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Abstract

In this paper, we establish an atomic decomposition characterization of weighted weak
Hardy spaces Hp,∞

ω on spaces of homogeneous type. As an application, we prove a
interpolation theorem in Hp,∞

ω .
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1 Introduction and main results

The theory of weak Hardy spaces is very important in harmonic analysis since it can sharpen
the endpoint weak type estimate for variant important operators (see, for example, [5]). The
weak Hardy spaces were first studies in [4] as special Hardy-Lorentz spaces which are the
intermediate spaces between two Hardy spaces. Fefferman and Soria [5] established an
atomic decomposition of the weak Hardy space H1,∞(Rn). The atomic decompositions of
the weak Hardy spaces Hp,∞ on homogeneous groups were given by Liu in [11]. Ding and
Lan [2] developed the theory of weak Hardy spaces associated to expansive dilations on
Rn. The weak Hardy spaces on spaces of homogeneous type was recently studied in [3] and
[17].
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The purpose of this paper is to study the theory of weighted weak Hardy spaces Hp,∞
w

on space of homogeneous type. More precisely, we will establish atomic decomposition
characterizations of weighted weak Hardy spaces on space of homogeneous type. As an
application, we prove an Hp,∞ interpolation theorem. We remark that our theory is so
general that it can be applied to more variant different settings such as Euclidean spaces with
A∞-weights, Ahlfors n-regular metric measure spaces (see, for example, [9]), Lie groups of
polynomial growth (see, for instance, [16]) and Carnot-Carathéodory spaces with doubling
measure (see [13]).

Before giving the main results, let us recall some definitions and notions first. The
following notion of spaces of homogeneous type was introduced by Coifman and Weiss in
[1].

Definition 1.1. Let (X,d,µ) be a quasi-metric space with a regular Borel measure µ such
that all balls defined by d have finite and positive measures. The quasi-metric satisfies the
following triangle inequality,

d(x,z) ≤ τ(d(x,y)+d(y,z)). (1.1)

For any x ∈ X and r > 0, set B(x,r) = {y ∈ X : d(x,y) < r}. (X,d,µ) is called a space of
homogeneous type if there exists a constant C ≥ 1 such that for all x ∈ X and r > 0,

µ(B(x,2r)) ≤Cµ(B(x,r)). (1.2)

Throughout this paper, we also assume that d has the following regularity property:

|d(x,y)−d(x′,y)| ≤Cd(x, x′)ϑ[d(x,y)+d(x′,y)]1−ϑ, (1.3)

where the constant ϑ is called the regularity exponent on X.

It can be shown from (1.2) that there exist constants 1 <C,D <∞ such that

µ(B(x, sr)) ≤CsDµ(B(x,r)). (1.4)

The least possible value of D in (1.4) is called the dimension of X. In what follows, we use
D to denote the dimension of X. LetM denote the Hardy-Littlewood maximal function on
X.

Definition 1.2. Let ω ∈ L1
loc(X) be a nonnegative function in X. If there exists a constant

C > 0 such that for every ball B ⊂ X,[
1
µ(B)

∫
B
ω(x)dµ(x)

] [
1
µ(B)

∫
B
ω(x)−

1
p−1 dµ(x)

]p−1

≤C, if 1 < p <∞,

M(ω)(x) ≤Cω(x), if p = 1,

then we say ω is an Ap(X) weight and write ω ∈ Ap(X). Define A∞(X) ≡
⋃

1≤p<∞Ap(X).
Let qω ≡ inf{q : ω ∈ Aq(X)} denote the critical index of ω.
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For every ball B, denote ω(B) =
∫

B w(x)dµ(x). It is well known that if ω ∈ A∞(X), then
there exists a constant C ≥ 1 such that for all x ∈ X and r > 0,

ω(B(x,2r)) ≤Cω(B(x,r)). (1.5)

Denote V(x,y) = µ(B(x,d(x,y))), W(x,y) = ω(B(x,d(x,y))).
The following approximation to the identity was constructed by Han, Li and Lu in [8].

Definition 1.3. A sequence {S k}k∈Z of operators is said to be an approximation to the iden-
tity if there exists constant C > 0 such that for all k ∈ Z and all x, x′,y,y′ ∈ X, S k(x,y), the
kernel of S k satisfy the following conditions:

(i) S k(x,y) = 0 if d(x,y) ≥C2−k and |S k(x,y)| ≤C 1
V2−k (x)+V2−k (y) ;

(ii) |S k(x,y)−S k(x′,y)| ≤C2kϑd(x, x′)ϑ 1
V2−k (x)+V2−k (y) ;

(iii) Property (ii) holds with x and y interchanged;

(iv) |[S k(x,y)−S k(x,y′)]− [S k(x′,y)−S k(x′,y′)]| ≤C22kϑd(x, x′)ϑd(y,y′)ϑ 1
V2−k (x)+V2−k (y) ;

(v)
∫
X

S k(x,y)dµ(y) =
∫
X

S k(x,y)dµ(x) = 1.

We recall the definition of test functions in [8].

Definition 1.4. Let 0 < β,γ ≤ ϑ where ϑ is the regularity exponent on X given in and r > 0.
A function ϕ on X is said to be a test function of type (x0,r,β,γ) if f satisfies the following
conditions:

(i) |ϕ(x)| ≤C 1
Vr(x0)+V(x,x0)

(
r

r+d(x,x0)

)γ
;

(ii) |ϕ(x)−ϕ(y)| ≤ C
(

d(x,y)
r+d(x,x0)

)β 1
Vr(x0)+V(x,x0)

(
r

r+d(x,x0)

)γ
for all x,y ∈ X with d(x,y) ≤ (r+

d(x, x0))/2τ.

We denote byG(x1,r,β,γ) the set of all test functions of type (x1,r,β,γ). If ϕ ∈G(x1,r,β,γ)
we define its norm by ‖ϕ‖G(x1,r,β,γ) ≡ inf{C : (i) and (ii) hold}. Now fix x0 ∈ X we denote
G(β,γ) = G(x0,1,β,γ) and by G0(β,γ) the collection of all test functions in G(β,γ) with∫
X

f (x)dx = 0. It is easy to check that G(x1,r,β,γ) = G(β,γ) with equivalent norms for all
x1 ∈ X and r > 0. Furthermore, it is also easy to see that G(β,γ) is a Banach space with
respect to the norm in G(β,γ).

Let
◦

Gϑ (β,γ) be the completion of the space G0(ϑ,ϑ) in the norm of G(β,γ) when 0 <

β,γ < ϑ. If f ∈
◦

Gϑ (β,γ), we then define ‖ f ‖ ◦
Gϑ(β,γ)

= ‖ f ‖G(β,γ). (
◦

Gϑ (β,γ))′, the distribution

space, is defined to be the set of all linear functionals L from
◦

Gϑ (β,γ) to Cwith the property

that there exists C ≥ 0 such that for all f ∈
◦

Gϑ (β,γ),

|L( f )| ≤C‖ f ‖ ◦
Gϑ(β,γ)

.
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We give the definition of non-tangential maximal functions on X. Let {S k} be an approxi-

mation to the identity with regularity exponent ϑ. For f ∈ (
◦

Gϑ(β,γ))′ with β,γ ∈ (0,ϑ), The
radial maximal operatorM0 is defined by

M0 f (x) ≡ sup
k∈Z
|S k( f )(x)|.

The grand maximal function is defined by

f ∗(x) ≡ sup
{
|〈 f ,ϕ〉| : ϕ ∈

◦

Gϑ(β,γ),‖ϕ‖G(x,r,β,γ) ≤ 1 for some r > 0
}
.

Now we give the definition of weighed weak Hardy spaces Hp,∞
ω (X).

Definition 1.5. Let {S k} be an approximation to the identity with regularity exponent ϑ.
Let ω ∈ A∞(X) with qω < 1+ ϑD and p ∈ (qω/(1+ϑ/D),1], σ ∈ (0,∞) and β,γ ∈ (0,ϑ). The
weighed weak Hardy space Hp,∞

ω (X) is defined by

Hp,∞
ω (X) ≡ { f ∈ (

◦

Gϑ(β,γ))
′ :M0 f ∈ Lp,∞

ω (X)}.

The Hp,∞
ω quasi-norm of f is defined by ‖ f ‖Hp,∞

ω (X) ≡ ‖M0 f ‖Lp,∞
ω (X).

The main result of this paper is as follows.

Theorem 1.6. Letω ∈ A∞(X) with qω < 1+ ϑD and p ∈ (qω/(1+ϑ/D),1]. Given f ∈Hp,∞
ω (X),

there exists a sequence of bounded functions { fk}∞k=−∞ such that

(a) f −
∑
|k|≤N fk→ 0 in the sense of distributions;

(b) each fk may be further decomposed as fk =
∑∞

i=1 hk
i in the sense of distribution, where

each hk
i satisfies:

(i) hk
i is supported in a ball Bk

i with {Bk
i } having bounded overlapping for each k;

(ii)
∫

Bk
i
hk

i = 0;

(iii) ‖hk
i ‖L∞ ≤ C2k and

∑
iω(Bk

i ) ≤ C12−kp Moreover, C1 is (up to an absolute con-
stant) less than ‖ f ‖p

Hp,∞
ω (X)

.

Conversely, if f is a distribution satisfying (a) and (b) (i)-(iii), then f ∈ Hp,∞
ω (X) and

‖ f ‖Hp,∞
ω (X) ≤ cC1 (where c is some absolute constant).

As an application of the atomic decomposition, we prove an interpolation theorem,
which generalizes the result in [2].

Theorem 1.7. Let D/(D+ϑ) < q < p ≤ 1 < p0 <∞ and ω ∈ Ap0(X). Suppose that T is a
subadditive operator. If T is bounded both on Lp0

ω (X) and on the weighted Hardy space
Hq
ω(X), then T is bounded on Hp,∞

ω (X).
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Remark 1.8. (i) Let (X,d,µ) be a space of homogeneous type only satisfying (1.1) and (1.2)
(in the sense of Coifman and Weiss [1]). In [12], it has been shown that there exists a
quasi-metric d̃ on X, equivalent to d and satisfying (1.3) and

µ(B̃(x,r)) ∼ rn, for some fixed n, (1.6)

where B̃(x,r) = {y ∈X : d̃(x,y) < r}. In the current paper, we only need (1.3) and a condition
like (1.6) is not required.
(ii) As in the unweighted case in [3, 17], both the weighted Hardy spaces Hp

ω(X) and the
weak Hardy spaces Hp,∞

ω (X) can equivalently be defined via Littlewood-Paley functions,
radial maximal functions, non-tangential maximal functions and grand maximal functions.
Details will appear elsewhere.

2 Some lemmas

The following result was independently founded by Stein-Taibleson-Weiss [15] and by
Kalton [10].

Lemma 2.1. Let gk be a sequence of measurable functions and let 0 < r < 1. Assume that
ω({|gk| > λ}) ≤ C/λr with C independent of k and λ. Then, for every numerical sequence
{ck} in lr we have

ω


x :

∣∣∣∑
k

ckgk
∣∣∣ > λ

 ≤ 2− r
1− r

C
λr

∑
k

|ck|
r.

The following lemma is the Whitney decomposition theorem on space of homogeneous
type X (see [14, 17]).

Lemma 2.2. Let Ω be an open proper subset of X and let d(x) = inf{d(x,y) : y < Ω}. Let
r(x) = d(x)/30. Then there exist a positive number L depending on τ,n, but independent of
Ω, and a sequence {xk}k such that if we denote r(xk) by rk, then

(i) B(xk,rk/4) are pairwise disjoint;

(ii) ∪kB(xk,rk) = Ω;

(iii) for every given k, B(xk,15rk) ⊂Ω;

(iv) for every given k, x ∈ B(xk,15rk) implies that 15rk < d(x) < 45rk;

(v) for every given k, there exists a yk <Ω such that d(xk,yk) < 45rk;

(vi) {B(xk,13τ2rk)}∞k=1 have bounded overlap, that is, for every given k, the number of
balls B(xi,13τ2ri) whose intersections with the ball B(xk,13τ2rk) are non-empty is at
most L.

The following lemma is the partition of unity on space of homogeneous type X (see
[17, Lemma 2.3]).

Lemma 2.3. LetΩ be an open subset of X with finite measure. Consider the sequence {xk}k

and {rk}k given in Lemma 2.2. Then there exist non-negative functions {ϕk}k satisfying:
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(i) for any given k, 0 ≤ ϕk ≤ 1, supp ϕk ⊂ B(xk,2rk) and
∑

kϕk = χΩ;

(ii) for any given k and x ∈ B(xk,rk), ϕk(x) ≥ 1/C, where C is a positive constant inde-
pendent of Ω;

(iii) there exists a positive constant C independent ofΩ such that for all k and all ϑ ∈ (0,1],
‖ϕk‖G(xk ,rk ,ϑ,ϑ) ≤Cµ(B(xk,rk)).

In this case, we say that {ϕk}k are “bump functions” associated with {Bk}k.

The following lemma can be proved as in the classical case, see [14, 7].

Lemma 2.4. Suppose ω ∈ A∞(X) and q > qω. Then there exists 0 < δ <∞ such that for all
balls B and all measurable subsets A of B,(

|A|
|B|

)q

.
w(A)
w(B)

.

(
|A|
|B|

)δ
.

3 Proof of Theorems 1.6

For k ∈ Z, we set Ωk = {x ∈ X : f ∗(x) > 2k}. Then for any k ∈ Z, Ωk is a proper open
subset of X with ω(Ωk) ≤ C2−kp‖ f ‖p

Hp,∞
ω (X)

<∞. Let {Bk
i }
∞
i=1 = {B(xk

i ,r
k
i )}∞i=1 be the Whitney

decomposition of Ωk, and let ϕk
i be the “bump functions” associated to Bk

i in the sense of
Lemmas 2.2 and 2.3. For each k ∈ Z, define dk(x) = inf{d(x,y) : y < Ωk}. Denote mk

i =
1∫
X
ϕk

i

∫
X

fϕk
i .We decompose f as

f (x) =

 f (x)χΩc
k
(x)+

∞∑
i=1

mk
i ϕ

k
i (x)

+ ∞∑
i=1

( f (x)−mk
i )ϕk

i (x),

where and in what follows, we use Ac to denote the complement of the set A in X. Denote

gk(x) ≡

 f (x)χΩc
k
(x)+

∞∑
i=1

mk
i ϕ

k
i (x)

 .
Clearly,

| f (x)χΩc
k
(x)| ≤C f ∗(x)χΩc

k
(x) ≤C2k. (3.1)

By (v) in Lemma 2.2, there exist yk ∈Ω
c
k such that

|mk
i | ≤C f ∗(yk) ≤C2k. (3.2)

Thus |gk(x)| ≤C2k for all x ∈ X. Therefore, we have the uniform convergence

lim
k→−∞

gk(x) = 0. (3.3)

On the other hand, noticing that µ(Ωk) = O(2−kp)→ 0, as k→∞, we obtain

lim
k→∞

gk(x) = f (x), a.e.. (3.4)
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By (3.3) and (3.4), we can write f =
∑∞

k=−∞ gk+1−gk ≡
∑∞

k=−∞ fk, a.e.. One can check

fk =
∞∑

i=1

[
( f −mk

i )ϕk
i −

∞∑
j=1

( f −mk+1
i j )ϕk

i ϕ
k+1
j

]
+

∞∑
j=1

[ ∞∑
i=1

( f −mk+1
i j )ϕk

i ϕ
k+1
j − ( f −mk+1

j )ϕk+1
j

]
,

where all the series converges in (Gϑ0 (β,γ))′ and mk+1
i j =

1∫
ϕk

i ϕ
k+1
j

∫
fϕk

i ϕ
k+1
j . Let βk

i = ( f −

mk
i )ϕk

i −
∑∞

j=1( f −mk+1
i j )ϕk

i ϕ
k+1
j and γk+1

j =
∑∞

i=1( f −mk+1
i j )ϕk

i ϕ
k+1
j − ( f −mk+1

j )ϕk+1
j . Denote

B̃k
i ≡ B(xk

i ,13τ2rk
i ), where τ is the constant appearing in the triangle inequality (1.1). Then

by Lemma 2.2 (vi), we know that, for each k ∈ Z, {B̃k
i }i has bounded overlap. Clearly,

suppβk
i ⊂ B(xk

i ,2rk
i ) ⊂ B̃k

i . Now we claim that for each j ∈ Z, there exists an i ∈ Z such
that suppγk

j ⊂ B̃k
i . Indeed, B(xk+1

j ,2rk+1
j ) ⊂ Ωk+1 ⊂ Ωk =

⋃∞
k=1 B(xk

i ,r
k
i ). Thus there exists

B(xk
i ,r

k
i ) = B(xk

i j
,rk

i j
) such that B(xk

i ,r
k
i )∩B(xk+1

j ,2rk+1
j ) , ∅. Then for any x ∈ B(xk+1

j ,2rk+1
j )

and any y ∈ B(xk
i ,r

k
i )∩B(xk+1

j ,2rk+1
j ), by Lemma 2.2 (iv) and dk+1(y) ≤ dk(y),

d(x, xk
i ) ≤ τ2[d(x, xk+1

j )+d(xk+1
j ,y)+d(y, xk

i )] ≤ τ2[(4/15)dk(y)+ rk
i ] ≤ 13τ2rk

i .

Therefore suppγk
j ⊂ B(xk+1

j ,2rk+1
j ) ⊂ B̃k

i , which verifies the claim. Denote γ̃k
i = γ

k
j so that

suppγ̃k
i ⊂ B̃k

i .

Next, by (3.1), (3.2) and noticing that {B̃k+1
j }
∞
j=1 have bounded overlap, we have

|βk
i | = |( f −mk

i )ϕk
i −

∞∑
j=1

( f −mk+1
i j )ϕk

i ϕ
k+1
j |

≤ | fϕk
i χΩc

k+1
|+ |mk

i |ϕ
k
i +

∞∑
j=1

|mk+1
i j |ϕ

k
i ϕ

k+1
j ≤C2k.

Similarly, |̃γk
j | ≤ C2k. Obviously,

∫
X
βk

i (x)dx = 0 =
∫
X
γ̃k

i (x)dx. Define hk
i = β

k
i + γ̃

k
i , then

fk =
∑∞

i=1 hk
i and the convergence in (Gϑ0 (β,γ))′ can be verified as in [2].

Finally, since f ∈ Hp,∞
ω and {Bk

i } have the bounded overlap, by (1.2),

∞∑
i=1

ω(B̃k
i ) .

∞∑
i=1

ω(Bk
i ) . ω(Ωk) . 2−kp‖ f ‖p

Hp,∞
ω (X)

,

which verifies (iii) of (b). Thus we finish the construction of the atomic decomposition.
For the converse, we fix α > 0, and choose k0 so that 2k0 ≤ α < 2k0+1. Write

f =
k0−1∑

k=−∞

fk +
∞∑

k=k0

fk = F1+F2.

Now since

M0(F1)(x) ≤
k0−1∑

k=−∞

M0( fk)(x) ≤C
k0−1∑

k=−∞

2k ≤C3α,
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and ω({x ∈ X :M0(F1)(x) >C3α}) = 0, we have

ω({x ∈ X :M0( f )(x) > (C3+1)α}) ≤ ω({x ∈ X :M0(F2)(x) > α}).

Set Ak0 =
⋃∞

k=k0

⋃
i≥1 3τBk

i , where 3τBk
i denotes the ball centered at xk

i with radius 3rk
i . By

(1.2), ω(Ak0) ≤C0(3τ)D2−k0 ≤C/αp. Therefore it suffices to verify

I = ω({x < Ak0 :M0(F2)(x) > α}) ≤C/αp. (3.5)

Note that for x < 3τBk
i and y ∈ Bk

i , d(x,y) ≥ 1
τd(x, xk

i )−d(y, xk
i ) ≥ 2d(y, xk

i ). Hence by the
cancellation condition of hik ,

M0(hk
i )(x) =sup

j

∣∣∣∣∣∫ [S j(x,y)−S j(x, xk
i )]hk

i (y)dy
∣∣∣∣∣

≤C2k µ(B
k
i )d(y, xk

i )ϑ

V(x,y)d(x,y)ϑ
≤C2k µ(Bk

i )(rk
i )ϑ

µ(B(xk
i ,d(x, xk

i )))d(x, xk
i )ϑ
.

By (1.4),

µ(B(xk
i ,d(x, xk

i ))) .
d(x, xk

i )

rk
i

D

µ(Bk
i ).

Then by Lemma 2.4, for q ∈ (qω, p(1+ ϑD ))

M0(hk
i )(x) .2k µ(B

k
i )1+ ϑD

V(x, xk
i )1+ ϑD

. 2k ω(Bk
i )(1+ ϑD )/q

W(x, xk
i )(1+ ϑD )/q

.

Now applying lemma 2.1 with gki = W(x, xk
i )−(1+ ϑD )/q, r = [(1+ ϑD )/q]−1, and cki = 2k ·

ω(Bk
i )(1+ ϑD )/q, we obtain

I .
1
αr

∑
k≥k0

∑
i

2krω(Bk
i ) .

1
αr

∑
k≥k0

2−k(p−r).

Now since p > r , the last series converges and bounded by C0
1
αr 2−k0(p−r) =C/αp, where C

is independent of α. This proves (3.5) and hence Theorem 1.6 follows. �

4 Proof of Theorem 1.7

For every f ∈ Hp,∞
ω (X) and λ > 0, we need to prove that

ω({x ∈ X : (T f )∗(x) > λ}) .Cλ−p‖ f ‖p
Hp,∞
ω (X)

.

Pick k0 ∈ Z such that 2k0 ≤ λ < 2k0+1. By the atomic decomposition of Hp,∞
ω (X), write f

as f =
∑k0

k=−∞ fk +
∑∞

k=k0+1 fk ≡ F1+F2. Noticing that p0 > 1, we have

‖F1‖Lp0
ω (X) ≤C

k0∑
k=−∞

‖ fk‖Lp0
ω (X) ≤C

k0∑
k=−∞

2k

∑
i

ω(Bk
i )

1/p0

≤C‖ f ‖p/p0

Hp,∞
ω (X)

k0∑
k=−∞

2k(1−p/p0) ≤C‖ f ‖p/p0

Hp,∞
ω (X)

2k0(1−p/p0).
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This together with the Lp0
ω (X) boundedness of grand maximal operator and T yields

ω({x ∈ X : (T F1)∗(x) > λ}) ≤ λ−p0‖(T F1)∗‖p0

L
p0
ω (X)
≤Cλ−p0‖T F1‖

p0

L
p0
ω (X)

≤Cλ−p0‖F1‖
p0

L
p0
ω (X)
≤Cλ−p0‖ f ‖p

Hp,∞
ω (X)

2k0(p0−p)

≤Cλ−p‖ f ‖p
Hp,∞
ω (X)

.

Thus, to finish the proof of Theorem 1.7, it suffices to show that

ω({x ∈ X : (T F2)∗(x) > λ}) ≤Cλ−p‖ f ‖p
Hp,∞
ω (X)

. (4.1)

It is easy to see that for some constant C, C−12−kω(Bk
i )−1/qhk

i is an Hq,∞
ω atom (see [1]).

Then fk ∈ Hq
ω(X) and

‖ fk‖
q
Hq
ω(X)
≤C

∑
i

2kqω(Bk
i ) ≤C2k(q−p)‖ f ‖p

Hp,∞
ω (X)

.

Since T is bounded on Hq
ω(X),

ω({x ∈ X : (T fk)∗(x) > λ}) ≤Cλ−q‖T fk‖
q
Hq
ω(X)
≤Cλ−q‖ fk‖

q
Hq
ω(X)
.

Consequently,
ω({x ∈ X :

[
T ( fk/‖ fk‖Hq

ω(X))
]∗

(x) > λ}) ≤Cλ−q.

Noting that (T F2)∗(x) ≤
∑∞

k=k0+1(T fk)∗(x). Then applying Lemma 2.1, we obtain

ω({x ∈ X : (T F2)∗(x) > λ})

≤ ω({x ∈ X :
∞∑

k=k0+1

‖ fk‖Hq
ω(X) · [T ( fk/‖ fk‖Hq

ω(X))]
∗(x) > λ}) ≤

2−q
1−q

1
λq

∞∑
k=k0+1

‖ fk‖
q
Hq
ω(X)

≤

C‖ f ‖p
Hp,∞
ω (X)

λq

∞∑
k=k0

2k(q−p) ≤C2k0(q−p)‖ f ‖p
Hp,∞
ω (X)

/λq ≤Cλ−p‖ f ‖p
Hp,∞
ω (X)

,

which verifies (4.1). This completes the proof of Theorem 1.7. �
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