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Abstract

We study the connectivity of random subgraphs of the d-dimensional Hamming graph
H(d, n), which is the Cartesian product of d complete graphs on n vertices. We
sample the random subgraph with an i.i.d. Bernoulli bond percolation on H(d, n) with
parameter p. We identify the window of the transition: when np − logn → −∞ the
probability that the graph is connected tends to 0, while when np − logn → +∞ it
converges to 1. We also investigate the connectivity probability inside the critical
window, namely when np− logn→ t ∈ R. We find that the threshold does not depend
on d, unlike the phase transition of the giant connected component of the Hamming
graph (see [1]). Within the critical window, the connectivity probability does depend
on d. We determine how.
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1 Introduction

In this paper we investigate the random edge subgraph of d−dimensional Hamming
graphs. Hamming graphs are defined as follows:

Definition 1.1 (Hamming graph). For integer n write [n] := {1, . . . , n}. We define the
d−dimensional Hamming graph H(d, n) as the graph with vertex set

V = [n]d,

and edge set
E = {(v, w) : v, w ∈ V, vj 6= wj for exactly one j}.

We study a percolation model on the Hamming graph. We define the random subgraph
Hλ(d, n) as the random edge subgraph with uniform edge retention probability p = λ

d(n−1) .

Since the degree of every vertex in H(d, n) is d(n− 1), the parameter λ thus indicates
the expected number of outgoing edges from any given vertex.

The phase transition for the existence of a giant component (i.e., when |Cmax| ≈ ζ|V |
for ζ ∈ (0, 1)) was studied in [1, 8] for a larger class of finite transitive graphs that
includes H(d, n), while the slightly supercritical behavior was analyzed in [6] and [7] for
d = 2.
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Connectivity threshold for random subgraphs of the Hamming graph

In this work, we move away from the giant component critical point and we aim to
determine the asymptotic probability that Hλ(d, n) is connected for d fixed and n→∞.
The analogous problem was first solved for the Erdős-Rényi Random Graph (ERRG) in
[3]. Observe that the ERRG arises as a special case of our problem if we put d = 1. We
will follow the proof for the ERRG (see e.g. [5, Section 5.3]), but we find that at places
the internal geometry of the Hamming graph plays an important role. To overcome this
difficulty we use an induction on the dimension d and an exploration of the graph.

2 Main results

Let Hn := Hλ(d, n) be a sequence of random edge subgraphs of H(d, n) with param-
eter λ = λ(n). Given λ we want to determine the asymptotic probability that Hn is
connected.

Theorem 2.1 (Connectivity threshold for Hλ(d, n)). If limn→∞ λ− d log n = t ∈ R, then

Pλ(Hn is connected)→ e−e
−t
. (2.1)

Consequently,

Pλ(Hn is connected)→

{
0 if λ− d log n→ −∞,
1 if λ− d log n→ +∞.

(2.2)

These results show an interesting difference between the critical values of the giant
component threshold and the connectivity threshold. The critical probability pGC of
the former satisfies pGC = 1

d(n−1) (1 + o(1)), depends on d, while the latter, pconn = logn
n−1 ,

does not. This fact provides us with some insight into the structure of Hλ(d, n) at
the connectivity threshold: Consider the lower-dimensional “hyperplanes” (i.e., the
subgraphs of H(d, n) induced by all vertices (v1, . . . , vd) that satisfy a set of constraints
of the form vj = kj for some j ∈ [d], kj ∈ [n], see Definition 4.1 below). Note that
these hyperplanes are isomorphic to Hamming graphs of lower dimension. From [1] we
know that there exist values of λ such that Hλ(d, n) has a giant component while the
intersections of Hλ(d, n) with a hyperplane are subcritical (i.e., the largest components
inside a hyperplane are of order O(log n)). But an analogous property does not hold
for the connectivity threshold: if Hλ(d, n) is connected with probability converging to 1,
then the same holds for all its hyperplanar subgraphs.

We believe that this phenomenon holds in much greater generality than Hamming
graphs: our proof of Theorem 2.1 can easily be modified to show that it also holds for
the Cartesian product of d copies of the complete k-partite graph, and we believe it to
be true for a larger class of powers of high-degree transitive graphs.

2.1 Related literature

In [4] Erdős and Spencer studied the connectivity threshold of the hypercube H(d, 2),
where they found that the connectivity threshold occurs around p = 1

2 (also independently
of d). Clark [2] studied the connectivity threshold of H(d, n) for n fixed and d → ∞,
showing that if

p = 1−
(
ξ(d)1/d

n

) 1
n−1

and ξ(d)
d→∞−−−→ a ∈ (0,∞), then the probability that the percolated graph is connected

converges to e−a. Expansion of the above equation around n = ∞ shows that the
d→∞ limit for large values of n has the same behavior as the n→∞ limit. Moreover,
[10] shows that more generally, Cartesian products of fixed graphs have a connectivity
threshold that only depends on their degree distribution as d→∞.
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Sivakoff gives a statement analogous to our main theorem for site percolation in [11].
It should be noted that site and edge percolation are very different models on the Ham-
ming graph, as can be seen for instance in the fact that connectivity of site percolation
on Kn is trivial, whereas connectivity of edge percolation on Kn (i.e., the ERRG) is not.
See also [12].

3 Poisson convergence of isolated vertices

We start investigating the number of isolated vertices in the Hamming graph. As
in the case of the ERRG, this provides a sharp lower bound on the window of the
connectivity threshold. We define the number of isolated vertices

Y :=
∑
i∈V

1{|Ci|=1},

where Ci is the connected component of vertex i. We prove that in the critical window
(i.e., when λ − d log n → t ∈ R) the random variable Y converges in distribution to a
Poisson random variable. This proof is standard, and uses the same arguments applied
to the proof given for the ERRG in [5, Section 5.3].

Let (x)n denote the nth lower factorial of x, i.e., (x)n := x(x− 1)(x− 2) · · · (x− n+ 1).
We will use the following lemmas, whose proofs are given in [5, Section 2.1] (for general
versions see [9, Chapter 6]):

Lemma 3.1. A sequence of integer-valued random variables (Xn)
∞
n=1 converges in

distribution to a Poisson random variable with parameter µ when, for all r = 1, 2, . . . ,

lim
n→∞

E[(Xn)r] = µr. (3.1)

Lemma 3.2. When X =
∑
i∈I 1i is a sum of at least r indicators then

E[(X)r] =
∑

i1 6=i2 6=...6=ir

P(1i1 = 1i2 = · · · = 1ir = 1),

where the sum is over all sets of r distinct indices.

Given Hn = (Vn, En), we want to prove that (3.1) holds for Yn :=
∑
vi∈Vn 1{|Cvi |=1}.

We will use Lemma 3.2 with an upper and lower bound on Pλ(1i1 = · · · = 1ir = 1) where
we take 1i to be the indicator function of the event that the vertex i is isolated. Observe
that we have nd!/(nd − r)! different sets of distinct vertices of cardinality r. We call
m := d(n− 1) the degree of H(d, n).

The lowest probability comes from sets where none of the r vertices are adjacent,
hence we bound

Pλ(1i1 = 1i2 = · · · = 1ir = 1) ≥
(
1− λ

m

)rm
,

while the highest probability comes from sets where all the r vertices belong to the same
1-dimensional subgraph, hence

Pλ(1i1 = 1i2 = · · · = 1ir = 1) ≤
(
1− λ

m

)rm− r(r−1)
2

.

For n ≤ r we can find better bounds but we do not mind, since we are interested in the
asymptotic behavior when n → ∞ and r is fixed. By the transitivity of the Hamming
graph we bound, using λ = d log n+ t(1 + o(1)),

Eλ[(Yn)r] ≥
nd!

(nd − r)!

(
1− λ

m

)rm
=

nd!

(nd − r)!
e−dr logn−tr(1+o(1)).
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Since
nd!

(nd − r)!
= ndr(1− o(1)), we find

Eλ[(Yn)r] ≥ ndre−dr logn−tr(1− o(1)) = e−tr(1+o(1)).

Similarly

Eλ[(Yn)r] ≤
nd!

(nd − r)!

(
1− λ

m

)rm− r(r−1)
2

=
nd!

(nd − r)!
n−dre−tr(1+o(1))

(
1− λ

m

)− r(r−1)
2

= e−tr(1+o(1)).

This proves that for each r, E[(Yn)r]→ e−tr so that by Lemma 3.1 the distribution of
Yn converges to Poi(e−t) when λ− d log n→ t. We conclude that

Pλ(Yn = 0)→ e−e
−t
. (3.2)

Furthermore {Hn connected} ⊆ {Yn = 0}, so we conclude that for λ− d log n→ t

lim sup
n→∞

Pλ(Hλ(d, n) is connected) ≤ e−e
−t
.

It remains to prove the matching lower bound, i.e., that in the critical window

Pλ(Hλ(d, n) is disconnected | Yn = 0)→ 0.

4 Connectivity conditioned on no isolated vertices

We prove (2.1) via induction on d. (The standard “tree counting” proof for the ERRG
given in [5, Section 5.3] is too involved in the presence of geometry.)

Induction hypothesis. If limn→∞ λ− (d− 1) log n = t ∈ R, then

Pλ(Hλ(d− 1, n) is connected)→ e−e
−t
,

i.e., (2.1) holds for H(d− 1, n).

We initialize the induction by noting that H(1, n) is a complete graph, so the random
subgraph Hλ(1, n) has the same distribution as an ERRG with p = λ

n−1 . For this case it is
proved in [3] that (2.1) holds.

Definition 4.1 (Hyperplanes). Given H(d, n) = (V,E), define the hyperplanes Gjk =

(Vjk, Ejk) for some j ∈ [d] and k ∈ [n] as

� Vjk = {(i1, i2, . . . , id) ∈ V : ij = k};
� Ejk = {(v, w) ∈ E : v, w ∈ Vjk}.

Note that H(d, n) has exactly dn hyperplanes and they are all isomorphic to H(d− 1, n).
We define Gλjk as the intersection of the random edge subgraph Hλ(d, n) with the

hyperplane Gjk, for each pair j, k.

The crucial idea of our proof is to show that once we have enough internally connected
hyperplanes, all the remaining non-isolated vertices are connected to these connected
hyperplanes with high probability.

To use this argument, we condition on the event that a certain set of hyperplanes is
internally connected. To ensure independence under this conditioning, we use disjoint
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edge sets to create the connected hyperplanes and to connect the remaining non-isolated
vertices to them.

We define the sets L = {1, 2, . . . , bn/2c} and R = {bn/2c + 1, bn/2c + 2, . . . , n}. For
each j ∈ [d], we divide V into two sets:

VL(j) := {v ∈ V : vj ∈ L} and VR(j) := {v ∈ V : vj ∈ R}.

This induces a partition on the edge set E:

ELL(j) := {(v, w) ∈ E : v, w ∈ VL(j)},
ERR(j) := {(v, w) ∈ E : v, w ∈ VR(j)},
ELR(j) := {(v, w) ∈ E : v ∈ VL(j), w ∈ VR(j)}.

For each fixed j these sets are disjoint, so the occupation status of the edges in one set
is independent from the occupation status of edges in the other two sets. Note that due
to the geometry of H(d, n) the exact composition of the sets L and R is not relevant, only
their size matters.

For some fixed α (to be determined later) we define the events

BR(j) := {Gλjk is connected for more than 1
2αn different k ∈ R},

BL(j) := {Gλjk is connected for more than 1
2αn different k ∈ L}.

We define B :=
⋂
j∈[d](BL(j) ∩BR(j)). In the final steps of the proof, on page 8, we will

show that Pλ(B)→ 1.
Note that the event B states that there exist non-parallel internally connected hyper-

planes, so when B occurs, the geometry of the Hamming graph then ensures that all
internally connected hyperplanes are in the same connected component, deterministi-
cally, and this component is the unique giant component. We now prove that on B, with
high probability, in the critical window Hλ(d, n) consists only of the giant component and
isolated points.

Proposition 4.2. Let λ − d log n → t ∈ R and d ≥ 2, and let I be the set of all isolated
points. Then

lim
n→∞

Pλ({(Cmax ∪ I) 6= [n]d} ∩B) = 0.

Proof. We have to prove that with probability converging to 1 all edges present in the
graph are connected to the giant component. We know that |E| = 1

2dn
d(n− 1). We write

Z for the number of edges that do not connect to the giant component. If Z = 0, then
the claim holds, since all points outside the giant component must be isolated. We will
prove that indeed Eλ[Z1B ]→ 0, where 1B is the indicator of B.

Choose an edge (v, v′) ∈ E and let i ∈ [d] be the unique direction such that vi 6= v′i.
Choose j ∈ [d] with j 6= i and apply the partition defined above. Suppose that vj = v′j ∈ L
(the argument for vj = v′j ∈ R is identical). Define the event

F := {v, v′ are not connected to any internally connected hyperplane}.

Since B ⊂ BR(j) for all j it follows that

Pλ(F ∩B) ≤ Pλ(F ∩BR(j)) ≤ Pλ(F | BR(j)).

To bound Pλ(F | BR(j)) we explore the graph starting from the vertices v, v′, with
the following algorithm:

Step 1 Given the edge (v, v′), set as active the two end vertices: a = v, a′ = v′. Initialize
the set of searched vertices S = ∅.
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Step 2 Set S = S ∪ {a, a′}. Check all the edges (a1, w), (a2, w) such that w belongs to a
connected hyperplane Gλjr with r ∈ R. If they are all vacant, then go to Step 3,
else stop.

Step 3 Check all the edges (a,w), (a′, w) such that w ∈ VL(j) \ S. We define the set
W = {w ∈ VL(j) \ S : one or both of (a,w) and (a′, w) are occupied}. If |W | ≥ 2

then go to Step 4, else stop.

Step 4 Choose w, w′ ∈W according to an arbitrary but fixed rule and set them as the
active vertices: a = w and a′ = w′. Return to Step 2.

Activating only two vertices at each cycle of the algorithm allows for some control
over the depletion of points outside the connected hyperplanes. This means that the
algorithm can terminate before the starting edge has been connected to the giant
component or before its connected component has been completely explored. This is
not a problem: the calculations below show that this algorithm gives a sufficiently sharp
result to prove the claim.

Indeed, we want to show that the probability that the exploration process terminates
before finding a connection to one of the internally connected hyperplanes among
{Gλjr : r ∈ R} has probability tending to zero. That is, we want to show that with high
probability, the algorithm does not terminate during Step 3. We write T for the cycle at
which this happens. We set T =∞ if the process finds the giant component, namely if
the algorithm terminates during Step 2.

Note that the algorithm is designed with certain independencies. Indeed, the event
BR(j) depends only on the edges in ERR(j), Step 2 of the exploration only depends on
edges in ELR(j), and Step 3 only depends on edges in ELL(j).

Let Pg = Pg(k) be the probability of finding a connection to one of the internally
connected hyperplanes among {Gλjr : r ∈ R} during the k-th cycle of the exploration
algorithm, conditioned on the event BR(j) and on the event that the algorithm has not
yet terminated. We bound

1− Pg ≤
(
1− λ

m

)αn
= e−λα/d(1 + o(1)) ≤ Cn−α,

for a constant C that depends on t. (This bound does not depend on k because the
algorithm terminates as soon as the exploration finds a connected hyperplane, so there
is no depletion of points inside the connected hyperplanes.)

Let Nk denote the number of vertices discovered in Step 3 of the k-th cycle of the
exploration and let

Pk,2 := Pλ(Nk ≥ 2) = 1− Pλ(Nk = 0)− Pλ(Nk = 1).

Each vertex v ∈ VL(j) has (d − 1)(n − 1) + bn/2c neighbors in VL(j), and at time k
at most 2k of them have already been explored, so Nk stochastically dominates a
Bin((2d− 1)(n− 1)− 4k, λ/m) random variable. We bound

Pλ(Nk ∈ {0, 1}) ≤
(
1− λ

m

)(2d−1)(n−1)−4k

+ (2d− 1)n
λ

m

(
1− λ

m

)(2d−1)(n−1)−4k−1

.

So we obtain for some constant c

1− Pk,2 ≤
(
1− λ

m

)(2d−1)(n−1)−4k
(
1 +

2d− 1

d

λ

1− λ
m

)

≤cλn−2d+1

(
1− λ

m

)−4k
.
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If T = s, then the exploration does not reach a connected hyperplane during the first
s cycles and then the algorithm terminates on Step 3 of the s-th cycle, so we can bound

Pλ(T = s | BR(j)) ≤ (1− Ps,2)
∏
k≤s

(1− Pg)

≤ Cλn−2d+1

(
1− λ

m

)−4s
n−αs

= Cλn−2d+1

((
1− λ

m

)4

nα

)−s
,

for some constant C that depends on t. It follows that

Pλ(T <∞ | BR(j)) ≤ Cλn−2d+1
∞∑
s=1

((
1− λ

m

)4

nα

)−s
.

For sufficiently large n we have nα(1 − λ
m )4 > 1, so the tail of the sum behaves like a

convergent geometric series, and we bound

Pλ(T <∞ | BR(j)) ≤ Cn−2d+1−α log n� 2

d
n−d(n− 1)−1,

for all d ≥ 2.
Since H(d, n) is transitive and there are d

2n
d(n− 1) edges,

Eλ[Z1B ] ≤
d

2
nd(n− 1)Pλ(T <∞ | BR(j))→ 0,

and the claim now follows applying the Markov inequality to the event {Z1B ≥ 1}.

Completion of the proof: induction on the dimension

Recall that the case d = 1 initiates the induction, since Hλ(1, n) is an Erdős-Rényi
graph, so (2.1) holds.

For the inductive step we assume that (2.1) holds for Hλ(d − 1, n), i.e., that for all
t ∈ R and all sequences λ = λ(n) such that limn→∞ λ− (d− 1) log n = t, we have

Pλ(Hλ(d− 1, n) is connected)→ e−e
−t
.

We want to prove that the same holds for Hλ(d, n).
Given Hλ(d, n), its intersection Gλjk with the hyperplane Gjk has the same distribution

as H d−1
d λ(d− 1, n) since p = λ

d(n−1) , and each vertex has (d− 1)(n− 1) outgoing edges in
Gjk. We assumed that limn→∞ λ− d log n = t, which implies that

lim
n→∞

d− 1

d
λ− (d− 1) log n =

d− 1

d
t.

Note moreover that 1{Gλjk is connected} and 1{Gλ
jk′ is connected} are i.i.d. random variables

when k 6= k′ under Pλ, since for fixed j all the subgraphs Gλjk are i.i.d. random subgraphs
with the same law as H d−1

d λ(d− 1, n). It thus follows by the inductive hypothesis that the

asymptotic probability that Gλjk is connected is exp(−e−(d−1)t/d).
If we choose ε > 0 such that α := exp(−e−(d−1)t/d) − ε > 0, then for each j the

induction hypothesis and the Weak Law of Large Numbers imply that that

Pλ(BL(j)
c) = Pλ

(bn/2c∑
k=1

1{Gλjk is connected} ≤ 1
2αn

)

≤ Pλ

(∣∣∣∣∣ 2n
bn/2c∑
k=1

1{Gλjk is connected} − e−e
−(d−1)t/d

∣∣∣∣∣ > ε

)
→ 0 as n→∞.
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The same is true for each BR(j). Using the union bound,

Pλ(B
c) ≤

d∑
j=1

(
Pλ(BL(j)

c) + Pλ(BR(j)
c)
)
→ 0. (4.1)

Finally, we combine (3.2), (4.1) and Proposition 4.2 to obtain

Pλ(Y > 0) ≤ Pλ(Hλ(d, n) is disconnected)

≤ Pλ(Y > 0) + Pλ(B
c) + Pλ({(Cmax ∪ I) 6= [n]d} ∩B),

completing the proof of the main theorem.
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