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Abstract

We consider Malliavin calculus based on the Itô chaos decomposition of square inte-
grable random variables on the Lévy space. We show that when a random variable
satisfies a certain measurability condition, its differentiability and fractional differen-
tiability can be determined by weighted Lebesgue spaces. The measurability condition
is satisfied for all random variables if the underlying Lévy process is a compound
Poisson process on a finite time interval.
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1 Introduction

One extension of Malliavin calculus from the Brownian motion to general Lévy
processes was made using the Itô chaos decomposition on the L2-space over the Lévy
space. This approach was used for instance by Nualart and Vives [16], Privault [17],
Benth, Di Nunno, Løkka, Øksendal and Proske [4], Lee and Shih [13], Solé, Utzet and
Vives [18] and Applebaum [2].

The wide interest in Malliavin calculus for Lévy processes in stochastics and appli-
cations motivates the study of an accessible characterization of differentiability and
fractional differentiability. Fractional differentiability can be defined by real interpolation
between the Malliavin Sobolev space D1,2 and L2(P); we shall recall the definition in
Section 4 below. Geiss and Geiss [5] and Geiss and Hujo [11] have shown that Malliavin
differentiability and fractional differentiability are in a close connection to discrete-time
approximation of certain stochastic integrals when the underlying process is a (geomet-
ric) Brownian motion. Geiss et al. [7] proved that this also applies to Lévy processes
with jumps. These articles assert that knowing the parameters of fractional smoothness
allows to design discretization time-nets such that optimal approximation rates can be
achieved. For details, see [5], [11] and [7].

Steinicke [19] and Geiss and Steinicke [10] take advantage of the fact that any
random variable Y on the Lévy space can be represented as a functional Y = F (X) of
the Lévy process X, where F is a real valued measurable mapping on the Skorohod
space of right continuous functions. Let us restrict to the case that F (X) only depends
on the jump part of X: Using the corresponding result from Solé, Utzet and Vives [18]
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and Alòs, León and Vives [1] on the canonical space, Geiss and Steinicke [10] show that
the condition F (X) ∈ D1,2 is equivalent with∫∫

[0,∞)×R
E
[(
F (X + x1[t,∞))− F (X)

)2]
dtν(dx) <∞,

where ν is the Lévy measure of X. On the other hand one gets from Mecke’s formula
[14] that ∫∫

A

E[F (X + x1[t,∞))]dtν(dx) = E[N(A)F (X)]

for any nonnegative measurable F and any A ∈ B([0,∞) × R \ {0}), where N is the
Poisson random measure associated with X as in Section 2. These results raise the
following questions: when can Malliavin differentiability be described using a weight
function such as N(A), and is there a weight function for fractional differentiability?

In this paper we search for weight functions Λ and measurability conditions on Y

such that the criteria

‖Y Λ‖L2(P) <∞ (1.1)

describes the smoothness of Y . We begin by recalling the orthogonal Itô chaos decompo-
sition

Y =

∞∑
n=0

In(fn)

on L2(P) and the Malliavin Sobolev space

D1,2 =

{
Y ∈ L2(P) : ‖Y ‖2D1,2

=

∞∑
n=0

(n+ 1)‖In(fn)‖2L2(P) <∞

}

in Section 2. Then, in Section 3, we obtain an equivalent condition for Malliavin
differentiability. The assertion is that

Y ∈ D1,2 if and only if
∥∥∥Y√N(A) + 1

∥∥∥
L2(P)

<∞,

whenever Y is measurable with respect to FA, the completion of the sigma-algebra
generated by {N(B) : B ⊆ A, B ∈ B([0,∞)×R)}, and the set A ∈ B([0,∞) × R \ {0})
satisfies E[N(A)] <∞.

Section 4 treats fractional differentiability and our aim is to adjust the weight function
Λ so that the condition (1.1) describes a given degree of smoothness. By fractional
differentiability of a random variable Y we mean that Y belongs to an interpolation
space (L2(P),D1,2)θ,q with

D1,2 ( (L2(P),D1,2)θ,q ( L2(P)

for θ ∈ (0, 1) and q ∈ [1,∞]. We shortly recall the K-method of interpolation. Then we
show that when Y is FA-measurable and E[N(A)] <∞, then

Y ∈ (L2(P),D1,2)θ,2 if and only if
∥∥∥Y√N(A) + 1

θ
∥∥∥
L2(P)

<∞.

2 Preliminaries

Consider a Lévy process X = (Xt)t≥0 with càdlàg paths on a complete probability
space (Ω,F ,P), where F is the completion of the sigma-algebra generated by X. The
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Lévy-Itô decomposition states that there exist γ ∈ R, σ ≥ 0, a standard Brownian motion
W and a Poisson random measure N on B([0,∞)×R) such that

Xt = γt+ σWt +

∫∫
(0,t]×{|x|>1}

xN(ds,dx) +

∫∫
(0,t]×{0<|x|≤1}

xÑ(ds,dx)

holds for all t ≥ 0 a.s. Here Ñ(ds,dx) = N(ds,dx)− dsν(dx) is the compensated Poisson
random measure and ν : B(R)→ [0,∞] is the Lévy measure of X satisfying ν({0}) = 0,∫
R

(x2 ∧ 1)ν(dx) <∞ and ν(B) = E [N((0, 1]×B)]. The triplet (γ, σ, ν) is called the Lévy
triplet.

Let us recall the Itô chaos decomposition from [12]: DenoteR+ := [0,∞). We consider
the following measure m defined as

m : B(R+ ×R)→ [0,∞], m(ds,dx) := ds
[
σ2δ0(dx) + x2ν(dx)

]
.

For sets B ∈ B(R+ ×R) such that m(B) <∞, a random measure M is defined by

M(B) := σ

∫
{s∈R+:(s,0)∈B}

dWs + lim
n→∞

∫∫
{(s,x)∈B: 1

n<|x|<n}
x Ñ(ds,dx),

where the convergence is taken in L2(P) := L2(Ω,F ,P). The random measure M

is independently scattered and it holds that E[M(B1)M(B2)] = m(B1 ∩ B2) for all
B1, B2 ∈ B(R+ ×R) with m(B1) <∞ and m(B2) <∞.

For n = 1, 2, . . . write

L2

(
m
⊗n) := L2

(
(R+ ×R)n,B(R+ ×R)⊗n,m⊗n

)
and set L2

(
m
⊗0
)

:= R. A function fn : (R+ × R)n → R is said to be symmetric, if it

coincides with its symmetrization f̃n,

f̃n((s1, x1), . . . , (sn, xn)) :=
1

n!

∑
π

fn
((
sπ(1), xπ(1)

)
, . . . ,

(
sπ(n), xπ(n)

))
,

where the sum is taken over all permutations π : {1, . . . , n} → {1, . . . , n}.
We let In denote the multiple integral of order n defined by Itô [12] and shortly recall

the definition. For pairwise disjoint B1, . . . , Bn ∈ B(R+×R) withm(Bi) <∞ the integral
of 1B1

⊗ · · · ⊗ 1Bn is defined by

In (1B1
⊗ · · · ⊗ 1Bn) := M(B1) · · ·M(Bn). (2.1)

It is then extended to a linear and continuous operator In : L2 (m⊗n) → L2(P). We let
I0(f0) := f0 for f0 ∈ R. For the multiple integral we have

In(fn) = In(f̃n) and E [In(fn)Ik(gk)] =

0, if n 6= k

n!
(
f̃n, g̃n

)
L2(m⊗n)

, if n = k
(2.2)

for all fn ∈ L2 (m⊗n) and gk ∈ L2

(
m
⊗k).

According to [12, Theorem 2], for any Y ∈ L2(P) there exist functions fn ∈ L2 (m⊗n),
n = 0, 1, 2, . . . , such that

Y =

∞∑
n=0

In(fn) in L2(P)

and the functions fn are unique in L2(m⊗n) when they are chosen to be symmetric. We
have

‖Y ‖2L2(P) =

∞∑
n=0

n!
∥∥∥f̃n∥∥∥2

L2(m⊗n)
.
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We recall the definition of the Malliavin Sobolev space D1,2 based on the Itô chaos
decomposition. We denote by D1,2 the space of all Y =

∑∞
n=0 In(fn) ∈ L2(P) such that

‖Y ‖2D1,2
:=

∞∑
n=0

(n+ 1)!
∥∥∥f̃n∥∥∥2

L2(m⊗n)
<∞.

Let us write L2(m ⊗ P) := L2(R+ × R × Ω,B(R+ × R) ⊗ F ,m ⊗ P) and define the
Malliavin derivative D : D1,2 → L2(m ⊗ P) in the following way: Consider functions
ϕn = 1B1

⊗ · · · ⊗ 1Bn ∈ L2(m⊗n), where B1, . . . , Bn ∈ B(R+ × R) are pairwise disjoint
and such that m(Bi) <∞ for all i = 1, . . . , n. Define DIn(ϕn) by

Dt,xIn(ϕn) := nIn−1 (ϕ̃n(·, (t, x))) =

n∑
i=1

∏
j 6=i

M(Bj)1Bi(t, x).

It holds ‖DIn (ϕn)‖L2(m⊗P) =
√
n ‖In (ϕn)‖L2(P) and the operator is extended to the

space {In(fn) : fn ∈ L2(m⊗n)} by linearity and continuity. For Y =
∑∞
n=0 In(fn) ∈ D1,2 it

then holds that

Dt,xY :=

∞∑
n=1

nIn−1

(
f̃n(·, (t, x))

)
converges in L2(m⊗ P).

Remark 2.1. Note that also for any u ∈ L2(m ⊗ P) one finds a chaos representation
u =

∑∞
n=0 In(gn+1), where the functions gn+1 ∈ L2

(
m
⊗(n+1)

)
are symmetric in the first

n variables. For u, v ∈ L2(m⊗P) with u =
∑∞
n=0 In(gn+1) and v =

∑∞
n=0 In(hn+1) it then

holds

(u, v)L2(m⊗P) =

∞∑
n=0

n! (gn+1, hn+1)L2(m⊗(n+1)) . (2.3)

For more information, see for example [16], [17], [4], [13], [18] and [2].

3 Differentiability

We shall use the notation R0 := R \ {0}. For A ∈ B(R+ × R) we denote by FA the
completion of the sigma-algebra σ (M(B) : B ⊆ A and B ∈ B(R+ ×R)). In the following
theorem we only consider A ∈ B(R+ ×R0), in which case FA is equal to the completion
of σ (N(B) : B ⊆ A and B ∈ B(R+ ×R)) and it does not depend on the Brownian motion
part of the Lévy process.

Theorem 3.1. Let A ∈ B(R+ × R0) be such that E [N(A)] = (dt ⊗ ν)(A) < ∞ and
Y ∈ L2(P).

1. If Y ∈ D1,2, then Y
√
N(A) ∈ L2(P) and∣∣∣∣∥∥∥Y√N(A)
∥∥∥
L2(P)

− ‖Y ‖L2(P)

√
E [N(A)]

∣∣∣∣ ≤ ‖DY 1A‖L2(m⊗P) . (3.1)

2. If Y
√
N(A) ∈ L2(P) and Y is FA-measurable, then Y ∈ D1,2 and

‖DY ‖L2(m⊗P) ≤
∥∥∥Y√N(A)

∥∥∥
L2(P)

+ ‖Y ‖L2(P)

√
E [N(A)]. (3.2)

Remark 3.2. (a) If the random variable Y in Theorem 3.1 is FA-measurable, then by
Lemma 3.6 we have ‖DY 1A‖L2(m⊗P) = ‖DY ‖L2(m⊗P) and Y ∈ D1,2 if and only if

Y
√
N(A) ∈ L2(P).
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(b) If Y is not measurable with respect to FA, then Y = YA + Y ′, where YA is
FA-measurable and Y ′ 6= 0 is orthogonal to YA in L2(P) and in D1,2. Since
‖DY ‖2L2(m⊗P) = ‖DYA‖2L2(m⊗P) + ‖DY ′‖2L2(m⊗P), it holds by Theorem 3.1 that

Y ∈ D1,2 if and only if both YA
√
N(A) ∈ L2(P) and Y ′ ∈ D1,2 hold.

(c) Suppose Y ∈ L2(P) is measurable with respect to FAc . This is the case for
example if Y depends only on the Brownian motion part of the Lévy process. Then∥∥∥Y√N(A)

∥∥∥
L2(P)

= ‖Y ‖L2(P)

∥∥∥√N(A)
∥∥∥
L2(P)

, so that the left hand side of (3.1) is

zero and the right hand side of (3.2) is finite.

In section 5 we will provide two examples where the measurability condition is
satisfied. Now we turn to the proof of Theorem 3.1.

We denote by S the set of random variables Y such that there exists m ≥ 1, f ∈
C∞c (Rm) and 0 ≤ t0 < t1 < · · · tm <∞ such that

Y = f
(
Xt1 −Xt0 , . . . , Xtm −Xtm−1

)
.

Lemma 3.3 (Theorem 4.1, Corollaries 4.1 and 3.1 in [8]).

(a) S is dense in D1,2 and L2(P).

(b) For Y, Z ∈ S it holds Dt,x(Y Z) = Y Dt,xZ + ZDt,xY + xDt,xY Dt,xZ m⊗ P-a.e.

Proposition 3.4. Let Y =
∑∞
n=0 In(fn) be bounded and A ∈ B(R+ × R0) be such that

E [N(A)] = (dt ⊗ ν)(A) < ∞. Then
∑∞
n=1 nIn−1

(
f̃n(·, ∗)

)
1A(∗) converges in L2(m ⊗ P)

and∣∣∣∣∥∥∥Y√N(A)
∥∥∥
L2(P)

− ‖Y ‖L2(P)

√
E [N(A)]

∣∣∣∣ ≤
∥∥∥∥∥
∞∑
n=1

(
nIn−1

(
f̃n

)
1A

)∥∥∥∥∥
L2(m⊗P)

≤
∥∥∥Y√N(A)

∥∥∥
L2(P)

+ ‖Y ‖L2(P)

√
E [N(A)].

(3.3)

Proof. Assume first that Y ∈ S. Then also Y 2 =
∑∞
n=0 In(gn) ∈ S. Letting h(t, x) :=

1
x1A(t, x) we have I1(h) = N(A)− E [N(A)] and we get using (2.2) and (2.3) that

E
[
Y 2N(A)

]
− E

[
Y 2
]
E [N(A)] = E

[
Y 2I1(h)

]
= (g1, h)L2(m) = (DY 2, h⊗ 1Ω)L2(m⊗P).

From Lemma 3.3 (b) we obtain

E
[
Y 2N(A)

]
= E

[
Y 2
]
E [N(A)] + (DY 2, h⊗ 1Ω)L2(m⊗P)

= E
[
Y 2
]
E [N(A)] + 2

∫∫
A

E [Y Dt,xY ]xdtν(dx) +

∫∫
A

E
[
(Dt,xY )

2
]
m(dt,dx).

Using Hölder’s inequality we get∣∣∣∣2 ∫∫
A

E [Y Dt,xY ]xdtν(dx)

∣∣∣∣ ≤ 2 ‖Y ‖L2(P)

√
E [N(A)] ‖DY 1A‖L2(m⊗P) ,

so that (
−‖Y ‖L2(P)

√
E [N(A)] + ‖DY 1A‖L2(m⊗P)

)2

≤ E
[
Y 2N(A)

]
≤
(
‖Y ‖L2(P)

√
E [N(A)] + ‖DY 1A‖L2(m⊗P)

)2

.

Taking the square root yields to the double inequality (3.3).

ECP 22 (2017), paper 34.
Page 5/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP65
http://www.imstat.org/ecp/


A note on Malliavin smoothness on the Lévy space

Using Lemma 3.3 (a) we find for any bounded Y a uniformly bounded sequence
(Yk) ⊂ S such that Yk → Y a.s. Since inequality (3.3) holds for all random variables
Yk − Ym ∈ S, they are uniformly bounded and Yk − Ym → 0 a.s. as k,m→∞, we have by
dominated convergence that

‖D(Yk − Ym)1A‖L2(m⊗P) ≤
∥∥∥(Yk − Ym)

√
N(A)

∥∥∥
L2(P)

+ ‖Yk − Ym‖L2(P)

√
E [N(A)]→ 0

as k,m→∞. Thus the sequence (DYk1A)∞k=1 converges in L2(m⊗ P) to some mapping

u ∈ L2(m ⊗ P). Write Yk =
∑∞
n=0 In

(
f̃

(k)
n

)
. The mapping u has a representation

u =
∑∞
n=0 In(hn+1) (see Remark 2.1), where for all n ≥ 0 we have that∥∥∥nf̃n1A − hn∥∥∥

L2(m⊗n)
≤
∥∥∥nf̃n1A − nf̃ (k)

n 1A

∥∥∥
L2(m⊗n)

+
∥∥∥nf̃ (k)

n 1A − hn
∥∥∥
L2(m⊗n)

→ 0

as k →∞. We obtain (3.3) for the random variable Y using dominated convergence, the
convergence DYk1A →

∑∞
n=0 (DIn(fn)1A) in L2(m⊗ P) and the fact that (3.3) holds for

all random variables Yk.

Lemma 3.5. If Y =
∑∞
n=0 In(fn1

⊗n
R+×R0

) ∈ D1,2 and g : R → R is Lipschitz-continuous,
then g(Y ) ∈ D1,2 and

Dt,xg(Y ) =
g(Y + xDt,xY )− g(Y )

x
in L2(m⊗ P).

Proof. The lemma is an immediate consequence of [8, Lemma 5.1 (b)].

Lemma 3.6. Let Y =
∑∞
n=0 In(fn) ∈ L2(P) and A ∈ B(R+ ×R). Then

E [Y |FA] =

∞∑
n=0

In
(
fn1

⊗n
A

)
in L2(P).

Proof. The equality can be shown via the construction of the chaos analogously to the
proof of [15, Lemma 1.2.4].

Proof of Theorem 3.1. 1. Assume Y ∈ D1,2 and define gm(x) := (−m ∨ x) ∧m for m ≥ 1.
From Lemma 3.5 we get gm(Y ) ∈ D1,2 and |Dgm(Y )| ≤ |DY |. Then, using monotone
convergence and Proposition 3.4, we obtain∣∣∣∣∥∥∥Y√N(A)

∥∥∥
L2(P)

− ‖Y ‖L2(P)

√
E [N(A)]

∣∣∣∣
= lim
m→∞

∣∣∣∣∥∥∥gm(Y )
√
N(A)

∥∥∥
L2(P)

− ‖gm(Y )‖L2(P)

√
E [N(A)]

∣∣∣∣
≤ lim sup

m→∞
‖Dgm(Y )1A‖L2(m⊗P)

≤ ‖DY 1A‖L2(m⊗P) <∞.

Hence Y
√
N(A) ∈ L2(P).

2. Assume ‖Y
√
N(A)‖ < ∞ and define gm(Y ) as above. Write Y =

∑∞
n=0 In (fn)

and gm(Y ) =
∑∞
n=0 In(f

(m)
n ). Since gm(Y ) → Y in L2(P), it holds ‖f̃ (m)

n ‖2L2(m⊗n) →
‖f̃n‖2L2(m⊗n) as m → ∞. Since gm(Y ) is FA-measurable, we have f̃ (m)

n = f̃
(m)
n 1⊗nA m

⊗n-
a.e. by Lemma 3.6 for all m ≥ 1. By Fatou’s Lemma, Proposition 3.4 and monotone
convergence we get
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√√√√ ∞∑
n=1

nn!
∥∥∥f̃n∥∥∥2

L2(m⊗n)
≤ lim inf

m→∞

√√√√ ∞∑
n=1

nn!
∥∥∥f̃ (m)
n

∥∥∥2

L2(m⊗n)

≤ lim inf
m→∞

(∥∥∥gm(Y )
√
N(A)

∥∥∥
L2(P)

+ ‖gm(Y )‖L2(P)

√
E [N(A)]

)
=
∥∥∥Y√N(A)

∥∥∥
L2(P)

+ ‖Y ‖L2(P)

√
E [N(A)] <∞.

Thus Y ∈ D1,2.

We use the notation α ∼c β for 1
cβ ≤ α ≤ cβ for c ≥ 1 and α, β ∈ [0,∞].

Corollary 3.7. Let A ∈ B(R+ × R0) be such that E [N(A)] < ∞ and assume that Y =∑∞
n=0 In(fn) ∈ L2(P) is FA-measurable. Then

‖Y ‖D1,2
∼√

2
(√

E[N(A)]+1
) ∥∥∥Y√N(A) + 1

∥∥∥
L2(P)

,

where the norms may be infinite.

Proof. The inequalities (3.1) and (3.2) give the relation(∥∥∥Y√N(A)
∥∥∥
L2(P)

+ ‖Y ‖L2(P)

)
∼√

E[N(A)]+1

(
‖Y ‖L2(P) + ‖DY ‖L2(m⊗P)

)
.

The claim follows from ‖Y ‖D1,2
≤ ‖Y ‖L2(P) + ‖DY ‖L2(m⊗P) ≤

√
2‖Y ‖D1,2

and∥∥∥Y√N(A) + 1
∥∥∥
L2(P)

≤
∥∥∥Y (√N(A) + 1

)∥∥∥
L2(P)

≤
∥∥∥Y√N(A)

∥∥∥
L2(P)

+ ‖Y ‖L2(P)

≤

√
2

(∥∥∥Y√N(A)
∥∥∥2

L2(P)
+ ‖Y ‖2L2(P)

)
=
√

2
∥∥∥Y√N(A) + 1

∥∥∥
L2(P)

.

4 Fractional differentiability

We consider fractional smoothness in the sense of real interpolation spaces be-
tween L2(P) and D1,2. For parameters θ ∈ (0, 1) and q ∈ [1,∞] the interpolation space
(L2(P),D1,2)θ,q is a Banach space, intermediate between L2(P) and D1,2.

We shortly recall the K-method of real interpolation. The K-functional of Y ∈ L2(P)

is the mapping K(Y, ·;L2(P),D1,2) : (0,∞)→ [0,∞) defined by

K(Y, s;L2(P),D1,2) := inf{‖Y0‖L2(P) + s‖Y1‖D1,2 : Y = Y0 + Y1, Y0 ∈ L2(P), Y1 ∈ D1,2}

and we shall use the abbreviation K(Y, s) for K(Y, s;L2(P),D1,2). Let θ ∈ (0, 1) and
q ∈ [1,∞]. The space (L2(P),D1,2)θ,q consists of all Y ∈ L2(P) such that

‖Y ‖(L2(P),D1,2)θ,q :=

{[∫∞
0

∣∣s−θK(Y, s)
∣∣q ds

s

] 1
q , q ∈ [1,∞)

sups>0 s
−θK(Y, s), q =∞

is finite.
The interpolation spaces are nested in a lexicographical order:

D1,2 ⊂ (L2(P),D1,2)η,p ⊂ (L2(P),D1,2)θ,q ⊆ (L2(P),D1,2)θ,p ⊂ L2(P)

for 1 ≤ q ≤ p ≤ ∞ and 0 < θ < η < 1. For further properties of interpolation we refer to
[3] and [20].
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Theorem 4.1. Let θ ∈ (0, 1), A ∈ B(R+ ×R0) be such that E [N(A)] <∞ and Y ∈ L2(P)

be FA-measurable. Then

Y ∈ (L2(P),D1,2)θ,2 if and only if E
[
Y 2N(A)θ

]
<∞.

If Y ∈ (L2(P),D1,2)θ,2, then

‖Y ‖(L2(P),D1,2)θ,2 ∼√2

√
E[N(A)]+1√
θ(1−θ)

∥∥∥Y√N(A) + 1
θ
∥∥∥
L2(P)

.

Proof. We first show that

K(Y, s) ∼
2
(√

E[N(A)]+1
) ∥∥∥Y min

{
1, s
√
N(A) + 1

}∥∥∥
L2(P)

. (4.1)

From Lemma 3.6 we obtain ‖E [Y0|FA] ‖L2(P) ≤ ‖Y0‖L2(P) and ‖E [Y1|FA] ‖D1,2 ≤ ‖Y1‖D1,2

for any Y0 ∈ L2(P) and Y1 ∈ D1,2. Hence

K(Y, s) = inf
{
‖Y0‖L2(P) + s‖Y1‖D1,2

: Y0 + Y1 = Y, Y0 ∈ L2(P), Y1 ∈ D1,2

}
= inf

{
‖E [Y0|FA] ‖L2(P) + s‖E [Y1|FA] ‖D1,2 : Y0 + Y1 = Y, Y0 ∈ L2(P), Y1 ∈ D1,2

}
∼c inf

{
‖Y0‖L2(P) + s

∥∥∥Y1

√
N(A) + 1

∥∥∥
L2(P)

: Y0 + Y1 = Y, Y0 ∈ L2(P), Y1 ∈ D1,2

}
(4.2)

for c =
√

2
(√

E [N(A)] + 1
)

by Corollary 3.7. Next we approximate the K-functional

from above with the choice Y0 := Y 1{√
N(A)+1> 1

s

} and get from (4.2) that

1

c
K(Y, s) ≤

(∥∥∥∥Y 1{√N(A)+1> 1
s

}∥∥∥∥
L2(P)

+ s

∥∥∥∥Y√N(A) + 11{√
N(A)+1≤ 1

s

}∥∥∥∥
L2(P)

)
≤
√

2
∥∥∥Y min

{
1, s
√
N(A) + 1

}∥∥∥
L2(P)

.

Using the triangle inequality and the fact that

|Y (ω)− y|+ |y|a ≥ |Y (ω)|min{1, a}

for all ω ∈ Ω, y ∈ R and a ≥ 0 we obtain from (4.2) the lower bound

cK(Y, s) ≥ inf

{∥∥∥|Y0|+ |Y1|s
√
N(A) + 1

∥∥∥
L2(P)

: Y = Y0 + Y1, Y1 ∈ D1,2

}
≥
∥∥∥Y min

{
1, s
√
N(A) + 1

}∥∥∥
L2(P)

.

We have shown that (4.1) holds. From (4.1) we get

‖Y ‖(L2(P),D1,2)θ,2 ∼2
(√

E[N(A)]+1
)
(∫ ∞

0

∣∣∣∣s−θ ∥∥∥Y min
{

1, s
√
N(A) + 1

}∥∥∥
L2(P)

∣∣∣∣2 ds

s

) 1
2

.

We finish the proof by computing the integral using first Fubini’s theorem. We get∫ ∞
0

∣∣∣∣s−θ ∥∥∥Y min
{

1, s
√
N(A) + 1

}∥∥∥
L2(P)

∣∣∣∣2 ds

s

= E

[
Y 2

∫ ∞
0

s−2θ min
{

1, s2(N(A) + 1)
} ds

s

]
= E

[
Y 2 1

2θ(1− θ)
(N(A) + 1)

θ

]
.
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5 Concluding remarks and applications

From Theorem 3.1 assertion 2. we can conclude that a higher integrability than
square integrability can imply Malliavin differentiability. For example, all the spaces
Lp(Ω,FA,P) are subspaces of D1,2 when p > 2 and E[N(A)] <∞ as we can deduce from
the following corollary.

Corollary 5.1. Let A ∈ B(R+ ×R0) be such that λ := E[N(A)] ∈ (0,∞) so that N(A) ∼
Poisson(λ). Then for the space

L2 log+ L2(Ω,FA,P) :=
{
Y ∈ L2(Ω,FA,P) : E

[
Y 2 ln+ Y 2

]
<∞

}
,

where ln+ x := max{lnx, 0}, it holds that

L2 log+ L2(Ω,FA,P) ( D1,2 ∩ L2(Ω,FA,P).

Proof. Suppose E
[
Y 2 ln+ Y 2

]
<∞ and let ϕ(y) := ln(y+1). The functions Φ and Φ? with

Φ(x) :=

∫ x

0

ϕ(y)dy = (x+ 1) ln(x+ 1)− x ≤ 1 + x ln+ x

and

Φ?(x) :=

∫ x

0

ϕ−1(y)dy = ex − x− 1

are a complementary pair of Young functions. They satisfy the Young inequality xy ≤
Φ(x) + Φ?(y) for all x, y ≥ 0 and we get

E
[
Y 2N(A)

]
≤ E

[
Φ
(
Y 2
)]

+ E [Φ?(N(A))] ≤ E
[
Y 2 ln+

(
Y 2
)]

+ e(e−1)λ − λ <∞.

Hence Y ∈ D1,2 by Theorem 3.1.

To see that the inclusion is strict, let a ∈ (1, 2] and choose a Borel function f : R→ R

such that f(0) = f(1) := 0 and

f(n) :=

√
eλ
n!

λn
1

n2 lna n
for n = 2, 3, . . . .

Then, since lnn! =
∑n
k=2 ln k ≥

∫ n
1

lnxdx = n lnn− n+ 1 for n ≥ 2 and a ≤ 2, we have

E
[
f2(N(A)) ln+ f2(N(A))

]
=

∞∑
n=2

1

n2 lna n
ln

(
eλ
n!

λn
1

n2 lna n

)

=

∞∑
n=2

lnn!

n2 lna n
+

∞∑
n=2

1

n2 lna n
ln

(
eλ

1

λn
1

n2 lna n

)
=∞,

but

E
[
N(A)f2(N(A))

]
=

∞∑
n=2

nf2(n)e−λ
λn

n!
=

∞∑
n=2

1

n lna n
<∞

so that f(N(A)) ∈ D1,2 by Theorem 3.1.

In the following remark we continue the discussion about the measurability condition
of Theorems 3.1 and 4.1, which we started in Remark 3.2.
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Remark 5.2. (a) Suppose σ = 0 and ν(R) < ∞, which means that X is a compound
Poisson process (with drift) and

Xt = βt+

∫
(0,t]×R0

xN(ds,dx) for all t ≥ 0 a.s.

for some β ∈ R. The process (Nt)t≥0, with Nt = N((0, t]×R0) a.s., is the Poisson
process associated to X. Let T ∈ (0,∞) and FT be the completion of the sigma-
algebra generated by (Xt)t∈[0,T ]. Then FT = F[0,T ]×R and by Theorems 3.1 and 4.1
for any FT -measurable random variable Y and any θ ∈ (0, 1) it holds that

1. Y ∈ D1,2 if and only if
∥∥Y√NT + 1

∥∥
L2(P)

<∞ and

2. Y ∈ (L2(P),D1,2)θ,2 if and only if
∥∥∥Y√NT + 1

θ
∥∥∥
L2(P)

<∞.

(b) Assertion 2 of Theorem 3.1 applies also to the case that the jump part of X is of
infinite activity. Then E[N([0, T ]×R)] = Tν(R) =∞ but for example E[N([0, T ]×{x :

|x| > ε})] < ∞ for all ε > 0. On the other hand, the set A with E[N(A)] < ∞ may
cover the whole support of ν for example in the following sense: there are sets
C1, C2, . . . ∈ B(R) such that 0 < ν(Ci) < ∞ and R0 =

⋃∞
i=1 Ci. Let [ai, bi] ⊂ R+ be

such that bi − ai ≤ c
ν(Ci)

2−i for some c ∈ (0,∞) and A =
⋃∞
i=1[ai, bi]× Ci so that

E[N(A)] ≤
∞∑
i=1

(bi − ai)ν(Ci) ≤ c.

In applications, Malliavin fractional smoothness plays a role for example in discrete
time hedging in finance. Let S denote the underlying price process and ϕ be the
predictable hedging strategy from the Galtchouk-Kunita-Watanabe decomposition of an
option f(ST ). Then the L2-error with respect to the martingale measure P between

discrete time hedging with n + 1 trading times 0 = t
(n)
0 < · · · < t

(n)
n = T and the

continuous time pricing model is

inf


∥∥∥∥∥
n∑
i=1

∫ t
(n)
i

t
(n)
i−1

(vi−1 − ϕt) dSt

∥∥∥∥∥
L2(P)

:

n∑
i=1

vi−11
(
t
(n)
i−1,t

(n)
i

] is predictable

 .

The error converges to zero as supi |t
(n)
i − t

(n)
i−1| → 0. What relates our work to this

approximation is that the rate of convergence depends on the fractional smoothness of
f(ST ). This was shown in the case that S is an L2-Lévy process or the Doléans-Dade
stochastic exponential of a Lévy process: for Brownian motion in, for example, [5] and
[11], and for a general L2-Lévy process in [7]. These results give a correspondence
between the fractional smoothness parameter θ of f(ST ) and the convergence rate

if equidistant time nets
(
t
(n)
i

)
=
(
i
n

)
are used. They also show that one can always

optimize the time grid to obtain the best possible convergence rate when f(ST ) has a
strictly positive smoothness level θ.

Fractional smoothness is meaningful also when investigating properties of backward
stochastic differential equations (BSDEs). The Lp-variation of the solution of a BSDE of
the form

Yt = ξ +

∫ T

t

f(s, Ys, Z̄s) ds−
∫ T

t

Zs,xM(ds,dt)

(where Z̄s = σZs,0 +
∫
R
Zs,xx

2ν(dx)) with Lipschitz generator f , depends on the Malliavin
fractional smoothness of the terminal condition ξ ∈ L2(P). This was shown for Brownian
motion in [6] and for p = 2 for a Lévy process with jumps in [9].
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A note on Malliavin smoothness on the Lévy space

For (geometric) Brownian motion, fractional smoothness of f(ST ) means that f is in a
weighted Besov space (see [11], for example), but what does fractional smoothness mean
for a functional of a Lévy process with jumps? Suppose that (Xt)t≥0 is a subordinator
with ν(R) <∞. Then, by Theorem 4.1 the fractional smoothness of f(XT ) is determined
by the property E[f(XT )2Nθ

T ] <∞. This means that efficiency of discrete time hedging
does not depend on the smoothness of f , but only on how rapidly f(s) increases as s
increases. When ν(R) = ∞, then Malliavin (fractional) smoothness of f(X1) requires
certain smoothness properties of f which depend on intensity properties of ν. This
relation will be a topic of a forthcoming publication.
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