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This note provides a large deviation principle for a class of biorthogonal ensembles.
We extend the results of Eichelsbacher, Sommerauer and Stolz to a more general
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1 Introduction and results

The aim of this note is to study the limiting distribution of the n-particle system on
R+ := (0,+∞) with joint distribution

1

Zn

∏
i<j

|xi − xj |
∏
i<j

|g(xi)− g(xj)|e−n
∑n

i=1 V (xi)
n∏
i=1

xb−1
i d`R+

(x1) . . . d`R+
(xn) (1.1)

where g is a C1 function such that g′ > 0 on R+, b ≥ 1, V is a continuous function
satisfying (1.3), `R+ is the Lebesgue measure on R+, and Zn is a normalizing constant.
This is a generalization of the biorthogonal ensembles introduced by Muttalib [16] in
physics in the context of disordered systems and by Borodin [6] in mathematics. This
model covers the classical random matrix ensembles, biorthogonal Laguerre ensembles
or the matrix model of Lueck, Sommers and Zirnbauer [15] for disordered bosons. In
equation (1.1), the two first products are interpreted as a repulsion between the particles
while the exponential term represents a confining potential preventing the particles
from going to infinity. The last product term pushes the particles away from 0, which
appears in some model such a Wishart matrices. The main focus of our study will be the
empirical measure of the system of points {x1, . . . , xn} defined by

µn =
1

n

n∑
i=1

δxi
.
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Large deviations for biorthogonal ensembles

In this note, the weak topology is associated to the bounded Lipschitz metric d. It is
defined onM1(R+), the set of probability measures on R+, by

∀µ, ν ∈M1(R+) d(µ, ν) = sup
f

∣∣∣∣∫ fµ−
∫
fdν

∣∣∣∣
where the supremum runs over all functions f satisfying ‖f‖∞ ≤ 1 and which are
1-Lipschitz. This metric makesM1(R+) a complete space, see [5, Section 8.3].

Definition 1.1 (Logarithmic energy). The logarithmic energy is the functional

E : M1(R+) −→ R ∪ {+∞}

µ 7−→


∫∫
− log |x− y|dµ(x)dµ(y) if

∫
log(1 + |x|)dµ(x) < +∞,

+∞ otherwise.

We also define the off-diagonal logarithmic energy

E6= : M1(R+) −→ R ∪ {+∞}

µ 7−→


∫∫
6=
− log |x− y|dµ(x)dµ(y) if

∫
log(1 + |x|)dµ(x) < +∞,

+∞ otherwise.

where we integrate over the complement of the diagonal of R2
+.

The distribution (1.1) can be written in the form:

1

Zn
exp

[
−n2

(
1

2
E6=(µn) +

1

2
E6=(g∗µn) +

∫
V (x)dµn(x)

)] n∏
j=1

xb−1
j d`R+

(x1) . . . d`R+
(xn)

(1.2)
where g∗µ is the push-forward of the measure µ by the function g.

Theorem 1.2 (Large deviation principle for µn). Let µn be the empirical measure of (1.1).
Let g be a C1 function on R+, such that its derivative is positive. Let V be a continuous
function on R+, bounded from below, such that there exists a constant β > max(b, 1)

such that

lim
x→∞

V (x)

β log |x|+ β log |g(x)|
> 1. (1.3)

Let I :M1(R+)→ R ∪ {+∞} as

I(µ) =

 1
2E(µ) + 1

2E(g∗µ) +

∫
V (x)dµ(x) if

∫
V (x)dµ(x) < +∞

+∞ otherwise

The random sequence (µn)n∈N satisfies a large deviation principle inM1(R+), for the
weak topology, with speed n2, and good rate function Ĩ = I − inf I. In other words, for
any Borel set A ∈M1(R+) we have:

Lower Bound: − inf
IntA

Ĩ ≤ lim
n→∞

1

n2
logP(µn ∈ A) (1.4)

Upper Bound: lim
n→∞

1

n2
logP(µn ∈ A) ≤ − inf

CloA
Ĩ (1.5)

Moreover, the rate function Ĩ is lower semi-continuous and strictly convex on the set of
measures on which it is finite.

This theorem is proved in Section 3.
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Large deviations for biorthogonal ensembles

Remark 1.3 (Assumptions on g and V ). The assumptions on V are standard in large
deviations for Coulomb gases. They ensure that the distribution (1.1) is well defined and
that the particles cannot escape to infinity. The assumptions on g mean that the two
interaction terms have the same short range repulsion effect.

Corollary 1.4 (Almost sure convergence towards the minimizer). Under the assumptions
of Theorem 1.2, Ĩ has a unique minimizer ν, and almost surely

lim
n→∞

d(µn, ν) = 0.

This corollary is proved at the end of Section 3.
Large deviations for Coulomb gases and random matrices started with the article

of Ben Arous and Guionnet [3] for GUE matrices, Ben Arous and Zeitouni [2] for real
Ginibre matrices and Hiai and Petz [14] for Ginibre and Wishart random matrices. In [12],
Eichelsbacher, Sommerauer and Stolz proved a large deviation principle for biorthogonal
ensembles with g(x) = xθ, θ being a positive integer. Their proof of the large deviations
lower bound cannot be adapted to cover the case considered in this note.

The article [7] from Chafaï, Gozlan and Zitt provides a general framework to estab-
lish a large deviation principle for particle systems with two points interaction in any
dimension. Surprisingly, their model covers the biorthogonal ensembles we consider.
Using the results from [7] requires to verify that the technical assumptions are fulfilled.
In the case we consider, it is equally difficult to prove the large deviations directly or to
prove that these hypotheses are satisfied, so we decided not to refer to their result.

Theorem 1.2 allows us to study large deviations for models such as the original model
of Muttalib from [16] with g(x) = Argsh2(

√
x) or the model from [9] with g(x) = exp(x).

Finally, the matrix model introduced by Cheliotis in [8] corresponds to g(x) = xθ or log x,
θ > 0. We will give more details about the consequences of our theorem on Cheliotis’s
model in the Application section. The key point of this article is how we deal with the
lower bound. Instead of following the proof of the lower bound originally given by Ben
Arous and Guionnet in [3], we adapt the proof of Hiai and Petz from [14].

In [4], a similar model to (1.1) is studied where g is holomorphic but the density is
integrated with respect to general measure on compact sets K ⊂ C.

Remark 1.5 (Large deviations for the largest particle). Let (x1, . . . , xn) be distributed
according to (1.1) and let x∗n = max1≤i≤n xi. Suppose that the assumptions of Theorem
1.2 are satisfied. Let ν be the limit measure of (µn)n∈N and let M be the right endpoint
of its support. Assume that

lim
n→∞

1

n
log

Z∗n−1

Zn
= inf I

where Z∗n−1 is the normalizing constant of the gas (1.1) with n−1 particles and confining
potential n

n−1V . It follows from the proof of the equivalent result in [1, Theorem 2.6.6]
that (x∗n)n∈N satisfies a large deviation principle in R+ with speed n and good rate
function

J(x) =

− 1
2

∫
log |x− y|+ log |g(x)− g(y)|dν(y) + V (x)− inf I if x ≥M

+∞ if x < M.

This is an adaptation to our model of the work of Credner and Eichelsbacher [10] who
proved the same result for the model from [12].

The rest of the note is organized as follows: in Section 2 we apply Theorem 1.2 to a
model of triangular random matrices introduced by Cheliotis in [8] and obtain results
about the Dykema–Haagerup distribution. In Section 3, we prove Theorem 1.2 and
Corollary 1.4. In Section 4, we suggest some extentions to the results presented in this
note.
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Large deviations for biorthogonal ensembles

2 Application to triangular matrices

In this section, we show that Theorem 1.2 can be used to obtain new results for a
recent model of random triangular matrices. Cheliotis in [8] considers the setting where
Tn is a lower triangular matrix with independent entries with distribution:

Xi,j ∼

{
NC(0, 1) if i > j,

1
πΓ(cj)e

−|z|2 |z|2(cj−1)d`C(z) if i = j

where cj = θ(j − 1) + b and d`C is the Lebesgue measure on the complex plane. The
distribution of the eigenvalues of 1

nTnT
∗
n is given by (1.1), with g(x) = xθ or log(x) if

θ > 0 or θ = 0 and V (x) = x. Notice that for good choices of θ and b, we can recover
many classical ensembles, such as the Laguerre ensembles.

The special case where θ = 0 and b = 1 corresponds to the case where all the
coefficients Xi,j are independent complex Gaussian variables with variance 1. This
particular case was studied using free probability theory by Dykema and Haagerup
in [11]. They proved that the random sequence (µn)n∈N converges almost surely in
probability towards a deterministic measure µDH , known as the Dykema-Haagerup
distribution. In [8], the same result is proved using the moments method and path
counting. The distribution µDH is supported on [0, e] and is absolutely continuous with
respect to the Lebesgue measure on R+ with density

fDH(x) =
1

π
Im

[
− 1

xW0(x)

]
1[0,e]

where W0 is the Lambert function, see figure 1.

Figure 1: Density of the Dykema-Haagerup distribution.

As a corollary of our Theorem 1.2, we get the following result on the Dykema-
Haagerup distribution in the setting of [8]:

Corollary 2.1 (Variational formulation for the Dykema-Haagerup distribution). The em-
pirical measure of 1

nTnT
∗
n converges almost surely for the bounded-Lipschitz metric
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Large deviations for biorthogonal ensembles

towards the Dykema-Haagerup distribution µDH . In addition, the Dykema–Haagerup
distribution is the unique minimizer onM1(R+) of

1

2
E(µ) +

1

2
E(log∗ µ) +

∫
xdµDH(x).

Cheliotis proved that the spectral radius of 1
nTnT

∗
n converges to the right end point

of the support of µDH . Like in Remark 1.5, a large deviation principle holds for the
maximal eigenvalue of 1

nTnT
∗
n which is a consequence of [1, Theorem 2.6.6].

3 Proof of Theorem 1.2 and Corollary 1.4

The proof of Theorem 1.2 follows the classical pattern for large deviations for log-
gases in R, which can be found in [1, p. 71-80] or [7]. We will focus on what differs from
the usual proofs, as some steps are just a reformulation of the classical proofs. We start
by giving the counterpart of inequality (2.6.13) from [1, p. 73]. This inequality is the key
to prove that Ĩ is well defined, has compact level sets and that (µn)n∈N is exponentially
tight. Knowing the properties of the logarithmic energy (see [1]), we prove that the rate
function is strictly convex.

The last steps of the proof of Theorem 1.2 is to prove the following inequalities for
any σ ∈M1(R+):

Weak Upper Bound: lim
δ→0

lim
n→∞

1

n2
logZnP(µn ∈ B(σ, δ)) ≤ −I(σ)

and

Weak Lower Bound: lim
δ→0

lim
n→∞

1

n2
logZnP(µn ∈ B(σ, δ)) ≥ −I(σ).

These inequalities combined with the exponential tightness of the sequence of measures
ZnP(µn ∈ .) imply that for any Borel set A inM1(R+):

− inf
intA

I ≤ lim
n→∞

1

n2
logZnP(µn ∈ A) ≤ lim

n→∞

1

n2
logZnP(µn ∈ A) ≤ − inf

cloA
I. (3.1)

This is not exactly the large deviation principle we want to prove. To obtain the bounds
(1.4) and (1.5), it is sufficient to prove that

lim
n→∞

1

n2
logZn = inf

M1(R+)
I.

Fortunately, this is an immediate consequence of (3.1) using A =M1(R+).
The rest of the proof is organized as follows: first, we briefly explain how to obtain

the properties of the rate function. Then we focus on the proof of (3.1). We only deal
with the lower bound because the proof for the upper-boun is exactly the classical one.
The proof of the weak lower bound relies on the approach of Hiai and Petz [14].

3.1 Study of the rate function

Definition 3.1. We set, for any x and y in R+,

f(x, y) = −1

2
log |x− y| − 1

2
log |g(x)− g(y)|+ 1

2
(V (x) + V (y)) .

As, for any x and y in R,

log |x− y| ≤ log(1 + |x|) + log(1 + |y|)
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we obtain

f(x, y) ≥
(
−1

2
log(1 + |x|)− 1

2
log(1 + |g(x)|) +

1

2
V (x)

)
(3.2)

+

(
−1

2
log(1 + |y|)− 1

2
log(1 + |g(y)|) +

1

2
V (y)

)
. (3.3)

This inequality implies that f is bounded from below. Hence the function I is well
defined and takes its values in R ∪ {+∞}. This inequality is the key to prove that I is
a good rate function. All the details are given in the reference book [1, Lemma 2.6.2
p. 72].

To prove that the rate function I is strictly convex where it is finite, we observe
that the logarithmic energy µ 7→ E(µ) is known to be a strictly convex function where
it is finite, see [1, Lemma 2.6.2 p72]. As the function µ 7→ g∗µ is linear, the function
µ 7→ E(g∗µ) is strictly convex where it is finite. The rate function I is the sum of two
strictly convex functions and a linear function, hence it is strictly convex where it is
finite.

3.2 Proof of the weak lower bound

We want to prove that we have, for any σ ∈M1(R+)

lim
δ→0

lim
n→∞

1

n2
logZnP(µn ∈ B(σ, δ)) ≥ −I(σ). (3.4)

First step: reduction to “nice” measures

First, we show that it is sufficient to prove the weak lower bound with additional
assumptions on σ. Notice that we can assume that I(σ) < +∞, as (3.4) is trivial if
I(σ) = +∞. We introduce the function φ :M1(R+)→ R ∪ {−∞} given by:

φ(σ) = inf

{
lim
n→∞

1

n2
logZnP(µn ∈ G), G neighborhood of σ

}
.

Using this notation, the weak lower bound becomes

φ(σ) ≥ −I(σ). (3.5)

We claim that φ is upper semicontinuous. Let (σk)k∈N be a sequence of measures such
that σk → σ inM1(R+). Let G be a neighborhood of σ, then there exists an integer K
such that for all k ≥ K, σk ∈ G. As G is a neighborhood of σk, this implies that for any
k ≥ K

φ(σk) ≤ lim
n→∞

1

n2
logZnP(µn ∈ G)

Then if we take the limit superior in k of this inequality and the infimum over all
neighborhoods G of σ, we obtain the upper semi-continuity of φ. If we prove (3.5) for a
dense set of measures, then for any measure σ ∈M1(R+), there exist measures σk such
that (3.5) holds and σk → σ we get

φ(σ) ≥ lim sup
k

φ(σk) ≥ lim sup
k
−I(σk).

We will consider a specific sequence of measures σk such that for any k, σk is absolutely
continuous with respect to the Lebesgue measure on R+, with compact support and
density bounded from above and below by positive constants and such that

σk −−−−→
k→∞

σ and lim
k→∞

I(σk) = I(σ). (3.6)
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Once we have obtained this sequence, we will only have to prove the lower bound for
the measures satisfying the regularity conditions given above.

We can assume that σ has compact support in R+ because if we set

σk =
11/k≤x≤k

σ([1/k, k])
σ,

then, as f is bounded from below, by the monotone convergence theorem

lim
k→∞

I(σk) = lim
k→∞

∫∫
f(x, y)dσk(x)dσk(y) =

∫∫
f(x, y)dσ(x)dσ(y) = I(σ).

To show that we can assume that σ has a continuous density with respect to the
Lebesgue measure, we find a sequence σk converging to σ such that

−E(σk) ≥ −E(σ) (3.7)

−E(g∗σk) ≥ −E(g∗σ) (3.8)

lim
k→∞

∫
V (x)dσk(x) =

∫
V (x)dσ(x). (3.9)

The inequalities above along with the lower semicontinuity of I imply that I(σk) con-
verges to I(σ). Now let φε be a C∞ probability density with support in [0, ε], then we set
σε = φε ∗ σ. The measures σε have compact support in R+ with continuous density and
converge towards σ as ε goes to zero.

Since it is easy to check that
∫
V (x)dσε(x) −−−→

ε→0

∫
V (x)dσ(x), we only have to prove

that for any ε
−E(φε ∗ σ) ≥ −E(σ) and− E(g∗φε ∗ σ) ≥ −E(g∗σ).

Recall that the functions −E and −E(g∗.) are concave, so if we notice that

φε ∗ σ =

∫
φε(y)σ(· − y)dy

then, thanks to Jensen’s inequality and the fact that the logarithmic energy is invariant
under translation, we obtained the desired inequalities.

The last thing we want for our “nice” measures is that the density is bounded from
above and from below. As the densities of the measures σε are continuous with compact
support, those densities are already bounded from above. Changing σε to δm+ (1− δ)σε
where m is the uniform measure on the support of σε allows us to deal with measures
with continuous density bounded from above and from below.

Second step: weak lower bound for “nice” measures

From now on, σ will be a measure with compact support [a,A] ⊂ R+, with density h
with respect to the Lebesgue measure on R+ for which there exists a constant C > 0

such that

∀x ∈ [a,A] ,
1

C
≤ h(x) ≤ C.

Let a0, . . . , an be the 1
n -quantiles of σ, with a0 = a and an = A. For each k, we have

1

Cn
≤ ak+1 − ak ≤

C

n
. (3.10)

Now divide each interval [ak−1, ak] in 3 equal parts and let [ck, dk] be the central interval.
If we set ∆n =

∏n
i=1[ci, di], then for any (z1, . . . , zn) ∈ ∆n, we have:

d

(
1

n

n∑
i=1

δzi , σ

)
≤ max

k
|ak+1 − ak| ≤

C

n
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Large deviations for biorthogonal ensembles

where d is the bounded-Lipschitz distance. We are now ready to prove the lower bound.
Let ρ1 be the finite measure on R+ xb−1e−V (x)dx and ρn = ρ1 ⊗ · · · ⊗ ρ1 the finite n-th
product measure on Rn+. Recalling (1.2) we have

ZnP(µn ∈ B(σ, δ))

=

∫
1µn∈B(σ,δ) exp

[
−n2

(
1

2
E6=(µn) +

1

2
E6=(g∗µn) +

n− 1

n

∫
V (x)dµn(x)

)]
dρn(x)

≥
∫

1∆n
exp

[
−n2

(
1

2
E6=(µn) +

1

2
E6=(g∗µn) +

n− 1

n

∫
V (x)dµn(x)

)]
dρn(x)

≥ exp

(
−n2

[
n− 1

n2

n∑
i=1

max
[ci,di]

V (x)

])
× exp

−n2

− 1

n2

∑
i<j

min
[ci,di]×[cj ,dj ]

log |x− y|


× exp

−n2

− 1

n2

∑
i<j

min
[ci,di]×[cj ,dj ]

log |g(x)− g(y)|

∫ 1∆n
dρn(x).

We notice that:
1

n2
log

∫
1∆n

dρn(x) −−−−→
n→∞

0.

Hence, to obtain the lower bound, it is sufficient to prove that

lim
n→∞

1

n

n∑
i=1

max
[ci,di]

V =

∫
V (x)dσ(x), (3.11)

and, using the fact that g and the logarithm are increasing functions,

lim
n→∞

1

n2

∑
i<j

− log(dj − ci) ≥
1

2

∫∫
− log |x− y|dσ(x)dσ(y) =

1

2
E(σ) (3.12)

and also

lim
n→∞

1

n2

∑
i<j

log(g(dj)− g(ci)) ≥
1

2

∫∫
log |g(x)− g(y)|dσ(x)dσ(y) =

1

2
E(g∗σ). (3.13)

If (3.11), (3.12) and (3.13) hold then the proof of the lower bound for regular measures
is completed. The last step will consist in proving that these three inequalities indeed
hold.

Last step: proof of the inequalities

First, (3.11) is easy to check as we approximate a continuous integrable function on
[a,A] by simple functions.

We now prove (3.12) following the proof of [14]. For the moment, let’s assume that
there exists a constant A1 > 0 such that for i < j

A1(dj − ci) ≥ (aj − ai−1) (3.14)

and also that

lim
n→∞

2

n2
#

{
(i, j) : i < j | (aj − ai−1)

(dj − ci)
≤ 1 + ε

}
= 1. (3.15)

We postpone the proof of the inequalities (3.14) and (3.15) to prove (3.12). We call

Bn = E(σ)− 2

n2

∑
i 6=j

min
[ci,di]×[cj ,dj ]

log |x− y|
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and we want to prove that
lim
n→∞

Bn ≤ 0

Since ∫∫
log |z − w|dσ(z)dσ(w) ≤ 2

n2

∑
i<j

log |aj − ai−1|+
1

n2

n∑
i=1

log |ai − ai−1|

then for every ε > 0 we get

Bn ≤
2

n2

∑
i<j

log |aj − ai−1| −
2

n2

∑
i<j

log |dj − ci|+
1

n2

n∑
i=1

log |ai − ai−1|

≤ 2

n2

∑
i<j

log
(aj − ai−1)

(dj − ci)
+

1

n2

n∑
i=1

log |ai − ai−1|

≤ 2

n2
#{i < j | (aj − ai−1)

(dj − ci)
≤ 1 + ε} log(1 + ε)

+
1

n2

[
n(n− 1)− 2#{i < j | (aj − ai−1)

(dj − ci)
≤ 1 + ε}

]
logA1 +

1

n2

n∑
i=1

log |ai − ai−1|.

Then we take the limit superior of both sides, and the limit when ε→ 0

E(σ)− lim
n→∞

2

n2

∑
i<j

log |dj − ci| ≤ 0

which proves (3.12).
We prove now inequality (3.14). From inequality (3.10), we get for any k > 0

ai+k − ai−1

di+k − ci
≤ (k + 1)C/n

(k + 2/3)/Cn
≤ (k + 1)C2

k + 2/3
≤ 3C2

2

We deduce from this inequality that its left hand side is bounded by a constant indepen-
dent of k and n, which proves (3.14). In order to prove (3.15), we start from

ai+k − ai−1

di+k − ci
= 1 +

ai+k − di+k
di+k − ci

+
ci − ai−1

di+k − ci
.

Using (3.10) we get
ai+k − di+k
di+k − ci−1

≤ C/3n

k/Cn
≤ C2

3k

and
ci − ai−1

di+k − ci
≤ C/3n

k/Cn
≤ C2

3k
.

Those two terms can be made as small as desired is k is sufficiently large, independently
of n, which proves (3.15).

The proof of the inequality (3.13) mimics the proof of inequality (3.12). Like in the
previous case, it is sufficient to find a constant A′ such that for any i < j

A′(g(dj)− g(ci−1)) ≥ g(aj)− g(ai−1) (3.16)

and to prove that

lim
n→∞

2

n2
#

{
i < j | g(aj)− g(ai−1)

g(dj)− g(ci)
≤ 1 + ε

}
= 1. (3.17)
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Large deviations for biorthogonal ensembles

As the support of σ is a compact subset of R+, there exist two constants m and M such
that for all x ∈ [a,A]

m ≤ g′(x) ≤M.

The inequality (3.16) is a consequence of (3.14), using the mean value theorem for g and
the fact that its derivative is bounded from above and from below

g(ai+k)− g(ai−1)

g(di+k)− g(ci)
≤ M

m

ai+k − ai−1

di+k − ci
≤ 3MC2

2m
.

To prove (3.17) it is sufficient to prove that the quantities

g(ai+k)− g(di+k)

g(di+k)− g(ci)
and

g(ci)− g(ai)

g(di+k)− g(ci)

can be made as small as desired when k is sufficiently large. Using the mean value
theorem we get

g(ai+k)− g(di+k)

g(di+k)− g(ci)
≤ M

m

ai+k − di+k
di+k − ci

≤ M

m

C2

3k
.

The other term is treated in the same way. Now that we have proved (3.16) and (3.17),
the proof of (3.13) is the exactly the same as the proof of (3.12).

Proof of Corollary 1.4. As the function I is lower semi-continuous and strictly convex, it
has a unique minimizer ν. Consider the sets

Aε =M1(R+) \B(ν, ε).

As I is lower semi-continuous, inf{Ĩ(µ), µ ∈ Aε} > 0. We use the large deviations upper
bound with the set Aε to prove that

∑
n∈NP(µn ∈ Aε) converges. The Borel-Cantelli

lemma ensures that, for any fixed ε > 0, for sufficiently large n, µn almost surely belongs
to B(ν, ε). Restricting this result to rational ε implies that, almost surely,

d(µn, ν) −−−−→
n→∞

0.

4 Perspectives and comments

Theorem 1.2 can easily be extended in several directions. The first direction would
be to consider not only two interactions but any finite number of them, with different
exponents:∏

i<j

|f1(xi)− f1(xj)|β1

∏
i<j

|f2(xi)− f2(xj)|β2 · · ·
∏
i<j

|fp(xi)− fp(xj)|βp

where each of the fk is locally a C1 diffeomorphism and the βk’s are positive numbers.
Large deviations will be valid if the confining potential V dominates all the functions
log fk at infinity. One could prove the same theorem as we stated on R with the same
assumptions. We stated the theorem on R+ because biorthogonal ensembles were
originally defined on the positive axis.

The result of this note can be proved to hold in any dimension, considering the
Lebesgue measure on Rd but it would require stronger assumptions on the function
g, and stronger behavior at infinity for V . One could assume that g is continuously
differentiable and that on any compact K ⊂ Rd, there exist two constants mK and MK

such that for any x, y ∈ K

mK‖x− y|‖ ≤ ‖g(x)− g(y)‖ ≤MK‖x− y‖.
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Large deviations for biorthogonal ensembles

The model studied by Götze and Venker in [13] is not covered by this note, as they
deal with a double interaction term of the type

∏
i<j |xi − xj |2φ(xi − xj). This is really

the combination of two different interactions whereas our model deals with the usual
logarithmic interaction at two different scales. As this model is covered by the study [7],
one could try to find the optimal conditions of φ so that a large deviation principle is
valid.
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