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Abstract

We study the a.s. convergence of a sequence of random embeddings of a fixed manifold
into Euclidean spaces of increasing dimensions. We show that the limit is deterministic.
As a consequence, we show that many intrinsic functionals of the embedded manifolds
also converge to deterministic limits. Particularly interesting examples of these
functionals are given by the Lipschitz-Killing curvatures, for which we also prove
unbiasedness, using the Gaussian kinematic formula.
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1 Introduction

In the recent paper [1] we studied the limiting behaviour of the global reach of a
sequence of random manifolds embedded in Euclidean spheres of increasing dimensions.
To be precise, we proved that the global reaches of these random manifolds converge,
almost surely (a.s.), to a deterministic constant that had arisen earlier in other scenarios,
specifically in the theory of Gaussian extremes. In this paper we look more closely at
these random embeddings, and show that the results of [1] can be extended to show the
convergence not only of the reaches of the embedded manifolds, but, in an appropriate
sense, of the manifolds themselves, along with their induced Riemannian structures.

More specifically, we consider the following setup, effectively equivalent to that in
[1]. We start with a centered, unit variance, smooth Gaussian process f on a compact,
smooth manifold M (the precise assumptions on f and M are stated in the following
section). We let f1, f2, . . . be a sequence of independent copies of f , set fk = (f1, . . . , fk),
and define an embedding hk of M into Rk by

hk(x) =
1√
k
fk(x) =

1√
k

(f1(x), · · · , fk(x)), (1.1)
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Intrinsic geometry of random manifolds

for all x ∈ M . By the Whitney embedding theorem and regularity assumptions on f

and M to follow, we are assured of an a.s. embedding as long as k is large enough.
(k > 2dim(M) will suffice.)

Our initial aim was to analyse the limiting behaviour of certain functionals defined on
the random, embedded manifolds hk(M). In particular, if we equip each hk(M) with the
Riemannian metric, gkE say, that it inherits as a subset of Rk, then we were particularly
interested in intrinsic functionals; viz. those that depend only on the metric. The basic
question was whether or not such functionals would converge to the corresponding
intrinsic functional evaluated on (M, g), for an appropriately chosen metric g on M .

Choosing g correctly, this turns out to be true, and the underlying reason is the
fact that the Riemannian manifolds (hk(M), gkE) themselves converge, in an appropriate
sense, to (M, g).

In the following section we make the notions of “correctly” and “in an appropriate
sense” precise, by describing some basic results on Gaussian processes and the conver-
gence of manifolds. There we also state the main result of the paper, Theorem 3.1, about
the convergence of the random Riemannian manifolds (hk(M), gkE). The a.s. convergence
of a family of intrinsic functionals to deterministic constants follows as a corollary.

In Section 4 we focus on a particular family of functionals, such as volume and surface
area, that come under the title of ‘Lipschitz-Killing curvatures’ (LKCs), and describe
their convergence to their ‘intuitive’ limits. We also note that the a.s. limit in this case is
also the (k-independent) expected value of the corresponding LKC of each of the random
manifolds hk(M). In other words, we show the unbiasedness of the LKCs.

Section 3.2 contains the proof of Theorem 3.1 and its corollary, and the final Section
5 contains the proofs of the results in Section 4.

We shall not say much about motivation in this paper. In [1] we discussed, in the
context of reach, our reasons for studying random manifolds, many of which came from
questions arising in theorems about learning the homology of manifolds from point cloud
data sampled from them. While the discussion there centered on the reach of the hk(M)

(or, more precisely, a version of the hk(M) embedded in spheres) it applies equally well
to the issues treated in this paper. Thus we refer the interested reader to [1] for details.

2 Some preliminaries

Before we can state our main result, we need to set up some notation and quote some
basic results relating to Gaussian processes on manifolds and to the convergence of
Riemannian manifolds.

To start, we shall assume that the m-dimensional Riemannian manifold (M, g) is C3,
connected, oriented, boundaryless, and compact, so that it has a finite atlas. That is, M
can be covered by a finite number of open sets Ωi, and there exist smooth, one to one
maps ϕi : Ωi → Ui ⊂ Rm, for i = 1, . . . , N . When working in charts on M ,

(
∂
∂x1 , · · · , ∂

∂xm

)
denotes a coordinate basis for the tangent space TxM . We use the standard notation
gij = g

(
∂
∂xi ,

∂
∂xj

)
, 1 ≤ i, j ≤ m. ∇ denotes the Levi-Civita connection of (M, g), and

∇2 the corresponding covariant Hessian. Note that, when convenient, we shall adopt
Einstein summation conventions.

2.1 Gaussian processes on Riemannian manifolds

A zero mean, real valued Gaussian process, f : M → R, is determined by its
covariance function C : M ×M → R given by

C(x, y) = E{f(x)f(y)},
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Intrinsic geometry of random manifolds

which is assumed to be positive definite on M ×M and smooth enough so that the
sample paths of f are a.s. C3 on M . We also assume that the joint distributions of f and
its derivatives are non-degenerate. From Corollary 11.3.5 in [2], this implies that the
sample paths of f are a.s. Morse over M .

Such processes induce a Riemannian metric, gC, on the tangent bundle T (M) of M ,
defined by

gCx (X,Y )
∆
= E{(Xf)(x) (Y f)(x)} = YyXxC(x, y)

∣∣
y=x

, (2.1)

where X,Y are vector fields with values Xx, Yx ∈ TxM . The assumptions above on C,
particularly its positive definiteness, guarantee that gC is a non-degenerate, well defined
metric. We call gC as the metric induced by f [2].

Throughout this paper we shall assume that g ≡ gC, which we do either by starting
with the Riemannian manifold (M, g) and then choosing the Gaussian process appropri-
ately, or by starting with M and C, and then choosing g as gC. Thus, from now on, we
shall use only the metric g, and assume that it is also the one induced by C. This notation,
and the smoothness assumptions above on f and M , are assumed to hold throughout
the paper.

2.2 Convergence of Riemannian manifolds

To define the convergence of a sequence of Riemannian manifolds (Mk, gk) to a limit
(M, g), we follow Section 10.3 of [6], applied to our situation, in which all manifolds
are compact. (Consequently we do not require the notion of ‘pointed’ manifolds, which
appears in [6].)

We start with a norm from which follows a notion of function space convergence for
real valued functions, u : M → R. With {(Ω`, ϕ`)}N`=1 an atlas for M , adopt multi-index
notation j = (j1, · · · , jm), |j| = j1 + · · ·+ jm, to write, for u : Ω` → R,

∂ju = ∂j11 · · · ∂jmm u =
∂|j|u

∂(x1)j1 · · · ∂(xm)jm
.

We then define the Ci norm of u on M as

‖u‖i = max
1≤`≤N

 sup
x∈Ω`

|u(x)|+
∑

1≤|j|≤i

sup
x∈Ω`

∣∣∂ju(x)
∣∣ . (2.2)

When there is no possibility of confusion, we shall typically not write the index; i.e. we
shall write ‖u‖ rather than ‖u‖i.

We can now formulate two definitions.

Definition 2.1. A sequence of Riemannian metrics gk on a Ci manifold M is said to
converge in the Ci topology to a metric g if the real valued functions (gk)ij converge to
the gij on M , in the Ci topology.

Definition 2.2. A sequence of compact, Ci, Riemannian manifolds (Mk, gk) is said to
converge in the Ci topology to a Ci manifold (M, g) if, for large enough k, we can find
Ci embeddings Hk : M →Mk such that the pullbacks H∗kgk converge to g on M in the
Ci topology.

As shown in [6], neither of the above notions of convergence is dependent on the
choice of atlas. Furthermore, treating the manifolds as metric spaces with the metric be-
ing Riemannian distance, the second definition implies Gromov-Hausdorff convergence.

In our scenario, one can take the embeddings Hk = hk so that Mk = hk(M) with the
Euclidean metric in Rk it inherits, implying gk = gkE . We now have all the background
we need for stating our first theorem.
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Intrinsic geometry of random manifolds

3 Convergence of Gaussian manifolds

3.1 The main results

Theorem 3.1. Let (M, g) be a connected, orientable, compact, C3 Riemannian manifold,
and f : M → R a zero mean Gaussian process with a.s. C3 sample paths inducing the
metric g. Let hk : M → Rk be the embedding of M defined by (1.1), and gkE denote the
metric induced on hk(M) by the Euclidean metric in Rk. Then, with probability one,(

hk(M), gkE
) C2

−→ (M, g), (3.1)

where the convergence is as in Definition 2.2.

The a.s. convergence of intrinsic functionals, described in the Introduction, will now
follow as a simple corollary of Theorem 3.1, once we have the right definitions. To this
end, let M be a compact, Ci manifold, and Gi the collection of all Ci metrics on M , with
the topology induced by the convergence in Definition 2.1. We say that FM : Gi → R is a
Ci intrinsic functional on M if it is continuous with respect to this topology.

Corollary 3.2. Retain the notation and assumptions of Theorem 3.1, and let FM be a C2

intrinsic functional F of M . Then

Fhk(M)

(
gkE
) a.s.−→ FM (g). (3.2)

Before turning to the proofs of these results, note that the main result of [1], which
established the a.s. convergence of the reaches of the embedded manifolds hk(M),
follows from neither of these. One reason for this is that the embeddings used there
were slightly different to those used in this paper, in that they were self-normalized and
so mapped into spheres. The main reason, however, is that the reach has both global
and local aspects, and so is not an intrinsic functional of a manifold, either in the sense
of the above definition or any other reasonable replacement for it.

Another point worth noting is that the proof will show that had we only assumed
C1 in each place where we assumed C3, this would suffice to establish (3.1) with sup
norm convergence, which has the consequence that the mapping (M, g)→ (hk(M), gkE)

is an asymptotically isometric embedding. This is a result of independent interest, and
already mentioned in [1].

On the other hand, if we were to assume Cn in each place where we assumed C3,
this would suffice to establish (3.1) with Cn−1 convergence. No significant change to the
proof is required. Our statement of Theorem 3.1, in between these two extremes, was
motivated by the examples we had in mind, most of which involve curvatures, and so C2

functionals, but nothing beyond that.

3.2 Proof of Theorem 3.1

Our proof will rely heavily on standard limit theory for Banach space valued random
variables. In particular, we shall exploit Corollary 7.10 of [5], which we now quote for
the reader’s convenience.

Theorem 3.3 ([5], Corollary 7.10). Let X be a Borel random variable with values in
a separable Banach space B, with norm ‖ · ‖B. Let Sn be the partial sum of n i.i.d.
realizations of X. Then,

Sn
n

a.s.−→ 0,

if, and only if, E{‖X‖B} <∞ and E{X} = 0.

To apply this in our setting, recall Definition 2.2 of convergence of a sequence
of compact manifolds and the fact that we work in coordinate patches denoted by
Ω1, · · · ,ΩN on M . We are interested in proving that ((hk)∗gkE)ij

a.s.→ gij in the C2 topology
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(cf. (2.2)). At x ∈ M , the components of the pullback tensor in the coordinate frame(
∂
∂x1 , · · · , ∂

∂xm

)
are

((hk)∗gkE)ij(x) = (hk)∗gkE

(
∂

∂xi
,
∂

∂xj

)
= gkE

(
hk∗

∂

∂xi
, hk∗

∂

∂xj

)
=

1

k

k∑
`=1

∂f`(x)

∂xi
∂f`(x)

∂xj
. (3.3)

An immediate consequence of this and the fact that g is the induced metric for f (cf. (2.1)
and the discussion following it) is that

E
{

(hk)∗gkE)ij(x)
}

= gij(x), (3.4)

for all x ∈M .
To apply Theorem 3.3 in our setting, take

X =
∂f

∂xi
∂f

∂xj
− gij , (3.5)

and set the Banach space B to be C2(M) (twice continuously differentiable functions
over M along with the norm given by (2.2)).

Then the mean zero condition of Theorem 3.3 is trivial, and we need only show the
finiteness of E{‖X‖}. This norm depends on the derivatives of X up to second order, and
so, at the risk of being accused of being overly pendantic, we write out what the random
parts of these derivatives actually are. (The non-random parts involve derivatives of C,
and since it and its derivatives are assumed to be uniformly continuous over M there is
nothing to check here.)

Performing covariant differentiation with respect to the vector field ∂
∂xp , it is easily

seen that the first order derivative equals

∇2f(x)

(
∂

∂xp
,
∂

∂xi

)
∂f(x)

∂xj
+
∂f(x)

∂xi
∇2f(x)

(
∂

∂xp
,
∂

∂xj

)
, (3.6)

where we use the 2-form notation for the covariant Hessian, and remind the reader that
∇ is the Levi-Civita connection associated with g.

Recalling the definition of the covariant Hessian,∇2f(X,Y ) = g(∇X∇f, Y ), we obtain
the following expression for the typical second order derivative:

(
∂

∂xq
∂

∂xp
∂

∂xi
− ∂

∂xq
∇ ∂

∂xp

∂

∂xi

)
f(x)

∂f(x)

∂xj
(3.7)

+∇2f(x)

(
∂

∂xp
,
∂

∂xi

)
∇2f(x)

(
∂

∂xq
,
∂

∂xj

)
+∇2f(x)

(
∂

∂xq
,
∂

∂xi

)
∇2f(x)

(
∂

∂xp
,
∂

∂xj

)
+
∂f(x)

∂xi

(
∂

∂xq
∂

∂xp
∂

∂xj
− ∂

∂xq
∇ ∂

∂xp

∂

∂xj

)
f(x).

The norm, ‖X‖B, that we need now involves taking the supremum norm of each
expression in (3.5)–(3.7) over a chart, summing over p and q, and then taking the
maximum over all charts. However, despite the complicated expressions here, all that
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Intrinsic geometry of random manifolds

appears are derivatives, of up to third order, of the Gaussian process f , which we have
assumed to have a.s. continuous (Gaussian!) derivatives of up to order three. It thus
immediately follows from (occasionally multiple) applications of the Cauchy-Schwarz
inequality, along with the Borel-Tsirelson-Ibragimov-Sudakov inequality (e.g [2], Theorem
2.1.2), that E‖X‖B < ∞, with room to spare. (In fact, the BTIS inequality gives the
finiteness of exponential moments of X.)

This finiteness, along with Theorem 3.3, completes the proof of Theorem 3.1.

3.3 Proof of Corollary 3.2

From Theorem 3.1, it is now trivial that a functional F continuously dependent only
on the Riemannian metric and its first and second derivatives converges a.s. in each
chart. If the functional involves integrating over the whole of M , we simply resort
to the standard partition of unity argument to lift local results to the global scenario
in conjunction with one of the convergence theorems from the theory of Lebesgue
integration. (This is illustrated by the example of the LKCs in the next section.).

4 Lipschitz-Killing curvatures and the Gaussian kinematic for-
mula

In this section we will give a cursory introduction to LKCs and the Gaussian kinematic
formula (GKF), with the aim of making the results of the following section meaningful.
A full theory of both LKCs and the GKF can be found in [2], or the more user friendly
Saint-Flour notes [3].

4.1 Lipschitz-Killing curvatures

Nice Euclidean sets A of dimension N have N + 1 LKCs, L0(A), . . . ,LN (A). Of
these, LN (A) is the N -dimensional volume of A, LN−1(A) is proportional to its (N − 1)-
dimensional surface area, and L0(A) is its Euler characteristic. The remaining LKCs are
somewhat harder to describe, although, in a somewhat ill defined sense, they are often
considered to be measures of ‘the k-dimensional size’ of A. Perhaps the easiest way to
introduce them is via a tube formula of the form

λN (Tube(A, ρ)) =

N∑
j=0

ρN−jωN−jLj(A). (4.1)

Here λN is Lebesgue measure in RN , the ‘tube’ Tube(A, ρ) around A is the set of all
points in RN of distance not more than ρ from A, and ωN−j is the volume of the unit
ball in RN−j . The tube formula (4.1) holds for all ρ less than the reach of A, where the
reach is precisely the object we studied in [1]. The expansion (4.1) holds for a large
class of nice sets (such as locally convex, Whitney stratified submanifolds in RN ), and so
provides a definition of the LKCs. However, when A is a smooth, m-dimensional manifold,
M , satisfying the conditions of this paper, there is also a rather simple, direct, integral
representation of the LKCs, given by

Lj(M) =


(−2π)−(m−j)/2

(m−j
2 )!

∫
M

Tr(R(m−j)/2)Volg if m− j is even

0 if m− j is odd.
(4.2)

Here Volg denotes the volume form on (M, g), where g is the Riemannian metric induced
on M by its embedding in Euclidean space, and R is the Riemannian curvature tensor.
Since R can be considered as a double form of type (2, 2), it makes sense to talk about
its powers, and their trace, Tr. (Details can be found in Chapters 7–10 of [2].)
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One of the first points to note from the representation (4.2) is that since the integral
depends only on the volume form, determined by the metric gE , and the curvature tensor
R, LKCs are intrinsic functionals of M , dependent on gE through its first two derivatives.
The second point is that there is nothing particularly Euclidean about the integral in
(4.2) and so we could use this as a definition of Lj(M) for an Riemannian manifold (M, g).
In this case, however, the LKCs need not be related to a tube formula such as (4.1).
For more on LKCs in this more general setting, see either [2] or the more recent and
extensive results on valuations in, for example, [4].

4.2 Gaussian Minkowski functionals

In the setting of Integral Geometry it is customary to work not directly with LKCs, but
rather with a renumbered and scaled version of them known as (Lebesgue) Minkowski
functionals, defined by

Mj(A)
∆
= j!ωjLN−j(A), j = 0, . . . , N. (4.3)

In terms of these functionals, the tube formula (4.1) becomes

λN (Tube(A, ρ)) =

N∑
j=0

ρj

j!
Mj(A), (4.4)

which is, basically, a standard (but finite!) Taylor series expansion of the tube volume as
a function of ρ. As before, A must be ‘nice’ and ρ must be small enough.

A superficially similar expansion holds if we replace the Lebesgue measure λN by
the standard Gaussian measure on RN , which we denote by γRN . In this case we have
the following (cf. [2] Theorem 10.9.5 and Corollary 10.9.6).

γRN (Tube(A, ρ)) = γRN (A) +

∞∑
j=1

ρj

j!
Mγ

RN

j (A), (4.5)

where theMγ
RN

j (A) are defined by this expansion, for small enough ρ, and are known as
the Gaussian Minkowski functionals. Note that, as opposed to the regular tube formula,
the expansion in the Gaussian case does not terminate after a finite number of terms.
Furthermore, the Gaussian Minkowski functionals, unlike their Lebesgue counterparts,
are not translation invariant.

In addition to the role they play in the GKF, which will become clear in the following
subsection, the main fact that we will need about these functionals is given in the
following lemma.

Lemma 4.1. For any linear subspace S of codimension n ≥ 1 in Rk, the Gaussian
Minkowski functionals satisfy, for all j ≥ 0,

Mγ
Rk

j (S) = MγRn

j ({0}). (4.6)

Furthermore, for all j < n,

MγRn

j ({0}) = 0. (4.7)

Proof. To prove (4.6) assume, without loss of generality, that

S =
{
x ∈ Rk : xj = 0, j = 1, . . . , n, xj ∈ R, j = n+ 1, . . . , k

}
,

so that

Tube(S, ρ) =
{
x ∈ Rk : ‖(x1, . . . , xn)‖ ≤ ρ, xj ∈ R, j = n+ 1, . . . , k

}
and
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Tube(S, ρ) = Tube({0}, ρ)×Rk−n, (4.8)

where the origin 0 here is in Rn.
Computing the Gaussian measure of both sides of (4.8) via (4.5) and comparing

coefficients of ρ establishes (4.6).
As for (4.7), note that

γRn(Tube({0}, ρ)) = P
{
χ2
n ≤ ρ2

}
,

where χ2
n is a chi-squared random variable with n degrees of freedom. The right hand

side here, however, is precisely

1

2n/2Γ(n/2)

∫ ρ2

0

xn/2−1e−x/2 dx =
1

2n/2Γ(n/2)

∞∑
`=0

(−1/2)`

`!

∫ ρ2

0

xn/2+`−1 dx, (4.9)

which gives a power series in ρ, the lowest order term of which is O(ρn). Comparing
coefficients with the expansion (4.5) establishes (4.7), as required.

4.3 Gaussian kinematic formula

We now turn to the GKF. Consider the scenario of the Introduction, specifically the

(un-normalised) embedding fk
∆
= (f1, · · · , fk) of M into Rk (cf. (1.1)). Although we have

assumed that M was a manifold, for the remainder of this subsection we could actually
take it to be a stratified manifold satisfying the smoothness conditions of Chapter 15
of [2]. Consider the preimage under fk in M of a regular, stratified manifold D in Rk,
again satisfying some smoothness conditions that are trivially satisfied if D is assumed
to be a compact, C2, manifold. In the context of deriving mean LKCs of the excursion
sets of non-Gaussian fields on manifolds, the following formula, nowadays referred to as
the GKF, was proven in [2].

E
{
Li(M ∩ (fk)−1(D))

}
=

m−i∑
j=0

[
i+ j

j

]
(2π)−j/2Li+j(M)Mγ

Rk

j (D). (4.10)

where
[
a
b

]
=
(
a
b

)
ωa

ωa−bωb
are the so-called flag coefficients, and the LKCs are computed

with respect to the metric induced by f .
The GKF has myriad applications, but in the following section we shall add an extra,

somewhat novel, one. We shall use it to establish that for fixed, but large enough k, and
for all j,

E
{
Lj(hk(M))

}
= Lj(M).

5 Convergence of the Lj(h
k(M)), and their unbiasedness

We start with the a.s. convergence of the random variables Lj(hk(M)).

Example 5.1. Under the same setup and conditions on M and f as in Theorem 3.1,

Lj(hk(M))
a.s.−→ Lj(M), (5.1)

for each 0 ≤ j ≤ m.

Proof. In view of Corollary 3.2, we only need to show that LKCs are C2 intrinsic func-
tionals. For a reader with a background in Differential Geometry, this is (under the
conditions we assume) obvious, and so the proof is done.

For the reader without this background, we will provide an outline of a slightly longer
proof, which will also introduce issues relevant to later discussions.

We start with the representation (4.2) of LKCs, which in our case becomes, for the
non-zero case in which m− j is even,
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Lj
(
hk(M)

)
= Kj

∫
hk(M)

Tr
(

(RkE)(m−j)/2
)

VolgkE (5.2)

whereKj = (−2π)−(m−j)/2/(
(
m−j

2

)
!) and RkE denotes the curvature tensor of (hk(M), gkE).

However, since for large enough k, the embedding map hk is a diffeomorphism, it
follows from the very definition of (global) isometries that (M, (hk)∗gkE) and (hk(M), gkE)

are isometric Riemannian manifolds, and so

Lj
(
hk(M)

)
= Kj

∫
M

Tr
(

(R̃kE)(m−j)/2
)

Volg̃kE , (5.3)

where we write g̃kE to denote the pullback (hk)∗gkE and R̃kE for the corresponding curva-
ture tensor, both on M .

However, the Riemannian curvature tensor R on a generic Riemannian manifold
(M, g) is given by (cf. [6])

Rijk` =
1

2

(
∂2gi`
∂xj∂xk

+
∂2gjk
∂xi∂x`

− ∂2gik
∂xj∂x`

− ∂2gj`
∂xi∂xk

)
+ gnp(Γ

n
jkΓpi` − Γnj`Γ

p
ik),

where the Christoffel symbols of the second kind are given by

Γnjk =
1

2
gn`
(
∂g`j
∂xk

+
∂g`k
∂xj

− ∂gjk
∂x`

)
,

and the gn` are the elements of G−1, where G is the matrix with elements gij .
Returning to our current setup, since the symmetric form g is nondegenerate (fol-

lowing from positive definiteness of C) G is non-singular, and so it is clear is that the
components of R depend solely upon the metric tensor and its first and second or-
der derivatives in a smooth manner. Since Theorem 3.1 implies the convergence of
(hk(M), gkE) to (M, g), it follows that

(RkE)ijk`(x)
a.s.−→ Rijk`(x), uniformly in x. (5.4)

This, together with (5.2), (5.3) and (5.4) imply (5.1), and we are done.

One of the consequences of (5.1), the oft-noted fact that hk is asymptotically isometric,
and some moment checking (with which we shall not bother, for reasons to soon become
clear), is that, for each 0 ≤ j ≤ m,

lim
k→∞

E
{
Lj(hk(M))

}
= Lj(M).

In fact, we can do better than this. Given the integral representation (5.2) of the
LKCs of hk(M), and the subsequent explanations of what all the terms are, we could, in
principle at least, take expectations and compute the mean E

{
Lj(hk(M))

}
explicitly, for

each k. One would not expect this calculation to be an easy one.
However, it turns out that there is no need to go this route, since the following result

shows that these expectations are actually independent of k, at least for k large enough
to ensure a true embedding. We call this the ‘unbiasedness’ of the LKCs.

Theorem 5.2. Under the conditions of Theorem 3.1, for all k for which hk is an embed-
ding, and for each 0 ≤ j ≤ m,

E
{
Lj(hk(M))

}
= Lj(M).

Proof. We start with some generalities. Let A be a compact submanifold of dimension
a, isometrically embedded in some Riemannian manifold (M̃, g̃). Let θ be a Gaussian
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random field on M̃ with induced metric g̃ satisfying the conditions of the GKF and define
processes Θn, for 1 ≤ n ≤ a, as Θn = (θn1 , · · · , θnn), with the individual components being
i.i.d. copies of θ. Then (4.10) gives us that

E{L0(A ∩ (Θn)−1{0})} =

a∑
j=0

(2π)−j/2Lj(A)MγRn

j ({0})

=

a∑
j=n

(2π)−j/2Lj(A)MγRn

j ({0}), (5.5)

where the change in summation limits comes from (4.7).
Write µχΘ

(A) for the a+ 1 vector(
L0(A), E

{
L0(A ∩ (θ1)−1{0})

}
, . . . ,E

{
L0(A ∩ (θn)−1{0

}
)}
)
.

If we adopt the convention that Θ0 is a function that maps identically to zero, so that

E{L0(A ∩ (Θ0)−1{0})} = L0(A),

then we can rewrite (5.5), formally, as

µχΘ(·) = ZL(·),

where L maps A to (L0(A), · · · ,La(A)) and Z is a universal (a + 1) × (a + 1) upper
triangular matrix, the precise elements of which can be found from the expansion (4.9).
It is easy to check that the diagonal elements are non-zero, but their precise values are
not important for what follows. However, this does imply that Z is invertible, from which
it follows that

µχΘ = ZL ⇐⇒ L = Z−1µχΘ ,

so that we can recover the LKCs (Lj(A))0≤j≤a from the expected Euler characteristics
(E{L0(A ∩ (Θn)−1{0})})0≤n≤a.

We now exploit the above to prove the theorem. Firstly, fix k, large enough so that
hk(M) is an embedding of M in Rk. Set A = hk(M), with dimension a = m. Then,
Rk \ {0} together with the standard Euclidean metric will be the (M̃, g̃) above. The
reason we can make do with Rk \ {0} as the ambient space is that hk(M) does not
contain the origin a.s. when k is large enough. (In fact, hk(M) will approximately lie on
Sk−1.)

A simple way to define centered, unit variance Rn valued Gaussian fields Θn
k on

Rk \ {0} that induce the Euclidean metric is to take a n× k matrix, Wn
k , of i.i.d. standard

Gaussians, and to set

Θn
k (x) = Wn

k

x

‖x‖
, x ∈ Rk \ {0},

where all our vectors (such as Θn
k and x) are written as column vectors.

The above general argument thus implies that we can compute (Lj(hk(M)))0≤j≤m
from the expected Euler characteristics of the zero sets of (Θn

k )0≤n≤m restricted to hk(M).
To do this, note first the simple, but crucial, fact that, for 1 ≤ n ≤ m, (Θn

k )−1({0}) =

null(Wn
k ), so that

hk(M) ∩ (Θn
k )−1({0}) = hk(M) ∩ null(Wn

k )

= hk
(
M ∩ (hk)−1null(Wn

k )
)

= hk
(
M ∩ (fk)−1null(Wn

k )
)
.
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Therefore,

m∑
j=0

(2π)−j/2Lj(hk(M))MγRn

j ({0}) = EΘn
k

{
L0

(
hk(M) ∩ (Θn

k )−1({0})
)}

= EWn
k

{
L0

(
hk
(
M ∩ (fk)−1null(Wn

k )
))}

= EWn
k

{
L0

(
M ∩ (fk)−1null(Wn

k )
)}
,

where the first equality is a direct consequence of the GKF, the second is from the
calculations above, and the last follows from the facts that hk is a diffeomorphism and
the Euler characteristic is a topological invariant.

Consequently, we have that

m∑
j=0

(2π)−j/2Efk

{
Lj(hk(M))

}
MγRn

j ({0}) = EfkEWn
k

{
L0

(
M ∩ (fk)−1null(Wn

k )
)}

= EWn
k
Efk

{
L0

(
M ∩ (fk)−1null(Wn

k )
)}

=

m∑
j=0

(2π)−j/2Lj(M)Mγ
Rk

j (null(Wn
k )),

where the first equality follows from Fubini, and the last from the GKF.
However, null(Wn

k ) is a linear subspace of codimension n in Rk for almost every Wn
k ,

and for any linear subspace S of codimension n in Rk, we have from Lemma 4.1 that

Mγ
Rk

j (S) =MγRn

j ({0}).

This results in the identity

m∑
j=0

(2π)−j/2Lj(M)Mγ
Rk

j (null(Wn
k )) =

m∑
j=0

(2π)−j/2Lj(M)MγRn

j ({0}),

from which follows the fact that

m∑
j=0

(2π)−j/2Efk

{
Lj(hk(M))

}
MγRn

j ({0}) =

m∑
j=0

(2π)−j/2Lj(M)MγRn

j ({0}).

In matrix formulation, the above reads as

Efk{ZL(hk(M))} = ZL(M),

and the theorem follows on recalling that Z is invertible.
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