n}\A

c2B

≤
∑

A⊆{1,...,n}

(aA − bA)2
n∏
j=1

(1 + c2j ) ≤ 2

 n∏
j=1

(1 + c2j )
(
1 + a2i + b2i

) n∑
i=1

(ai − bi)2.

Thanks to (1 + x) ≤ exp(x) we conclude (5.4).

Proof of Lemma 4.6. Due to (3.2), we only have nonvanishing discrete Wick products on
disjoint sets as

ΞnB1
�n · · · �n ΞnBk

= Ξn⋃̇
i=1,...,kBi

. (5.8)

To simplify the products to common factors we define for shorthand

fni,u,l :=
1√
n
fni (bnuc , l), fni,u,A :=

∏
l∈A

fni,u,l.

Thus, via (3.3) and (5.8), the discrete Wiener chaos expansion of the discrete Wick
product of Wick-analytic functionals is given by

F �nA,u = (�n)i∈A

 ∑
B⊆{1,...,n}

|B|!ani,|B|f
n
i,u,BΞnB


=

∑
D⊆{1,...,n}

∑
⋃̇

i∈ABi=D

(
∏
i∈A
|Bi|!ani,|Bi|)

(∏
i∈A

fni,u,Bi

)
ΞnD.

Since the set {ΞnA, A ⊂ {1, . . . , n}} is orthonormal, we conclude the L2-norm

E

[(
F �nA,u

)2]
=

∑
D⊆{1,...,n}

 ∑
⋃̇

i∈ABi=D

(
∏
i∈A
|Bi|!ani,|Bi|)

(∏
i∈A

fni,u,Bi

)
2

.

Analogously, for all integers K ≥ 1, the orthogonality yields

E

[(
F �nA,t − F

�n
A,s

)2K]

=
∑

D1,...,D2K⊆{1,...,n}
D1 6=∅,...,D2K 6=∅,

D14D24···4D2K=∅

2K∏
j=1

 ∑
⋃̇

i∈ABi=Dj

(
∏
i∈A
|Bi|!ani,|Bi|)

(∏
i∈A

fni,t,Bi
−
∏
i∈A

fni,s,Bi

) , (5.9)

where the condition D14D24· · ·4D2K = ∅ gives exactly those terms in the expansion

of
(
F �nA,t − F

�n
A,s

)2K
with nonzero expectation. The sums involved in (5.9) require a

subtle reformulation. An application of standard inequalities is not obvious since (5.9)
is far beyond the multiplicative form as in a Cauchy-Schwarz inequality (5.3). The
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Donsker-type theorems for correlated GFBMs and related processes

reformulation of the sums is the content of Step 1 below. Then, the final upper bound
inequality will be proved in Step 2.

Step 1 : Suppose a multiset of pairs in the first sum in (5.9), i.e. a family of nonempty
sets D1, . . . , D2K ⊆ {1, . . . , n} such that D14D24· · ·4D2K = ∅ (and therefore n large
enough, e.g. n ≥ 2K). Such a chosen family can be coded by intersection sets as follows:
Let the index set

F := {{j1, . . . , j2l} : 1 ≤ j1 < . . . < j2l ≤ 2K, 1 ≤ l ≤ K}

and the disjoint family of sets U{1,2}, U{1,3}, . . . , U{1,2,...,2K} ⊆ {1, . . . , n} via

Uf =
⋂
j∈f

Dj ⇔ Dj =
⋃

f∈F,j∈f

Uf .

Every intersection set Uf is covered by an even number of sets Dj which illustrates the
condition D14D24· · ·4D2K = ∅.

The inner sum in (5.9) is reformulated by a map: Every set of partitions is generated
by a unique surjective map

G = (G1, . . . , G2K) : (D1, . . . , D2K)→ A2K (5.10)

as
⋃̇

i∈A
Bi = Dj =

⋃
f∈F,j∈f

Uf ⇔ (Bi)i∈A = (G−1j (i))i∈A.

For shorthand, we denote by
∑
U the sum over all disjoint families {Uf , f ∈ F} with

nonempty
⋃
f∈F,j∈f Uf = Dj for all j = 1, . . . , 2K. The new inner sum over all surjective

maps (5.10) is abbreviated via
∑
G. This reformulations of the first sum in (5.9) will

yield a new sum which makes a multiplicative form of the summands (as in (5.3)) visible.
Hence, the right hand side in (5.9) equals

∑
U

2K∏
j=1

 ∑
Gj :

⋃
f∈F,j∈f Uf→A

(
∏
i∈A
|G−1j (i)|!an

i,|G−1
j (i)|)(

∏
i∈A

fn
i,t,G−1

j (i)
−
∏
i∈A

fn
i,s,G−1

j (i)
)


=
∑
U

∑
G

2K∏
j=1

(
∏
i∈A
|G−1j (i)|!an

i,|G−1
j (i)|)(

∏
i∈A

fn
i,t,G−1

j (i)
−
∏
i∈A

fn
i,s,G−1

j (i)
). (5.11)

Step 2 : Thanks to this multiplicative form in (5.11) we conclude via the generalized
Cauchy-Schwarz inequality in (5.3) and the condition (4.4),

∑
U

∑
G

2K∏
j=1

(
∏
i∈A
|G−1j (i)|!an

i,|G−1
j (i)|)(

∏
i∈A

fn
i,t,G−1

j (i)
−
∏
i∈A

fn
i,s,G−1

j (i)
)

≤
2K∏
j=1

∑
U

∑
G

∏
i∈A

(
|G−1j (i)|!an

i,|G−1
j (i)|

)2(∏
i∈A

fn
i,t,G−1

j (i)
−
∏
i∈A

fn
i,s,G−1

j (i)

)2
1/2

≤
2K∏
j=1

∑
U

∑
G

(∏
i∈A

C |G
−1
j (i)|fn

i,t,G−1
j (i)

−
∏
i∈A

C |G
−1
j (i)|fn

i,s,G−1
j (i)

)2
1/2

. (5.12)

Finally, we define the shorthand elements

a
(n,i)
l := Cfni,t,l, b

(n,i)
l := Cfni,s,l, a

(n,i)
A :=

∏
l∈A

a
(n,i)
l , b

(n,i)
A :=

∏
l∈A

b
(n,i)
l .

ECP 22 (2017), paper 55.
Page 10/13

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP91
http://www.imstat.org/ecp/


Donsker-type theorems for correlated GFBMs and related processes

Applying (5.2) on the summands in the right hand side of (5.12) and interchanging the
(nonnegative) sum, we obtain

∑
U

∑
G

(∏
i∈A

C |G
−1
j (i)|fn

i,t,G−1
j (i)

−
∏
i∈A

C |G
−1
j (i)|fn

i,s,G−1
j (i)

)2

≤ |A|
∑
i∈A

∑
U

∑
G

(a
(n,i)

G−1
j (i)

− b
(n,i)

G−1
j (i)

)2
∏

k∈A,k<i

(a
(n,i)

G−1
j (k)

)2
∏

k∈A,k>i

(b
(n,i)

G−1
j (k)

)2. (5.13)

Thanks to (5.1) and

c
(n,i)
l :=

√ ∑
k∈A,k<i

|a(n,k)l |2 +
∑

k∈A,k>i

|b(n,k)
l |2, c(n,i)A :=

∏
l∈A

c
(n,i)
l ,

for every i ∈ A, ∑
⋃̇

k∈A\{i}Ek=D

∏
k∈A,k<i

|a(n,k)Ek
|2

∏
k∈A,k>i

|b(n,k)
Ek
|2

=
∏
j∈D

(∑
k<i

|a(n,k)j |2 +
∑
k>i

|b(n,k)
j |2

)
= (c

(n,i)
D )2,

and therefore∑
⋃̇

k∈AEk=E

(a
(n,i)
Ei
− b

(n,i)
Ei

)2
∏
k<i

|a(n,k)Ek
|2
∏
k>i

|b(n,k)
Ek
|2 =

∑
∅6=F⊆E

(a
(n,i)
F − b

(n,i)
F )2(c

(n,i)
E\F )2.

(5.14)

For every fixed set E ⊆ {1, . . . , n} every partition into
⋃
f∈F Uf = E has less than 22K

elements. Hence, we have ∑
⋃

f∈F Uf=E

1 ≤ 22K|E|.

Similarly, for a fixed partition
⋃
f∈F Uf = E and every j = 1, . . . , 2K, the number of

surjective maps Gj in (5.10) is less than |A||E| and therefore∑
G

1 ≤ |A|2K|E|.

Thus, by these upper bounds and (5.14), the inner sums
∑
U

∑
G in (5.13) are handled

simultanously to∑
U

∑
G

(a
(n,i)

G−1
j (i)

− b
(n,i)

G−1
j (i)

)2
∏

k∈A,k<i

(a
(n,i)

G−1
j (k)

)2
∏

k∈A,k>i

(b
(n,i)

G−1
j (k)

)2

≤
∑

∅6=E⊆{1,...,n}

(2|A|)2K|E|
∑

⋃̇
k∈AEk=E

(a
(n,i)
Ei
− b

(n,i)
Ei

)2
∏

k∈A,k<i

|a(n,k)Ek
|2

∏
k∈A,k>i

|b(n,k)
Ek
|2

≤
∑

E⊆{1,...,n}

(2|A|)2K|E|
∑
∅6=F⊆E

(a
(n,i)
F − b

(n,i)
F )2(c

(n,i)
E\F )2.

An application of Proposition 5.1, the conditions (4.1)-(4.3) and s, t ∈ [0, 1] now yield∑
∅6=E⊆{1,...,n}

(2|A|)2K|E|
∑
∅6=F⊆E

(a
(n,i)
F − b

(n,i)
F )2(c

(n,i)
E\F )2
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≤ 2 exp

(2|A|)2K
n∑
j=1

(|a(n,i)j |2 + |b(n,i)
j |2 + |c(n,i)j |2)

 (2|A|)2K
n∑
j=1

(a
(n,i)
j − b

(n,i)
j )2

= 2 exp

(2|A|)2KC2
∑
i∈A

n∑
j=1

(|fni,t,j |2 + |fni,s,j |2)

 (2|A|)2KC2
n∑
j=1

(fni,t,j − fni,s,j)
2

< exp
(
22K+1|A|3KC2L(tα + sα)

)
(2|A|)2K+1C2L

∣∣∣∣bntcn − bnsc
n

∣∣∣∣α
< exp

(
22K+3|A|3KC2L

) ∣∣∣∣bntcn − bnsc
n

∣∣∣∣α . (5.15)

Plugging (5.11)-(5.15) into (5.9), we conclude

E

[(
F �nA,t − F

�n
A,s

)2K]
≤ c

∣∣∣∣bntcn − bnsc
n

∣∣∣∣Kα
for the constant c := exp

(
K22K+3|A|3KC2L

)
.
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