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Abstract

We prove a version of the moving particle lemma for the exclusion process on any finite
weighted graph, based on the octopus inequality of Caputo, Liggett, and Richthammer.
In light of their proof of Aldous’ spectral gap conjecture, we conjecture that our
moving particle lemma is optimal in general. Our result can be applied to graphs
which lack translational invariance, including, but not limited to, fractal graphs. An
application of our result is the proof of local ergodicity for the exclusion process on
a class of weighted graphs, the details of which are reported in a follow-up paper
[arXiv:1705.10290].
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1 Introduction and main result

The exclusion process is one of the most well-studied interacting particle systems
in probability theory; see [3,19,36] for introductory accounts of the model, [26,32,37]
for technical backgrounds, and [1, 11] and references therein for connections with
non-equilibrium statistical mechanics. In this short paper we consider the exclusion
process on a finite weighted graph. To fix notation, let G = (V,E) be a finite connected
undirected graph, and c = (cxy)xy∈E be a collection of nonnegative real numbers called
conductances. A weighted graph is a pair (G, c). The symmetric exclusion process (SEP)
on (G, c) is a continuous-time Markov chain on the state space {0, 1}V with infinitesimal
generator (

LEX
(G,c)f

)
(ζ) =

∑
xy∈E

cxy(∇xyf)(ζ), f : {0, 1}V → R, (1.1)

where (∇xyf)(ζ) = f(ζxy)− f(ζ) and

(ζxy)(z) =


ζ(y), if z = x,

ζ(x), if z = y,

ζ(z), otherwise.
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Octopus inequality & moving particle lemma

Informally speaking, one starts with a configuration ζ in which k of the |V | vertices are
occupied with a particle, and the remaining vertices are empty. All particles are deemed
indistinguishable. A transition from ζ to ζxy occurs with rate cxy if and only if one of the
vertices {x, y} is occupied and the other is empty.

There are two key properties of the SEP. First, the total number of particles is
conserved in the process. Second, the process is reversible with respect to any constant-
density product Bernoulli measure να on {0, 1}V , α ∈ [0, 1], which has marginal να{ζ :

ζ(x) = 1} = α for all x ∈ V . We introduce the Dirichlet energy, cf. [26, p. 343]:

EEX
(G,c),να

(f) = να

[
f(−LEX

(G,c)f)
]

=
1

2

∑
xy∈E

cxy να
[
(∇xyf)2

]
, f : {0, 1}V → R, (1.2)

where, throughout the paper, we adopt the shorthand µ[h] :=
∫
h dµ for a Borel measure

µ and a function h ∈ L1(µ).
Our main result is the following inequality called the moving particle lemma.

Theorem 1.1. For every α ∈ [0, 1], x, y ∈ V , and f : {0, 1}V → R,

1

2
να[(∇xyf)2] ≤ Reff(x, y)EEX

(G,c),να
(f), (1.3)

where Reff(·, ·) : V × V → R+ is the effective resistance on (G, c) defined by

[Reff(x, y)]−1 = inf

{ ∑
zw∈E

czw[h(z)− h(w)]2

∣∣∣∣∣ h : V → R, h(x) = 1, h(y) = 0

}
(1.4)

or
= inf

{∑
zw∈E czw[h(z)− h(w)]2

[h(x)− h(y)]2

∣∣∣∣∣ h : V → R

}
, (1.5)

cf. [28, (1.14)] or [38, (1.6.1) & (1.6.2)].

Remark 1.2. In (1.4) and (1.5) above we defined the effective resistance with respect
to a (unit) voltage drop. It is also possible to define the effective resistance with respect
to a unit current flow, cf. [31, p. 121]. From the physical point of view, the effective
resistance is the power (energy per unit time) dissipated in a unit flow I. Writing Ie,
∆eV , and Re for, respectively, the current, the voltage drop, and the resistance across
the edge e, we obtain ∑

e

Ie∆eV =
∑
e

[∆eV ]2

Re
=
∑
e

ce[∆eV ]2,

where Ohm’s law ∆eV = ReIe was used.

Theorem 1.1 says that the cost of transporting a particle from x to y in the exclusion
process is bounded above by the effective resistance distance w.r.t. the random walk
process times the total energy in the exclusion process. On the one hand, it is reminiscent
of the inequality appearing in the classical Dirichlet’s principle, due to Thomson [43, §376,
p. 443] (according to the note in [18, Exercise 1.3.11]):

[h(x)− h(y)]2 ≤ Reff(x, y)Eel
(G,c)(h), x, y ∈ V, h : V → R, (1.6)

where

Eel
(G,c)(h) =

∑
zw∈E

czw[h(z)− h(w)]2 (1.7)

is the Dirichlet energy associated with the symmetric random walk process on (G, c).
(Observe that (1.6) follows directly from (1.5). Also note the absence of the prefactor
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1
2 in (1.6); the sum in (1.7) runs over edges, not vertices.) Notably, the inequality (1.6)
saturates to an equality if and only if h is a harmonic function on V \ {x, y}, i.e., the
infimum in the RHS of (1.4) is a minimum. (Equivalently, and in physics-friendly terms,
Reff(x, y) is obtained by minimizing the power dissipation over all unit current flows in
(G, c) from x to y, subject to Kirchhoff’s current and voltage laws.)

On the other hand, the author does not know the conditions under which (1.3)
saturates to an equality on a general weighted graph. To wit, consider the optimization
problem

inf {J x,y(f) | f : V → R} where J x,y(f) =
2EEX

(G,c),να
(f)

να[(∇xyf)2]
. (1.8)

Since the functional J x,y is nonnegative and lower semicontinuous, there exists a
minimizer for (1.8). Then Theorem 1.1 says that

Reff(x, y) ≥ (inf{J x,y(f) | f : V → R})−1
. (1.9)

However, it is unclear in general when (1.9) becomes an equality.
That being said, we conjecture that Theorem 1.1 is optimal on any finite weighted

graph, and more generally, on resistance spaces [25], in light of the connection between
the moving particle lemma and the spectral gap of an interacting particle system
[23,34,35]. As will be described later in the paper, our proof of Theorem 1.1 is based on
the “octopus inequality” of Caputo, Liggett, and Richthammer [12], which is a nontrivial
energy inequality associated to the interchange process on a weighted graph. (For
the definition of the interchange process, see §3.) It is not known in general when the
octopus inequality saturates to an equality. Nevertheless, using the octopus inequality,
the authors of [12] were able to prove the equality between the spectral gap of the
interchange process and the spectral gap of the random walk process, thereby positively
resolving Aldous’ conjecture (circa 1992 [2], cf. [3, Chapter 14, Open Problem 29]). This
implies, via a projection argument, that the spectral gap of the exclusion process equals
the spectral gap of the random walk process.

For more information about the effective resistance, see [18] for an elementary
exposition, as well as the relevant chapters in [31, 33]. Note that Reff(·, ·) defines a
metric on V (cf. [31, Exercise 9.8] and [24, Theorem 2.1.14]).

1.1 Raison d’être for Theorem 1.1

To illustrate the difference between our Theorem 1.1 and previous results, we quickly
recap the argument which leads to the conventional moving particle lemma (cf. [21,
Lemma 4.4], [27, pp. 123–124], [26, p. 95]); see (1.12) below. For simplicity assume
(G, c) has all conductances equal to 1. Start by identifying a shortest path connecting x
and y

{x0 = x, x1, · · · , xL−1, xL = y |xixi+1 ∈ E},

and then swap particle configurations along the edges of the path in this order,

x0x1, x1x2, · · · , xL−1xL, xL−1xL−2, xL−2xL−3, · · · , x1x0.

This sends ζ(y) to x, ζ(x) to y, and leaves ζ(z) intact for all z /∈ {x, y}. (In a related
context, [17] uses this path argument and a comparison argument to obtain eigenvalue
estimates in the k-particle exclusion process on (G, c).) Let us denote each edge-wise
swap by the operator Dm : {0, 1}V → {0, 1}V , m ∈ {1, 2, · · · , 2L− 1}, in the order shown,
set T1 = Id and, for m ≥ 2, Tm = Dm−1Dm−2 · · ·D1. (In particular, DL represents the
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swap between particles at xL and xL−1, while DL+1 the swap between particles at xL−1

and xL−2.) Now use the telescoping identity

(∇xyf)(ζ) =

L∑
m=1

(∇xm−1xmf)(Tmζ) +

L−1∑
k=1

(∇xL−kxL−k−1
f)(TL+kζ),

then apply the Cauchy-Schwarz inequality:

[(∇xyf)(ζ)]2 ≤ (2L− 1)

[
L∑

m=1

[(∇xm−1xmf)(Tmζ)]2 +

L−1∑
k=1

[(∇xL−kxL−k−1
f)(TL+kζ)]2

]
.

(1.10)

Integrating both sides of (1.10) w.r.t. the uniform probability measure ν on {0, 1}V , and
noting the transposition invariance of the measure ν, we obtain

ν[(∇xyf)2] ≤ (2L− 1)

(
L∑

m=1

ν[(∇xm−1xmf)2] +

L−1∑
k=1

ν[(∇xk−1xkf)2]

)

≤ 2(2L− 1)

L∑
m=1

ν[(∇xm−1xmf)2]. (1.11)

Besides (1.11), one also needs to verify that the energy distribution over each edge is
uniformly bounded from above.

Assumption 1.3. There exists a positive constant C, possibly depending on f , such that

1
2ν[(∇ef)2] · |E|
EEX

(G,c),ν(f)
≤ C

for all e ∈ E.

Combining Assumption 1.3 with (1.11) we get

1

2
ν[(∇xyf)2] ≤ 2(2L− 1)L · C

|E|
EEX

(G,c),ν(f) ≤ C 4L2

|E|
EEX

(G,c),ν(f). (1.12)

Inequality (1.12) is the conventional moving particle lemma. It is effective when
the graph (G, c) is quasi-transitive w.r.t. a free group action (such as the group of
translations), and f is taken to be invariant under the group action. The canonical
example is the d-dimensional discrete torus TdN := (Z/NZ)d: if f : TdN → R is invariant
under lattice translations and rotations by π/2, then Assumption 1.3 holds with equality
and C = 1, and (1.12) becomes

1

2
ν[(∇xyf)2] ≤ 4‖x− y‖21

Nd
EEX
TdN ,ν

(f), x, y ∈ TdN ,

where ‖x‖1 :=
∑d
i=1 |xi| is the L1-distance on TdN [21,26,27]. A closely related example

is a crystal lattice, which is analyzed in [39]. (See [39, Lemma 4.2] for the moving
particle lemma there. It has since been extended to finitely generated residually finite
amenable groups in [40]). We also mention examples of random graphs for which a
variation of (1.12) holds almost surely w.r.t. the law of the random environment; see
[35, Lemma 5.2] for the case of the exclusion process with site disorder, and [20, Lemma
5.2] for the case of the zero-range process on the supercritical percolation cluster on Zd.

However, it may be the case that for certain classes of weighted graphs, one cannot
verify Assumption 1.3 for any f , which would cast (1.12) in doubt. Consider graphs
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a0

a1 a2

Figure 1: The Sierpinski gasket (SG) graphs of level 0, 1, 2, and 5, respectively.

associated with self-similar fractal sets, such as the Sierpinski gasket (SG, see Figure 1)
and the Sierpinski carpet. On these spaces, it is proved that for every f in the domain of
the Dirichlet energy for single-particle diffusion, the energy measure is mutually singular
w.r.t. the Hausdorff measure [8,22,29]. It would then seem plausible that the exclusion
process energy measure is also mutually singular w.r.t. the Hausdorff measure, though
we leave this as an open problem. At any rate, since we are unable to verify Assumption
1.3 on these spaces, we use Theorem 1.1 instead to capture the averaging property
through the effective resistance distance.

1.2 Application to local ergodicity

A preliminary motivation of this paper is to establish a local ergodic theorem for
the exclusion process on non-translationally-invariant weighted graphs, such as SG
(see Theorem 1.5 below). Theorem 1.1 will enable us to prove the so-called two-blocks
estimate and, in turn, local ergodicity, for the said process. The details are reported in
the paper [14]. Then in [15] we specialize to SG, and prove the hydrodynamic limit of the
(boundary-driven) exclusion process, viz. the joint current-density law of large numbers
and large deviations principle. A long-term goal of ours is to establish the hydrodynamic
limit of interacting particle systems on the so-called strongly recurrent graphs, in the
sense of [7,16,41,42], including post-critically finite self-similar (p.c.f.s.s.) fractals [4,24]
and Sierpinski carpets [5,6,30], whereupon random walks satisfy sub-Gaussian heat
kernel estimates [7].

To give a flavor of how Theorem 1.1 is applied, we now state the moving particle
lemma on SG (which has not appeared in the previous literature according to the
author’s knowledge), as well as the local ergodic theorem. For discussions of other
weighted graphs see [14].

Let a0, a1, a2 be the vertices of a nondegenerate triangle in R2, and G0 be the
complete graph on the vertex set V0 = {a0, a1, a2}, as shown on the left in Figure 1.
We declare V0 to be the (analytical but not topological) boundary of SG. Define the
contracting similitude Ψi : R2 → R2, Ψi(x) = 1

2 (x − ai) + ai for each i ∈ {0, 1, 2}. For
each N ∈ N, the Nth-level SG graph GN = (VN , EN ) is constructed inductively via the
formula GN =

⋃2
i=0 Ψi(GN−1). Set V∗ =

⋃∞
N=0 VN . Finally, set the conductance on every

e ∈ EN to 1. We denote the corresponding weighted graph (GN ,1).
For each m-letter word w = w1w2 · · ·wm ∈ {0, 1, 2}m , put Ψw = Ψw1

◦Ψw2
◦ · · · ◦Ψwm .

Two vertices x, y ∈ VN are said to be in the same level-j cell, j ∈ {0, 1, · · · , N}, if
x, y ∈ Ψw(V0) for some j-letter word w ∈ {0, 1, 2}j .
Proposition 1.4 (Moving particle lemma on SG). There exists a positive constant C,
independent of N , such that for every α ∈ [0, 1], x, y ∈ VN which are in the same level-j
cell, and f : VN → R, we have

να
[
(∇xyf)2

]
≤ C

(
5

3

)N−j
EEX

(GN ,1),να
(f). (1.13)
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Proof. It is known (see e.g. [38, Lemma 1.6.1]) that in the graph (GN ,1), for every x and

y in the same level-j cell, Reff(x, y) ≤ C
(

5
3

)N−j
for a constant C independent of N and j.

Inequality (1.13) follows directly from Theorem 1.1 and this resistance estimate.

Note that the value 5
3 is the single-particle diffusive scaling on SG, which is crucial

to the proof of the two-blocks estimate. Indeed, it suffices to consider all j = bεNc with
ε ∈ [0, 1] (ε is the macroscopic aspect ratio used in the coarse-graining argument), and all

functions f with EEX
(GN ,1),να

(f) ≤ C
(

3
5

)N
. Then the cost of particle transport, viz. the LHS

of (1.13), is at most of order
(

3
5

)bεNc
, which vanishes in the double limit N →∞ followed

by ε ↓ 0. This asymptotic statement is crucial for the two-blocks estimate to go through.
Once the one-block and two-blocks estimates are proved, we can then prove the local

ergodic theorem for the exclusion process on SG, see Theorem 1.5 below. (In [14] we
shall state and prove a more abstract version of the local ergodic theorem which applies
to all strongly recurrent weighted graphs.) Given a denumerable set Λ, let |Λ| denote the
cardinality of Λ. The average of g : Λ→ R over Λ is written AvΛ [g] := |Λ|−1

∑
z∈Λ g(z).

Let Bd(x, r) = {y ∈ V∗ : d(x, y) < r} denote the ball of radius r in the graph metric d
centered at x. A map φ : V∗ × {0, 1}V∗ → R is called a local function bundle for vertices
(this terminology comes from [40]) if there exists rφ ∈ (0,∞) such that for any x ∈ V∗,
φx := φ(x, ·) depends only on {η(z) : z ∈ Bd(x, rφ)}.
Theorem 1.5 (Local ergodic theorem for the exclusion process on SG). Let PNα be the
law of the symmetric exclusion process (ηNt )t≥0 with generator 5NLEX

(GN ,1), started from

the product Bernoulli measure να on {0, 1}VN with marginals να{η : η(x) = 1} = α for all
x ∈ VN . Then for each T > 0 and each δ > 0,

lim sup
ε↓0

lim sup
N→∞

sup
x∈VN

1

3N
logPNα

{∣∣∣∣∣
∫ T

0

UN,ε(x, η
N
t ) dt

∣∣∣∣∣ > δ

}
= −∞,

where

UN,ε(x, η) = φx(η)− Φx
(
AvBd(x,2bεNc) [η]

)
, Φx(α) := να[φx],

and φ is any local function bundle for vertices.

Remark 1.6. From the point of view of non-equilibrium statistical mechanics, one may
also consider the boundary-driven version of the exclusion process on (G, c), following
[9,10]. In this setting, we declare a nonempty subset ∂V ⊂ V to be the boundary set,
and assume for simplicity that caa′ = 0 for all a, a′ ∈ ∂V . Attach to each a ∈ ∂V a particle
reservoir which imposes a fixed particle density at a, resulting in a mean density profile
which may be spatially non-constant.

Formally, the generator of the boundary-driven exclusion process is L := LEX
(G,c) +Lb∂V ,

where

(Lb∂V f)(ζ) =
∑
a∈∂V

[λ−(a)ζ(a) + λ+(a)(1− ζ(a))][f(ζa)− f(ζ)], f : {0, 1}V → R.

Here λ+(a) ∈ R+ (resp. λ−(a) ∈ R+) represents the rate of particle hopping into (resp.
out of) the reservoir at a, and

ζa(z) =

{
1− ζ(a), if z = a,

ζ(z), otherwise.

In [14] we prove the moving particle lemma for the boundary-driven exclusion process,
using Theorem 1.1 and potential theoretic estimates in the random walk process.
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We end this section by mentioning that similar questions can be posed for the zero-
range process (see [26, §2.3] for the definition of the model) on a finite connected
weighted graph. To the best of the author’s knowledge, there is no analog of the
octopus inequality for the zero-range process, and it remains a challenge to obtain sharp
asymptotics of the spectral gap on general graphs. Jara has investigated this question on
SG [23, p. 787] and posed an open problem (that the spectral gap has a uniform bound
of order 5−N ).

The rest of the paper is organized as follows. In §2 we briefly recap the idea of
electric network reduction, and fix notation which will be used later on. In §3 we define
the interchange process, and show that the octopus inequality implies the monotone
decreasing property of the corresponding Dirichlet energy upon network reduction. This
leads to a counterpart of Dirichlet’s principle for the interchange process. Then in §4 we
project the interchange process onto a k-particle exclusion process, and in conjunction
with known properties of the exclusion process, we obtain the desired moving particle
lemma, Theorem 1.1.

2 Electric network reduction

In this section we define network reduction, following the notation of [12, §2]. Given
a finite weighted graph (G = (V,E), c) and a vertex x ∈ V , define Vx = V \ {x},
Ex = {yz ∈ E : y, z 6= x}, and

c̃yz := cyz + c∗,xyz , c∗,xyz :=
cyxcxz∑
w∈Vx cxw

, yz ∈ Ex. (2.1)

We call the weighted graph (Gx = (Vx, Ex), c̃ = (c̃yz)yz∈Ex) the reduced (star) graph of
(G, c) at x. In simple terms, Gx is obtained by removing x and its attached edges from
G. In order to leave the effective conductance between any pair of points invariant, the
conductance on each remaining edge yz ∈ Ex must increase from cyz to c̃yz, or by an
amount c∗,xyz . Formally, (2.1) is obtained by computing the Schur complement of the (x, x)

block in the stochastic matrix associated to symmetric random walk on (G, c). It is direct
to verify, via the next proposition, that the effective conductance ceff(·, ·) = [Reff(·, ·)]−1 is
invariant under network reduction.

Proposition 2.1 ([12, Lemma 2.2]). For every x ∈ V and f : V → R,∑
y∈Vx

cxy[f(x)− f(y)]2 =
∑
yz∈Ex

c∗,xyz [f(y)− f(z)]2 +
1∑

y 6=x cxy
[(Lf)(x)]2, (2.2)

where (Lf)(x) =
∑
y∈Vx cxy[f(y)− f(x)]. It follows that∑
y∈Vx

cxy[f(x)− f(y)]2 ≥
∑
yz∈Ex

c∗,xyz [f(y)− f(z)]2, (2.3)

with equality holding if and only if (Lf)(x) = 0.

The proof of (2.2) is a straightforward algebraic exercise.
We now make the connection between (2.3) and the inequality appearing in Dirichlet’s

principle (1.6). Inequality (2.3) says that by fixing a voltage function f and implementing
a network reduction, the energy lost due to the the removed edges (LHS of the inequality)
is at least the energy gained from the increased conductances on the remaining edges
(RHS of the inequality). Of course this is equivalent to saying that the energy is monotone
decreasing upon network reduction. Indeed, by adding

∑
yz∈Ex cyz[f(y)− f(z)]2 to both

sides of (2.3), we get

Eel
(G,c)(f) ≥ Eel

(Gx,c̃)(f). (2.4)
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Let us fix a pair of vertices x, y ∈ V in the finite weighted graph (G, c), and label the
remaining vertices by x1, x2, · · · , x|V |−2. We define a decreasing sequence of weighted

graphs {(Gi = (Vi, Ei), ci)}|V |−2
i=0 inductively as follows: Put (G0, c0) = (G, c), and for

every 0 ≤ i ≤ |V | − 3, let (Gi+1, ci+1) =
(
(Gi)xi+1

, c̃i
)
, where (Gi)xi+1

is the subgraph of
Gi obtained by removing xi+1 and its attached edges, and (c̃i)yz = (ci)yz + (c

∗,xi+1

i )yz for
all yz ∈ Ei+1, cf. (2.1).

Applying the inequality (2.4) to the sequence of network reductions, we find

Eel
(G,c)(f) ≥ Eel

(G1,c1)(f) ≥ · · · ≥ Eel

(G|V |−2,c|V |−2)
(f) =

(
c|V |−2

)
xy

[f(x)− f(y)]2.

Recognize that
(
c|V |−2

)
xy

= ceff(x, y) = [Reff(x, y)]−1. Thus we have proved (1.6).

Remark. One can show that the condition for equality in (1.6) follows from the condition
for equality in (2.4). However it is not of central interest to the rest of the paper, so we
omit the proof.

3 Moving particle lemma for the interchange process

In this section we consider the interchange process on (G, c). This Markov chain
is described informally as follows. Each state corresponds to an assignment of |V |
labelled particles to the vertices of G such that each vertex has exactly 1 particle. A
transition occurs when particles at vertices x and y interchange their positions at rate
cxy. Formally, let SIP be the space of permutations on {1, 2, · · · , |V |}, and for η ∈ SIP and
xy ∈ E, let ηxy = ητxy, where τxy ∈ SIP is the transposition of x and y. The generator for
the interchange process is

(LIP
(G,c)f)(η) =

∑
xy∈E

cxy[f(ηxy)− f(η)], f : SIP → R.

Henceforth we denote (∇xyf)(η) := f(ηxy)− f(η). Also let ν be the uniform probability
measure on SIP, which is the unique reversible invariant measure for this process. The
corresponding Dirichlet energy reads

E IP
(G,c)(f) = ν

[
f(−LIP

(G,c)f)
]

=
1

2

∑
xy∈E

cxy ν[(∇xyf)2], f : SIP → R.

The next result, called the octopus inequality, is the counterpart of Proposition 2.1
for the interchange process. See [12, §3] for the proof (and also [13] for an algebraic
perspective), which involves a series of nontrivial, clever exercise in linear algebra.

Proposition 3.1 (Octopus inequality [12, Theorem 2.3]). For every x ∈ V and f : SIP →
R, ∑

y∈Vx

cxy ν[(∇yzf)2] ≥
∑
yz∈Ex

c∗,xyz ν[(∇yzf)2]. (3.1)

Remark. It is unclear to the author under which conditions the inequality (3.1) saturates
to an equality on a general weighted graph.

Recalling the strategy used in the previous section, we now prove the analog of (1.6)
for the interchange process. This will be referred to as the moving particle lemma for
the interchange process. Inequality (3.4) below will be used in the proof of our main
Theorem 1.1.

Lemma 3.2. For any x, y ∈ V and f : SIP → R,

1

2
ν[(∇xyf)2] ≤ Reff(x, y)E IP

(G,c)(f). (3.2)
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Proof. Upon adding
∑
yz∈Ex cyz ν

[
(∇yzf)2

]
to both sides of (3.1) and multiplying by 1

2 ,
we obtain

E IP
(G,c)(f) ≥ E IP

(Gx,c̃)(f). (3.3)

This shows that in the interchange process the Dirichlet energy is monotone decreasing
under network reduction. Adopting the same notation as in the paragraph after (2.4),
we apply (3.3) to the sequence of network reductions {(Gi, ci)}|V |−2

i=0 to get

E IP
(G,c)(f) ≥ E IP

(G1,c1)(f) ≥ · · · ≥ E IP
(G|V |−2,c|V |−2)(f) =

1

2
ceff(x, y) ν[(∇xyf)2]. (3.4)

This proves the lemma.

4 Moving particle lemma for the exclusion process

Finally we turn to the main problem considered in this paper. Let k ∈ {0, 1, · · · |V |}.
The symmetric exclusion process (SEP) of k particles on a finite weighted graph (G, c) is
a Markov chain on the state space SEX

k = {ζ ⊂ V : |ζ| = k} generated by

(LEX
(G,c),kf)(ζ) =

∑
xy∈E

cxy[f(ζxy)− f(ζ)], f : SEX
k → R, (4.1)

where

ζxy =


(ζ \ {x}) ∪ {y}, if x ∈ ζ and y /∈ ζ,
(ζ \ {y}) ∪ {x}, if y ∈ ζ and x /∈ ζ,
ζ, otherwise.

This process can be viewed as a sub-process of the interchange process as follows
[12, §4.1.1]. Let ξi(η) denote the position of particle i in the configuration η ∈ SIP. Define
the contraction πk : SIP → SEX

k by πk(η) = {ξ1(η), · · · , ξk(η)}. It is direct to verify that
πk(ηxy) = (πk(η))

xy. Therefore for all f : SEX
k → R and η ∈ SIP,(

LIP
(G,c)(f ◦ πk)

)
(η) =

∑
xy∈E

cxy[f(πk(ηxy))− f(πk(η))]

=
∑
xy∈E

cxy[f((πk(η))xy)− f(πk(η))] =
(

(LEX
(G,c),kf) ◦ πk

)
(η).

So if ν is the uniform probability measure on SIP, then

E IP
(G,c)(f ◦ πk) = ν

[
(f ◦ πk)(−LIP

(G,c)(f ◦ πk))
]

= ν
[
(f ◦ πk)((−LEX

(G,c)f) ◦ πk)
]

(4.2)

=

∫
SIP

(f ◦ πk)(η)((−LEX
(G,c)f) ◦ πk)(η) ν(dη)

=

∫
SEX
k

f(ζ)(−LEX
(G,c)f)(ζ) (ν ◦ π−1

k )(dζ),

assuming that the integral is finite. A moment’s thought tells us that νk := ν ◦ π−1
k is the

uniform probability measure on SEX
k (charging [

(
n
k

)
]−1 to each ζ ∈ SEX

k ). Let us denote
the Dirichlet energy of the k-particle exclusion process w.r.t. νk by

EEX
(G,c),k(f) := νk

[
f(−LEX

(G,c)f)
]

=
1

2

∑
xy∈E

cxyνk[(∇xyf)2]. (4.3)
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Combining (4.2) and (4.3) yields the identity

E IP
(G,c)(f ◦ πk) = EEX

(G,c),k(f), f : SEX
k → R. (4.4)

If the total number of particles k is unspecified, then the SEP on (G, c) can be viewed
as a Markov chain on the configuration space SEX = {0, 1}V with generator

(LEX
(G,c)f)(ζ) =

∑
xy∈E

cxy(∇xyf)(ζ), f : SEX → R, (4.5)

where∇xy is as defined just after (1.1). Recall that the total particle number is conserved
in the SEP. Therefore the generator LEX

(G,c) admits the orthogonal decomposition LEX
(G,c) =⊕|V |

k=0 LEX
(G,c),k, where each LEX

(G,c),k, as defined in (4.1), acts on the invariant subspace

SEX
k = {ζ ∈ {0, 1}V :

∑
x∈V ζ(x) = k}.

For α ∈ [0, 1], let να be the product Bernoulli measure on SEX with marginal να({ζ :

ζ(x) = 1}) = α for all x ∈ V . Define the Dirichlet energy w.r.t. να by

EEX
(G,c),να

(f) = να

[
f(−LEX

(G,c)f)
]

=
1

2

∑
xy∈E

cxyνα[(∇xyf)2], f : SEX → R. (4.6)

Lemma 4.1. For every f : SEX → R,

EEX
(G,c),να

(f) =

|V |∑
k=0

(
|V |
k

)
αk(1−α)|V |−kEEX

(G,c),k(fk) =

|V |∑
k=0

(
|V |
k

)
αk(1−α)|V |−kE IP

(G,c)(fk◦πk),

(4.7)
where fk denotes the orthogonal projection of f onto SEX

k .

Proof. On the one hand, using the orthogonal decomposition of LEX
(G,c), we find

EEX
(G,c),να

(f) = να

[
f(−LEX

(G,c)f)
]

=

|V |∑
k=0

να

[
fk(−LEX

(G,c),kfk)
]
. (4.8)

On the other hand, the restriction of να to SEX
k is a uniform measure with total mass(|V |

k

)
αk(1− α)|V |−k. Referring to (4.3) we see that

να

[
fk(−LEX

(G,c),kfk)
]

=

(
|V |
k

)
αk(1− α)|V |−kEEX

(G,c),k(fk). (4.9)

These two observations together justify the first equality in (4.7). The second equality in
(4.7) follows from (4.4).

We are now in a position to prove our main result.

Proof of Theorem 1.1. We carry out the sequence of network reductions {(Gi, ci)}|V |−2
i=0

as described in §2 and §3. Applying (4.7), (3.4), (4.7), and (4.3) in order, we obtain

EEX
(G,c),να

(f) =

|V |∑
k=0

(
|V |
k

)
αk(1− α)|V |−kE IP

(G,c)(fk ◦ πk)

≥
|V |∑
k=0

(
|V |
k

)
αk(1− α)|V |−kE IP

(G|V |−2,c|V |−2)(fk ◦ πk)

= EEX
(G|V |−2,c|V |−2),να

(f)

=
1

2
ceff(x, y) να[(∇xyf)2].

Since ceff(x, y) = [Reff(x, y)]−1, the theorem is proved.
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