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Abstract

We consider Malliavin calculus based on the It6 chaos decomposition of square inte-
grable random variables on the Lévy space. We show that when a random variable
satisfies a certain measurability condition, its differentiability and fractional differen-
tiability can be determined by weighted Lebesgue spaces. The measurability condition
is satisfied for all random variables if the underlying Lévy process is a compound
Poisson process on a finite time interval.
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1 Introduction

One extension of Malliavin calculus from the Brownian motion to general Lévy
processes was made using the It6 chaos decomposition on the Ls-space over the Lévy
space. This approach was used for instance by Nualart and Vives [16], Privault [17],
Benth, Di Nunno, Lgkka, Oksendal and Proske [4], Lee and Shih [13], Solé, Utzet and
Vives [18] and Applebaum [2].

The wide interest in Malliavin calculus for Lévy processes in stochastics and appli-
cations motivates the study of an accessible characterization of differentiability and
fractional differentiability. Fractional differentiability can be defined by real interpolation
between the Malliavin Sobolev space D; ; and Ly(P); we shall recall the definition in
Section 4 below. Geiss and Geiss [5] and Geiss and Hujo [11] have shown that Malliavin
differentiability and fractional differentiability are in a close connection to discrete-time
approximation of certain stochastic integrals when the underlying process is a (geomet-
ric) Brownian motion. Geiss et al. [7] proved that this also applies to Lévy processes
with jumps. These articles assert that knowing the parameters of fractional smoothness
allows to design discretization time-nets such that optimal approximation rates can be
achieved. For details, see [5], [11] and [7].

Steinicke [19] and Geiss and Steinicke [10] take advantage of the fact that any
random variable Y on the Lévy space can be represented as a functional Y = F(X) of
the Lévy process X, where F' is a real valued measurable mapping on the Skorohod
space of right continuous functions. Let us restrict to the case that F(X) only depends
on the jump part of X: Using the corresponding result from Solé, Utzet and Vives [18]
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and Alos, Ledn and Vives [1] on the canonical space, Geiss and Steinicke [10] show that
the condition F(X) € D, 5 is equivalent with

// E [(F(X + a2l ) — F(X)ﬂ dtv(de) < oo,
[0,00) xR

where v is the Lévy measure of X. On the other hand one gets from Mecke’s formula
[14] that

/ /A E[F(X + a1 o)) dtv(dz) = E[N(A)F(X)]

for any nonnegative measurable F' and any A € B([0,00) x R\ {0}), where N is the
Poisson random measure associated with X as in Section 2. These results raise the
following questions: when can Malliavin differentiability be described using a weight
function such as N(A), and is there a weight function for fractional differentiability?
In this paper we search for weight functions A and measurability conditions on Y
such that the criteria
YA, p) < o0 (1.1)

describes the smoothness of Y. We begin by recalling the orthogonal It6 chaos decompo-
sition

Y = Z—rn(fn)

n=0

on Ly(IP) and the Malliavin Sobolev space
— ) 2\ 2
INEES {Y € Lao(P) : IYIIB, , = D (n+ D)l 7o) < 00}
n=0

in Section 2. Then, in Section 3, we obtain an equivalent condition for Malliavin
differentiability. The assertion is that

Y €Dy, ifand only if HY\/N(A)—i—l‘

< 00,

L2 (PP)
whenever Y is measurable with respect to F4, the completion of the sigma-algebra
generated by {N(B): BC A, B € B([0,00) x R)}, and the set A € B([0,00) x R\ {0})
satisfies E[N(A4)] < oc.

Section 4 treats fractional differentiability and our aim is to adjust the weight function
A so that the condition (1.1) describes a given degree of smoothness. By fractional
differentiability of a random variable Y we mean that Y belongs to an interpolation
space (Ls(IP), Dy 2)p,4 With

D2 C (L2(P),D12)g,q S La(P)

for # € (0,1) and g € [1, 00]. We shortly recall the K-method of interpolation. Then we
show that when Y is F4-measurable and E[N(A)] < oo, then

Y € (Ly(P), Dis)go if and only if HY\/N(A)+19‘

< 00.
Ly (P)

2 Preliminaries

Consider a Lévy process X = (X,);>o with cadlag paths on a complete probability
space (2, F,P), where F is the completion of the sigma-algebra generated by X. The
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Lévy-Ito decomposition states that there exist v € R, o > 0, a standard Brownian motion
W and a Poisson random measure N on B([0,00) x R) such that

X =~t+oW; + // xN(ds,dx) + // xN (ds, dz)
(0,6 {|z|>1} (0,4 x {0<|z|<1}

holds for all ¢ > 0 a.s. Here N(ds,dz) = N(ds,dz) — dsv(dz) is the compensated Poisson
random measure and v : B(R) — [0, o0] is the Lévy measure of X satisfying v({0}) =0,
Jg(@® A1)v(dz) < oo and v(B) = E[N((0,1] x B)]. The triplet (v,0,v) is called the Lévy
triplet.

Let us recall the [t6 chaos decomposition from [12]: Denote R := [0, c0). We consider
the following measure m defined as

m : B(Ry x R) — [0,00], m(ds,dz) :=ds [0°d(dz) + 2°v(dz)] .

For sets B € B(R4+ x R) such that m(B) < oo, a random measure M is defined by

M(B) := a/ dW, + lim // z N(ds,dz),
{s€R4+:(s,0)eB} n—roo {(s7w)EB:%<|w\<n}

where the convergence is taken in Ls(P) := Ly(Q, F,P). The random measure M
is independently scattered and it holds that E[M(B;)M(B3)] = m(B; N Bs) for all
B, By € B(R4 x R) with m(B;) < oo and m(Bs) < oo.

Forn =1,2,... write

Lo (m®") := Ly (R4 x R)", B(Ry x R)®™, m®")

and set Ly (m®°) := R. A function f, : (Ry x R)” — R is said to be symmetric, if it
coincides with its symmetrization f,,

1
fn((shxl)a SERE) (Snaxn)) = ﬁ an ((877(1)7$7r(1)) PR (Sﬂ(n)vmw(n))) )

where the sum is taken over all permutations 7 : {1,...,n} — {1,...,n}.

We let I,, denote the multiple integral of order n defined by It6 [12] and shortly recall
the definition. For pairwise disjoint By, ..., B, € B(R; x R) with m(B;) < oo the integral
of 1, ®---®1p, is defined by

I,(1p, ® - ®1p,) = M(By)--- M(By). (2.1)

It is then extended to a linear and continuous operator I, : Ly (m®") — Ly(IP). We let
Iy(fo) := fo for fy € R. For the multiple integral we have

- 0, ifn £k
I.(fn) = LI(fn) and E [1,(fn)Ix(gx)] = ol (]Emg}) ifn =k (2.2)

LQ(HH@") ’
for all f,, € Ly (m®") and gi € Ly (m®F).

According to [12, Theorem 2], for any Y € Lo(P) there exist functions f,, € Ly (m®"),
n=20,1,2,..., such that

Y =Y I.(fa) inLy(P)
n=0

and the functions f,, are unique in Ly(m®") when they are chosen to be symmetric. We
have

s 2
9 ~
Y = n! ’ .
Wz = 2o A, e
n=0
ECP 22 (2017), paper 34. http://www.imstat.org/ecp/
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We recall the definition of the Malliavin Sobolev space D » based on the It6 chaos
decomposition. We denote by D, » the space ofall Y = > ° | I,(f,) € Lo(PP) such that

> _ 2
VI3, = Y (n+ 11|

n=0

< 0.
Lz (m®m)

Let us write Ly(mn @ P) := Ly(Ry X R x Q,B(R+ x R) ® F,m ® P) and define the
Malliavin derivative D : Dy 3 — Lo(m ® P) in the following way: Consider functions
on=1p, ® - ®1p, € Ly(m®"), where By, ..., B, € B(R; x R) are pairwise disjoint
and such that m(B;) < co for alli = 1,...,n. Define DI, (¢,) by

Dualulpn) = nlu1 (Bl (6,2) = 3 [ M(By) g, (1,2).

i=1 j#i

It holds | DI, (¢n)llr,mery = V71 (¥n)llr,p) and the operator is extended to the
space {I,,(fn) : fn € L2(m®™)} by linearity and continuity. For Y =Y [ I,,(f,) € D12 it
then holds that

Dt,zY = Z nIn—l (fn(a (t7l’)))

n=1

converges in Ly(m ® P).
Remark 2.1. Note that also for any v € Ly(m ® PP) one finds a chaos representation
u = 32" I,(gns1), where the functions g,+1 € Ly (m®"+1)) are symmetric in the first
n variables. For u,v € Ly(m ®@ P) with u = Y77 I,,(gnt1) and v = > 7 I, (hy41) it then
holds

o0

(’LL, U)Lg(lm@]?) = Z n! (gnJrla hn+1)L2 (m®(n+1)) . (23)

n=0

For more information, see for example [16], [17], [4], [13], [18] and [2].

3 Differentiability

We shall use the notation Ry := R \ {0}. For A € B(R; x R) we denote by F4 the
completion of the sigma-algebra o (M (B) : B C A and B € B(R4 x R)). In the following
theorem we only consider A € B(R+ x Ry), in which case F,4 is equal to the completion
of o (N(B): BC Aand B € B(R; x R)) and it does not depend on the Brownian motion
part of the Lévy process.

Theorem 3.1. Let A € B(R; x Ry) be such that E[N(A4)] = (dt ® v)(A) < oo and
Y € Ly(P).

1. IfY € Dy 5, then Y/N(A) € Ly(P) and
VT, ) = 1V VEICAT < 1DV Lalymory - @D
2. IfY\/N(A) € Ly(P) and Y is Fs-measurable, then Y € D, » and
DY ey < [V VN, o+ 1V ) VEINCATL (3.2)

Remark 3.2. (a) If the random variable Y in Theorem 3.1 is Fs-measurable, then by
Lemma 3.6 we have [DY1all,mep) = DY, mep) @and Y € Dy if and only if

Y/N(A) € Ly(P).
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(b) If Y is not measurable with respect to F4, then Y = Y4 + Y’/, where Y, is
Fa-measurable and Y’ # 0 is orthogonal to Y4 in Ly(P) and in D, 5. Since
IDY (1, mer) = IDYall:, mer) + IDY’ 17, @ep) it holds by Theorem 3.1 that
Y € D, if and only if both Y4+/N(A) € Ly(P) and Y’ € D4 5 hold.

(c) Suppose Y € Ly(PP) is measurable with respect to F4.. This is the case for
example if Y depends only on the Brownian motion part of the Lévy process. Then

HY,/N(A)HL o = ¥ llae) H./N(A)HL sy SO that the left hand side of (3.1) is
zero and the 2i"ight hand side of (3.2) is ﬁznite.

In section 5 we will provide two examples where the measurability condition is
satisfied. Now we turn to the proof of Theorem 3.1.

We denote by S the set of random variables Y such that there exists m > 1, f €
CP(R™)and 0 <ty < t1 < ---tm, < oo such that

Y = f (X, = Xugre s Xop — X, ) -

m

Lemma 3.3 (Theorem 4.1, Corollaries 4.1 and 3.1 in [8]).

(a) S isdense in DDy 5 and La(PP).
(b) ForY,Z € S it holds Dy ,(YZ) =YDy 7 + ZD; .Y + 2Dy ;Y Dy, Z m ® P-a.e.

Proposition 3.4. Let Y = > | I,(f») be bounded and A € B(R; x Ry) be such that
E[N(A)] = (dt @ v)(A) < oco. Then Y >~ nl,_4 (fn( , )) 1 4(%) converges in Lo(m ® P)

and
> (v1 (1) m)
Ly (m@P)

VAT, = 1Y ey VAT < |3
HYV D+ W oy VE

(3.3)

Proof. Assume first that Y € S. Then also Y? = > '1,,(9,) € S. Letting h(t,z) :=
114(t, z) we have I (h) = N(A) — E[N(A)] and we get using (2.2) and (2.3) that

E [YQN(A)] —E [YQ] E[N(A)]=E [Yzfl(h)] = (91,h)1y(m) = (DY?, h® 1)L, (mePp)-
From Lemma 3.3 (b) we obtain

[ N(A4)]
E[Y? (DY?,h @ 1q) L, (mep)

BN
E[Y?]E[N +2// Y Dy, Y] zdtv(dz) // Dm m(dt, dz).

Using Holder’s inequality we get

<2V ey VEINAIDY Lall L, (mep) »

‘2/ E[YD,,Y]zdtv(dx)
A

so that

2
(= 1)Ly e) VEINCAT + DY Lall 1, )

<E[Y?N(4)]

2
< (Y1l ) VEINCA)] + IDY Ll sy ) -

Taking the square root yields to the double inequality (3.3).
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Using Lemma 3.3 (a) we find for any bounded Y a uniformly bounded sequence
(Yx) C S such that Y, — Y a.s. Since inequality (3.3) holds for all random variables
Y, — Y, € S, they are uniformly bounded and Y, — Y,,, — 0 a.s. as k,m — oo, we have by
dominated convergence that

1D = YDl ey < ||k = Yo) VECA)| | 4 1Y = Voul ) VEINCA) = 0

as k, m — oo. Thus the sequence (DY314)32, converges in Ly(m ® IP) to some mapping
u € Ly(mn @ P). Write Yy, = ZZ":O I, (fr(tk)) The mapping » has a representation
U = ZZOZO I,,(hn41) (see Remark 2.1), where for all n > 0 we have that

ann]lA—hn -0

< ann]lA - nfék)]lA’

+ Hnﬁsk)]l/; — hn’

Lo(m®n) Lo(m®n) Ly(m®n)

as k — oo. We obtain (3.3) for the random variable Y using dominated convergence, the
convergence DY, 14 — > 7 (DI,(fn)14) in Lo(m @ P) and the fact that (3.3) holds for
all random variables Y. O

Lemma 3.5. IfY = > In(f7z]1%7+Lx1R0) € Dy and g : R — R is Lipschitz-continuous,
then g(Y) € Dy 5 and

9(Y + 2Dy ,Y) — g(Y)
T

Dy ,9(Y) = in Ly(m @ P).

Proof. The lemma is an immediate consequence of [8, Lemma 5.1 (b)]. O

Lemma 3.6. LetY = > 2 I,,(f,) € Lo(P) and A € B(Ry+ x R). Then

E[Y|Fa] = Z L, (f19") in Ly(P).

n=0

Proof. The equality can be shown via the construction of the chaos analogously to the
proof of [15, Lemma 1.2.4]. O

Proof of Theorem 3.1. 1. Assume Y € D, » and define g,,,(z) := (—m V z) Am for m > 1.
From Lemma 3.5 we get ¢,,(Y) € D12 and |Dg,,(Y)| < |DY|. Then, using monotone
convergence and Proposition 3.4, we obtain

[y VA, )~ ¥l VERCA
— lim ‘Hgm(Y)\/WHLQ(P) g ()l 0y VEIN(A)]

m—00
< limsup | Dgim (Y)Lall, (mep)
m— 00

S IDY1Lallp, mep) < o0

Hence Y/N(A) € Ly(P).
2. Assume ||Y\/N(4)| < o and define g,,(Y) as above. Write Y = > I, (fn)

and g, (Y) = Y02, In(f3™). Since gn(Y) — Y in Ly(P), it holds [|f™][2 o,y —

n=0
||f~n|\%2(m®n) as m — oo. Since g,,(Y) is Fa-measurable, we have fT(Lm) = f,(lm)]lfn me®"-
a.e. by Lemma 3.6 for all m > 1. By Fatou’s Lemma, Proposition 3.4 and monotone
convergence we get

ECP 22 (2017), paper 34. http://www.imstat.org/ecp/
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e -2
nn! ’ n < lim inf nn! (m)
nzz:l f Lo(m®n) m—00 Z Lo (m®n)
< hmlnf (Hgm \/7HL ®) + 19m Y 2,0) VE [N(A)])
= [y, 1l VEING) < oo
Thus Y € ]DLQ. O

We use the notation a ~. 3 for %ﬂ <a<c¢fforc>1andq,f € [0,00].

Corollary 3.7. Let A € B(R+ x Rg) be such that E[N(A)] < oo and assume thatY =
S o In(fn) € Lo(P) is Fa-measurable. Then

¥, ~ g3 Jemweaen) [V VA +1]

where the norms may be infinite.

Ly(P)’

Proof. The inequalities (3.1) and (3.2) give the relation
([ VAT, )+ W) ~ e (¥ e + 10V g
The claim follows from ||Y||1D1,2 <Y lroey + DY |y (mer) < V2|]Y b, , and
[ A@ T < (VI )]
< HY\/WHLZ(P) 1Y o)

<2 (VT )

- et

La(P)

Ly(P)

4 Fractional differentiability

We consider fractional smoothness in the sense of real interpolation spaces be-
tween Ly(P) and D; . For parameters 6 € (0,1) and ¢ € [1, o] the interpolation space
(L2(IP), Dy 2)p,4 is @ Banach space, intermediate between Ly (IP) and D1 .

We shortly recall the K-method of real interpolation. The K-functional of Y € Ly(P)
is the mapping K (Y, -; Lo(P),D12) : (0,00) — [0, 00) defined by

K(Y,S;LQ(]P),]D:[’Q) = iIlf{||Y0||L2(]p) + SHY1||]D1‘2 Y=Y+ Yl, Yy € LQ(IP), Y, € ]DLQ}

and we shall use the abbreviation K(Y,s) for K(Y,s; L2(PP),D;2). Let § € (0,1) and
q € [1,00]. The space (L2(P),D; 2)g,, consists of all Y € Ly(P) such that
1
oo | . —0 4 dslq
sTK(Y,s 7 qg€ll,00
Yl (£22) D1 2)6.4 ™ ] 1 00)
sup,~o s YK (Y, s), q =00

is finite.
The interpolation spaces are nested in a lexicographical order:

Dy C (L2(P), D12)yp C (L2(P),D12)g,q € (L2(P),D12)gp C La(P)

for1 <¢<p<ooand0 < 0 <n < 1. For further properties of interpolation we refer to
[3] and [20].
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Theorem 4.1. Let 0 € (0,1), A € B(R+ x Rp) be such that E[N(A)] < oo andY € Ly(P)
be Fs-measurable. Then

Y € (L2(P),D1)go ifand onlyif E[Y2N(A)’] < cc.

IfY € (LQ(]P), ID1,2)972, then

”Y”(Lz(]P) Di,2)6,2 Nf\/WJA
V=]

Proof. We first show that

K(Y,s) ~ ) HYmin{Ls N(A)—i—l}‘

2(VEIN(A)+1 L) .1

From Lemma 3.6 we obtain ||IE [Yy|Fa] || z,p) < [|Yollz,p) @nd || E[Y1]|Fa] |lp,. < [[YilD, .
for any Yy € Ly(PP) and Y7 € Dy 2. Hence
K(Yv, 5) = 1Ilf{||Y0HL2(]p) —+ S”Yi”]DL2 : YO —+ Y1 = Y; Yb € LQ(IP)7 Yl S ]DLQ}

= inf {|[E [Yo|Fa] [ o) + sIE[Y1|Fa] b, > : Yo + Y1 =Y, Yo € Lo(P), Y1 € D12}

~e inf {||Y0|L2(]P) +s Hyl p Vo Yi=Y, Yo € Lo(P), Vi € 11)172}
2

(4.2)

for c = V2 (\/]E [N(A)] + 1) by Corollary 3.7. Next we approximate the K-functional

from above with the choice Yy := Y1 { \/m>l} and get from (4.2) that
Lz(]P)>

VYN T e

s

7KYs (Hm (/RO 1)
gx/ﬁHYmm{Ls N(A)+1H

+s
Lo (P)

Ly(P)

Using the triangle inequality and the fact that
Y(w) =yl + lyla = [Y(w)[min{1,a}

forallw € , y € R and a > 0 we obtain from (4.2) the lower bound

K(Y,s) > inf{H|Y0|+|Y1 s

ZY:YE)‘FYl,YlE]Dl)Q}
2(P)

> HYmin{l,s N(4) + 1}‘

Ly(P)

We have shown that (4.1) holds. From (4.1) we get

e % ds :
||Y||(L2(IP)JD1,2)9,2 Ng( ]E[N(A)]+1) /O 5

We finish the proof by computing the integral using first Fubini’s theorem. We get

9]
/ S_
0

_E [y2 /Ooo s7* min {1,5*(N(4) + 1)} (ﬂ

570 HYmin{l,s N(A) + 1}’

L2 (P)

2
ds
s

0 HYmin{l,s N(A) + 1}‘

La(P)

1

=E [Yzzeu—e)(

N(A) + 1)9} . O
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5 Concluding remarks and applications

From Theorem 3.1 assertion 2. we can conclude that a higher integrability than
square integrability can imply Malliavin differentiability. For example, all the spaces
L,(Q2, Fa,P) are subspaces of D; » when p > 2 and E[N(A)] < co as we can deduce from
the following corollary.

Corollary 5.1. Let A € B(R+ x Ry) be such that A := E[N(A)] € (0,00) so that N(A) ~
Poisson()\). Then for the space

Lolog" Lo(Q, Fa,P) :={Y € Ly(Q, Fua,P) : E[Y?In" Y?] < 00},
where In" z := max{Inx, 0}, it holds that
Lylogt Lay(Q, Fa,P) C Dy o N La(Q, Fa,P).
Proof. Suppose E [Y2In" Y2] < oo and let ¢(y) := In(y+1). The functions ® and ®* with
O(z) := /OI oy)dy=(r+1)In(z+1)—r<1l+zh’z
and _
w()i= [y = a1

are a complementary pair of Young functions. They satisfy the Young inequality xy <
®(x) + ¢*(y) for all z,y > 0 and we get

E[Y2N(A)] <E[® (Y?)] +E[@*(N(A))] <E[Y?Int (Y?)] + e - ) < .

Hence Y € D; » by Theorem 3.1.
To see that the inclusion is strict, let a € (1,2] and choose a Borel function f : R — R
such that f(0) = f(1) := 0 and

|
f(n):= A B2 forn=23,....

ex
A n2lnn

Then, since Inn! = ZZZQIHk > flnlnxdx =nlnn—n+1forn>2anda < 2, we have

1 nl 1
2 + £2 — A _
B [/ (VA) B POV = 3 e (5 )
= Inn! =1 11
77;712111“71 +ng2n21nanln (e )\"n21nan>
= 007
but
2 _ 200\, ~AN
BN = D 0wy =3 e <o
so that f(N(A)) € D; 2 by Theorem 3.1. O

In the following remark we continue the discussion about the measurability condition
of Theorems 3.1 and 4.1, which we started in Remark 3.2.
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Remark 5.2. (a) Suppose 0 = 0 and v(R) < co, which means that X is a compound
Poisson process (with drift) and

X, = pt +/ xN(ds,dz) forallt >0 a.s.
(0,t]xRo

for some 8 € R. The process (N;)¢>o, with N; = N((0,¢] x Rg) a.s., is the Poisson
process associated to X. Let T € (0,00) and Fr be the completion of the sigma-
algebra generated by (X;).c[0,r]. Then Fr = Fjo.7)xr and by Theorems 3.1 and 4.1
for any Fr-measurable random variable Y and any 6 € (0, 1) it holds that

1. Y €D ifand onlyif [[YVNr +1f|, ) <ocand
2. Y € (Ly(P),D1.5)p if and only if HY\/NT T 1"‘

< 00

L2 (P)

(b) Assertion 2 of Theorem 3.1 applies also to the case that the jump part of X is of
infinite activity. Then E[N ([0, T]xR)] = Tv(R) = oo but for example E[N ([0, T] x {x :
|z| > €})] < oo for all € > 0. On the other hand, the set A with E[N(A)] < co may
cover the whole support of v for example in the following sense: there are sets
Cl,CQ, ... € B(IR,) such that 0 < I/(Cl) < oo and Ry = U;,)il C;. Let [a“bi} C IR,+ be
such that b; — a; < u(a)in for some ¢ € (0,00) and A = |J;=, [a;, b;] x C; so that

E[N(A)] <) (b — a;)v(C;) < c.
i=1

In applications, Malliavin fractional smoothness plays a role for example in discrete
time hedging in finance. Let S denote the underlying price process and ¢ be the
predictable hedging strategy from the Galtchouk-Kunita-Watanabe decomposition of an
option f(St). Then the Ls-error with respect to the martingale measure P between
discrete time hedging with n + 1 trading times 0 = té") < .. <t = T and the
continuous time pricing model is

n tE")

Z/ (vie1 — ¢¢) dS;

(n)
i=1 7t

inf

n
: Zvi,lll(tml)t(_n)] is predictable
Ly(P) =1 o

The error converges to zero as sup, |t — t}| — 0. What relates our work to this
approximation is that the rate of convergence depends on the fractional smoothness of
f(ST). This was shown in the case that S is an Ly-Lévy process or the Doléans-Dade
stochastic exponential of a Lévy process: for Brownian motion in, for example, [5] and
[11], and for a general Ls-Lévy process in [7]. These results give a correspondence
between the fractional smoothness parameter 6 of f(Sr) and the convergence rate

if equidistant time nets (tz(-n)) = (1) are used. They also show that one can always
optimize the time grid to obtain the best possible convergence rate when f(Sr) has a
strictly positive smoothness level 6.

Fractional smoothness is meaningful also when investigating properties of backward
stochastic differential equations (BSDEs). The L,-variation of the solution of a BSDE of

the form . .
Ytzf—!—/ f(s,Ys,Zs)ds—/ Zs » M(ds,dt)
t t
(where Z, = 0Zs +fR Z »x*v(dz)) with Lipschitz generator f, depends on the Malliavin

fractional smoothness of the terminal condition £ € Ly (P). This was shown for Brownian
motion in [6] and for p = 2 for a Lévy process with jumps in [9].

ECP 22 (2017), paper 34. http://www.imstat.org/ecp/
Page 10/12


http://dx.doi.org/10.1214/17-ECP65
http://www.imstat.org/ecp/

A note on Malliavin smoothness on the Lévy space

For (geometric) Brownian motion, fractional smoothness of f(St) means that f isin a
weighted Besov space (see [11], for example), but what does fractional smoothness mean
for a functional of a Lévy process with jumps? Suppose that (X;);>¢ is a subordinator
with ¥(R) < co. Then, by Theorem 4.1 the fractional smoothness of f(Xr) is determined
by the property E[f(X7)2N¥] < co. This means that efficiency of discrete time hedging
does not depend on the smoothness of f, but only on how rapidly f(s) increases as s
increases. When v(R) = oo, then Malliavin (fractional) smoothness of f(X;) requires
certain smoothness properties of f which depend on intensity properties of v. This
relation will be a topic of a forthcoming publication.
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