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Abstract

Observing that the logarithm of a product of two elliptic operators differs from the
sum of the logarithms by a finite sum of operator brackets, we infer that regularised
traces of this difference are local as finite sums of noncommutative residues. From an
explicit local formula for such regularised traces, we derive an explicit local formula
for the multiplicative anomaly of ζ-determinants which sheds light on its locality and
yields back previously known results.

AMS Subject Classification: 47G30, 11M36

Keywords: pseudodifferential operators, noncommutative residue, canonical and weighted
traces, zeta and weighted determinants, multiplicative anomaly.

1 Introduction

The determinant on the linear group Gl(Cn) reads

detA = etr(log A)

where tr is the matrix trace and log is the multivalued inverse map of the exponential map-
ping exp : gl(Cn)→ Gl(Cn) on the Lie algebra of n×n matrices with complex coefficients.
When the logarithm is defined by a Cauchy integral along a contour around a given spectral
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cut of the matrix, the determinant is independent of the choice of spectral cut [14]. It is
moreover multiplicative as a result of the Campbell-Hausdorff formula and the cyclicity of
the trace, namely:

det(AB) = etr(log AB) = etr(log A+log B) = detAdetB.

In contrast, the ζ-determinant

detζ(A) = e−ζ
′
A(0)

is not multiplicative. Here A is an admissible elliptic classical pseudodifferential operator
(with appropriate spectral cut) acting on sections of a vector bundle E over a closed n-
dimensional manifold M and ζA(s) is the zeta function associated with A, which corresponds
to the unique meromorphic extension of the map s 7→ Tr(A−s) given by the L2-trace of A−s

defined on the domain of holomorphicity Re(as) > n where a is the order of A. It presents a
multiplicative anomaly

Mζ(A,B) =
detζ(AB)

detζ(A)detζ(B)

studied independently by Okikiolu in [22] and by Kontsevich and Vishik in [15].
The multiplicative anomaly of ζ-determinants was expressed in terms of noncommuta-

tive residues of classical pseudodifferential operators in the following situations:

• by Wodzicki [34] (see also [16] for a review) for positive definite commuting elliptic
differential operators,

• by Friedlander [8] for positive definite elliptic pseudodifferential operators,

• by Okikiolu [22] for operators with scalar leading symbols,

• by Kontsevich and Vishik [15] for operators sufficiently close to self-adjoint positive
pseudodifferential operators.

• The multiplicative anomaly was further studied by Ducourtioux [4] in the context of
weighted determinants also discussed in this paper.

The noncommutative residue (see formula (2.7)) introduced independently by Guillemin
[10] and Wodzicki [34], which defines a trace on the algebra C`(M,E) of classical pseudod-
ifferential operators acting on smooth sections of the vector bundle E, is local in so far as it
is the integral over M of a local residue resx(A) which only depends on a finite number of
homogeneous components of the symbol of the operator A. Consequently, the multiplica-
tive anomaly is local.

Locality of the multiplicative anomaly for ζ-determinants relates to the locality of reg-
ularised traces1 of the difference

L(A,B) := log(AB)− log A− log B,

1Regularised traces are linear extensions to the algebra C`(M,E) of the ordinary L2-trace on smoothing
operators, which are non tracial since the L2-trace does not extend to a trace on the algebra C`(M,E).
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on which we focus in this paper, investigating their local feature which follows from the
vanishing of the residue of L(A,B).
To see these links, one first observes that regularised traces of L(A,B) correspond to the
multiplicative anomaly of another type of regularised determinants, namely weighted de-
terminants (see [4])

detQ(A) = etrQ(log A),

defined via a regularised trace trQ (see Definition 4.6) which uses the regulator Q, called
a weight 2. They differ from ζ-determinants by a local expression involving the Wodzicki
residue, as can explicitly be seen from the relation (see [4] Proposition III.1.7):

detζ(A)

detQ(A)
= e
− 1

2a res
[(

log A− a
q log Q

)2
]
,

where a is the order of A, q the order of Q. Consequently, the multiplicative anomaly for
ζ-determinants differs from the multiplicative anomaly for weighted determinants by a local
expression so that logMζ(A,B)− trQ (L(A,B)) is local.

On the other hand, one infers the locality of regularised traces trQ(L(A,B)) of L(A,B)
from the vanishing of the noncommutative residue of L(A,B) (see (6.1)), a property shown
in [29] which implies the multiplicativity of the residue determinant. Indeed, since all
traces on the algebra of classical pseudodifferential operators on a closed connected man-
ifold of dimension larger than one are proportional to the noncommutative residue [34], it
follows that L(A,B) is a finite sum of commutators of classical pseudodifferential opera-
tors. Combining this with the expression of regularised traces of brackets in terms on the
noncommutative residue (see (4.9)), yields the locality of regularised traces trQ(L(A,B)) as
finite sums of noncommutative residues.

Explicitly, in Theorem 6.2 we show that for two admissible elliptic operators A,B with
positive orders a and b, such that the product AB is also admissible, there is an operator
W(τ)(A,B) := d

dt |t=0L(At,AτB) depending continuously on τ such that (see (6.3))

trQ(L(A,B)) =
∫ 1

0
res

(
W(τ)(A,B)

(
log(AτB)

aτ+b
−

log Q
q

))
dτ. (1.1)

The multiplicative anomaly for weighted determinants derived in Proposition 7.3 fol-
lows in a straightforward manner. From (1.1), in Theorem 7.6 we then derive an explicit
local formula for the multiplicative anomaly for operators A and B with positive orders a
and b (see equation (7.4)):

logMζ(A,B) =
∫ 1

0
res

(
W(τ)(A,B)

(
log(AτB)

aτ+b
−

log B
b

))
dτ

+ res
(

L(A,B) log B
b

−
log2 A B
2(a+b)

−
log2 A

2a
−

log2 B
2b

)
(1.2)

and similarly with the roles of A and B interchanged. When the operators A and B commute,
L(A,B) vanishes and formula (1.2) yields back Wodzicki’s formula:

logMζ(A,B) = −res
(
log2 A B
2(a+b)

+
log2 A

2a
+

log2 B
2b

)
.

2A weight is any admissible elliptic operator in C`(M,E) with positive order.
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The r.h.s in the first line of (1.2) comes from a regularised trace trB(L(A,B)) described
in (1.1) with weight Q = B. The r.h.s in the second line of (1.2), which corresponds to
logMζ(A,B)− trQ (L(A,B)), arises from a combination of two types of local terms; (i) local
residues resx(log2 AB), resx(log2 A) and resx(log2 B) arising in formula (7.3) for the zeta
determinants established in [24]; (ii) the local residue resx(L(A,B) log B) arising in a “defect
formula” for regularised traces (4.6) also established in [24], applied here to the regularised
trace trB(L(A,B)) with regulator B. Since the operator

L(A,B) log B
b

−
log2 A B
2(a+b)

−
log2 A

2a
−

log2 B
2b

turns out to be classical (see Lemma 7.5), combining these local residues yields a well-
defined noncommutative residue.

Our approach to the multiplicative anomaly of ζ-determinants is inspired by Okikiolu’s
in [22]. Before actually computing the multiplicative anomaly, she first showed in [21] that
for operators A and B with scalar leading symbols,

L(A,B) '
∞∑

k=2

C(k)(log A, log B),

i.e. that L(A,B)−
∑n+1

k=2 C(k)(log A, log B) is of order<−n, thus generalising the usual Campbell-
Hausdorff formula to classical pseudodifferential operators with scalar leading symbols.
Here C(k)(log A, log B) are Lie monomials given by iterated brackets3.

Under the assumption that the operators have scalar leading symbols, the iterated brack-
ets arising in the Campbell-Hausdorff formula have decreasing order, allowing to implement
ordinary traces after a certain order. In our more general situation, the leading symbols are
not necessarily scalar and the iterated brackets arising in the Campbell-Hausdorff formula
hence do not a priori have decreasing order which is why we use regularised traces instead
of the ordinary trace and study regularised traces of L(A,B). Okikiolu’s proof in the case
of operators with scalar leading symbols is largely based on the observation that the trace
of the operator L(A,B)−

∑n+1
k=2 C(k)(log A, log B) only depends on the first n positively ho-

mogeneous components of A and B where n is the dimension of the underlying manifold
M; this allows her to work with a finite dimensional space of formal symbols. Interest-
ingly, in our more general situation regularised traces of L(A,B) still only depend on the
first n positively homogeneous components of A and B. Precisely, given a weight Q and
two admissible operators A and B in C`(M,E) with non negative orders, we show that (see
Theorem 5.3)

d
dt

trQ(L(A(1+ tS ),B) =
d
dt

trQ(L(A,B(1+ tS )) = 0, (1.3)

3Their precise definition is:

C(k)(P,Q) :=
1
k

∞∑
j=1

(−1) j+1

j

∑
∑ j

i=1 αi+βi=k,α j,β j≥0

(AdP)α1 (AdQ)β1 · · · (AdP)α j (AdQ)β j−1 Q
α1! · · ·α j!β1! · · ·β j!

,

with the following notational convention: (AdP)α j (AdQ)β j−1 Q = (AdP)α j−1 P if β j = 0 in which case this
vanishes if α j > 1.
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for any operator S in C`(M,E) of order < −n.
The proofs of Theorem 5.3 and Theorem 6.2 both use the fact that differentiation in t com-
mutes with regularised traces on differentiable families of constant order, a fact we prove in
Proposition 4.8.

To conclude, this approach sheds light on the locality of multiplicative anomalies for
regularised determinants (weighted determinants on the one hand and ζ-determinants on
the other) in so far that it relates it to the cyclicity of the noncommutative residue and hence
to the multiplicativity of the residue determinant via the locality of regularised traces of
L(A,B), which are interesting in their own right.

2 The noncommutative residue

We recall a few basic definitions concerning classical pseudodifferential operators on closed
manifolds, set some notations and define the noncommutative residue introduced by Wodz-
icki in [33, 34].

Let U be an open subset of Rn. Given a ∈ C, the space of symbols S a(U) consists of
functions σ(x, ξ) in C∞(U ×Rn) such that for any compact subset K of U and any two mul-
tiindices α = (α1, · · · ,αn) ∈ Nn, β = (β1, · · · ,βn) ∈ Nn there exists a constant CKαβ satisfying
for all (x, ξ) ∈ K ×Rn

|∂αx∂
β
ξσ(x, ξ)| ≤CKαβ(1+ |ξ|)Re(a)−|β|, (2.1)

where Re(a) is the real part of a and |β| = β1+ · · ·+βn.

If Re(a1) < Re(a2), then S a1(U) ⊂ S a2(U).

The product ? on symbols is defined as follows: if σ1 ∈ S a1(U) and σ2 ∈ S a2(U),

σ1?σ2(x, ξ) ∼
∑
α∈Nn

(−i)|α|

α!
∂αξσ1(x, ξ)∂αxσ2(x, ξ) (2.2)

i.e. for any integer N ≥ 1 we have

σ1?σ2(x, ξ)−
∑
|α|<N

(−i)|α|

α!
∂αξσ1(x, ξ)∂αxσ2(x, ξ) ∈ S a1+a2−N(U).

In particular, σ1?σ2 ∈ S a1+a2(U).
We denote by S −∞(U) :=

⋂
a∈C S a(U) the algebra of smoothing symbols on U, by

S (U) := 〈
⋃

a∈C S a(U)〉 the algebra generated by all symbols on U.
A symbol σ in S a(U) is called classical of complex order a if there is a smooth cut-off

function χ ∈C∞(Rn) which vanishes for |ξ| ≤ 1
2 and such that χ(ξ) = 1 for |ξ| ≥ 1 such that

σ(x, ξ) ∼
∞∑
j=0

χ(ξ)σa− j(x, ξ) (2.3)

i.e. if for any integer N ≥ 1, we have

σ(N)(x, ξ) := σ−
N−1∑
j=1

χ(ξ)σa− j(x, ξ) ∈ S a−N(U), (2.4)
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where σa− j(x, ξ) is a positively homogeneous function on U × Rn of degree a − j, i.e.
σa− j(x, tξ) = ta− jσa− j(x, ξ) for all t ∈ R+.

Let CS a(U) denote the subset of classical symbols of order a. The symbol product of
two classical symbols is a classical symbol and we denote by

CS (U) =
〈⋃

a∈C

CS a(U)
〉

the algebra generated by all classical symbols on U.

The noncommutative residue of a symbol σ ∈CS (U) at a point x in U is defined by

resx(σ) :=
∫

S ∗xU
(σ(x, ξ))−n d̄S ξ, (2.5)

where S ∗xU ⊂ T ∗xU is the cotangent unit sphere at the point x in U, d̄S ξ =
1

(2π)n dS ξ is the
normalised volume measure on the sphere induced by the canonical volume measure on Rn

and where as before, (·)−n denotes the positively homogeneous component of degree −n of
the symbol.

Given a symbol σ in S (U), we can associate to it the continuous operator

Op(σ) : C∞c (U)→C∞(U)

defined for u ∈C∞c (U)– the space of smooth compactly supported functions on U– by

(Op(σ)u) (x) =
∫

eix.ξσ(x, ξ)̂u(ξ)d̄ξ,

where d̄ξ := 1
(2π)n d ξ with dξ the ordinary Lebesgue measure on T ∗x M ' Rn and û(ξ) is the

Fourier transform of u. Since

(Op(σ)u)(x) =
∫ ∫

ei(x−y).ξσ(x, ξ)u(y)d̄ξdy,

Op(σ) is an operator with Schwartz kernel given by k(x,y) =
∫

ei(x−y).ξσ(x, ξ)d̄ξ, which is
smooth off the diagonal.

A pseudodifferential operator A on U is an operator which can be written in the form
A = Op(σ)+R where σ is a symbol in S (U) with compact support in the variable x, and
where R is a smoothing operator i.e. R has a smooth kernel. Its symbol σA ∼ σ is defined
modulo smoothing symbols. If σ is a classical symbol of order a, then A is called a classical
pseudodifferential operator of order a. The composition of two classical operators A1 and
A2 with symbols σA1 and σA2 and orders a1 and a2 respectively, is a classical operator A1A2
of order a1+a2 with symbol σA1A2 ∼ σA1 ?σA2 .

More generally, let M be a smooth closed manifold of dimension n and π : E → M a
smooth finite rank vector bundle over M modelled on a linear space V.
An operator A : C∞(M,E)→ C∞(M,E) is a (resp. classical) pseudodifferential operator of
order a if given a local trivialising chart (V,φ) on M, for any localisation

Aν = χ2
νAχ1

ν : C∞c (V)→C∞c (V)
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of A where χi
ν ∈ C∞c (V), the operator φ∗(Aν) := φAνφ−1 from the space C∞c (φ(V)) into

C∞(φ(V)) is a (resp. classical) pseudodifferential operator of order a.
Let C`a(M,E) denote the set of classical pseudodifferential operators of order a.
If A1 ∈ C`a1(M,E),A2 ∈ C`a2(M,E), then the product A1A2 lies in C`a1+a2(M,E) and we
denote by

C`(M,E) :=
〈⋃

a∈C

C`a (M,E)
〉

the algebra generated by all classical pseudodifferential operators acting on smooth sections
of E. Let us also introduce the algebra

C`−∞(M,E) :=
⋂
a∈R

C`a(M,E)

of smoothing operators.
The noncommutative residue is a linear form on C`(M,E) built from the noncommuta-

tive residue density at a point x in M defined (with the notation of (2.5)) by

ωres(A)(x) := resx(σA) dx; with resx(σA) :=
∫

S ∗x M
trx

(
(σA(x, ξ))−n

)
d̄S ξ. (2.6)

This turns out to be a globally defined density on the manifold and gives rise to the non-
commutative residue of an operator A ∈ C`(M,E) (see [33, 34] and [10])

res(A) :=
∫

M
ωres(A)(x) :=

∫
M

(∫
S ∗x M

trx
(
(σA(x, ξ))−n

)
d̄ξ

)
dx. (2.7)

The noncommutative residue vanishes on operators of order < −n and is local in the sense
that it only depends on a finite number of positively homogeneous components of the sym-
bol of the operator.
It was proved by Wodzicki [34] (see also [17], [11], [27])4, that when the manifold M is
connected and has dimension larger than one, any trace on the algebra C`(M,E) i.e., any
linear form which vanishes on operator brackets, is proportional to the noncommutative
residue. Consequently (see e.g. [17])

∀A ∈ C`(M,E) (res(A) = 0 =⇒ A ∈ [C`(M,E),C`(M,E)]) . (2.8)

We shall henceforth assume that the manifold M is connected and has dimension larger
than 1.

4The uniqueness was proved in Wodzicki’s thesis written in Russian but the main ideas of the proof can be
found in [17]. Guillemin further studied the uniqueness of the noncommutative residue in a broader context in
[11]. An alternative proof of the uniqueness can be found in [27], which also encompasses the one dimensional
case. It uses arguments similar in spirit to those underlying the proof in the boundary case carried out in [7]
and those underlying the proof of the uniqueness of the canonical trace on non integer operators carried out in
[20].
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3 Logarithms of operators: log(AB)− log A− log B

We review the construction and properties of logarithms of elliptic operators and prove (see
Proposition 3.9) that the expression log(AB)− log A− log B is a finite sum of commutators
of zero order classical pseudodifferential operators.

An operator A ∈ C`(M,E) has principal angle θ if for every (x, ξ) ∈ T ∗M \M × {0}, the
leading symbol (σA(x, ξ))L has no eigenvalue on the ray Lθ = {reiθ,r ≥ 0}; in that case A is
elliptic.

Definition 3.1. We call an operator A ∈ C`(M,E) admissible with spectral cut θ if A has
principal angle θ and the spectrum of A does not meet Lθ = {reiθ,r ≥ 0}. In particular such
an operator is invertible and elliptic. Since the spectrum of A does not meet Lθ, θ is called
an Agmon angle of A.

Remark 3.2. In applications, an invertible operator A is often obtained from an essen-
tially self-adjoint elliptic operator B ∈ C`(M,E) by setting A = B+ πB using the orthog-
onal projection πB onto the kernel Ker(B) of B corresponding to the orthogonal splitting
L2(M,E) =Ker(B)⊕R(B) where R(B) is the (closed) range of B. Here L2(M,E) denotes the
closure of C∞(M,E) with respect to a Hermitian structure on E combined with a Rieman-
nian structure on M.

Let A ∈ C`(M,E) be admissible with spectral cut θ and positive order a. For Re(z) < 0,
the complex power Az

θ of A is defined by the Cauchy integral [30]

Az
θ =

i
2π

∫
Γr,θ

λz
θ(A−λ)−1 dλ, (3.1)

where λz
θ = |λ|

zeiz(argλ) with θ ≤ argλ < θ+2π.
Here

Γr,θ = Γ
1
r,θ∪Γ

2
r,θ∪Γ

3
r,θ (3.2)

where
Γ1

r,θ = {ρeiθ,∞ > ρ ≥ r},

Γ2
r,θ = {ρei(θ−2π),∞ > ρ ≥ r},

and
Γ3

r,θ = {r eit, θ−2π ≤ t ≤ θ}

is a contour oriented clockwise along the ray Lθ around the non zero spectrum of A. The
positive real number r is chosen small enough for the ball B(0,r) centered at zero with
radius r not to intersect the spectrum of A i.e., B(0,r)∩S p(A) = ∅.
The operator Az

θ is a classical pseudodifferential operator of order az with homogeneous
components of the symbol of Az

θ given by

σaz− j(Az
θ)(x, ξ) =

i
2π

∫
Γr,θ

λz
θ b−a− j(x, ξ,λ)dλ.
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Note that the components b−a− j are the positive homogeneous components of the resolvent
(A−λI)−1 in (ξ,λ

1
a ). In particular, its leading symbol is given by(

σAz
θ
(x, ξ)

)L
=

(
(σA(x, ξ))L

)z

θ

and hence Az
θ is elliptic.

The definition of complex powers can be extended to the whole complex plane by setting
Az
θ := AkAz−k

θ for k ∈ N and Re(z) < k; this definition is independent of the choice of k in N
and preserves the usual properties, i.e. Az1

θ Az2
θ = Az1+z2

θ , A j
θ = A j, for j ∈ Z. In particular, for

j = 0, we have A0
θ = I.

Remark 3.3. For a real number t, A and At
θ have spectral cuts θ and tθ; for t close to one,

(At
θ)

z
tθ = (At

θ)
z
θ and hence, (At

θ)
z
tθ = Atz

θ so that

logθ(A
t) = ∂z(At

θ)
z
tθ |z=0
= ∂z(Atz

θ )
|z=0
= t logθ A.

The complex powers of operators depend on the choice of spectral cut, namely we have

Proposition 3.4. [32, 35, 26] Let θ and φ be two spectral cuts for an admissible operator
A in C`(M,E) such that 0 ≤ θ < φ < θ+2π. The complex powers for these two spectral cuts
are related by

Az
θ −Az

φ =
(
1− e2iπz

)
Πθ,φ(A)Az

θ, (3.3)

where the sectorial projection of the operator A (see Section 3 in [26] and references
therein) is defined by

Πθ,φ(A) = A
 1

2iπ

∫
Γr,θ,φ

λ−1(A−λ)−1 dλ


where the contour
Γr,φ,θ = Γ

1
r,θ∪{r eit, θ ≤ t ≤ φ}∪Γ1

r,φ

(with Γ1
r,φ defined as above replacing θ by φ) corresponds to the boundary of the set

Λr,θ,φ := {ρeit,∞ > ρ ≥ r, θ ≤ t ≤ φ}. (3.4)

Remark 3.5. Formula (3.3) generalises to spectral cuts θ and φ such that 0 ≤ θ < φ+2kπ <
θ+ (2k+1)π for some non negative integer k by

Az
θ −Az

φ = e2ikπz I+
(
1− e2iπz

)
Πθ,φ(A)Az

θ. (3.5)

If the set Λr,θ,φ defined by (3.4) delimited by the angles θ and φ does not intersect the
spectrum of the leading symbol of A, it only contains a finite number of eigenvalues of
A and Πθ,φ(A) is a finite rank projection and hence a smoothing operator. In general (see
Propositions 3.1 and 3.2 in [26]), Πθ,φ(A), which is a pseudodifferential projection, is a zero
order operator with leading symbol given by πθ,φ(σL(A)) defined similarly to Πθ,φ replacing
A by the leading symbol σL

A of A so that:

σL
Πθ,φ(A) = πθ,φ(σL

A) := σL
A

 1
2iπ

∫
Γr,θ,φ

λ−1(σL
A−λ)−1 dλ

 ,
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where we have setσL
B(x, ξ)= (σB(x, ξ))L for any (x, ξ) ∈ T ∗M\M×{0} and any B ∈C`(M,E).

Let us now define the logarithm of an admissible operator A in C`(M,E) of positive
order a and with spectral cut θ. There are various ways of doing so, one of which is to first
define logθ(A) A−1 as the bounded operator on any Hs-closure Hs(M,E), s ∈ R of the space
C∞(M,E) of smooth sections of E (see e.g. [10]) by:

logθ(A) A−1 =
1

2πi

∫
Γr,θ

logθ(λ)λ−1 (λ−A)−1 dλ,

where the contour Γr,θ is defined in (3.1), and then to set:

logθ(A) =
(
logθ(A) A−1

)
A.

Since the complex powers of the admissible operator A give rise to a holomorphic family(
Az
θ

)
Re(z)<0

of bounded operators on Hs(M,E), we have logθ A A−1 =
(
∂zAz

θ

)
z=−1

, where the
differentiation takes place in the algebra B(Hs(M,E)) of bounded operators on Hs(M,E).
Consequently, for any u in the domain of A we have

logθ A(u) = (logθ(A) A−1 A)(u) =
((
∂zAz

θ

)
z=−1

A
)
(u) =

((
∂zAz

θ

)
z=0

)
(u).

By construction, logθ A is a bounded linear operator from Hs(M,E) to Hs−a(M,E). Alter-
natively, for any positive ε, we observe that the map z 7→ Az−ε

θ of order a(z− ε) defines a
holomorphic function on the half plane Re(z) < ε with values in B (Hs(M,E)) for any real
number s and we set:

logθ A = Aεθ
(
∂z

(
Az−ε
θ

))
|z=0
= Aεθ

(
∂z

(
i

2π

∫
Γr,θ

λz−ε
θ (A−λ)−1 dλ

))
|z=0

. (3.6)

For any positive ε the operator logθ(A) A−ε = A−ε logθ(A) lies in B (Hs(M,E)) for any real
number s. It follows that logθ A, which is clearly independent of the choice of ε > 0, defines
a bounded linear operator from Hs(M,E) to Hs−aε(M,E) for any positive ε.
The operator logθ A actually defines a pseudodifferential operator on C∞(M,E), whose or-
der is smaller than any positive number. It is not anymore classical, as we shall see below.

Just as complex powers, the logarithm depends on the choice of spectral cut [21]. In-
deed, differentiating (3.3) with respect to z at z = 0 yields for spectral cuts θ,φ such that
0 ≤ θ < φ < 2π (compare with formula (1.4) in [21]):

logθ A− logφ A = −2iπΠθ,φ(A). (3.7)

Formula (3.7) generalises to spectral cuts θ and φ such that 0 ≤ θ < φ+2kπ < (2k+1)π for
some non negative integer k by

logθ A− logφ A = 2ikπ I−2iπΠθ,φ(A). (3.8)

As a result of the above discussion and as already observed in [21], when the leading symbol
σL

A has no eigenvalue inside the set Λr,θ,φ delimited by Γr,θ,φ then Πθ,φ which is a finite rank
projection, is smoothing.

Logarithms of classical pseudodifferential operators are not classical since their sym-
bols involve a logarithmic term log |ξ| as the following elementary result shows (see also
Lemma 2.4 in [21]).
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Proposition 3.6. Let A ∈ C`(M,E) be an admissible operator with spectral cut θ. In a local
trivialisation, the symbol of logθ(A) reads:

σlogθ(A)(x, ξ) = a log |ξ|I+σA
0 (x, ξ) (3.9)

where a denotes the order of A and σA
0 a symbol of order zero.

Moreover, the leading symbol of σA
0 is given by

(σA
0 )L(x, ξ) = logθ

(
σL

A

(
x,
ξ

|ξ|

))
∀(x, ξ) ∈ T ∗M \M×{0}. (3.10)

In particular, if σA has scalar leading symbol then so have σA
θ and σΠθ,φ(A) for any other

spectral cut φ.

Proof. To simplify notation we drop the explicit mention of the spectral cut θ. Given a
local trivialisation over some local chart, the symbol of Az

θ has the formal expansion σz
A ∼∑

j≥0 b(z)
az− j where a is the order of A and b(z)

az− j is a positively homogeneous function of

degree az− j. Since logθ A = A
(
∂zAz−1

θ

)
|z=0

, we have

σlogθ A ∼ σA?σ(
∂zAz−1

θ

)
|z=0

.

Suppose that ξ , 0; using the positive homogeneity of the components, we have:

b(z−1)
az−a− j(x, ξ) = |ξ|az−a− jb(z−1)

az−a− j

(
x,
ξ

|ξ|

)
and hence

∂zb
(z−1)
az−a− j(x, ξ) = a log |ξ| |ξ|az−a− jb(z−1)

az−a− j

(
x,
ξ

|ξ|

)
+ |ξ|az−a− j∂zb

(z−1)
az−a− j

(
x,
ξ

|ξ|

)
.

It follows that(
∂zb

(z−1)
az−a− j(x, ξ)

)
|z=0
= a log |ξ|b(−1)

−a− j(x, ξ)+ |ξ|−a− j
(
∂zb

(z−1)
az−a− j

(
x,
ξ

|ξ|

))
|z=0

.

Hence
(
∂zAz−1

θ

)
|z=0

has symbol
(
∂zb(z−1)(x, ξ)

)
|z=0

of the form a log |ξ|σA−1(x, ξ)+τA(x, ξ) with
τA a classical symbol of order −a whose homogeneous component of degree −a− j reads:

(τA)−a− j (x, ξ) = |ξ|−a− j
(
∂zb

(z−1)
az−a− j

(
x,
ξ

|ξ|

))
|z=0

.

Thus the operator logθ A= A
(
∂zAz−1

θ

)
|z=0

has a symbol of the form a log |ξ|+σ0(logθ A)(x, ξ),
where

σ0(logθ A)(x, ξ) ∼
∞∑

k=0

∑
i+ j+|α|=k

(−i)|α|

α!
∂αξ (σA)a−i ∂

α
x (τA)−a− j (x, ξ)
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is a classical symbol of order zero. Its leading symbol reads

σL
0 (logθ A)(x, ξ) = σL

A(x, ξ) |ξ|−a
(
∂zb

(z−1)
az−a (x,

ξ

|ξ|

)
)|z=0

= σL
A(x, ξ)

∂z

(
σL

A

(
x,
ξ

|ξ|

))z−1

θ


|z=0

= logθσ
L
A

(
x,
ξ

|ξ|

)
for any (x, ξ) in T ∗M \M×{0}. �

This motivates the introduction of log-polyhomogeneous symbols (see e.g. [17]), to
which the local noncommutative residue easily extends.

Definition 3.7. A symbol σ ∈ S (U) is called log-polyhomogeneous of order a and type k
for some non negative integer k if there is some smooth function χ on Rn which vanishes
around zero and is identically one outside the unit ball, such that

σ(x, ξ) ∼
∞∑
j=0

χ(ξ) (σ(x, ξ))a− j

where for any non negative integer j,

(σA(x, ξ))a− j =

k∑
l=0

(σA(x, ξ))a− j,l (x, ξ) logl |ξ| ∀(x, ξ) ∈ T ∗U,

with σa− j,l, l = 0, · · · ,k are positively homogeneous of degree a− j.
The local noncommutative residue at a point x in U defined in (2.5) extends to log-polyhomogeneous
symbols by:

resx(σ) :=
∫

S ∗xU
(σ(x, ξ))−n d̄S ξ. (3.11)

Powers of the logarithm of a given admissible operator combined with all classical
pseudodifferential operators generate the algebra of log-polyhomogenous operators [17].

A log-polyhomogenous operator A of type k is a pseudodifferential operator whose lo-
cal symbol σA(x, ξ) in any local trivialisation asymptotically is log-polyhomogeneous of
type k.
Let us denote the set of such operators by C`a,k(M,E) and its union over all non negative
integers k by C`a,∗(M,E) =∪∞k=0C`a,k(M,E). In particular, a classical pseudodifferential op-
erator is a log-polyhomogeneous operator of log-type 0 and C`a,0(M,E) = C`a(M,E). The
product of a log-polyhomogeneous operator of type k and a log-polyhomogeneous operator
of type l is log-polyhomogeneous operator of type k+ l so that, following [17], we can build
the algebra C`∗,∗(M,E)= 〈∪a∈C,k∈Z+C`

a,k(M,E)〉 generated by all log-polyhomogeneous op-
erators.
For an operator A in C`∗,∗(M,E), one can define the local noncommutative residue at a point
x in M similarly to the case of classical operators by:

resx(A) :=
∫

S ∗x M
trx (σA(x, ξ))−n d̄S ξ.



40 M. F. Ouedraogo and S. Paycha

However, unlike Lesch’s extended noncommutative residue on log-polyhomogeneous op-
erators [17], the locally defined residue density resx(A)dx is not expected to patch up to a
globally defined residue density.
However, it does for logarithms of any admissible operator A in C`(M,E) and we have [29]:

res(log A) = −aζA(0) (3.12)

where ζA(0) is the constant term in the Laurent expansion of the unique meromorphic ex-
tension ζA(s) of the map s 7→ Tr(A−s) given by the L2-trace of A−s defined on the domain of
holomorphicity Re(as) > n 5.
In [29], Scott showed the multiplicativity of the associated residue determinant

detres(A) := eres(log A).

He actually proved a stronger statement, namely that given two admissible operators A,B
such that their product AB is also admissible, the following expression

L(A,B) := log(AB)− log A− log B

has vanishing noncommutative residue.

Remark 3.8. Strictly speaking, one should specify the spectral cuts θ of A, φ of B and ψ of
AB in the expression L(A,B) setting instead

Lθ,φ,ψ(A,B) := logψ(AB)− logθ A− logφ B.

Then by (3.7)

Lθ,φ,ψ(A,B)−Lθ
′,φ′,ψ′(A,B) = −2iπ

(
Πψ,ψ′(AB)−Πθ,θ′(A)−Πφ,φ′(B)

)
.

Since the noncommutative residue vanishes on pseudodifferential projections by a result of
Wodzicki ([32]; see also [2]), it follows that

res(L(A,B)) = 0. (3.13)

Up to a modification of the operators A and B, one can actually choose fixed spectral cuts θ
and φ by the following argument of Okikiolu [21]:

Lθ,φ,ψ(A,B) = Lπ,π,ψ−(θ+φ)(ei(π−θ)A,ei(π−φ)B).

Indeed, if A,B,AB have spectral cut θ,φ,ψ respectively, then A′ = ei(π−θ)A and B′ = ei(π−φ)B
have spectral cut π and A′B′ has spectral cut ψ+2π−θ−φ. So we can assume that θ = φ = π
without loss of generality.
Keeping in mind these observations, in order to simplify notations we assume that A and B
have spectral cuts π and drop the explicit mention of the spectral cuts.

It follows from (2.8) that

L(A,B) ∈ [C`(M,E),C`(M,E)], (3.14)

so that L(A,B) is a finite sum of commutators. The following proposition provides a refine-
ment this statement.

5This actually is an instance in the case A(z) = A−z of the more general defect formula (4.6) derived in [24].
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Proposition 3.9. Let A,B be two admissible operators, which w.l.o.g. are assumed to have π
as spectral cut (see Remark 3.8), such that their product AB is also admissible with spectral
cut π. Then L(A,B) is a finite sum of Lie brackets of operators in C`0(M,E):

L(A,B) ∈ [C`0(M,E),C`0(M,E)].

Proof. Let us check that L(A,B) lies in C`0(M,E). If has order a and B has order b then
AB has order a +b, we have

σL(A,B) = σlog AB(x, ξ)−σlog A(x, ξ)−σlog B(x, ξ)

= (a+b) log |ξ| I+σAB
0 (x, ξ)−a log |ξ|I−σA

0 (x, ξ)−b log |ξ| I−σB
0 (x, ξ)

∼ σAB
0 (x, ξ)−σA

0 (x, ξ)−σB
0 (x, ξ) (3.15)

so that the operator L(A,B) is indeed classical of order 0 and by (3.10) it has leading symbol
given for any (x, ξ) in T ∗M \M×{0} by

(
σL(A,B)(x, ξ)

)
0 = logσL

AB

(
x,
ξ

|ξ|

)
− logσL

A

(
x,
ξ

|ξ|

)
− logσL

B

(
x,
ξ

|ξ|

)
=: L

(
σL

A,σ
L
B

) (
x,
ξ

|ξ|

)
.

Here as before, σL
C stands for the leading symbol of the operator C.

Applying the usual Campbell-Hausdorff formula to the matrices σL
A

(
x, ξ
|ξ|

)
and σL

B

(
x, ξ
|ξ|

)
and implementing the fibrewise trace trx yields:

trx

(
logσL

AB

(
x,
ξ

|ξ|

)
− logσL

A

(
x,
ξ

|ξ|

)
− logσL

B

(
x,
ξ

|ξ|

))
= trx

(
L
(
σL

A,σ
L
B

) (
x,
ξ

|ξ|

))
= 0.

It follows that any leading symbol trace TrΛ0 (C) := Λ
(
(trx(σC))0

)
(see e.g. [25]) on the

algebra C`0(M,E), where Λ is a linear form on C∞(S ∗M) and the index 0 stands for the
positively homogeneous component of degree 0, vanishes on L(A,B):

TrΛ(L(A,B)) = Λ
(
trx

(
σL(A,B)

)
0

)
= 0.

Thus both the noncommutative residue and leading symbol traces vanish on L(A,B). By the
results of [18] (see the proof of Theorem 4 formula (16)), in dimension larger than one the
zeroth Hochschild homology

HH0(C`0(M,E)) = C`0(M,E)/[C`0(M,E),C`0(M,E)]

of C`0(M,E) is isomorphic to C⊕C∞(S ∗M) via the map A 7→
(
res(A),σA

0

)
. An alternative

proof was given in [27] Corollary 5.4. Hence, any operator in C`0(M,E) with vanishing
residue and leading symbol traces lies in [C`0(M,E),C`0(M,E)]. It follows that L(A,B) lies
in [C`0(M,E),C`0(M,E)]. �

4 Properties of weighted traces

Since traces on C`(M,E) are proportional to the noncommutative residue which vanishes
on smoothing operators, the L2-trace on smoothing operators does not extend to the whole
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algebra C`(M,E). Instead we use linear extensions which we call weighted traces, of the
ordinary L2-trace on smoothing operators to the whole algebra C`(M,E). We review ba-
sic properties of weighted traces and prove (see Proposition 4.8) that the canonical and
weighted traces as well as the noncommutative residue commute with differentiation on
differentiable families of operators with constant order. Weighted traces arise as finite parts
of canonical traces of holomorphic families of classical pseudodifferential operators.
Let us recall the notion of holomorphic family of classical pseudodifferential symbols taken
from [24]. It leads to the same notion of (weak) holomorphic family of classical pseudodif-
ferential operators (see Definition 4.3) as the one defined in [15] by means of their kernels
(see also [12] for the related notion of gauged distributions).

Definition 4.1. Let Ω be a domain of C and U an open subset of Rn. A family (σ(z))z∈Ω is
a holomorphic family of End(V)-valued classical symbols on U parametrised by Ω when

1. the map z 7→ α(z) with α(z) the order of σ(z), is holomorphic in z,

2. z 7→ σ(z) is holomorphic as element of C∞(U ×Rn)⊗̂End(V) (here ⊗̂ denotes the
Grothendieck completion) and for each z ∈ Ω, σ(z) ∼

∑∞
j=0χσ(z)α(z)− j (for some

smooth function χ which is identically one outside the unit ball and vanishes in a
neighborhood of 0) lies in CS α(z)(U)⊗End(V),

3. for any positive integer N, the remainder term σ(N)(z) = σ(z) −
∑N−1

j=0 σ(z)α(z)− j is
holomorphic in z ∈Ω as an element of C∞(U ×Rn)⊗End(V) and its k-th derivative

(x, ξ) 7→ ∂k
zσ(N)(z)(x, ξ) := ∂k

z
(
σ(N)(z)(x, ξ)

)
lies in S α(z)−N+ε(U)⊗End(V) for all ε > 0 locally uniformly in z, i.e the k-th derivative
∂k

zσ(N)(z) satisfies a uniform estimate (2.1) in z on compact subsets in Ω.

In particular, for any integer j ≥ 0, the (positively) homogeneous component σα(z)− j(z) of
degree α(z)− j of the symbol is holomorphic on Ω as an element of C∞(U ×Rn)⊗End(V).

It is important to observe that the derivative of a holomorphic family σ(z) of classical
symbols is not classical anymore since it yields a holomorphic family of symbols σ′(z) of
order α(z), the asymptotic expansion of which involves a logarithmic term and reads [24]:

σ′(z)(x, ξ) ∼
∞∑
j=0

χ(ξ)
(
log |ξ|σ′α(z)− j,1(z)(x, ξ)+σ′α(z)− j,0(z)(x, ξ)

)
∀(x, ξ) ∈ T ∗U \U ×{0}

for some smooth cut-off function χ around the origin which is identically equal to 1 outside
the open unit ball and positively homogeneous symbols

σ′α(z)− j,0(z)(x, ξ) = |ξ|α(z)− j ∂z

(
σα(z)− j(z)

(
x,
ξ

|ξ|

))
,

σ′α(z)− j,1(z)(x, ξ) = α′(z)σα(z)− j(z)(x, ξ)

of degree α(z)− j.
The regularised cut-off integral on symbols we are about to introduce is an essential
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ingredient to build linear extensions of the L2-trace.
The integral

∫
Bx(0,R) tr(σ(x, ξ))d̄ξ of the trace of a symbol σ ∈CS (U)⊗End(V) over the ball

Bx(0,R) of radius R centered at 0 in the cotangent space T ∗xU at a point x ∈ U, has an
asymptotic expansion in decreasing powers of R which is polynomial in log R so that the
cut-off integral which corresponds to the constant term in this expansion

−

∫
T ∗x U

tr (σ(x, ξ)) d̄ξ := fpR→∞

∫
Bx(0,R)

tr (σ(x, ξ)) d̄ξ

is well defined. It coincides with the ordinary integral whenever the latter converges.
We now recall the properties of cut-off integrals of holomorphic families of symbols.

Proposition 4.2. 1. [15] The cut-off regularised integral −
∫

T ∗x U trx (σ(z)(x, ξ)) d̄ξ of a holo-
morphic family σ(z) of classical pseudodifferential symbols on a neighborhood U ⊂
M of holomorphic order α(z) is a meromorphic function in z with simple poles. The
residue at a pole z0 for which α′(z0) , 0 is given by:

Resz=z0 −

∫
T ∗x U

trx (σ(z)(x, ξ)) d̄ξ = −
1

α′(z0)
res(σ(z0)). (4.1)

2. [24] Furthermore, if its holomorphic order is affine and non constant 6, its Laurent
expansion has constant term at z0 given by

fpz=z0
−

∫
T ∗x U

trx (σ(z)(x, ξ)) d̄ξ = −
∫

T ∗x U
trx (σ(z0)(x, ξ)) d̄ξ−

1
α′(z0)

resx
(
σ′(z0)

)
. (4.2)

Here we use the local residue extended to log-polyhomogeneous symbols (see (3.11))
since the derivative σ′(z0) of a holomorphic family of classical symbols σ(z) with
order α(z) at a point z0 is expected to be logarithmic with the same order.

Let us now carry out these constructions to the operator level.
For any A ∈ C`(M,E), for any x ∈ M, the following expression defines a local density:

ωKV (A)(x) := TRx(A)dx :=
(
−

∫
T ∗x M

trx (σA(x, ξ)) d̄ξ
)

dx. (4.3)

It patches up to a global density on M whenever the operator A in C`(M,E) has non integer
order or has order < −n so that the Kontsevich-Vishik canonical trace [15] (see also [17]):

TR(A) :=
∫

M
ωKV (A)(x) :=

∫
M

TRx(A)dx (4.4)

makes sense.
The canonical trace can be applied to holomorphic families of classical pseudodifferential
operators with varying complex order.

Definition 4.3. Let (A(z))z∈Ω be a family of classical pseudodifferential operators in C`(M,E)
with distribution kernels (x,y) 7→ KA(z)(x,y). The family is holomorphic if

6Here and in what follows, we assume that the order of the holomorphic family is affine and non constant
so that applying the fibrewise trace, formula (1.50) of [24] boils down to the following one.
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1. the order α(z) of A(z) is holomorphic in z,

2. in any local trivialisation of E, we can write A(z) in the form A(z) = Op(σz)+R(z),
for some holomorphic family of End(V)-valued symbols (σ(z))z∈Ω where V is the
model space of the fibres of E, and some holomorphic family (R(z))z∈Ω of smoothing
operators i.e. given by a holomorphic family of smooth Schwartz kernels,

3. the (smooth) restrictions of the distribution kernels KA(z) to the complement of the
diagonal ∆ ⊂ M ×M, form a holomorphic family with respect to the topology given
by the uniform convergence in all derivatives on compact subsets of M×M−∆.

Example 4.4. Given an admissible operator A ∈ C`(M,E) with spectral cut θ, a family z 7→

A
− z

1+µz
θ for µ ∈R is a holomorphic family of ψDOs. In particular, A(z)= A−z

θ is a holomorphic
family. Note that the derivatives A′(z) = − logθ A A−z

θ are not classical operators.

Integrating the formulae in Proposition 4.2 along the manifold M yields the following
result on the level of operators.

Proposition 4.5. 1. [15] The canonical trace TR(A(z)) of a holomorphic family A(z)
of classical pseudodifferential operators in C`(M,E) of holomorphic order α(z) is
a meromorphic function in z with simple poles and residue at a pole z0 for which
α′(z0) , 0 is given by:

Resz=z0TR(A(z)) = −
1

α′(z0)
res(A(z0)). (4.5)

2. [24] Furthermore, if its holomorphic order is affine and non constant, its Laurent
expansion has constant term at z0 given by

fpz=z0
TR(A(z)) =

∫
M

dx
(
TRx(A(z0))−

1
α′(z0)

resx(A′(z0))
)
. (4.6)

Applying these results to a holomorphic family A(z) := A Q−z where A is any operator
in C`(M,E) and Q an admissible operator in C`(M,E) with positive order and spectral cut
7 α, we infer (see e.g. [15], [23], [3] and references therein) that the map z 7→ TR

(
A Q−z

α

)
is

meromorphic with simple poles.

Definition 4.6. Given an admissible operator Q with positive order, which we call a weight,
the Q-weighted trace of an operator A in C`(M,E) is given by:

trQ
α (A) := fpz=0TR

(
A Q−z

α

)
:= lim

z→0

(
TR

(
A Q−z

α

)
−Resz=0

(
TR

(
A Q−z

α

)
z

))
,

where α is a spectral cut for Q.

Applying (4.6) to the family A(z) = A Q−z
α yields the following “defect formula” [24]:

trQ
α (A) =

∫
M

(
TRx (A)−

resx
(
A logα Q

)
q

)
dx, (4.7)

7For further use, we need to distinguish the spectral cut α of Q from the spectral cut θ of A.
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where q stands for the order of Q. In particular, for A = I we get back (3.12):

ζQ,α(0) := fpz=0TR(Q−z
α ) = −

res logα Q
q

.

Whereas weighted traces are not expected to be local in general since they involve the
whole symbol of the operator, the difference of two weighted traces is local in so far as it
involves a finite number of homogeneous components of the symbol via the noncommuta-
tive residue. Weighted traces depend on the choice of weight and are not cyclic in spite of
their name.

Proposition 4.7. ([3], [19])

1. Given two weights Q1 and Q2 with common spectral cut α and positive orders q1, q2
we have

trQ1
α (A)− trQ2

α (A) = res
(
A

(
logα Q2

q2
−

logα Q1

q1

))
, (4.8)

which is a local expression.

2. For any weight Q in C`(M,E) with order q and spectral cut α, the operators [A, logα Q]
and [B, logα Q] lie in C`(M,E) and

trQ
α ([A,B]) = −

1
q

res
(
A [B, logα Q]

)
=

1
q

res
(
B [A, logα Q]

)
. (4.9)

In particular, if Q = A or Q = B, or if the sum of the orders of A and B has real part
< −n, then trQ

α ([A,B]) = 0.

The following technical proposition shows that the canonical and weighted traces as
well as the noncommutative residue commute with differentiation on families of operators
of constant order, a fact that we will use to derive the multiplicative anomaly of determi-
nants. Differentiable families of symbols and operators are defined in the same way as were
holomorphic families in Definitions 4.1 and 4.3 replacing “holomorphic in the parameter z”
by “differentiable in the parameter t”.

Proposition 4.8. Let At be a differentiable family of C`(M,E) of constant order a.

1. The noncommutative residue commutes with differentiation

d
dt

res(At) = res(Ȧt), (4.10)

where we have set Ȧt =
d
dt At.

2. If the order a is non integer, the canonical trace commutes with differentiation

d
dt

TR(At) = TR(Ȧt). (4.11)
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3. For any weight Q with order q and spectral cut α,

d
dt

trQ
α (At) = trQ

α (Ȧt). (4.12)

Proof. Using (2.4) we write the symbol σAt of At as follows:

σAt (x, ξ) =
N−1∑
j=0

χ(ξ)
(
σAt

)
a− j (x, ξ)+

(
σAt

)
(N) (x, ξ).

1. By assumption, the map t 7→ trx
((
σAt (x, ξ)

)
−n

)
is differentiable leading to a differen-

tiable map t 7→
∫

S ∗x M trx
((
σAt (x, ξ)

)
−n

)
d̄S ξ after integration over the compact set S ∗xM

with derivative: t 7→
∫

S ∗x M trx
(
σ̇At

)
−n d̄S ξ, where σ̇At = σȦt

stands for the derivative of
σAt at t. Thus, the map t 7→ res(At) is differentiable with derivative given by (4.10).

2. By (4.3) and (4.4), to prove formula (4.11) we need to check the differentiability of
the map t 7→ −

∫
T ∗x M trxσAt (x, ξ) d̄ξ and to show that

d
dt
−

∫
T ∗x M

trxσAt (x, ξ) d̄ξ = −
∫

T ∗x M
trxσ̇At (x, ξ) d̄ξ.

The cut-off integral involves the whole symbol which we denote by σt := σAt in
order to simplify notations. Since the family σt has constant order, N can be chosen
independently of t in the asymptotic expansion. The corresponding cut-off integral
can be computed explicitly (see e.g [24]):

−

∫
T ∗x M

trx(σt(x, ξ)) d̄ξ =
∫

T ∗x M
trx

(
(σt)(N) (x, ξ)

)
d̄ξ

+

N−1∑
j=0

∫
|ξ|≤1

χ(ξ) trx
(
(σt)a− j (x, ξ)

)
d̄ξ

−

N−1∑
j=0,a− j+n,0

1
a− j+n

∫
|ω|=1

trx
(
(σt)a− j (x,ω)

)
d̄Sω.

The map t 7→
∫

T ∗x M trx
(
(σt)(N) (x, ξ)

)
d̄ξ is differentiable at any point t0 since by as-

sumption the maps t 7→ trx
(
(σt(x, ξ))(N)

)
are differentiable with modulus bounded

from above
∣∣∣∣trx

(
(σ̇t(x, ξ))(N)

)∣∣∣∣ ≤ C|ξ|Re(a)−N by an L1 function provided N is chosen
large enough, where the constant C can be chosen independently of t in a compact
neighborhood of t0. Its derivative is given by t 7→

∫
T ∗x M trx

(
(σ̇t)(N) (x, ξ)

)
d̄ξ. The re-

maining integrals∫
|ξ|≤1

χ(ξ) trx
(
(σt)a− j (x, ξ)

)
d̄ξ and

∫
|ω|=1

trx
(
(σt)a− j (x,ω)

)
d̄Sω
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are also differentiable as integrals over compact sets of integrands involving differen-
tiable maps t 7→ trx

(
(σt(x, ξ))a− j

)
. Their derivatives are given by∫

|ξ|≤1
χ(ξ) trx

(
(σ̇t)a− j (x, ξ)

)
d̄ξ and

∫
|ω|=1

trx
(
(σ̇t)a− j (x,ω)

)
d̄Sω.

Thus, the map t 7→ −
∫

T ∗x M trx(σAt (x, ξ)) d̄ξ is differentiable with derivative given by

−
∫

T ∗x M trx(σ̇At (x, ξ)) d̄ξ.

3. By the defect formula (4.7) we have

trQ
α (At) =

∫
M

dx
(
−

∫
T ∗x M

trxσAt (x, ξ) d̄ξ−
1
q

∫
S ∗x M

trx
(
σAt logα Q(x, ξ)

)
−n

d̄S ξ

)
which reduces the proof of the differentiability of t 7→ trQ

α (At) to that of the two maps

t 7→ −
∫

T ∗x M
trxσAt (x, ξ) , d̄ξ and t 7→

∫
S ∗x M

trx
(
σAt logα Q(x, ξ)

)
−n

d̄S ξ.

Differentiability of the first map was shown in the second item of the proof. Let us
first investigate the second map. By (2.2) we have

(
σAt logα Q

)
−n
=

∑
|α|+a− j−k=−n

(−i)|α|

α!
∂αξ

(
σAt

)
a− j ∂

α
x

(
σlogα Q

)
−k
.

By assumption, the maps t 7→
(
σAt

)
a− j are differentiable so that the map

t 7→
∫

S ∗x M
trx

(
σAt logα Q

)
−n

d̄S ξ

is differentiable with derivative

t 7→
∫

S ∗x M
trx

(
σ̇At logα Q

)
−n

(x, ξ) d̄S ξ =

∫
S ∗x M

trx
(
σȦt logα Q

)
−n

(x, ξ) d̄S ξ.

Integrating over the compact manifold M then yields the differentiability of the map
t 7→ trQ

α (At) with derivative given by∫
M

dx
(
−

∫
T ∗x M

trxσȦt
(x, ξ) d̄ξ−

1
q

∫
S ∗x M

trx
(
σȦt logα Q(x, ξ)

))
d̄S ξ = trQ

α (Ȧt).

�

5 Locality of weighted traces of L(A,B)

Combining (3.14) with (4.9) yields the locality of weighted traces trQ(L(A,B)) as a finite
sum of noncommutative residues, independently of the choice of spectral cut.

In this section we show that weighted traces of L(A,B) only depend on a finite number
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of homogeneous components of the operators A and B (see Theorem 5.3), a fact reminis-
cent of a similar property observed by Okikiolu in [21] in the case of operators with scalar
leading symbols.
We know from the results of Okikiolu [21], that the resolvents (At −λ)−1 form a differen-
tiable family of operators with parameters. The following lemma which tells us that the
logarithms logα At built from these resolvents, form a differentiable family therefore comes
as no surprise.

Lemma 5.1. Let At be a differentiable family of admissible operators in C`(M,E) with
constant spectral cut θ.
Their logarithms logθ At form a differentiable family of pseudodifferential operators and for
any positive integer K we have

d
dt

logθ At =

K∑
k=0

(−1)k

k+1
adk

At
(Ȧt) A−(k+1)

t +RK(At, Ȧt) (5.1)

where we have set Ȧt := d
dt At and

RK(At, Ȧt) := −
i

2π

∫
Γθ

logθ λ
[
(λ−At)−1,adK

At
(Ȧt)

]
(λ−At)−K−1 dλ. (5.2)

Here Γθ is a contour around the spectrum as in (3.2).

Remark 5.2. If At commutes with Ȧt then d
dt logθ At = ȦtA−1

t .
If At has scalar leading symbol and order at, then for fixed t, the operators adk

At
(Ȧt)A

−(k+1)
t

have decreasing order ord(Ȧt)−at−k as k grows so that (5.1) yields an asymptotic expansion
in operators of decreasing order.

Proof. Since the spectral cut is constant, we drop it in the notation setting log At = logθ At.
By (4.3) in [21] we first observe that for any t in a compact neighborhood Kt0 of some real
number t0, one can bound the modulus of the order α(t) from above by some integer k, in
which case

∃C > 0, ∀t ∈ Kt0 , ‖(At −λ)−1‖s,s−k ≤ |λ
−1|,

where ‖ · ‖s,s′ stands for the operator norm of bounded operators form the Sobolev closure
Hs(M,E) to the Sobolev closure Hs′(M,E) of C∞(M,E). Moreover, (At −λ)−1 is differen-
tiable at t0 with derivative given by:

d
dt |t=t0

(At −λ)−1 = −(At0 −λ)−1 Ȧt0 (At0 −λ)−1

where we have set Ȧt0 =
d
dt |t=t0

At. This follows from the identity

(λ−At)−1− (λ−At0)−1 = −(t− t0) (λ−At0)−1∆t (λ−At)−1,

where we have set ∆t :=
At−At0

t−t0
.

For operators At of zero order this leads to

d
dt |t=t0

log At =
i

2π

∫
Γθ

logθ λ
d
dt |t=t0

(At−λ)−1 dλ = −
i

2π

∫
Γθ

logθ λ (At0 −λ)−1 Ȧt0 (At0 −λ)−1 dλ.
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In order to generalise this to higher order operators, we need to consider the family (see
(3.6)):

log At A−1
t =

i
2π

∫
Γθ

logθ λλ
−1 (At −λ)−1 dλ

for which we can also write:

d
dt |t=t0

(
log At A−1

t

)
=

i
2π

∫
Γθ

logθ λλ
−1 d

dt |t=t0

(At −λ)−1 dλ

= −
i

2π

∫
Γθ

logθ λλ
−1 (At0 −λ)−1 Ȧt0 (At0 −λ)−1 dλ.

This leads to the expected formula

d
dt |t=t0

log At =
d
dt |t=t0

(
log At A−1

t

)
At +

(
log At A−1

t

)
Ȧt

= −
i

2π

∫
Γθ

logθ λλ
−1 (At0 −λ)−1 Ȧt0 (At0 −λ)−1 At0 dλ

+
i

2π

∫
Γθ

logθ λλ
−1 (At0 −λ)−1Ȧt0 dλ

= −
i

2π

∫
Γθ

logθ λλ
−1 (At0 −λ)−1 Ȧt0 (At −λ)−1 (At0 − (At0 −λ)

)
dλ

= −
i

2π

∫
Γθ

logθ λ (At0 −λ)−1 Ȧt0 (At0 −λ)−1 dλ.

On the other hand,[
(λ−At0)−1, Ȧt0

]
= (λ−At0)−1 [At0 , Ȧt0] (λ−At0)−1

= [At0 , Ȧt0](λ−At0)−2+ ad2
At0

(Ȧt0) (λ−At0)−3+

[
(λ−At0)−1,ad2

At0
(Ȧt0)

]
(λ−A0)−2

=

K∑
k=1

adk
At0

(Ȧt0)(λ−At0)−(k+1)+

[
(λ−At0)−1,adK

At0
(Ȧt0)

]
(λ−At0)−K .

Hence,

d
dt |t=t0

log At = −
i

2π

∫
Γθ

logθ λ [(At0 −λ)−1 , Ȧt0] (At0 −λ)−1 dλ

−
i

2π

∫
Γθ

logθ λ Ȧt0 (At0 −λ)−2 dλ

=

K∑
k=0

adk
At0

(Ȧt0)
i

2π

∫
Γθ

logθ λ (λ−At0)−(k+2) dλ

−
i

2π

∫
Γθ

logθ λ
[
(λ−At0)−1,adK

At0
(Ȧt0)

]
(λ−At0)−K−1 dλ.
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Iterated integrations by parts then lead to

d
dt |t=t0

log(At) =
K∑

k=0

(−1)k

k+1
adk

At0
(Ȧt0)A−(k+1)

t0 +RK(At0 , Ȧt0),

with
RK(At0 , Ȧt0) := −

i
2π

∫
Γθ

logθ λ
[
(λ−At0)−1,adK

At0
(Ȧt0)

]
(λ−At0)−K−1 dλ,

which in turn yields (5.1). �

The following result is reminiscent of an observation made in [21] (see also [29]),
namely that only the first n homogeneous components of the symbols come into play for
the derivation of the Campbell-Hausdorff formula for operators with scalar leading sym-
bols; the weighted trace of L(A,B) presents a similar feature in our more general situation.

Theorem 5.3. Given a weight Q and two admissible operators A and B in C`(M,E) with
non negative orders, the weighted trace trQ(L(A,B)) is a local expression as a finite sum of
noncommutative residues, which only depends on the first n homogeneous components of
the symbols of A and B:

d
dt

trQ(L(A(1+ tS ),B) =
d
dt

trQ(L(A,B(1+ tS )) = 0 ∀S ∈ C`<−n(M,E), (5.3)

where C`<−n(M,E) = ∪Re(a)<−nC`a(M,E) stands for the algebra of classical operators of
order with real part smaller than −n.

Proof. • On the one hand we know that L(A,B) is a finite sum of commutators of clas-
sical pseudodifferential operators [P j,Q j]. By (4.9), each weighted trace trQ([P j,Q j]
is proportional to res

(
Q j [P j, logα Q]

)
so that trQ(L(A,B)) is indeed a finite sum of

noncommutative residues.

• Let us check that requirement (5.3) is equivalent to the fact that trQ(L(A,B)) only
depends on the first n homogeneous components of the symbols of A and B.
Given an operator S in C`(M,E) of order <−n and an operator A in C`(M,E) of order
a, we first observe that in any local trivialisation the first n homogeneous components
of the symbols of A and A(1+S ) coincide since AS has order with real part smaller
than −n. Conversely, if the first n homogeneous components of the symbols of two
classical operators A and B of orders a and b coincide, then a = b. If furthermore
B is invertible, the first n homogeneous components of the symbol of B−1 defined
inductively using (2.2) by: (

σB−1
)
−b = ((σB)b)−1 ,

(
σB−1

)
−b− j = − ((σB)b)−1

∑
k+l+|α|= j,l< j

(−i)|α|

α!
∂αξ (σB)b−k ∂

α
x
(
σB−1

)
−b−l ,

coincide with that of the symbol of A−1 since the terms corresponding to j ≤ n only
involve homogeneous components (σB)b−k = (σA)a−k and

(
σB−1

)
−b−l with k and l no
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larger than n. Consequently, by (2.2) it follows that S = A−1 B has order < −n. Thus,
showing that the expression trQ(L(A,B)) only depends on the first n homogeneous
components of A amounts to showing that trQ(L(A+ S ,B)) = trQ(L(A,B)) for any
classical operator S whose order has real part smaller than −n.

• We are therefore left to prove that d
dt tr

Q(L(A(1+ tS ),B) = 0. A similar proof (which
we omit here) would yield d

dt tr
Q(L(A(,B(1+ tS )) = 0.

Applying (4.12) to the operator At := L(A(1+ tS ),B) we have

d
dt

trQ(L(A(1+ tS ),B) = trQ
(

d
dt

L (A(1+ tS ),B)
)
.

Since

L(A(1+ tS ),B)−L(A,B) = log(A(1+ tS )B)− log(AB)− log(A(1+ tS ))+ log A,

we have

d
dt

L(A(1+ tS ),B) =
d
dt

log(A(1+ tS )B)−
d
dt

(
log(A(1+ tS ))

)
.

Proving (5.3) therefore amounts to showing that

d
dt

trQ (
log(A(1+ tS )B)

)
=

d
dt

trQ (
log(A(1+ tS ))

)
. (5.4)

We apply Lemma 5.1 to the family At := A(1+ tS )C whose derivative reads Ȧt = AS C.
We shall show that d

dt tr
Q (

log(At)
)

is independent of the choice of the operator C, a
fact which when applied to C = B and C = I, yields (5.4).
When t varies in a small compact neighborhood of some fixed point t0, the opera-
tors At have a common spectral cut which we drop in the notation. Using (5.1) and
implementing the weighted trace trQ yields

d
dt |t=t0

trQ (
log At

)
(5.5)

= trQ(Ȧt0 A−1
t0 )+

K∑
k=1

(−1)k

k+1
trQ(adk

At0
(Ȧt0) A−(k+1)

t0 )+ trQ(RK(At0 , Ȧt0))

for arbitrary large K and with remainder term

RK(At0 , Ȧt0) := −
i

2π

∫
Γα

logλ
[
(λ−At0)−1,adK

At0

(
Ȧt0

)]
(λ−At0)−(K+1) dλ. (5.6)

By (4.9), for any positive integer k we have

trQ(adk
At0

(Ȧt0) A−(k+1)
t0 ) = trQ

(
adAt0

(adk−1
At0

(Ȧt0)) A−(k+1)
t0

)
= trQ

([
At0 ,adk−1

At0
(Ȧt0) A−(k+1)

t0

])
=

1
q

res
(
adk−1

At0
(Ȧt0) A−(k+1)

t0 [At0 , log Q]
)

= 0.
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The vanishing of the residue follows from a simple order counting.
Indeed, since At0 = A(1+ t0S )C has order a+ c and Ȧt0 = AS C has order a+ s+ c
(here s is the order of S , a the order of A, c the order of C), it follows that the
operator adk−1

At0
(Ȧt0) A−(k+1)

t0 [At0 , log Q] has order

(k−1)(a+ c)+a+ c+ s− (k+1)(a+ c)+a+ c = s,

whose real part is smaller than −n as a consequence of which its residue vanishes.
A similar order counting shows that

trQ
(
RK(At0 , Ȧt0)

)
= −trQ

([
At0 ,

i
2π

∫
Γα

logλ (λ−At0)−1 adK−1
At0

(
Ȧt0

)
(λ−At0)−(K+1) dλ

))
= −

1
q

res
((

i
2π

∫
Γα

logλ (λ−At0)−1 adK−1
At0

(
Ȧt0

)
(λ−At0)−(K+1) dλ

)
[At0 , log Q]

)
= 0.

Hence, only the first term on the right hand side of (5.5) survives and we have

d
dt |t=t0

trQ (
log(A(1+ tS )C)

)
= trQ

(
AS C (A(1+ t0S )C)−1

)
= trQ

(
AS (1+ t0S )−1A−1

)
independently of the choice of C. Setting back C = B and C = I therefore yields (5.3),
thus ending the proof of the theorem.

�

6 A local formula for the weighted trace of L(A,B)

We derive an explicit local expression for the weighted traces trA(L(A,B)) and trB(L(A,B))
of L(A,B) (see Theorem 6.2). Our approach is inspired by Okikiolu’s proof of the Campbell-
Hausdorff formula for operators with scalar leading symbols. In the case of operators with
scalar leading symbols, as it was noticed and used by Okikiolu, as from a certain order in
the Campbell-Hausdorff expansion, one can implement ordinary traces since the iterated
brackets have decreasing order. In our more general situation, such a phenomenon does not
occur so that we use weighted traces instead.

Proposition 6.1. Let A and B be two admissible operators with positive orders a and b in
C`(M,E) such that their product AB is also admissible. We have the following identities for
weighted traces:

d
dt |t=0

trB(L(At,Bµ)) = 0,
d
dt |t=0

trA(L(At,Bµ)) = 0

as well as for the noncommutative residue:

d
dt |t=0

res(L(At,Bµ)) = 0.
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Proof. Let us prove the result for the B-weighted trace; a similar proof yields the result for
the A-weighted trace. By Proposition 4.8, weighted traces and the residue commute with
differentiation on constant order operators so that

d
dt |t=0

trQ
(
L(At,Bµ)

)
= trQ

(
d
dt |t=0

L(At,Bµ)
)

resp.
d
dt |t=0

res
(
L(At,Bµ)

)
= res

(
d
dt |t=0

(L(At,Bµ)
)
.

But
d
dt |t=0

L(At,Bµ) =
d
dt |t=0

log(AtBµ)−
d
dt |t=0

log At.

We therefore apply Lemma 5.1 to At := AtBµ so that A0 = Bµ, including the case µ = 0
for which At = At and A0 = I. Since Ȧ0 = log A Bµ and Ȧ0 A−1

0 = log A, implementing the
weighted trace trB yields

d
dt |t=0

trB
(
log(AtBµ)

)
= trB(log A)+

K∑
k=1

(−1)k

k+1
trB(adk

Bµ(log A Bµ) B−µ(k+1))+ trB(RK(Bµ, log A Bµ))

for arbitrary large K, with remainder term

RK(Bµ, log A Bµ) = −
i

2π

∫
Γα

logλ
[
(λ−Bµ)−1,adK

Bµ(log A Bµ)
]
(λ−Bµ)−(K+1) dλ

= −adK
Bµ

(
i

2π

∫
Γα

logλ
[
(λ−Bµ)−1, log A Bµ

]
(λ−Bµ)−(K+1) dλ

)
,

since (B−λ)−1 commutes with Bµ.
For any positive integer k, by (4.9) we have

trB(adk
Bµ(A Bµ) B−µ(k+1))) = trB

(
adBµ(adk−1

Bµ (A Bµ)) B−µ(k+1))
)

= trB
(
adBµ

(
adk−1

Bµ (A Bµ) B−µ(k+1)
))

=
1
b

res
(
adk−1

Bµ (A Bµ) B−µ(k+1) [Bµ, log B]
)

= 0,

since Bµ commutes with log B. A similar computation shows that trB(RK(Bµ, log A Bµ)) = 0.
Thus

d
dt |t=0

trB
(
log(AtBµ)

)
= trB (

log A
)
.

It follows that d
dt |t=0

trB (
log(AtBµ)

)
= trB (

log A
)

independently of µ so that

d
dt |t=0

trB
(
L(At,Bµ)

)
= 0.
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Similarly, replacing the weighted trace trB by the noncommutative residue res and using the
cyclicity of the noncommutative residue, yields

d
dt |t=0

res
(
L(At,Bµ)

)
= 0.

�

The following statement provides a local formula for the multiplicative anomaly of the
zeta determinant. It also shows that the residue of L(A,B) vanishes and therefore yields
back the multiplicativity of the residue determinant derived in [29].

Theorem 6.2. For two admissible operators A,B ∈ C`(M,E) with positive orders a and b
such that their product AB is also admissible, we have

res(L(A,B)) = 0. (6.1)

Moreover, there is an operator

W(τ)(A,B) :=
d
dt |t=0

L(At,AτB) (6.2)

in C`0(M,E) depending continuously on τ such that

trQ(L(A,B)) =
∫ 1

0
res

(
W(τ)(A,B)

(
log(AτB)

aτ+b
−

log Q
q

))
dτ (6.3)

where Q is any weight of order q.

Proof. By Proposition 6.1, we know that d
dt |t=0res(L(At,B)) = d

dt |t=0trQ(L(At,B)) = 0. We
want to compute

d
dt |t=τ

res(L(At,B))=
d
dt |t=0

res(L(At+τ,B)) and
d
dt |t=τ

trQ(L(At,B))=
d
dt |t=0

trQ(L(At+τ,B)).

For this we observe that

L(AB,D)−L(A,BD) = − log(AB)− log(D)+ log A+ log(BD) = L(B,D)−L(A,B)

Replacing A by At, B by Aτ and D by B, we get

L(At+τ,B)−L(At,AτB) = L(Aτ,B)−L(At,Aτ) = L(Aτ,B).

Implementing the noncommutative residue, by Proposition 6.1 we have:

d
dt |t=τ

res(L(At,B)) =
d
dt |t=0

res(L(At+τ,B)) =
d
dt |t=0

res(L(At,AτB)) = 0.

Hence

res(L(A,B)) =
∫ 1

0

d
dt |t=τ

res(L(At,B))dτ+ res(L(I,B)) = 0, (6.4)
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since L(I,B) = 0.
If instead we implement the weighted trace trQ, we have:

d
dt |t=τ

trQ(L(At,B)) =
d
dt |t=0

trQ(L(At+τ,B)) =
d
dt |t=0

trQ(L(At,AτB)).

Since A and B have positive order so has Aτ B, so that applying Proposition 6.1 with
weighted traces trAτB yields:

d
dt |t=τ

trQ(L(AtB) =
d
dt |t=0

trQ(L(At,AτB))

=
d
dt |t=0

trAτB(L(At,AτB))

+
d
dt |t=0

(
trQ(L(At,AτB))− trAτB(L(At,AτB))

)
=

d
dt |t=0

(
trQ(L(At,AτB))− trAτB(L(At,AτB))

)
.

Applying (4.8) to Q1 = Q and Q2 = AτB, we infer that

d
dt |t=0

(
trQ(L(At,AτB))− trAτB(L(At,AτB))

)
=

d
dt |t=0

res
(
L(At,AτB)

(
log(AτB)

aτ+b
−

log Q
q

))
= res

(
W(τ)(A,B)

(
log(AτB)

aτ+b
−

log Q
q

))
,

where q is the order of Q and where we have set W(τ)(A,B) := d
dt |t=0L(At,AτB). Since

L(I,B) = 0, we finally find that

trQ(L(A,B)) = trQ(L(A1,B))− trQ(L(A0,B))

=

∫ 1

0
res

(
W(τ)(A,B)

(
log(AτB)

aτ+b
−

log Q
q

))
dτ. (6.5)

�

7 Multiplicative anomaly for determinants revisited

We first observe that the multiplicative anomaly for weighted determinants studied in [4]
has logarithm given by the weighted trace of L(A,B), as a result of which it is local. We
then derive an explicit local formula for the multiplicative anomaly of ζ determinants, using
the local formula derived previously for weighted traces of L(A,B).

An admissible operator A in C`(M,E) with spectral cut θ and positive order has well defined
Q-weighted determinant [4] (see also [9]) where Q in C`(M,E) is a weight with spectral
cut α:

detQ
α (A) := etrQ

α (logθ A).
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Here the weighted trace has been extended to logarithms as before, picking out the constant
term of the meromorphic map z 7→ TR(logθ A Q−z

α ) which can have double poles in contrast
to the case of classical operators studied in Section 3.

Remark 7.1. The weighted determinant, as well as being dependent on the choice of spectral
cut θ, also depends on the choice of spectral cut α.

Since the weighted trace restricts to the ordinary trace on trace-class operators, this
determinant, as the ζ-determinant, extends the ordinary determinant on operators in the
determinant class.

Lemma 7.2. Let 0 ≤ θ < φ < 2π be two spectral cuts for the admissible operator A. If there
is a set Λr,θ,φ (see 3.4) which does not intersect the spectrum of the leading symbol of A then

detQ
θ (A) = detQ

φ (A).

Proof. Under the assumptions of the lemma, the setΛr,φ,θ defined as in Proposition 3.4, con-
tains only a finite number of points in the spectrum of A so that logφ A− logθ A = 2iπΠθ,φ(A)
is a finite rank operator and hence smoothing. Hence,

detQ
φ (A)

detQ
θ (A)

= etrQ
(
logφ A−logθ A

)
= etrQ(2iπΠθ,φ(A))

= e2iπ tr(Πθ,φ(A)) = e2iπ rk(Πθ,φ(A))

= 1,

where rk stands for the rank. �

The multiplicative anomaly for Q-weighted determinants of two admissible operators
A, B with spectral cuts θ,φ such that AB has spectral cut ψ is defined by:

M
Q
θ,φ,ψ(A,B) :=

detQ
ψ (AB)

detQ
θ (A)detQ

φ (B)
,

which we writeMQ(A,B) for simplicity.

Proposition 7.3. Let A and B be two admissible operators with spectral cuts θ and φ in
[0,2π[ such that there is a cone delimited by the rays Lθ and Lφ which does not intersect the
spectra of the leading symbols of A, B and AB. Then the product AB is admissible with a
spectral cut ψ inside that cone and for any weight Q with spectral cut, dropping the explicit
mention of the spectral cuts we have:

logMQ(A,B) =
∫ 1

0
res

(
W(τ)(A,B)

(
log(AτB)

aτ+b
−

logα Q
q

))
dτ. (7.1)

Weighted determinants are multiplicative on commuting operators.
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Proof. Since the leading symbol of the product AB has spectrum which does not intersect
the cone delimited by Lθ and Lφ, the operator AB only has a finite number of eigenvalues
inside that cone. We can therefore choose a ray ψ which avoids both the spectrum of
the leading symbol of AB and the eigenvalues of AB. By the above lemma, the weighted
determinants detQ

θ (A), detQ
φ (B) and detQ

ψ (AB) do not depend on the choices of spectral cuts
satisfying the requirements of the proposition.
Since

logMQ(A,B) = logdetQ(AB)− logdetQ(A)− logdetQ(B) = trQ(L(A,B)),

the logarithm of the multiplicative anomaly for weighted determinants is a local quantity
(6.3) derived in Theorem 6.2.
To prove the second part of the statement we observe that

[A,B] = 0 =⇒ L(A,B) = 0. (7.2)

Indeed, let Γ be a contour as in formula (4.12) along a spectral ray around the spectrum of
At0 B for some fixed t0, then

d
dt |t=t0

log(AtB) =
i

2π

∫
Γ

logλ
d
dt |t=t0

(AtB−λ)−1 dλ

=
i

2π

∫
Γ

logλ (At0 B−λ)−1 log A At0 B (At0 B−λ)−1 dλ

= log A At0 B
i

2π

∫
Γ

logλ (At0 B−λ)−2 dλ since [A,B] = 0

= − log A At0 B
i

2π

∫
Γ

λ−1(At0 B−λ)−1 dλ by integration by parts

= − log A At0 B (At0 B)−1

= − log A.

Similarly, we have d
dt |t=t0

log(At) = − log A so that finally

d
dt |t=t0

L(At,B) =
d
dt |t=t0

log(AtB)−
d
dt |t=t0

log(At)

vanishes. It follows that L(A,B) =
∫ 1

0
d
dt |t=τ

L(At,B)dτ = 0.
Since L(A,B) vanishes when A and B commute, weighted determinants are multiplicative
on commuting operators. �

Let us now turn to the multiplicative anomaly for ζ-determinants, relating it to weighted
traces of L(A,B). An admissible operator A ∈C`(M,E) with spectral cut θ and positive order
has well defined ζ-determinant:

detζ,θ(A) := e−ζ
′
A,θ(0) = etrA

θ (logθ A)

since ζA,θ(z) := TR(A−z
θ ) is holomorphic at z = 0. In the second equality, the weighted trace

has been extended to logarithms as before, picking out the constant term of the meromorphic
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map z 7→ TR(logθ A Q−z) (which can have double poles) with the notations of section 2.
Recall from [24] that

logdetζ,θ(A) =
∫

M

[
TRx(logθ A)−

1
2a

resx(log2
θ A)

]
dx (7.3)

where a is the order of A and where TRx dx and resx dx are respectively the canonical trace
density (see (4.3)) and the noncommutative residue density (see (2.6)) defined previously,
extended to log-polyhomogeneous operators. This expression corresponds to minus the
coefficient in z of the Laurent expansion of TR(A−z).

The ζ-determinant generally depends on the choice of spectral cut. However, it is in-
variant under mild changes of spectral cut in the following sense.

Lemma 7.4. Let 0 ≤ θ < φ < 2π be two spectral cuts for the admissible operator A. If there
is a cone Λr,θ,φ (see 3.4) which does not intersect the spectrum of the leading symbol of A
then

detζ,θ(A) = detζ,φ(A).

Proof. By (7.3), and since logφ A− logθ A = 2iπΠθ,φ(A) is a finite rank operator and hence
smoothing under the assumptions of the proposition, we have

detζ,φ(A)
detζ,θ(A)

= e
∫

M

[
TRx(logφ A)− 1

2a resx(log2
φ A)

]
dx−

∫
M

[
TRx(logθ A)− 1

2a resx(log2
θ A)

]
dx

= e
∫

M

[
TRx(logφ A−logθ A)− 1

2a resx(log2
φ A−log2

θ A)
]
dx

= e
∫

M

[
TRx(2iπΠθ,φ(A))− 1

2a resx
(
(logφ A+logθ A)2iπΠθ,φ(A)

)]
dx

= e2iπ tr(Πθ,φ(A))− 2iπ
2a res

(
(logφ A+logθ A)Πθ,φ(A)

)
= e2iπ rk(Πθ,φ(A))

= 1,

where we have used the fact that the noncommutative residue vanishes on smoothing opera-
tors on which the canonical trace coincides with the usual trace on smoothing operators. �

The ζ-determinant is not multiplicative 8. Indeed, let A and B be two admissible opera-
tors with positive order and spectral cuts θ and φ and such that AB is also admissible with
spectral cut ψ. The multiplicative anomaly

M
θ,φ,ψ
ζ (A,B) :=

detζ,ψ(AB)
detζ,θ(A)detζ,φ(B)

,

was proved to be local, independently by Okikiolu [22] for operators with scalar leading
symbol and by Kontsevich and Vishik [15] for operators “close to identity” (see the intro-
duction for a more detailed historical account).
For simplicity, we drop the explicit mention of θ,φ,ψ and writeMζ(A,B).

Even though the operator log2
θ A is not classical we have the following useful property.

8It was shown in [18] that all multiplicative determinants on elliptic operators can be built from two basic
types of determinants; they do not include the ζ-determinant.
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Lemma 7.5. Let A,B be admissible operators in C`(M,E) with positive orders a,b and
spectral cuts θ and φ respectively and such that AB (which is elliptic) is also admissible
with spectral cut ψ. Then

K(A,B) :=
1

2(a+b)
log2

ψ A B−
1
2a

log2
θ A−

1
2b

log2
φ B

has a symbol of the form

σK ∼ ln|ξ|(σAB
0 −σ

A
0 −σ

B
0 )+σK

0

for some zero order classical symbol σK
0 , where we have written σlog A(x, ξ) = a ln|ξ|I +

σA
0 (x, ξ) for an admissible operator A of order a.

In particular, both operators L(A,B) log A
a −K(A,B) and L(A,B) log B

b −K(A,B) are classical
operators of zero order.

Proof. By formula (3.7), another choice of spectral cut only changes the logarithms by
adding an operator in C`0(M,E) so that it will not affect the statement. As usual, we drop
the explicit mention of spectral cut assuming the operators have common spectral cuts.
An explicit computation on symbols shows the result. Indeed, since σlog A(x, ξ) ∼ a ln|ξ|+
σA

0 (x, ξ), we have

σlog2 A(x, ξ) = σlog A?σlog A(x, ξ)

∼ a2 ln2|ξ|I+2a ln|ξ|σA
0 (x, ξ)+σA

0 (x, ξ) ·σA
0 (x, ξ)

+
∑
α,0

(−i)|α|

α!
∂αξσ

A
0 (x, ξ)∂αxσ

A
0 (x, ξ).

This yields:

σK(x, ξ) ∼ ln|ξ|
(
σAB

0 −σ
A
0 −σ

B
0

)
(x, ξ)

+
1

2(a+b)
σAB

0 (x, ξ)σAB
0 (x, ξ)+

∑
α,0

1
α!
∂αξσ

AB
0 (x, ξ)Dα

xσ
AB
0 (x, ξ)

−
1
2a
σA

0 (x, ξ)σA
0 (x, ξ)−

∑
α,0

1
α!
∂αξσ

A
0 (x, ξ)Dα

xσ
A
0 (x, ξ)

−
1

2b
σB

0 (x, ξ)σB
0 (x, ξ)−

∑
α,0

1
α!
∂αξσ

B
0 (x, ξ)Dα

xσ
B
0 (x, ξ)

from which the first part of the statement follows.
On the other hand, it follows from (3.15) combined with (3.9) that the operators L(A,B) log A

a

and L(A,B) log B
b both have symbols which differ from the symbol ln|ξ|

(
σAB

0 −σ
A
0 −σ

B
0

)
(x, ξ)

by a classical symbol of order zero, from which we infer the second part of the state-
ment. �

The following theorem provides a local formula for the multiplicative anomaly inde-
pendently of Okikiolu’s assumption that the leading symbols be scalar.
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Theorem 7.6. Let A and B be two admissible operators in C`(M,E) with positive orders
a,b and with spectral cuts θ and φ in [0,2π[ such that there is a cone delimited by the rays
Lθ and Lφ which does not intersect the spectra of the leading symbols of A, B and AB. Then
the product AB is admissible with a spectral cut ψ inside that cone and the multiplicative
anomalyMθ,φ,ψ

ζ (A,B) is local as a noncommutative residue, independently of the choices of
θ,φ, and ψ satisfying the above requirements.
Explicitly, and dropping the explicit mention of the spectral cuts, there is a classical opera-
tor W(τ)(A,B) given by (6.2) of order zero depending continuously on τ such that:

logMζ(A,B)

=

∫ 1

0
res

(
W(τ)(A,B)

(
log(AτB)

aτ+b
−

log B
b

))
dτ

+ res
(

L(A,B) log B
b

−
log2 A B
2(a+b)

+
log2 A

2a
+

log2 B
2b

)
=

∫ 1

0
res

(
W(τ)(A,B)

(
log(AτB)

aτ+b
−

log A
a

))
dτ

+ res
(

L(A,B) log A
a

−
log2 A B
2(a+b)

+
log2 A

2a
+

log2 B
2b

)
(7.4)

When A and B commute the multiplicative anomaly reduces to:

logMζ(A,B) = −res
(

1
2(a+b)

log2(A B)−
1

2a
log2 A−

1
2b

log2 B
)

=
ab

2(a+b)
res

( log A
a
−

log B
b

)2 . (7.5)

Remark 7.7. For commuting operators, (7.5) gives back the results of Wodzicki as well as
formula (III.3) in [4]:

logMζ(A,B) =
res

(
log2(AbB−a)

)
2ab(a+b)

.

Proof. As in the proof of the locality of the multiplicative anomaly for weighted determi-
nants (see Proposition 7.3), the independence of the choice of spectral cuts satisfying the
requirements of the theorem follows from Lemma 7.4.
Combining equations (7.3), the defect formula (4.7) applied to the operator L(A,B) and
weight B with equation (6.3) applied to Q = B we write:
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logMζ(A,B)

= logdetζ(AB)− logdetζ(A)− logdetζ(B)

=

∫
M

[TRx(L(A,B))

−

(
1

2(a+b)
resx(log2 AB)−

1
2a

resx(log2 A)−
1
2b

resx(log2 B)
)]

dx

= trB(L(A,B))+
∫

M

[
1
b

resx
(
L(A,B) log B

)
(7.6)

−

(
1

2(a+b)
resx

(
log2 A B

)
−

1
2a

resx(log2 A)−
1
2b

resx(log2 B)
)]

dx

=

∫ 1

0
res

(
W(τ)(A,B)

(
log(AτB)

aτ+b
−

log B
b

))
dτ

+ res
(

L(A,B) log B
b

−
log2 A B
2(a+b)

+
log2 A

2a
+

log2 B
2b

)
,

which proves the first equality in (7.4). The second one can be derived similarly ex-
changing the roles of A and B.
When A and B commute, by (7.2), the operator L(A,B) vanishes so that (7.6) reduces to:

logMζ(A,B) = trB(L(A,B))+
∫

M

[
1
b

resx
(
L(A,B) log B

)
−

(
1

2(a+b)
resx

(
log2 A B

)
−

1
2a

resx(log2 A)−
1
2b

resx(log2 B)
)]

dx

= −res
(
log2 A B
2(a+b)

−
log2 A

2a
−

log2 B
2b

)
=

ab
2(a+b)

res

( log A
a
−

log B
b

)2 .
�
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