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Abstract

We provide necessary and sufficient first order geometric conditions for the stochastic
invariance of a closed subset of Rd with respect to a jump-diffusion under weak
regularity assumptions on the coefficients. Our main result extends the recent charac-
terization proved in Abi Jaber, Bouchard and Illand (2016) to jump-diffusions. We also
derive an equivalent formulation in the semimartingale framework.

Keywords: stochastic differential equation; jumps; semimartingale; stochastic invariance.
AMS MSC 2010: 93E03; 60H10; 60J75.
Submitted to ECP on December 21, 2016, final version accepted on September 15, 2017.

1 Introduction

We consider a weak solution to the following stochastic differential equation with
jumps

dXt = b(Xt)dt+ σ(Xt)dWt +

∫
ρ(Xt−, z) (µ(dt, dz)− F (dz)dt) , X0 = x, (1.1)

that is: a filtered probability space (Ω,F ,F = (F)t≥0,P) satisfying the usual conditions
and supporting a d-dimensional Brownian motion W , a Poisson random measure µ on
R+ ×Rd with compensator dt⊗ F (dz), and a F-adapted process X with càdlàg sample
paths such that (1.1) holds P-almost surely.

Throughout this paper, we assume that b : Rd 7→ Rd, σ : Rd 7→Md and ρ : Rd ×Rd 7→
Rd are measurable, where Md denotes the space of d × d matrices. In addition, we
assume that

b, σ and

∫
ρ(., z)>H(ρ(., z))ρ(., z)F (dz) are continuous for any H ∈ Cb(Rd,Md), (HC)

where Cb(Rd,Md) denotes the space of Md-valued continuous bounded functions on Rd.
We also assume that there exist q, L > 0 such that, for all x ∈ Rd,∫

{‖ρ(x,z)‖>1}
‖ρ(x, z)‖q ln ‖ρ(x, z)‖F (dz) ≤ L(1 + ‖x‖q), (H0)

‖b(x)‖2 + ‖σσ>(x)‖+

∫
‖ρ(x, z)‖2F (dz) ≤ L(1 + ‖x‖2). (H1)
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Stochastic invariance for jump-diffusions

Let D denote a closed subset of Rd. Our aim is to characterize the stochastic
invariance (a.k.a viability) of D under weak regularity assumptions, i.e. find necessary
and sufficient conditions on the coefficients such that, for all x ∈ D, there exists a
D-valued weak solution to (1.1) starting at x.

Invariance and viability problems have been intensively studied in the literature,
first in a deterministic setup [3] and later in a random environment. For the diffusion
case, see [1, 9, 4] and the references therein. In the presence of jumps, we refer to
[22, 24, 14]. Note that a first order characterization for a smooth volatility matrix σ is
given in [14], where the Stratonovich drift appears (see [9] for the diffusion case). For a
second order characterization, we refer to [24, Propositions 2.13 and 2.15].

Combining the techniques used in [1, 24], we derive for the first time in Theorem 2.2
below, a first order geometric characterization of the stochastic invariance with respect
to (1.1) when the volatility matrix σ can fail to be differentiable. We also provide an
equivalent formulation of the stochastic invariance with respect to semimartingales in
Theorem 3.2. This extends [1] to the jump-diffusion case. From a practical perspective,
this is the first known first order characterization that could be directly applied to
construct affine [11, 18] and polynomial processes [8] on any arbitrary closed sets, since
for these processes the volatility matrix can fail to be differentiable (on the boundary of
the domain).

In fact, in the sequel, we only make the following assumption on the covariance
matrix

C := σσ> on D can be extended to a C1,1
loc (Rd,Sd) function, (H2)

in which C1,1
loc means C1 with a locally Lipschitz derivative and Sd denotes the set of

d× d symmetric matrices. Note that we do not impose the extension of C to be positive
semi-definite outside D, so that σ might only match with its square-root on D. Also, it
should be clear that the extension needs only to be local around D.

From now on we use the same notation C for σσ> on D and for its extension defined
in Assumption (H2). All identities involving random variables have to be considered in
the a.s. sense, the probability space and the probability measure being given by the
context. Elements of Rd are viewed as column vectors. We use the standard notation Id
to denote the d× d identity matrix and denote by Md the collection of d× d matrices. We
say that A ∈ Sd (resp. Sd+) if it is a symmetric (resp. and positive semi-definite) element of
Md. Elements of Rd are viewed as column vectors. Given x = (x1, . . . , xd) ∈ Rd, diag [x]

denotes the diagonal matrix whose i-th diagonal component is xi. If A is a symmetric
positive semi-definite matrix, then A

1
2 stands for its symmetric square-root.

The rest of the paper is organized as follows. Our main results are stated and proved
in Sections 2-3. In the Appendix, we adapt to our setting some technical results, mainly
from [1].

2 Stochastic invariance for SDEs

In order to ease the comparison with [1], we first provide in Theorem 2.2 below a
characterization of the invariance for stochastic differential equations with jumps. An
equivalent formulation in terms of semimartingales is also provided in the next section
(see Theorem 3.2 below). We insist on the fact that the two formulations are equivalent
by the representation theorem of semimartingales with characteristics as in (3.1) below
in terms of a Brownian motion and a Poisson random measure (see [16, Theorem 2.1.2]).
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Stochastic invariance for jump-diffusions

We start by making precise the definition of stochastic invariance1 for stochastic
differential equations with jumps.

Definition 2.1 (Stochastic invariance). A closed subset D ⊂ Rd is said to be stochasti-
cally invariant with respect to the jump-diffusion (1.1) if, for all x ∈ D, there exists a
weak solution X to (1.1) starting at X0 = x such that Xt ∈ D for all t ≥ 0, almost surely.

The following theorem provides a first order geometric characterization of the stochas-
tic invariance using the (first order) normal cone ND(x) at x consisting of all outward
pointing vectors,

ND(x) :=
{
u ∈ Rd : 〈u, y − x〉 ≤ o(‖y − x‖),∀ y ∈ D

}
.

Theorem 2.2. Let D ⊂ Rd be closed. Under the continuity assumptions (HC) and (H0)-
(H2), the set D is stochastically invariant with respect to the jump-diffusion (1.1) if and
only if 

x+ ρ(x, z) ∈ D, for F -almost all z, (2.1a)∫
|〈u, ρ(x, z)〉|F (dz) <∞, (2.1b)

C(x)u = 0, (2.1c)

〈u, b(x)−
∫
ρ(x, z)F (dz)− 1

2

d∑
j=1

DCj(x)(CC+)j(x)〉 ≤ 0, (2.1d)

for all x ∈ D and u ∈ ND(x), in which DCj(x) denotes the Jacobian of the j-th column
of C(x) and (CC+)j(x) is the j-th column of (CC+)(x) with C(x)+ defined as the Moore-
Penrose pseudoinverse2 of C(x).

(i)

(iii)

(ii)

C

C
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b

b

b

ρ
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Figure 1: Interplay between the geometry/curvature of D and the coefficients (b, C, ρ).

Before moving to the proof, we start by giving the geometric interpretation of
conditions (2.1a)-(2.1d), also shown in Figure 1. Condition (2.1c) states that at the

1The concept is also often known as viability. We use the term invariance here in order to stay coherent with
the affine/polynomial literature.

2The Moore-Penrose pseudoinverse of am×nmatrixA is the unique n×mmatrixA+ satisfying: AA+A = A,
A+AA+ = A+, AA+ and A+A are Hermitian.
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Stochastic invariance for jump-diffusions

boundary of the domain, the column of the covariance matrix should be tangential to the
boundary, while (2.1a) requires from D to capture all the jumps of the process. Moreover,
at the boundary, the jumps can have infinite variation only if they are tangent to the
boundary, by (2.1b). Finally, it follows from (2.1d) that the compensated drift should be
inward pointing. We notice that the compensated drift extends the Stratonovich drift
(see [9, 14]) when the volatility matrix can fail to be differentiable. In fact, if the volatility
matrix is smooth, [1, Proposition 2.4] yields

〈u,
d∑
j=1

Dσj(x)σj(x)〉 = 〈u,
d∑
j=1

DCj(x)(CC+)j(x)〉, for all x ∈ D and u ∈ Kerσ(x)>.

Conversely, the example of the square root process C(x) = x and σ(x) =
√
x on D := R+

shows that σ may fail to be differentiable at 0 while C satisfies (H2).

The proof of Theorem 2.2 adapts the argument of [1] combined with techniques taken
from [24] to handle the jump component. For the necessity, we use the same condi-
tioning/projection argument together with the small time behavior of double stochastic
integrals as in [1]. For this we need to inspect the regularity of σ, this is the object of
Lemma 2.3 below. For the sufficiency, we show that conditions (2.1a)-(2.1d) imply the
positive maximum principle for the infinitesimal generator and we conclude by applying
[13, Theorem 4.5.4], which is possible by Lemma 2.4 below. The latter lemma highlights
the role of the growth condition (H0). In fact, (H1) would only yield that Lφ is bounded.
This is not enough to apply [13, Theorem 4.5.4].

We first recall the following crucial lemma. This is an immediate consequence of the
implicit function theorem giving the regularity of the distinct eigenvalues of C and their
corresponding eigenvectors under (H2). We refer to [1, Lemma 3.1] for the proof.

Lemma 2.3. Assume that C ∈ C1,1
loc (Rd,Sd). Let x ∈ D be such that the spectral decom-

position of C(x) is given by

C(x) = Q(x)diag [λ1(x), . . . , λr(x), 0, . . . , 0]Q(x)>,

with λ1(x) > λ2(x) > · · · > λr(x) > 0 and Q(x)Q(x)> = Id, r ≤ d.
Then there exist an open (bounded) neighborhood N(x) of x and two measurable

Md-valued functions on Rd,

y 7→ Q(y) := [q1(y) · · · qd(y)] and y 7→ Λ(y) := diag [λ1(y), . . . , λd(y)]

such that

(i) C(y) = Q(y)Λ(y)Q(y)> and Q(y)Q(y)> = Id, for all y ∈ Rd,

(ii) λ1(y) > λ2(y) > . . . > λr(y) > max{λi(x), r + 1 ≤ i ≤ d} ∨ 0, for all y ∈ N(x),

(iii) σ̄ : y 7→ Q̄(y)Λ̄(y)
1
2 is C1,1(N(x),Md), in which Q̄ := [q1 · · · qr 0 · · · 0] and Λ̄ =

diag[λ1, . . . , λr, 0, . . . , 0].

Moreover, we have:

〈u,
d∑
j=1

Dσ̄j(x)σ̄j(x)〉 = 〈u,
d∑
j=1

DCj(x)(CC+)j(x)〉, for all u ∈ Ker(C(x)). (2.2)

We will also need the continuity of the infinitesimal generator of (1.1) acting on
smooth functions φ

Lφ := Dφb+
1

2
Tr(D2φσσ>) +

∫
(φ(.+ ρ(., z))− φ−Dφρ(., z))F (dz), (2.3)

ECP 22 (2017), paper 53.
Page 4/15

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP88
http://www.imstat.org/ecp/


Stochastic invariance for jump-diffusions

where Dφ> (resp. D2φ) is the gradient (resp. Hessian) of φ. In the sequel, we denote by
C(D) the space of continuous functions on D. We add the superscript p on C to denote
functions with p-continuous derivatives for all p ≤ ∞, and the subscript c (resp. 0) stands
for functions with compact support (resp. vanishing at infinity). This is the object of the
following lemma (a similar formulation in the semimartingale set-up can be found in [23,
Lemma A.1]).

Lemma 2.4. Under (HC) and (H0), L(C2
c (D)) ⊂ C0(D).

Proof. Let φ ∈ C2
c (D). We extend it to C2

c (Rd). Let M > 0 be such that φ(x) = 0 if
‖x‖ > M and fix ‖x‖ > M + 1. Then

Lφ(x) =

∫
φ(x+ ρ(x, z))F (dz) =

∫
{‖x+ρ(x,z)‖≤M}

φ(x+ ρ(x, z))F (dz).

On {‖x+ ρ(x, z)‖ ≤M}, 1 +M < ‖x‖ ≤M + ‖ρ(x, z)‖. Hence, (H0) yields

|Lφ(x)| ≤ ‖φ‖∞
∫
{‖x+ρ(x,z)‖≤M}

‖ρ(x, z)‖q ln ‖ρ(x, z)‖
(‖x‖ −M)q ln(‖x‖ −M)

F (dz)

≤ ‖φ‖∞L
(1 + ‖x‖q)

(‖x‖ −M)q
1

ln(‖x‖ −M)
,

where ‖.‖∞ is the uniform norm, which shows that Lφ(x)→ 0 when ‖x‖ → ∞. Moreover,
denoting by Φ :=

∫
(φ(.+ ρ(., z))− φ−Dφρ(., z))F (dz), we have for all x, y ∈ D

Φ(y) =

∫ ∫ 1

0

∫ t

0

ρ(y, z)>D2φ(y + sρ(y, z))ρ(y, z)dsdtF (dz)

=

∫ ∫ 1

0

∫ t

0

ρ(y, z)>D2φ(x+ sρ(y, z))ρ(y, z)dsdtF (dz)

+

∫ ∫ 1

0

∫ t

0

ρ(y, z)>
(
D2φ(y + sρ(y, z))−D2φ(x+ sρ(y, z))

)
ρ(y, z)dsdtF (dz)

=: I1(x, y) + I2(x, y).

Observe that I2(x, y) → 0 when y → x, since D2φ is uniformly continuous (recall
that φ has compact support). In addition, it follows from (HC) that I1(x, y)→ Φ(x) when
y → x, which ends the proof.

We can now move to the proof of Theorem 2.2.

Proof of Theorem (2.2). Part a. We first prove that our conditions are necessary. Let
X denote a weak solution starting at X0 = x such that Xt ∈ D for all t ≥ 0. If x /∈ ∂D,
then ND(x) = {0} and there is nothing to prove. We therefore assume from now on that
x ∈ ∂D. Let 0 < η < 1. Throughout the proof, we fix ψη a bounded continuous function
on Rd such that ψη = 0 on Bη(x) and ψη → 1{Rd\{0}} for η ↓ 0, where Bη(x) is the open
ball with center x and radius η.

Step 1. We start by proving (2.1a). Let ε > 0 and φε : Rd 7→ [0, 1] be C2 such that
φε = 0 on D ∪ Bε(x) and φε = 1 on (D ∪B2ε(x))

c. D is stochastically invariant, hence
φε(Xt) = 0, for all t ≥ 0. Since φε is twice differentiable and bounded, Itô’s formula [17,
Theorem I.4.57] yields∫ t

0

Lφε(Xs) +

∫ t

0

Dφε(Xs)σ(Xs)dWs + (φε(Xs− + ρ(Xs−, .))− φε(Xs−)) ∗ (µ− ν) = 0,
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Stochastic invariance for jump-diffusions

where ∗ denotes the standard notation for stochastic integration with respect to a random
measure (see [17]) and ν(dt, dz) := dtF (dz). By continuity of Lφ (see Lemma 2.4), taking
the expectation, dividing by t and letting t→ 0 yield

Lφε(x) = 0. (2.4)

A change of probability measure with respect to the Doléans-Dade exponential
Z := E(ψη ∗ (µ− ν)), which is uniformly integrable (see [20, Theorem IV.3] and the proof
of [24, Proposition 2.13]), yields∫ t

0

L̃φε(Xs)ds+

∫ t

0

Dφε(Xs)σ(Xs)dWs + (φε(Xs− + ρ(Xs−, .))− φε(Xs−)) ∗ (µ− ν̃) = 0,

(2.5)
where

b̃ := b+

∫
ψη(z)ρ(., z)F (dz), ν̃(dt, dz) := dtF̃ (dz), F̃ (dz) := (1 + ψη(z))F (dz),

L̃φ := Dφb̃+
1

2
Tr(D2φC) +

∫
(φ(.+ ρ(., z))− φ−Dφρ(., z)) F̃ (dz).

By combining the above with (2.3), taking the expectation in (2.5), dividing by t and
sending t→ 0, and invoking once again Lemma 2.4, we get

Lφε(x) +

∫
φε(x+ ρ(x, z))ψη(z)F (dz) = 0.

It then follows from (2.4) that
∫
φε(x+ ρ(x, z))ψη(z)F (dz) = 0 for all η ∈ (0, 1). Sending

η ↓ 0 leads to
∫
φε(x+ ρ(x, z))F (dz) = 0, by monotone convergence (recall that φε ≥ 0).

Hence ∫
1{x+ρ(x+z)∈(D∪B2ε(x))c}F (dz) = 0.

For ε ↓ 0, (2.1a) follows from monotone convergence again.

Step 2. By the proof of [1, Proposition 3.5], it suffices to consider the case where the
positive eigenvalues of the covariance matrix C at the fixed point x ∈ D are all distinct
as in Lemma 2.3. We can also restrict the study to σ = C

1
2 (see [1, Remark 2.1]). We

therefore use the notations of Lemma 2.3. We proceed as in Step 2 of the proof of [1,
Lemma 3.2] for the continuous part combined with the proof of [24, Proposition 2.13]
for the jump part. Fix u ∈ ND(x) and let φ be a smooth function (with compact support
in N(x)) such that max

D
φ = φ(x) and Dφ(x) = u>.3 Since D is stochastically invariant,

φ(Xt) ≤ φ(x), for all t ≥ 0. Let wη := (η − 1)ψη. By reapplying Step 1, with the test
function φ (resp. wη) instead of φε (resp. ψη), we obtain

0 ≥
∫ t

0

L̃φ(Xs)ds+

∫ t

0

Dφ(Xs)σ(Xs)dWs + Ñt

=

∫ t

0

L̃φ(Xs)ds+

∫ t

0

(DφQΛ
1
2Q>)(Xs)dWs + Ñt,

where Ñs := (φ(Xs− + ρ(Xs−, .))− φ(Xs−)) ∗ (µ − ν̃) is the pure-jump true martingale
part under the new measure (since φ is Lipschitz and (H1) holds). Let us define
the Brownian motion B =

∫ ·
0
Q(Xs)

>dWs, recall that Q is orthogonal, together with

3Such a function always exists (up to considering an element of the proximal normal cone), see the discussion
preceding [1, Lemma 3.2] and Step 1 of the proof of the same Lemma.
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Stochastic invariance for jump-diffusions

B̄ = (B1, .., Br, 0, ..., 0)> and B̄⊥ = (0, ..., 0, Br+1, ..., Bd). Since QΛ̄
1
2 = Q̄Λ̄

1
2 , the above

inequality can be written in the form

0 ≥
∫ t

0

L̃φ(Xs)ds+

∫ t

0

Dφ(Xs)σ̄(Xs)dB̄s +

∫ t

0

(DφQΛ
1
2 )(Xs)dB̄

⊥
s + Ñt.

Let (F B̄s )s≥0 be the completed filtration generated by B̄. Since B̄, B̄⊥ are independent
and B̄ has independent increments, conditioning by F B̄t yields, by Lemma A.3 in the
appendix,

0 ≥
∫ t

0

EFB̄s [L̃φ(Xs)]ds+

∫ t

0

EFB̄s [Dφ(Xs)σ̄(Xs)]dB̄s.

We now apply Lemma A.1 of the Appendix to (Dφσ̄)(X) and reapply the same condi-
tioning argument to find a bounded adapted process η̃ such that

0 ≥
∫ t

0

θsds+

∫ t

0

(
α+

∫ s

0

βrdr +

∫ s

0

γrdBr

)>
dBs, (2.6)

where

θ := EFB̄·

[
L̃φ(X·)

]
, α> := (Dφσ̄)(x) = Dφ(x)Q(x)Λ(x)

1
2

β := EFB̄· [η̃·] , γ := EFB̄· [D(Dφσ̄)σ̄(X·)] .

Step 3. We now check that we can apply Lemma A.2 below. First note that all the
above processes are bounded. This follows from Lemmas 2.3 and 2.4, (H1) and the
fact that φ has compact support. In addition, given T > 0, the independence of the

increments of B̄ implies that θs = EFB̄T

[
L̃φ(Xs)

]
for all s ≤ T . From Lemma 2.4 and

since X has almost surely no jumps at 0, it follows that θ is a.s. continuous at 0. Moreover,
since Dφσ̄ is C1,1, D(Dφσ̄)σ̄ is Lipschitz which, combined with (A.5), implies (A.2).

Step 4. In view of Step 3, we can apply Lemma A.2 to (2.6) to deduce that α = 0

and θ0 − 1
2 Tr(γ0) ≤ 0. The first equation implies that α>Λ(x)

1
2Q>(x) = u>C(x) = 0,

or equivalently (2.1c) since C(x) is symmetric. The second identity combined with
Dφ(x) = u> shows that

0 ≥ L̃φ(x)− 1

2
Tr
[
σ̄>D2φσ̄ + (Id ⊗ u>)Dσ̄σ̄

]
(x)

= Lφ(x)− 1

2
Tr
[
σ̄>D2φσ̄ + (Id ⊗ u>)Dσ̄σ̄

]
(x)

+ (η − 1)

∫
(φ(x+ ρ(x, z))− φ(x))ψη(z)F (dz),

in which ⊗ stands for the Kronecker product (see [1, Definition A.4 and Proposition A.5])
and Dσ̄ is the Jacobian matrix of σ̄ (see [1, Definition A.7]). Sending η ↓ 0, by monotone
convergence, we get

0 ≥ Lφ(x)− 1

2
Tr
[
σ̄>D2φσ̄ + (Id ⊗ u>)Dσ̄σ̄

]
(x) +

∫
(φ(x)− φ(x+ ρ(x+ z)))F (dz).

(2.7)

In particular, since φ(x) = max
D

φ, (2.1a) implies that
∫
|φ(x+ ρ(x+ z))−φ(x)|F (dz) =∫

(φ(x)− φ(x+ ρ(x+ z)))F (dz) <∞. Moreover, the right hand side is equal to

−
∫
Dφ(x)ρ(x, z)F (dz)−

∫ ∫ 1

0

∫ t

0

ρ(x, z)>D2φ(x+ sρ(x, z))ρ(x, z)dsdtF (dz),
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Stochastic invariance for jump-diffusions

yielding (2.1b) (recall (H1) and that φ has compact support). Combining (2.7), (2.2)-(2.3)
and

Tr
[
(Id ⊗ u>)Dσ̄σ̄

]
(x) = 〈u,

d∑
j=1

Dσ̄j(x)σ̄j(x)〉,

we finally obtain (2.1d).

Part b. We now prove that our conditions are sufficient. It follows from (2.1c) and
the proof of [1, Proposition 4.1] that

Tr(D2φ(x)C(x)) ≤ −〈Dφ(x)>,

d∑
j=1

DCj(x)(CC+)j(x)〉,

for any smooth function φ such that max
D

φ = φ(x) ≥ 0. Moreover, after noticing that

Dφ(x)> ∈ ND(x) (this is immediate from the Taylor expansion of φ around x), (2.1b)
yields∫

(φ(x+ ρ(x, z))− φ(x) +Dφ(x)ρ(x, z))F (dz) =

∫
(φ(x+ ρ(x, z))− φ(x))F (dz)

+

∫
Dφ(x)ρ(x, z)F (dz).

In addition, it follows from (2.1a) that φ(x+ ρ(x, z)) ≤ φ(x) for F -almost all z. Com-
bining all the above with (2.1d) we finally get

Lφ(x) ≤ 〈Dφ(x)>, b(x)−
∫
ρ(x, z)F (dz)− 1

2

d∑
j=1

DCj(x)(CC+)j(x)〉 ≤ 0.

Therefore, L satisfies the positive maximum principle. In addition, since L : C∞c (D) 7→
C0(D) (see Lemma 2.4) and C∞c (D) is dense in C0(D), by [13, Theorem 4.5.4], there exists
a càdlàg (D ∪∆)-valued solution to the martingale problem for L, where ∆ denotes the
one point compactification of D. ∆ is attained either by jump (killed by a potential) or by
explosion. By the discussion preceding [6, Proposition 3.2], the process cannot jump to
∆. Moreover, the growth conditions (H1) ensure that no explosion happens in finite time
(see (A.5)). Hence ∆ is never attained. We conclude by using [19, Theorem 2.3].

3 Equivalent fomulation in the semimartingale framework

In this section, we provide an equivalent formulation of Theorem 2.2 in the semi-
martingale set-up which is more adapted to the construction of affine and polynomial
jump-diffusions (see Remark 3.3 below). We stress once more that, by [12, 5], (1.1) is a
very general formulation, equivalent to the semimartingale formulation (3.2) below (see
also [16, Theorem 2.1.2]).

Let X denote a homogeneous diffusion with jumps in the sense of [17, Definition
III.2.18] on a filtered probability space (Ω̃, F̃ , F̃, P̃), i.e. its semimartingale characteristics
(B̃, C̃, ν) are of the form

B̃t =

∫ t

0

b̃(Xs)ds, C̃t =

∫ t

0

c̃(Xs)ds, ν(dt, dz) = dtK(Xt, dz), (3.1)

with respect to a continuous truncation function h, i.e. h is bounded and equal to the
identity on a neighborhood of 0. Here, b̃ : Rd 7→ Rd, c̃ : Rd 7→ Sd+, K is a transition kernel
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from Rd into Rd \ {0} and

b̃, c̃,

∫
f(z)‖z‖2K(., dz) are continuous for any bounded continuous function f. (H̃C)

The triplet (̃b, c̃,K) is called the differential characteristics of X. In addition we
assume that there exist q̃, L̃ > 0 such that∫

{‖z‖>1}
‖z‖q̃ ln ‖z‖K(x, dz) ≤ L̃(1 + ‖x‖q̃), (H̃0)

‖b̃(x)‖2 + ‖c̃(x)‖+

∫
‖z‖2K(x, dz) ≤ L̃(1 + ‖x‖2), (H̃1)

for all x ∈ Rd. It follows that X is a locally square-integrable semimartingale (see [17,
Definition II.2.27 and Proposition II.2.29]) and in particularX is a special semimartingale.
Recall that ν is the compensated measure of the random jump measure µ of X. By [17,
Theorem II.2.38], X admits the following canonical decomposition

X = X0 +B +Xc + z ∗ (µ− ν), (3.2)

where Xc is a continuous local martingale with quadratic variation 〈Xc〉· =
∫ ·

0
c̃(Xs)ds

and B :=
∫ ·

0
b(Xs)ds, where b := b̃+

∫
(z − h(z))K(., dz). Finally, we assume that

the restriction of c̃ to D can be extended to a C1,1
loc (Rd,Sd) function, (H̃2)

and we denote by C this extended function.

We are now ready to state an equivalent formulation of Theorem 2.2 adapted to
(3.2). We start by defining naturally the notion of stochastic invariance with respect to a
semimartingale.

Definition 3.1 (Stochastic invariance). A closed subset D ⊂ Rd is said to be stochas-
tically invariant with respect to the semimartingale (3.1) if, for all x ∈ D, there exists
a filtered probability space (Ω,F ,F := (Ft)t≥0,P) supporting a semimartingale X with
characteristics (3.1) starting at X0 = x and such that Xt ∈ D for all t ≥ 0, P-almost
surely.

Theorem 3.2. Let D ⊂ Rd be closed. Under the continuity assumptions (H̃C) and (H̃0)-
(H̃2), the set D is stochastically invariant with respect to the semimartingale (3.1) if and
only if 

suppK(x, dz) ⊂ D − x, (3.3a)∫
|〈u, z〉|K(x, dz) <∞, (3.3b)

C(x)u = 0, (3.3c)

〈u, b(x)−
∫
zK(x, dz)− 1

2

d∑
j=1

DCj(x)(CC+)j(x)〉 ≤ 0, (3.3d)

for all x ∈ D and u ∈ ND(x).

Proof. Our proof is based on a (standard) representation of (3.2) in terms of (1.1). In
this proof, we show the correspondence between the characteristics of (3.1) and the
coefficients of (1.1), and between the assumptions and invariance conditions of the two
settings. Then, Theorem 3.2 is deduced from a direct application of Theorem 2.2.
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Part a. More precisely, let us fix F a σ-finite and infinite measure with no atom. By [5,
Lemma 3.4] and the discussion preceding [5, Theorem 3.13], there exists a measurable
function ρ : Rd ×Rd → Rd\{0} such that4

K(x,B) =

∫
1B(ρ(x, z))F (dz), for all Borel sets B. (3.4)

Let us fix ρ for the rest of the proof, and recall that b = b̃ +
∫

(z − h(z))K(., dz) and

set σ := c̃
1
2 . We claim that the assumptions (H̃C) and (H̃0)-(H̃2) imply the assumptions

(HC) and (H0)-(H2), and that the conditions (2.1a)-(2.1d) are equivalent to the condi-
tions (3.3a)-(3.3d). To see this, recall that h is bounded and equal to the identity on
a neighborhood of 0. Hence z → (z − h(z))/(‖z‖21{‖z‖6=0}) is bounded and continuous

(because it is equal to 0 on a neighborhood of 0). It follows, from (H̃C) that b and σ

are continuous. Therefore, combining the above with (3.4) and (H̃0)-(H̃2) yields (HC)
and (H0)-(H2). Finally, one easily deduce from (3.4) that (2.1a)-(2.1d) are equivalent to
(3.3a)-(3.3d) since

∫
g(z)K(x, dz) =

∫
g(ρ(x, z))F (dz), for any measurable function g.

Part b. To see that the conditions (3.3a)-(3.3d) of Theorem 3.2 are sufficient, it suffices
to apply Theorem 2.2, whose assumptions and conditions are satisfied by Part a. above.
Namely, under the conditions (3.3a)-(3.3d), (1.1) admits a D-valued weak solution, which
is also a semimartingale with characteristics (3.1).
Part c. We now prove that the conditions (3.3a)-(3.3d) are necessary. Assume that
D is stochastically invariant with respect to (3.1). Fix (Ω,F ,F := (Ft)t≥0,P) support-
ing a semimartingale X with characteristics (3.1) starting at X0 = x ∈ D such that
P({Xt ∈ D,∀t ≥ 0}) = 1. By [16, Theorem 2.1.2], there exists a filtered extension
(Ω̃, F̃ , F̃ := (F̃t)t≥0, P̃) supporting a d-dimensional Brownian motion W and a Poisson
random measure µ with compensator dt⊗ F (dz) such that X solves

Xt = x+

∫ t

0

b̃(Xs)ds+

∫ t

0

σ̃sdWs + (δ1{‖δ‖≤1}) ∗ (µ− dtF (dz)) + (δ1{‖δ‖>1}) ∗ µ, (3.5)

where (σ̃, δ) are such that σ̃t(ω̃)σ̃t(ω̃)>= c̃(Xt(ω̃)) andK(Xt(ω̃), B) =
∫
1B(δ(ω̃, t, z))F (dz),

for all Borel sets B, for all t ≥ 0, for P̃-almost all ω̃. In view of (3.4),∫
1B(ρ(X·ω̃, z))F (dz) = K(X·(ω̃), B) =

∫
1B(δ(ω̃, ·, z))F (dz),

for all Borel sets B, for P̃-almost all ω̃. Hence, δ = ρ(X·, ·) F ⊗ P almost everywhere.
Similarly, σ̃ can be taken to be equal to the square root of c̃ (see [1, Remark 2.1]). Thus,
(3.5) can be written in the form (1.1) with (b, σ := c̃

1
2 , ρ). Moreover, P̃({Xt ∈ D,∀t ≥ 0} =

P({Xt ∈ D,∀t ≥ 0}) = 1, by the discussion following [16, Equation (2.1.26)]. In view of
Part a., Theorem 2.2 implies that (2.1a)-(2.1d) should hold, so that (3.3a)-(3.3d) must be
satisfied.

Remark 3.3. As already mentioned above, in the presence of jumps, the semimartingale
formulation given in Theorem 3.2 is more adapted to affine and polynomial processes
than Theorem 2.2. In fact, affine (resp. polynomial) jump-diffusions are characterized by
an affine (resp. polynomial) dependence of their triplet (̃b, c̃,K) (e.g. [24, Definition 4.2]).
Inspecting the identity in (3.4), it is not clear how this property translates to ρ.

A Technical lemmas

For completeness, we provide in the sequel some technical lemmas with their proofs.
They are either standard or minor modifications of already known results.

4There is a lot of freedom for ρ, see [5, Section 4] and [12, Theorem 6 and Corollary 7].
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The generalized Itô’s lemma derived in [1, Lemma 3.3] can easily be extended to
account for jumps in the following way.
Lemma A.1. Assume that σ is continuous and that there exists a solution X to (1.1).
Let f ∈ C1,1

c (Rd,R). Then, there exists an adapted bounded process η such that

f(Xt) = f(x) +

∫ t

0

η̃sds+

∫ t

0

(Dfσ)(Xs)dWs

+ (f(Xs− + ρ(Xs−, z))− f(Xs−)) ∗ (µ− dtF (dz)),

for all t ≥ 0, with

η̃s = (Dfb)(Xs) + ηs +

∫
(f(Xs + ρ(Xs, z))− f(Xs)−Df(Xs)ρ(Xs, z))F (dz).

Proof. Since f ∈ C1,1 has a compact support, we can find a sequence (fn)n in C∞ with
compact support (uniformly) and a constant K > 0 such that

(i) ‖D2fn‖ ≤ K,

(ii) ‖fn − f‖+ ‖Dfn −Df‖ ≤ K
n ,

for all n ≥ 1. This is obtained by considering a simple mollification of f . Set µ̃ :=

µ− dtF (dz). Since fn is twice differentiable and bounded, Itô’s formula [17, Theorem
I.4.57] yields

fn(Xt) = fn(x) +

∫ t

0

Dfn(b(Xs)ds+ σ(Xs)dWs) + (fn(Xs− + ρ(Xs−, z))− fn(Xs−)) ∗ µ̃

+

∫ t

0

(
ηns +

∫
(fn(Xs + ρ(Xs, z))− fn(Xs)−Dfn(Xs)ρ(Xs, z))F (dz)

)
ds

in which ηn := 1
2Tr[D2fnσσ

>](X). Since σσ> is continuous, (i) above implies that (ηn)n is
uniformly bounded in L∞(dt×dP). By [10, Theorem 1.3], there exists (η̂n) ∈ Conv(ηk, k ≥
n) such that η̂n → η dt⊗ dP almost surely. Let Nn ≥ 0 and (λnk )n≤k≤Nn ⊂ [0, 1] be such

that η̂n =
∑Nn
k=n λ

n
kη

k and
∑Nn
k=n λ

n
k = 1. Set f̂n :=

∑Nn
k=n λ

n
kfk. Then,

f̂n(Xt) = f̂n(x) +

∫ t

0

η̃nds+

∫ t

0

Df̂n(Xs)σ(Xs)dWs

+
(
f̂n(Xs− + ρ(Xs−, z))− f̂n(Xs−)

)
∗ µ̃, (A.1)

in which η̃n := (Df̂nb)(Xs)+η̂
n
s +
∫ (

f̂n(Xs + ρ(Xs, z))− f̂n(Xs)−Df̂n(Xs)ρ(Xs, z)
)
F (dz).

By dominated convergence,
∫ t

0
η̂ns ds converges a.s. to

∫ t
0
ηsds. Moreover, (ii) implies that

‖f̂n(Xt)− f(Xt)‖ ≤
Nn∑
k=n

λnk‖f̂k(Xt)− f(Xt)‖ ≤
Nn∑
k=n

λnk
K

k
≤ K

n
,

so that f̂n(Xt) converges a.s. to f(Xt). Similarly,∫ t

0

η̃ns ds→
∫ t

0

η̃sds,

∫ t

0

Df̂n(Xs)σ(Xs)dWs →
∫ t

0

Df(Xs)σ(Xs)dWs,(
f̂n(Xs− + ρ(Xs−, z))− f̂n(Xs−)

)
∗ µ̃→ (f(Xs− + ρ(Xs−, z))− f(Xs−)) ∗ µ̃,

in L2(Ω,F ,P) as n→∞, and therefore a.s. after possibly considering a subsequence. It
thus remains to send n→∞ in (A.1) to obtain the required result.
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The following adapts [1, Lemma 3.4] to our setting.

Lemma A.2. Let (Wt)t≥0 denote a standard d-dimensional Brownian motion on a fil-
tered probability space (Ω,F , (Ft)t≥0,P). Let α ∈ Rd and (βt)t≥0, (γt)t≥0 and (θt)t≥0 be
predictable processes taking values respectively in Rd, Md and R and satisfying

(1) β is bounded,

(2)
∫ t

0
‖γs‖2ds <∞, for all t ≥ 0,

(3) there exists η > 0 such that∫ t

0

∫ s

0

E
[
‖γr − γ0‖2

]
drds = O(t2+η), (A.2)

(4) θ is a.s. continuous at 0.

Suppose that for all t ≥ 0∫ t

0

θsds+

∫ t

0

(
α+

∫ s

0

βrdr +

∫ s

0

γrdWr

)>
dWs ≤ 0. (A.3)

Then, α = 0, −γ0 ∈ Sd+, θ0 − 1
2 Tr(γ0) ≤ 0.

Proof. Since (W i
t )

2 = 2
∫ t

0
W i
sdW

i
s + t, (A.3) reduces to

(θ0 −
1

2
Tr(γ0))t+

d∑
i=1

αiW i
t +

d∑
i=1

γii0
2

(W i
t )

2 +
∑

1≤i 6=j≤d

γij0

∫ t

0

W i
sdW

j
s +Rt ≤ 0,

where

Rt =

∫ t

0

(θs − θ0)ds+

∫ t

0

(∫ s

0

βrdr

)>
dWs +

∫ t

0

(∫ s

0

(γr − γ0)dWr

)>
dWs

=: R1
t +R2

t +R3
t .

In view of [4, Lemma 2.1], it suffices to show that Rt/t → 0 in probability. To see this,
first note that R1

t = o(t) a.s. since θ is continuous at 0. Moreover, [7, Proposition 3.9]

implies that R2
t = o(t) a.s., as β is bounded. Finally, it follows from (A.2) that R3

t

t → 0 in
L2, and hence in probability. We conclude by applying [4, Lemma 2.1].

We also used the following elementary lemma which extends [25, Lemma 5.4] to
account for jumps (see also [21, Corollaries 2 and 3 of Theorem 5.13]).

Lemma A.3. Let B,B⊥ denote two independent Brownian motions and µ a Poisson
random measure on R+ ×Rd with compensator dt ⊗ F on a filtered probability space
(Ω,F , (Ft)t≥0,P). Let (γs)s≥0 be an adapted square integrable process and ξ : R+×Rd 7→
Rd be a predictable process such that E

[∫ t
0

∫
‖ξ(s, z)‖2F (dz)ds

]
<∞, for all t ≥ 0. Define

the sub-filtration FBt = σ{Bs, s ≤ t} ⊂ Ft and denote by µ̃ = µ− dtF (dz). Then P− a.s.,
for all t ≥ 0,

EFBt

[∫ t

0

γsdBs

]
=

∫ t

0

EFBs [γs] dBs, EFBt

[∫ t

0

γsdB
⊥
s

]
= EFBt [ξ ∗ µ̃] = 0.

Moreover, it holds similarly for any integrable adapted process θ that

EFBt

[∫ t

0

θsds

]
=

∫ t

0

EFBs [θs] ds.
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Proof. We sketch the proof for the jump integral. See [25, Lemma 5.4] for the other
identities. Let ξ be simple and predicable, i.e. ξ(s, z) =

∑n
i=1 ξi1(ti,ti+1](s)1Ai(z), in which

ξi is bounded and Fti -measurable, (ti)1≤i≤n a subdivision of [0, t] and Ai ⊂ Rd Borel sets
such that F (Ai) <∞. We can write FBt = FBti ∨F

B
ti,t where FBti,t := σ(Bs−Bti , ti ≤ s ≤ t).

It follows from [15, Theorem II.6.3] that µ and B are independent and

EFBt [ξ ∗ µ̃] =

n∑
i=1

EFBti∨F
B
ti,t

[ξiµ̃ ((ti, ti+1]×Ai)]

=

n∑
i=1

E
[
E
[
ξiµ̃ ((ti, ti+1]×Ai) | Fti ∨ FBti,t

]
| FBti ∨ F

B
ti,t

]
=

n∑
i=1

E
[
ξiE

[
µ̃ ((ti, ti+1]×Ai) | Fti ∨ FBti,t

]
| FBti ∨ F

B
ti,t

]
= 0.

For general ξ, the result follows from Itô’s isometry and the fact that simple processes
are dense in L2(dt⊗ F ) (see [2, Lemma 4.1.4]).

For completeness, we recall well-known moment estimates for (1.1) under (H1).

Proposition A.4. Let X denote a weak solution of (1.1) starting at x. Under the growth
conditions (H1), there exists M1

x,L > 0 such that the following moment estimates hold:

E

[
sup
s≤t
‖Xs‖2

]
≤ 4

(
‖x‖2 + Lt(t+ 8)

)
e4Lt(t+8), for all t ≥ 0, (A.4)

E
[
‖Xt −Xs‖2

]
≤M1

x,L|t− s|, for all s, t ≤ 1. (A.5)

Proof. Set gt := E
[
sups≤t ‖Xs‖2

]
. By convexity of y 7→ y2, we have (a + b + c + d)2 =

16(a+b+c+d
4 )2 ≤ 4(a2 + b2 + c2 + d2). Combined with Cauchy–Schwarz and Burkholder-

Davis-Gundy inequalities, we get for all u ≤ t

gu ≤ 4‖x‖2 + 4t

∫ u

0

E
[
‖b(Xs)‖2

]
ds

+ 16

∫ u

0

E [‖C(Xs)‖] ds+ 16

∫
Rd
E
[
‖ρ(Xs−, z)‖2

]
F (dz)ds.

The growth conditions (H1) now yield

gu ≤ 4

(
‖x‖2 + Lt(t+ 8) + L(t+ 8)

∫ u

0

gsds

)
, for all u ≤ t.

Finally, (A.4) follows from Grönwall’s Lemma. Moreover, for all s, t ≤ 1, by Cauchy-
Schwarz inequality, Itô’s isometry and (H1) we have

E
[
‖Xt −Xs‖2

]
≤ 3|t− s|

∫ t

s

E
[
‖b(Xr)‖2

]
dr

+ 3

∫ t

s

E

[
‖C(Xr)‖+

∫
Rd
‖ρ(Xr−, z)‖2F (dz)

]
dr

≤ 3
(
L|t− s|2(1 + g1) + L|t− s|(1 + g1)

)
≤ 6L(1 + g1)|t− s|.

Hence, (A.5) follows from (A.4).
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