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Abstract

As an application of our previous paper, we give a sufficient condition that Brézis-
Gallouët-Wainger type inequalities in higher order critical Sobolev spaces fails.
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1 Introduction and known results

We shall provide a lower bound for sharp constants of Brézis-Gallouët-Wainger type in-
equalities in Besov spaces and Triebel-Lizorkin spaces as well as fractional Sobolev spaces
on a bounded domain Ω ⊂ Rn as an application of our previous results. Throughout the
present paper, we place ourselves in the setting of Rn with n ≥ 2. We treat only real-valued
functions.

Before we state the full version of our main theorem, we present it in a simpler form.
Let ωn−1 = 2πn/2/Γ(n/2) denote the surface area of S n−1 = {x ∈ Rn; |x| = 1}.
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Theorem 1.1. Let n ≥ 2, k ∈ {1,2, . . . ,n−1}, 0 < α < s, and Ω be a bounded domain in Rn.
Define

`k = k!
∑
j∈Z

0≤ j≤k/2

(k−2 j)! j!


∑
l∈Z

k/2≤l≤k− j

22l−k+ j (−1)l

2l

(
l

k− l

)(
k− l

j

)
2

j∏
m=1

(
n−3

2
+m

)
. (1.1)

Here, we regard the empty product
∏0

m=1 ∗ as 1. Assume that either

λ1 <
1

`n/(2(n−k))
k ωk/(n−k)

n−1 α
and λ2 ∈ R

or λ1 =
1

`n/(2(n−k))
k ωk/(n−k)

n−1 α
and λ2 <

k

n`n/(2(n−k))
k ωk/(n−k)

n−1 α

holds. Then for any constant C, the inequality

‖u‖n/(n−k)
L∞(Ω) ≤ λ1 log(1+ ‖u‖W s,n/(s−α)(Ω))+λ2 log(1+ log(1+ ‖u‖W s,n/(s−α)(Ω)))+C

fails for some u ∈C∞c with ‖∇ku‖Lk,n/k(Ω) = 1, where

‖∇ku‖Ln/k(Ω) = ‖ |∇
ku| ‖Ln/k(Ω), |∇

ku| =

 n∑
i1=1

n∑
i2=1

. . .

n∑
ik=1

(
∂

∂xi1

∂

∂xi2
· · ·

∂

∂xik
u
)2

1/2

. (1.2)

To consider what we learn from Theorem 1.1, we first recall the Sobolev embed-
ding theorem in the critical case. For 1 < q < ∞, it is well known that the embedding
Wn/q,q(Rn) ↪→ Lr(Rn) holds for any q ≤ r <∞, and fails for r =∞, i.e., one cannot estimate
the L∞-norm by the Wn/q,q-norm. However, the Brézis-Gallouët-Wainger inequality states
that the L∞-norm can be estimated by the Wn/q,q-norm with the partial aid of the W s,p-norm
with s > n/p and 1 ≤ p ≤∞ as follows:

‖u‖q/(q−1)
L∞(Rn) ≤ λ(1+ log(1+ ‖u‖W s,p(Rn))) (1.3)

holds whenever u ∈Wn/q,q(Rn)∩W s,p(Rn) satisfies ‖u‖Wn/q,q(Rn) = 1, where 1 ≤ p ≤ ∞, 1 <
q <∞ and s > n/p. The inequality (1.3) for the case n = p = q = s = 2 dates back to Brézis-
Gallouët [1]. Later on, Brézis-Wainger [2] obtained (1.3) for the general case, and remarked
that the power q/(q−1) in (1.3) is maximal; (1.3) fails for any larger power. An attempt of
replacing ‖u‖W s,p(Rn) with the other norms has been made in several papers. We also mention
that (1.3) was obtained in the Besov-Morrey spaces in [13].

In what follows, we concentrate on the case n/q = k ∈ {1,2, . . . ,n− 1}, and replace the
function space Wn/q,q(Rn) by Wk,n/k(Ω)∩Cc(Ω) with an arbitrary bounded domain Ω in
Rn. Note that the norm of Wk,n/k(Ω)∩Cc(Ω) is equivalent to ‖∇ku‖Ln/k(Ω) because of the
Poincaré inequality. When k= 1, the differential order s=m is an integer with 1≤m≤ n, and
n/m < p ≤ n/(m−1), the authors together with T. Sato and H. Wadade [5, 7] generalized the
inequality corresponding to (1.3) and discussed how optimal the constant λ is. To describe
the sharpness of the constant λ, they made a formulation more precise. We set up the
following problem in a fixed function space X(Ω), which is contained in L∞(Ω):
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Fix a function space X(Ω). For given constants λ1 > 0 and λ2 ∈ R, does there
exist a constant C such that

‖u‖n/(n−k)
L∞(Ω) ≤ λ1 log(1+ ‖u‖X(Ω))+λ2 log(1+ log(1+ ‖u‖X(Ω)))+C (1.4)

holds for all u ∈Wk,n/k(Ω)∩X(Ω)∩Cc(Ω) under the normalization ‖∇ku‖Ln/k(Ω) =

1?

We call X(Ω) an auxiliary space of (1.4). First we state the following proposition, which is
an immediate consequence of an elementary inequality

log(1+ st) ≤ log(s+ st) = log(1+ t)+ log s for t ≥ 0, s ≥ 1. (1.5)

See [5, p4. Proposition 1.2] for the detailed proof of the next proposition.

Proposition 1.2. Let Ω be a domain in Rn, and X1(Ω), X2(Ω) be function spaces satisfying

‖u‖X1(Ω) ≤ M‖u‖X2(Ω) for u ∈ X2(Ω)

with some constant M ≥ 1.

(i) If the inequality (1.4) holds in X(Ω) = X1(Ω) with a constant C, then so does (1.4) in
X(Ω) = X2(Ω) with another constant C,

or equivalently,

(ii) If the inequality (1.4) fails in X(Ω) = X2(Ω) with any constant C, then so does (1.4)
in X(Ω) = X1(Ω) with any constant C.

From the proposition, the sharp constants for λ1 and λ2 in (1.4) are independent of
the choice of the equivalent norms of the auxiliary space X(Ω). On the other hand, note
that these sharp constants may depend on the definition of ‖∇ku‖Ln/k(Ω); there are several
manners to define ‖∇ku‖Ln/k(Ω). We choose (1.2) as the definition of ‖∇ku‖Ln/k(Ω) throughout
this paper.

In the present paper we shall include Besov spaces and Triebel-Lizorkin spaces as an
auxiliary space X(Ω). We shall describe their definitions in Section 2.

In what follows, we denote

pα,s =


n

s−α
for s > α,

∞ for s = α.

We fix functions ψ0,ϕ0 ∈ C∞c (Rn) which are supported in the ball B4, in the annulus
B4 \B1, respectively, and satisfying

∞∑
k=−∞

ϕ0
k(x) = χRn\{0}(x), ψ0(x) = 1−

∞∑
k=0

ϕ0
k(x) for x ∈ Rn, (1.6)

where we set ϕ0
k = ϕ

0( ·/2k). Here, χE is the characteristic function of a set E, and C∞c (Ω)
denotes the class of compactly supported C∞ functions on Ω. We also denote by Cc(Ω) the
class of compactly supported continuous functions on Ω.
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Definition 1.3. Take ψ0,ϕ0 satisfying (1.6) and let u ∈ S′(Rn).

(i) Let 0 < s <∞, 0 < p ≤∞ and 0 < q ≤∞. The Besov space Bs,p,q(Rn) is normed by

‖u‖Bs,p,q(Rn) = ‖ψ
0(D)u‖Lp(Rn)+

 ∞∑
k=0

(
2sk‖ϕ0

k(D)u‖Lp(Rn)
)q

1/q

(1.7)

with the obvious modification when q =∞.

(ii) Let 0 < s < ∞, 0 < p < ∞ and 0 < q ≤ ∞. The Triebel-Lizorkin space F s,p,q(Rn) is
normed by

‖u‖F s,p,q(Rn) = ‖ψ
0(D)u‖Lp(Rn)+

∥∥∥∥∥∥∥∥
 ∞∑

k=0

(
2sk|ϕ0

k(D)u|
)q

1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

(1.8)

with the obvious modification when q =∞; one excludes the case p =∞.

Different choices of ψ0 and ϕ0 satisfying (1.6) yield equivalent norms in (1.7) and (1.8).
We refer to [9] for exhaustive details of this fact. Here and below, we denote by As,p,q the
spaces Bs,p,q with 0 < s <∞, 0 < p ≤ ∞, 0 < q ≤ ∞, or F s,p,q with 0 < s <∞, 0 < p <∞,
0 < q ≤ ∞. Unless otherwise stated, the letter A means the same scale throughout the
statement. Also we need the following spaces to formulate our results. As in [9] and [11],
we adopt a traditional method of defining function spaces on a domain Ω ⊂ Rn.

Definition 1.4. Let 0 < s <∞ and 0 < p,q ≤∞.

(i) The function space As,p,q(Ω) is defined as the subset ofD′(Ω) obtained by restricting
elements in As,p,q(Rn) to Ω and the norm is given by

‖u‖As,p,q(Ω) = inf{‖v‖As,p,q(Rn); v ∈ As,p,q(Rn), v|Ω = u in D′(Ω)}.

(ii) The potential space Hs,p(Ω) stands for F s,p,2(Ω).

In the case k = 1, they proved the following theorem, which gives the sharp constants
for λ1 and λ2 in (1.4). We shall restrict 0 < α < 1 in the affirmative assertion below for the
sake of simplicity.

Theorem 1.5 ([5, Theorems 1.5–1.7]). Let n ≥ 2, k = 1, 0 < α ≤ s, 0 < q ≤ ∞, Ω be a
bounded domain in Rn, and X(Ω) = As,pα,s,q(Ω).

(i) Let 0 < α < 1. Assume that either

(I) λ1 >
1

ω1/(n−1)
n−1 α

and λ2 ∈ R or (II) λ1 =
1

ω1/(n−1)
n−1 α

and λ2 ≥
1

nω1/(n−1)
n−1 α

holds. Then there exists a constant C such that the inequality (1.4) holds for all
u ∈W1,n(Ω)∩As,pα,s,q(Ω)∩Cc(Ω) with ‖∇u‖Ln(Ω) = 1.
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(ii) Let α > 0. Assume that either

(III) λ1 <
1

ω1/(n−1)
n−1 α

and λ2 ∈ R or (IV) λ1 =
1

ω1/(n−1)
n−1 α

and λ2 <
1

nω1/(n−1)
n−1 α

holds. Then for any constant C, the inequality (1.4) fails for some u ∈ C∞c (Ω) with
‖∇u‖Ln(Ω) = 1.

Furthermore, the assertions still hold true

if we replace As,pα,s,q(Ω) by Hs,pα,s(Ω) or As,pα,s,q(Ω)∩Cc(Ω).

We should mention that Ibrahim-Majdoub-Masmoudi [3, Theorems 1.3 and 1.4] have
already obtained a similar result in the case n = 2 and X(Ω) = Ċ0,α(Ω).

We shall investigate the inequality (1.4) for general k ∈N. The Brézis-Gallouët-Wainger
inequality (1.3) shows that (1.4) holds for sufficiently large λ1 in some cases as follows.

Proposition 1.6. Let n,k ∈ N, 0 < α ≤ s, Ω be a domain in Rn, and X(Ω) = As,n/(s−α),q(Ω)
be either F s,n/(s−α),q(Ω) with 0 < q ≤ 2, or Bs,n/(s−α),q(Ω) with 0 < q ≤ min{n/(s−α),2}. If
λ1 > 0 is sufficiently large, then there exists a constant C such that the inequality (1.4) holds
for all u ∈Wk,n/k(Ω)∩As,pα,s,q(Ω)∩Cc(Ω) with ‖∇ku‖Ln/k(Ω) = 1.

In the present paper, we generalize Theorem 1.5 (ii), that is, a lower bound of the sharp
constants for λ1 and λ2.

We invoke the following result in our previous paper [4]. We will need to calculate the
exact values of homogeneous Sobolev norms of the function log|·| on annuli.

Theorem 1.7 ([4, Theorem 1.2]). For any n,k ∈ N, it holds

(|x|k|∇k[log|x|]|)2 = `k for x ∈ Rn \ {0},

where `k is given in (1.1).

Remark 1.8. We obtained the following precise values in [4].

(i) In the case n = 2, for any k ∈ N, it holds

`k = 2k−1((k−1)!)2.

(ii) For small k, we have calculated the concrete values of `k;

`1 = 1, `2 = n, `3 = 4(3n−2), `4 = 12(n2+18n−16), `5 = 192(5n2+30n−32),

`6 = 960(n3+78n2+224n−288), `7 = 34560(7n3+196n2+308n−496),

`8 = 241920(n4+204n3+3052n2+2736n−5888).

We now state our main result.
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Theorem 1.9. Let n ≥ 2, k ∈ {1,2, . . . ,n−1}, 0 < α ≤ s, 0 < q ≤ ∞, Ω be a bounded domain
in Rn, and X(Ω) = As,pα,s,q(Ω). Define `k as in (1.1). Assume that either

(III) λ1 <
1

`n/(2(n−k))
k ωk/(n−k)

n−1 α
and λ2 ∈ R

or (IV) λ1 =
1

`n/(2(n−k))
k ωk/(n−k)

n−1 α
and λ2 <

k

n`n/(2(n−k))
k ωk/(n−k)

n−1 α

holds. Then for any constant C, the inequality (1.4) fails for some

u ∈Wk,n/k(Ω)∩As,pα,s,q(Ω)∩Cc(Ω) with ‖∇ku‖Lk,n/k(Ω) = 1.

Furthermore, the assertions above still hold true if we replace As,pα,s,q(Ω) by Hs,pα,s(Ω) or
As,pα,s,q(Ω)∩Cc(Ω).

Remark 1.10. The power n/(n−k) on the left-hand side of (1.4) is optimal in the sense that
r = n/(n− k) is the largest power for which there exist λ1 and C such that

‖u‖rL∞(Ω) ≤ λ1 log(1+ ‖u‖X(Ω))+C (1.9)

can hold for all u ∈ Wk,n/k(Ω)∩ X(Ω)∩Cc(Ω) with ‖∇ku‖Ln/k(Ω) = 1. Here, X(Ω) is as in
Theorem 1.5. Indeed, if r > n/(n−k), then for any λ1 > 0 and any constant C, (1.9) fails for
some u ∈Wk,n/k(Ω)∩X(Ω)∩Cc(Ω) with ‖∇ku‖Ln/k(Ω) = 1, which is shown by carrying out a
similar calculation to the proof of Theorem 1.9; see Remark 3.4 below for the details.

In what follows, C denotes a constant which may vary from line to line.
Finally let us describe the organization of the present paper. In Section 2, we introduce

some notation of function spaces and state embedding theorems. Section 3 is devoted to
proving Theorem 1.9.

2 Preliminaries

To describe the definition of Besov spaces and Triebel-Lizorkin spaces, we denote by BR

the open ball in Rn centered at the origin with radius R > 0, i.e., BR = {x ∈ Rn; |x| < R}.
Define the Fourier transform F and its inverse F −1 by

F u(ξ) =
1

(2π)n/2

∫
Rn

e−
√
−1 x·ξu(x)dx, F −1u(x) =

1
(2π)n/2

∫
Rn

e
√
−1 x·ξu(ξ)dξ

for u ∈ S(Rn), respectively, and they are also extended on S′(Rn) by duality. For ϕ ∈ S(Rn),
define ϕ(D) by

ϕ(D)u = F −1(ϕF u) =
1

(2π)n/2 (F −1ϕ)∗u.

We recall the following fact on the Sobolev type embedding for Besov spaces and
Triebel-Lizorkin spaces. See [5, Lemma 3.1] for its detailed proof.
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Lemma 2.1. Let 0 < s <∞, 0 < p < p̃ ≤∞, 0 < q < q̃ ≤∞ and Ω be a domain in Rn. Then

Bs,p,q(Ω) ↪→ Bs,p,q̃(Ω),

Bs,p,q(Ω) ↪→ Bs−n(1/p−1/p̃),p̃,q(Ω),

Bs,p,min{p,q}(Ω) ↪→ F s,p,q(Ω) ↪→ Bs,p,max{p,q}(Ω)

in the sense of continuous embedding.

In view of Proposition 1.2 (i), Proposition 1.6 is a direct consequence of the Brézis-
Gallouët-Wainger inequality (1.3) and Lemma 2.1.

3 Counterexample for the inequality

In this section, we give the proof of Theorem 1.9. Lemma 2.1 shows that

Bs,p,min{p,q}(Ω) ↪→ F s,p,q(Ω),

and hence it suffices to consider the case As,pα,s,q(Ω) = Bs,pα,s,q(Ω). Furthermore, another
embedding theorem also shows that

Bs̃,pα,s̃,min{pα,s̃,q}(Ω) ↪→ Bs,pα,s,q(Ω) for s̃ > s,

and hence we have only to consider the case 0 < q ≤ pα,s = n/(s− α) ≤ 1. As we have
verified in Lemma 2.1, Bs,pα,s,min{pα,s,2}(Ω) ↪→ Hs,pα,s(Ω) ↪→ Bs,pα,s,max{pα,s,2}(Ω). Hence we
can transplant our results to the potential space Hs,pα,s(Ω). Therefore, it suffices to show the
following theorem for the proof of Theorem 1.9.

Theorem 3.1. Let n ≥ 2, k ∈ {1,2, . . . ,n− 1}, α > 0, s ≥ n+ α, 0 < q ≤ pα,s ≤ 1, Ω be a
bounded domain in Rn, and X(Ω) = Bs,pα,s,q(Ω). Assume that either (III) or (IV) holds.
Then for any constant C, the inequality (1.4) fails for some u ∈C∞c (Ω) with ‖∇ku‖Ln/k(Ω) = 1.

Let us observe that the inequality (1.4) with Xs,pα,s,q(Ω) = Bs,pα,s,q(Ω) holds for all u ∈
Wk,n/k(Ω)∩Bs,pα,s,q(Ω)∩Cc(Ω) if and only if there exists a constant C depending only upon
the given parameters k, s,α,q and the fixed constants (λ1,λ2) such that Fα,s,q

k [u;λ1,λ2] ≤ C
holds for all u ∈Wk,n/k(Ω)∩Bs,pα,s,q(Ω)∩Cc(Ω) with ∇ku , 0 in Ln/k(Ω), where

Fα,s,q
k [u;λ1,λ2] =

(
‖u‖L∞(Ω)

‖∇ku‖Ln/k(Ω)

)n/(n−k)

−λ1 log
(
1+
‖u‖Bs,pα,s ,q(Ω)

‖∇ku‖Ln/k(Ω)

)
−λ2 log

(
1+

(
1+
‖u‖Bs,pα,s ,q(Ω)

‖∇ku‖Ln/k(Ω)

))
for u ∈Wk,n/k(Ω)∩Bs,pα,s,q(Ω)∩Cc(Ω) with ∇ku , 0 in Ln/k(Ω).

For the proof of Theorem 3.1, we have to find a sequence {u j}
∞
j=1 ⊂Wk,n/k(Ω)∩Bs,pα,s,q(Ω)∩

Cc(Ω) such that Fα,s,q
k [u j;λ1,λ2]→∞ as j→∞ under the assumption (III) or (IV). In the

case that Ω = Rn and that all the functions are supported in B1, we can choose such a
sequence.
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Lemma 3.2. Let n ≥ 2, k ∈ {1,2, . . . ,n− 1}, α > 0, s ≥ n+α, 0 < q ≤ pα,s ≤ 1 and Ω = Rn.
Then there exists a family of functions {u j}

∞
j=1 ⊂Wk,n/k(Rn)∩Bs,pα,s,q(Rn)∩Cc(Rn)\ {0} with

∇ku j , 0 in Ln/k(Rn) and suppu j ⊂ B1 for all j ∈ N such that

Fα,s,q
k [u j;λ1,λ2]→∞ as j→∞

under the assumption (III) or (IV) of Theorem 1.9.

We can prove Theorem 3.1 once we accept Lemma 3.2, by arguing similarly as in [5,
Proof of Theorem 3.1]; we omit the details.

We now concentrate on the proof of Lemma 3.2. For 0 < τ ≤ 1, define a 1-dimensional
function Pm,α

τ by

Pm,α
τ (r) =


1
2

log
1
τ
+

m∑
l=1

1
l

(
1−

r
τ

)l
+

 1
α
−

m∑
l=1

1
l

(1− r
τ

)m+1
for 0 ≤ r ≤ τ,

1
2

log
1
r

for r ≥ τ.

Fix a cut-off function ρ ∈ C∞(R) satisfying ρ(r) = 1 for 0 ≤ r ≤ 1/2 and ρ(r) = 0 for r ≥ 1.
Then define

um,α
τ (x) =

α

α log(1/τ)+1
ρ(|x|)Pm,α

τ2 (|x|2) for x ∈ Rn.

We also use the following estimates to prove Lemma 3.2.

Proposition 3.3. Let n ≥ 2, k ∈ {1,2, . . . ,n− 1}, m ∈ N and α > 0. Then the following hold
for 0 < τ ≤ 1/2:

(i) um,α
τ ∈Cm

c (Rn).

(ii) It holds ‖um,α
τ ‖L∞(Rn) ≥ 1.

(iii) If 0 < τ ≤ 1/e1/α, then there exist constants Kk,m,α,Lk > 0 such that

Lk

(log(1/τ))n/k−1 ≤ ‖∇
kum,α
τ ‖

n/k
Ln/k(Rn)

≤
`n/(2k)

k ωn−1

(log(1/τ))n/k−1 +
Kk,m,α

(log(1/τ))n/k .

(iv) If s ≥ n+α, 0 < q ≤ pα,s ≤ 1 and m ≥ s+ 2, then there exists a constant Mm,s,α,q > 0
such that

‖um,α
τ ‖Bs,pα,s ,q(Rn) ≤

Mm,s,α,q

τα log(1/τ)
.

In particular, um,α
τ ∈Wk,n/k(Rn)∩Bs,pα,s,q(Rn)∩Cc(Rn) with ∇ku , 0 in Ln/k(Rn).

Proof. (i) First note that Pm,α
τ is the unique polynomial of degree m+1 satisfying

α

α log(1/τ)+1
Pm,α
τ (0) = 1, (Pm,α

τ )(l)(τ) =
(

d
dr

)l [
log

1
r

]∣∣∣∣∣∣
r=τ

for l ∈ {1,2, . . . ,m}.

Hence, Pm,α
τ ∈Cm([0,1)), and um,α

τ ∈Cm
c (Rn).
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(ii) Since um,α
τ is continuous on B1, we see that

‖um,α
τ ‖L∞(Rn) ≥ um,α

τ (0) =
α

α log(1/τ)+1
Pm,α
τ (0) = 1.

(iii) It follows from Theorem 1.7 that

|∇kum,α
τ (x)| =

`1/2
k

|x|k
for x ∈ B1/2 \Bτ.

Since 0 < τ ≤ 1/e1/α, then we can estimate the norm from below as follows:

‖∇kum,α
τ ‖

n/k
Ln/k(Rn)

≥ ‖∇kum,α
τ ‖

n/k
Ln/k(B1/2\Bτ)

= ωn−1

 α`1/2
k

α log(1/τ)+1

n/k (
log

1
τ
+ log

1
2

)

≥ ωn−1

`1/2
k

2

n/k
1

(log(1/τ))n/k−1 .

We next estimate it from above. A direct calculation shows that

‖∇kum,α
τ ‖

n/k
Ln/k(B1/2\Bτ)

= ωn−1

 α`1/2
k

α log(1/τ)+1

n/k (
log

1
τ
+ log

1
2

)

≤
`n/(2k)

k ωn−1

(log(1/τ))n/k−1 +
(log(1/2))`n/(2k)

k ωn−1

(log(1/τ))n/k .

Since

Pm,α
τ2 (|x|2) = Pm,α

1

(
|x|2

τ2

)
for x ∈ Bτ,

we have

∇kum,α
τ (x) =

1
α log(1/τ)+1

∇k
[
um,α

1

( x
τ

)]
=

1
τk(α log(1/τ)+1)

(∇kum,α
1 )

( x
τ

)
for x ∈ Bτ. Finally we have

‖∇kum,α
τ ‖Ln/k(Bτ) =

‖∇kum,α
1 ‖Ln/k(B1)

α log(1/τ)+1
≤
‖∇kum,α

1 ‖Ln/k(B1)

α

1
log(1/τ)

.

Similarly we have

‖∇kum,α
τ ‖Ln/k(Rn\B1/2) =

‖∇kum,α
1 ‖Ln/k(Rn\B1/2)

α log(1/τ)+1
≤
‖∇kum,α

1 ‖Ln/k(Rn\B1/2)

α

1
log(1/τ)

.

The proof of (iii) is therefore complete.
(iv) We first claim that for a multiindex β with |β| ≤ m,

|∂βum,α
τ (x)| ≤

Cm,α

log(1/τ)max{τ, |x|}|β|
. (3.1)
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On one hand, since

∂βum,α
τ (x) =

α

α log(1/τ)+1

∑
l∈Z

|β|/2≤l≤|β|

1
τ2l (Pm,α

1 )(l)
(
|x|2

τ2

) ∑
γ≤β

|γ|=2l−|β|

cβ,γxγ for x ∈ Bτ,

we have

|∂βum,α
τ (x)| ≤

Cm

τ|β| log(1/τ)

∑
l∈Z

|β|/2≤l≤|β|

sup
0≤r≤1
|(Pm,α

1 )(l)(r)| ≤
Cm,α

τ|β| log(1/τ)
for x ∈ Bτ.

Meanwhile, since

∂βum,α
τ (x) =

α

α log(1/τ)+1

|β|−1∑
l=0

ρ(l)(|x|)
∑
γ≤β

c′β,γ
xγ

|x||β|+|γ|−l

+

|β|∑
l=1

ρ(l)(|x|)
∑
γ≤β

c′′β,γ
xγ

|x||β|+|γ|−l
log

1
|x|

 for x ∈ B1 \Bτ,

we have

|∂βum,α
τ (x)| ≤

Cm

log(1/τ)|x||β|

(
1+ |x| log

1
|x|

)
≤

Cm

log(1/τ)|x||β|
for x ∈ B1 \Bτ.

Thus, (3.1) was established. Take ψ0,ϕ0 satisfying (1.6). Decompose

um,α
τ = vm,α

τ +wm,α
τ ,

where

vm,α
τ = ψ0

(
·

τ

)
um,α
τ ,

wm,α
τ =

∞∑
j=1

wm,α, j
τ ,

wm,α, j
τ = ϕ0

j

(
·

τ

)
um,α
τ .

Fix Ls ∈ N satisfying s < 2Ls ≤ s+ 2. Note that 2Ls ≤ m. We shall calculate the following
norm.

‖um,α
τ ‖Bs,pα,s ,q(Rn)

= ‖K ∗um,α
τ ‖Lpα,s (Rn)+

 ∞∑
k=0

(2ks‖2kn[∆L
s K](2k·)∗um,α

τ ‖Lpα,s (Rn))q

1/q

,

where K is a compactly supported smooth function such that χB1 ≤ K ≤ χB2 . It is known
that ‖ · ‖Bs,p,q(Rn) is equivalent to the usual Besov norm defined by using the Littlewood-Paley
decomposition (see [10]). It is easy to see that

‖K ∗wm,α
τ ‖Lpα,s (Rn) ≤Cm,α ≤

Cm,α

τα log(1/τ)
.
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because um,α
τ is supported in B1, |um,α

τ | ≤Cm,α and |K ∗wm,α
τ (x)| ≤Cm,αχB4(x). Analogously,

we have
‖K ∗ vm,α

τ ‖Lpα,s (Rn) ≤Cm,α ≤
Cm,α

τα log(1/τ)
.

Thus, it follows that

‖K ∗um,α
τ ‖Lpα,s (Rn) ≤

Cm,α

τα log(1/τ)
.

So, let us concentrate on estimating

∞∑
k=0

(2ks‖2kn[∆Ls K](2k·)∗um,α
τ ‖Lpα,s (Rn))q,

or more precisely, we shall estimate

∞∑
k=0

(2ks‖2kn[∆Ls K](2k·)∗ vm,α
τ ‖Lpα,s (Rn))q,

∞∑
k=0

(2ks‖2kn[∆Ls K](2k·)∗wm,α
τ ‖Lpα,s (Rn))q

separately. Now we estimate

‖2kn[∆Ls K](2k·)∗wm,α, j
τ ‖Lpα,s (Rn).

Since ∫
Rn
χB1/2k−1 (y)χB2 j+2τ

(x− y)dy = |B1/2k−1 ∩ (x+B2 j+2τ)|,

this quantity is not zero only when x ∈ B1/2k−1+2 j+2τ, and then x ∈ B2max{1/2k−1,2 j+2τ}. Also, if
this is not zero, we still have∫

Rn
χB1/2k−1 (y)χB2 j+2τ

(x− y)dy = |B1/2k−1 ∩ (x+B2 j+2τ)|

≤min{|B1/2k−1 |, |x+B2 j+2τ|}

≤C min
{

1
2kn , (2

jτ)n
}
.

Observe also that ∆Lswm,α, j
τ can be written as a linear combination of the functions of the

form
∂β[ϕ0

j(·/τ)]∂γ[um,α
τ ],

where |β|+ |γ| = 2Ls. The functions being supported on B2 j+2τ \B2 jτ, we have∣∣∣∣∣∂β [ϕ0
j

( x
τ

)]∣∣∣∣∣ ≤ Cβ

(2 jτ)|β|
.

Meanwhile in order that wm,α, j
τ (x) , 0, |x| needs to belong to (2 jτ,2 j+2τ). Thus, using (3.1),

we obtain

|∂γ[um,α
τ ](x)| ≤

Cm,α,γ

(2 jτ)|γ| log(1/τ)
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on supp(wm,α, j
τ ). Accordingly, we deduce

|∆Lswm,α, j
τ (x)| ≤

Cm,α,s

(2 jτ)2Ls log(1/τ)
χB2 j+2τ

(x).

With this observation in mind, we calculate

2kn|[∆Ls K](2k·)∗wm,α, j
τ (x)|

=
1

2k(2Ls−n) |K(2k·)∗ [∆Lswm,α, j
τ ](x)|

≤
1

2k(2Ls−n)

∫
Rn
|K(2ky)| · |[∆Lswm,α, j

τ ](x− y)|dy

≤
Cm,α,s

2k(2Ls−n)(2 jτ)2Ls log(1/τ)

∫
Rn
χB1/2k−1 (y)χB2 j+2τ

(x− y)dy

≤
Cm,α,s

2k(2Ls−n)(2 jτ)2Ls log(1/τ)
min

{
1

2kn , (2
jτ)n

}
χB2max{1/2k−1 ,2 j+2τ}

(x).

Thus, we have

‖2kn[∆Ls K](2k·)∗wm,α, j
τ ‖Lpα,s (Rn)

≤
Cm,α,s

2k(2Ls−n)(2 jτ)2Ls log(1/τ)
min

{
1

2kn , (2
jτ)n

}
max

{
1

2kn/pα,s
, (2 jτ)n/pα,s

}
.

Since 0 < q ≤ pα,s ≤ 1, we have

∞∑
k=0

(2ks‖2kn[∆Ls K](2k·)∗wm,α
τ ‖Lpα,s (Rn))q

≤

∞∑
k=0

∞∑
j=1

(2ks‖2kn[∆Ls K](2k·)∗wm,α, j
τ ‖Lpα,s (Rn))q

≤
Cm,α,s

(log(1/τ))q

∞∑
k=0

∞∑
j=1

1
2k(2Ls−s−n)q(2 jτ)2Lsq

×min
{

1
2knq , (2

jτ)nq
}

max
{

1
2knq/pα,s

, (2 jτ)nq/pα,s

}
=

Cm,α,s

(log(1/τ))q

∞∑
k=0

2kαq
∞∑
j=1

1
(2 j+kτ)2Lsq

min{1, (2 j+kτ)nq}max{1, (2 j+kτ)(s−α)q}.

Since
min{1, t}max{1, t1/p} ≤max{t, t1/p} for t > 0,

we have
∞∑

k=0

(2ks‖2kn[∆Ls K](2k·)∗wm,α
τ ‖Lpα,s (Rn))q

≤
Cm,α,s

(log(1/τ))q

∞∑
k=0

2kαq
∞∑
j=1

max
{

1
(2 j+kτ)(2Ls−n)q ,

1
(2 j+kτ)(2Ls−s+α)q

}
.
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Decompose the summation with respect to k above into two parts 0 ≤ k < log2(1/τ) and
k ≥ log2(1/τ) to obtain

∞∑
k=0

(2ks‖2kn[∆Ls K](2k·)∗wm,α
τ ‖Lpα,s (Rn))q

≤
Cm,α,s

(log(1/τ))q

∞∑
j=1

1
2 j(2Ls−s+α)q


∑
k∈Z

0≤k<log2(1/τ)

2kαq+
1
ταq

∑
k∈Z

k≥log2(1/τ)

1
(2kτ)(2Ls−s)q

 .
Since 2Ls > s, we have

∞∑
k=0

(2ks‖2kn[∆Ls K](2k·)∗wm,α
τ ‖Lpα,s (Rn))q

≤
Cm,α,s,q

(log(1/τ))q


∑
k∈Z

0≤k<log2(1/τ)

2kαq+
1
ταq

∑
k∈Z

k≥log2(1/τ)

1
(2kτ)(2Ls−s)q


≤

Cm,α,s,q

(τα log(1/τ))q .

Thus, we deduce

‖wm,α
τ ‖Bs,pα,s ,q(Rn) ≤

Cm,α,s,q

τα log(1/τ)
.

The estimate of vm,α
τ is analogous. Note that

2kn[∆Ls K](2k·)∗ vm,α
τ =

1
2k(2Ls−n)∆

Ls[K(2k·)]∗ vm,α
τ .

Hence in view of the support condition, we obtain

|2kn[∆Ls K](2k·)∗ vm,α
τ (x)| ≤

Cm,α,s

2k(2Ls−n)τ2Ls
χB4(x).

Once this is obtained, we can go through the same argument as we did for

∞∑
k=0

(2ks‖2kn[∆Ls K](2k·)∗wm,α
τ ‖Lpα,s (Rn))q

and we obtain the estimate

∞∑
k=0

(2ks‖2kn[∆Ls K](2k·)∗ vm,α
τ ‖Lpα,s (Rn))q ≤

Cm,α,s,q

τα log(1/τ)
.

The proof is now complete. �

Finally we prove Lemma 3.2.
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Proof of Lemma 3.2. We may assume λ1,λ2 ≥ 0. Let 0 < τ ≤ 1/e1/α be sufficiently small so
that τα(log(1/τ))k/n ≤ 1. We estimate Fα,s,q

k [um,α
τ ;λ1,λ2] from below. Since

1(
1

sn/k−1 +
1

tn/k−1

)k/(n−k)

= s− s
(sn/k−1+ tn/k−1)k/(n−k)− t

(sn/k−1+ tn/k−1)k/(n−k)

= s−
k

n− k
sn/k

(sn/k−1+ tn/k−1)k/(n−k)

∫ 1

0
(sn/k−1θ+ tn/k−1)k/(n−k)−1dθ

≥


s−

k
n− k

sn/k

sn/k−1+ tn/k−1 if k ≥ n/2,

s−
k

n− k
sn/k

tn/k−2(sn/k−1+ tn/k−1)k/(n−k) if k ≤ n/2

≥ s−
k

n− k
sn/k

tn/k−1 for s, t > 0,

we have from Proposition 3.3 (ii) and (iii) that

(
‖um,α
τ ‖L∞(Rn)

‖∇kum,α
τ ‖Ln/k(Rn)

)n/(n−k)

≥
1`n/(2k)

k ω(n/k−1)/(n−1)
n−1

(log(1/τ))n/k−1 +
Kk,m,α

(log(1/τ))n/k


k/(n−k)

≥
1

`n/(2(n−k))
k ωk/(n−k)

n−1

log
1
τ
−

Kk,m,α

`n2/(2k(n−k))
k ωn/(n−k)

n−1

.

Using the inequalities (1.5) and

log(1+ s) ≤ log s+ log2 for s ≥ 1,

we have from Proposition 3.3 (iii) and (iv) that

log
(
1+
‖um,α
τ ‖Bs,pα,s ,α(Rn)

‖∇kum,α
τ ‖Ln/k(Rn)

)
≤ log

1+ Mm,s,α,q

Lk/n
k

1
τα(log(1/τ))k/n


≤ log

(
1+

1
τα(log(1/τ))k/n

)
+ log

1+ Mm,s,α,q

Lk/n
k


≤ log

(
1

τα(log(1/τ))k/n

)
+ log2+ log

1+ Mm,s,α,q

Lk/n
k


= α log

1
τ
−

k
n

log
(
log

1
τ

)
+Ck,m,s,α,q
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and

log
(
1+ log

(
1+
‖um,α
τ ‖Bs,pα,s ,α(Rn)

‖∇kum,α
τ ‖Ln/k(Rn)

))
≤ log

(
1+α log

1
τ
−

k
n

log
(
log

1
τ

)
+Ck,m,s,α,q

)
≤ log

(
1+α log

1
τ
+Ck,m,s,α,q

)
≤ log

(
1+α log

1
τ

)
+ log(1+Ck,m,s,α,q)

≤ log
(
α log

1
τ

)
+ log2+ log(1+Ck,m,s,α,q)

= log
(
log

1
τ

)
+ log(2α(1+Ck,m,s,α,q)).

Therefore, we have

Fα,s,q
k [um,α

τ ;λ1,λ2] ≥

 1

`n/(2(n−k))
k ωk/(n−k)

n−1

−αλ1

 log
1
τ
+

(
kλ1

n
−λ2

)
log

(
log

1
τ

)
−

Kk,m,α

`n2/(2k(n−k))
k ωn/(n−k)

n−1

−λ1Ck,m,s,α,q−λ2 log(2α(1+Ck,m,s,α,q))

→∞ as τ↘ 0

under the assumption (III) or (IV). �

Remark 3.4. As we stated in Remark 1.10, if r > n/(n− k), then for any λ1 > 0 and any
constant C, (1.9) fails for some u ∈Wk,n/k(Ω)∩X(Ω)∩Cc(Ω) with ‖∇ku‖Ln/k(Ω) = 1. To see
this, let

r = (1+ε)n/(n− k), ε > 0,X(Ω) = Bs,pα,s,q(Ω)

and define

Fα,s,q,ε
k [u;λ1] =

(
‖u‖L∞(Ω)

‖∇ku‖Ln/k(Ω)

)(1+ε)n/(n−k)

−λ1 log
(
1+
‖u‖Bs,pα,s ,q(Ω)

‖∇ku‖Ln/k(Ω)

)
for u ∈Wk,n/k(Ω)∩Bs,pα,s,q(Ω)∩Cc(Ω) with ∇ku , 0 in Ln/k(Ω)

instead of Fα,s,q[u;λ1,λ2]. We argue as in the proof of Lemma 3.2 to obtain

Fα,s,q,ε[u j;λ1] ≥

 1

`n/(2(n−k))
k ωk/(n−k)

n−1

log
1
τ
−

Kk,m,α

`n2/(2k(n−k))
k ωn/(n−k)

n−1

1+ε

−αλ1 log
1
τ

+
k
n
λ1 log

(
log

1
τ

)
−λ1Ck,m,s,α,q

≥

 1

2`n/(2(n−k))
k ωk/(n−k)

n−1

log
1
τ

1+ε

−αλ1 log
1
τ

+
k
n
λ1 log

(
log

1
τ

)
−λ1Ck,m,s,α,q if τ is sufficiently small

→∞ as τ↘ 0,
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which provides the assertion above.
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