
Chapter 4

Bayesian Computation for Point Patterns

4.1. Simulating point patterns

We begin this chapter by discussing methods for simulating point patterns under
various model specifications. Simulating realizations of point patterns underlies
our general Bayesian inference approach (Section 3.1) and is a powerful tool for
model validation and prediction, as outlined in Section 3.2. Algorithms along with
R software available for simulating point patterns will be given for some models.

4.1.1. Homogeneous Poisson Process (HPP)

To start, recall the HPP, the simplest stationary process with complete spatial ran-
domness discussed in Section 2.1.1. The HPP assumes a constant intensity function,
λ(s) = λ for all s ∈ D. In the simulations to follow, we will assume D ∈ R

2, but the
approaches are easily generalizable to domains with higher dimension. Additionally,
for convenience, we assume D to be the unit square, such that D = [0, 1]× [0, 1]. At
the end of this section, we offer an extension to these simulation procedures using
rejection sampling that readily accommodates irregular domains.

Let |D| be the area of the spatial domain. A simple two stage process to simulate
from an HPP with λ(s) = λ for all s ∈ D begins by first drawing N ∼ Po(λ|D|)
to obtain the random number of points in the region. Then, each point, si for
i = 1, 2, . . . , N , is randomly located independently and uniformly over D. That is,
letting si = (si1, si2), we draw si1 ∼ Unif(0, 1) and si1 ∼ Unif(0, 1). Collectively,
S = {si; i = 1, . . . , N} specifies the realized point pattern of the HPP.

If D is not a product set, we embed it into a rectangle. Then we draw points
uniformly over the rectangle, retaining those that fall in D. See Section 4.1.7 below
for further discussion.

4.1.2. Nonhomogeneous Poisson Process (NHPP)

We immediately extend the simulation to the NHPP where λ(s) is location-specific
and varies with s. This method dates to [122]. Letting λmax = max

s∈D
λ(s), we use

the HPP simulation procedure by first drawing Nmax ∼ Po(λmax|D|) and then
randomly locating the points in D. Let Smax denote the observed spatial point
pattern from the HPP. The realization of the NHPP is obtained using a thinning

procedure where each point, si ∈ Smax, is retained with probability λ(si)
λmax

. That is,
for each si, i = 1, 2, . . . , Nmax, we sample an independent Bernoulli random variable

with p(si) =
λ(si)
λmax

where a 1 means si is retained, 0 otherwise. The number, N , and
collection of points retained, S, yields the realization from the NHPP with intensity
λ(s). The proof is straightforward; we only need to show that, for any set A ∈ D,
N(A) ∼ Po(λ(A)).

49



50 Bayesian Computation for Point Patterns

Two issues to consider when simulating from an NHPP are the following. First,
it is common for NHPPs to be specified using spatial covariates. For example, a
spatial point process of the locations of tree species might be driven by climate
variables such as temperature and precipitation, or elevation. Here, the intensity
surface might be specified in log-linear form where logλ(s) = xT (s)γ where x(s) is
a vector of covariates for location s, which is, in theory, observable for all s ∈ D
(recall Section 2.3). In practice, spatial covariates are often only available across a
collection of grid cells that form a disjoint partition of the spatial domain. Therefore,
the best we can do is approximate the continuous intensity surface, λ(s), with a
piecewise constant intensity. For locations simulated randomly within the domain
using the NHPP simulation procedure, two locations within the same grid cell will
have the same probability of being retained but independent Bernoulli random
variables are sampled for each.

Second, the procedure outlined above assumes λmax can be computed directly.
That is, λ(s), and, therefore, x(s) need to be available everywhere in order to obtain
the maximum over the intensity surface. In practice, again, we will have to rely on
the disjoint partition of the spatial domain in order to approximate the maximum
intensity to be used in the simulation procedure.

4.1.3. Log Gaussian Cox Process (LGCP)

Recall that the LGCP, introduced in Section 2.3, is an extension of the NHPP
where the intensity function, λ(s), is a stochastic process. Simulating a realization
of a LGCP requires first simulating a realization of the stochastic process, namely, a
realization of the Gaussian process. Then, conditioning on this realization, we have
an NHPP with intensity λ(s) and can follow the procedure above using thinning
to obtain our realization from the LGCP.1 Due to the multiple stages of random
sampling, i.e., the Gaussian process realization, the number of points, and the
location of points, we provide additional details for this approach.

To begin, we must first obtain a realization of the Gaussian process, referred
to as z(s), that is defined over s ∈ D. We will assume z(s) is a mean zero GP
with valid spatial covariance function C(s, s′) specified according to Section 1.4. To
obtain a realization of the GP, we first need to define a set of representative points,
U , at which we will observe z(s). In theory, this set of representative points can be
chosen in any way; for example, randomly sampling a set of locations in D. Since,
however, we will be using this realization of the GP to aid in simulating from the
point process, it is often more efficient to discretize the domain into a collection
of grid cells that form a disjoint partition of D and use, for example, the centroid
of each grid as a representative point. The realization of the LCGP is sensitive
to this discretization and a finer resolution of the surface will result in a better
approximation of the true Gaussian process2.

Let U denote the set of representative points such that uj ∈ U and |uj | is the
area of the grid cell j with centroid uj . Then, we obtain a finite realization of the
GP at the set of representative points by drawing z ∼ MVN(0,C) where C is
the covariance matrix between the set of representative points. The realization of
z at the grid cell centroids results in a tiled surface over D, and, in turn, a tiled

1To be clear, the resulting point pattern realization is given the GP realization. We are not
attempting to create point patterns marginalized over the GP.

2The downside with increasing the grid resolution is that as the dimension of U increases, we
have to sample from an increasingly higher dimensional multivariate normal distribution which
becomes increasingly computationally expensive.



Simulating point patterns 51

surface for the intensity. That is, λ0(uj) = ez(uj) denotes the baseline intensity for
the entire grid cell containing uj for each uj ∈ U .

Then, as in Section 4.1.2, we add the regressors, xT (s)γ, resulting in λ(uj) =

ex
T (uj)γλ0(uj) = ex

T (uj)γ+z(uj).
Now, conditional on the realization of the GP, z, λ(uj) fully specifies the in-

tensity of an NHPP. Therefore, we can obtain a realization of the LGCP using
the NHPP simulation procedure where λmax = max

U
λ(u). That is, we draw

Nmax ∼ Po(λmax|D|) and randomly locate the Nmax points in D, where Smax

denotes the collection of points. The thinning procedure introduced above is again
employed to obtain the simulated spatial point pattern under the specified LGCP.
Letting ui denote the centroid of the grid cell containing simulated point si ∈ Smax,

si is retained with probability p(ui) =
λ(ui)
λmax

. It is important to note that each sam-
ple point si ∈ Smax is retained independently of all other points, even if there are
multiple si’s located in the same grid cell. Again, the number and locations of the
points retained makes up the realization of the point pattern S from the LGCP.

4.1.4. Cluster Processes

We now turn from Poisson processes and the conditional independence assumption
to the simulation of point patterns that exhibit dependence in the form of spa-
tial clustering. In general, clustering in spatial point patterns can be thought of as
groups, or clusters, of points that have interpoint distances smaller than the average
distance between points across the domain. Two common families of cluster pro-
cesses include the Neyman Scott process and the shot noise processes (Section 2.4).
The simulation procedures for each of these cluster processes are directly generative
and outlined in detail below.

The Neyman Scott process can be described as a parent-offspring process. The
two-stage procedure for simulating this family of cluster processes begins by ran-
domly simulating a set of parent nodes/locations within the spatial domain. Then,
for each parent, offspring are simulated randomly and independently around the
parent node, which requires first sampling randomly the number of offspring for
each parent and then randomly locating them within D. A simulated realization
of the Neyman Scott process is the result of the collection of offspring from this
two-stage process (refer to Figure 2.4). That is, the parents are removed.

More formally, the Neyman Scott process requires a specification of the parent
intensity and an offspring intensity, which could be specified conditionally given the
parent. A common choice for the parent intensity might be an NHPP, where λ(s)
is defined over D and parent nodes can be simulated according to the procedure
outlined above. Note that a simpler HPP or a more general LGCP would also be
suitable models for the parent process.

Next, for each parent node, we need to generate the number and locations of the
offspring. Assuming K parent nodes were generated with locations μ1,μ2, . . . ,μK ,
one approach is to simulate Nk, the number of offspring for parent k where k =

1, 2, . . . ,K, according to, e.g.,Nk
iid∼ Po(δ), and then locate them by simulating i.i.d.

samples from the bivariate density f(s;μk). Customarily, the offspring of parent μk

are located using the bivariate Gaussian density N(μk, τ
2I) making this analogous

to a (modified) Thomas process [101]. Alternatively, a Matérn process can be used
in which the offspring are simulated uniformly within a circle of radius R centered
at μk. The resulting collection of offspring from all K parent nodes yields the
simulated point pattern from Neyman Scott process.



52 Bayesian Computation for Point Patterns

One might recognize the similarity between the collection of K bivariate den-
sities, f(s;μk), used to produce the offspring in the Neyman Scott and mixture
models, defined by a convex combination of a collection of densities. Recalling Sec-
tion 2.4, we can reformulate the simulation of offspring under the Neyman Scott
process given the collection of parent nodes, μ1,μ2, . . . ,μK , in the context of mix-
ture models. First, under the Poisson specification of Nk above, we simulate the
total number of offspring according to, e.g., N ∼ Po(Kδ). Other distributions
are possible for simulating Nk, however, distributions in the exponential family
make derivation of the distribution of N =

∑K
k=1 Nk easy to obtain. Given N , we

then locate the offspring by simulating i.i.d. samples from the mixture distribution
si ∼

∑K
k=1

1
K f(s;μk, ω

2 for i = 1, 2, . . . , N .

Shot noise processes are another class of models for cluster processes where,
like the LGCP, the intensity is stochastic. Here, a common form for a shot noise

process is λ(s) = ex
T (s)γλ0(s) where ex

T (s)γ is borrowed from the NHPP specified
with covariates x(s) and λ0(s) is a mean 1 shot process. As discussed in Section 2.4,
a simple yet flexible form for the shot process is λ0(s) =

∑
si∈Sshot

f(s− si)m(si).
Here, f is a unimodal density over D centered at 0, m(si) ≥ 0, and the summation
is over the collection of points in the shot process. m(si) is referred to as the “shot”
and the density f spreads the influence of the shot at si on λ(s) according to the
distance between s and si.

To simulate from the shot noise process, first simulate Sshot ∼ HPP (λ) to obtain
a realization of points for the shot process. If we assume a fixed constant for the
shot such that m(si) = m, then, by letting m = 1/λ, E(λ0(s)) = 1 and thus,
E(λ0(D)) = |D|. Now, using the simulated points of the shot process, compute

λ0(s) =
∑

si∈Sshot
f(s − si)m(si) and finally, λ(s) = ex

T (s)γλ0(s) is the resulting
shot noise intensity for s ∈ D.

Conditional on λ(s), we find ourselves with an NHPP intensity from which we
need to simulate a point pattern. Recall that in simulating from an NHPP, we first
obtained λmax = max

s∈D
λ(s) and then simulated from an HPP and used rejection

sampling to obtain the realization from the NHPP. Here, we again need to obtain
λmax, which can be done by taking the maximum λ(s) over a set of representative
points. For a large collection of representative points we expect to obtain a good
approximation to the true maximum value of λ(s) over D. Then, using λmax, we can
obtain a realization from the shot noise process using the same approach as for the
NHPP. First, simulate Nmax ∼ Po(λmax|D|) and locate them randomly in D with
Smax denoting their locations. Then, each simulated point sj ∈ Smax, is retained

with probability
λ(sj)
λmax

where λ(sj) = ex
T (sj)γλ0(sj) and λ0(sj) =

∑
si∈Sshot

f(sj −
si)m(si). The resulting collection of points retained yields a simulated point pattern
from the shot noise process.

4.1.5. Gibbs Process

Gibbs processes offer a flexible class of models for point patterns when there is
dependence between points. Most commonly, Gibbs processes are used to capture
negative dependence, or inhibition, but can be used to model clustering of points as
well. Various versions of inhibition processes are described in detail in Section 2.5.
Depending on the process specifications, such as strength of inhibition or attraction
of the point pattern or whether the number of points in the process is fixed or
random, different simulation algorithms have been proposed in the literature.



Simulating point patterns 53

For example, consider the Strauss process from Section 2.5, which exhibits in-
hibition through a penalty based on distance between pairwise points. Here, it is
possible for two points to lie closer than distance d0 apart like in a hard-core process
but can be unlikely. The Strauss process is intuitive from a simulation perspective.
First, generate a realization, S, from an HPP within the domain D. If no pair
of points is less than some threshold distance d0 apart, we accept the realization.
Otherwise, for each close pair of points, we have an independent Bernoulli trial
to decide whether to reject or accept the pair. If any pairs of points are rejected,
the entire point pattern is rejected. Letting 0 ≤ p ≤ 1 denote the probability of
acceptance of a pair of points and n(S, d) the number of close pairs of points in
the point pattern S, the realization S is accepted based on a Bernoulli trial with
probability pn(S,d0). When p = 1, S will be accepted with probability 1 and thus,
represents an HPP. When p = 0, this results in a hard-core process such that S
is rejected when n(S, d0) > 0. Therefore, for 0 < p < 1, the Strauss process spans
the range between complete spatial randomness and the hard-core process. Note
that both increases in d0 and decreases in p will decrease the acceptance probabil-
ity of candidate realizations of S, making the simulation procedure outlined above
increasingly inefficient.

An alternative approach for simulating from a more general Gibbs process uses a
Markov chain Monte Carlo (MCMC) algorithm. In the Bayesian framework, MCMC
algorithms are often used to obtain samples from the desired posterior distribution
in conducting model inference. Importantly, MCMC iterative procedures can also
be used as a simulation algorithm where the MCMC algorithm is based on a spatial
birth-death process [10, 16, 101] The algorithm begins with an initial point pat-
tern and after a series of iterations where points are added (births) and removed
(deaths), the algorithm will tend to an equilibrium state. Once approximate equi-
librium is reached, any instantaneous snapshot of the spatial patterns of points can
be assumed to follow the probability law of a Gibbs process. That is, given Q(S)
(Section 2.5) the joint location density for a particular point pattern realization, S,
is proportional to e−Q(S). To obtain a collection of realizations of a Gibbs process,
one continues iterating through the birth-death process where the number of iter-
ations between retained snapshots of the spatial patterns of points is large enough
such that dependence between observations is negligible.

We offer a few more details on the MCMC approach for simulating Gibbs pro-
cesses. The MCMC algorithm consists of random births and deaths of points, ulti-
mately reaching an equilibrium state. Assume S is the initialized point pattern for
the birth-death process. Additionally, assume a repulsive Gibbs process where d0
denotes the threshold distance as discussed above. Then, for any small window of
time, Δt, each point, independently, has probability mΔt of mortality (i.e. being
removed from the point pattern). Additionally, letting b denote the birth rate per
unit area and per unit time, for some small spatial region of area Δa, a new point
is “born”, independently, with probability bpkΔtΔa, where p is the probability of
acceptance and k is the number of points in the current point pattern S that lie
closer than the threshold d0 of the proposed birth point. Again, p = 0 implies a
hard-core process. Iterating between random births and deaths in this fashion cre-
ates the sequence of spatial point patterns. Note that once equilibrium is reached,
this doesn’t mean that realizations of the point pattern will consist of the same
set of points. Rather, the random locations of points will follow the same specified
probability law of the Gibbs process.

As opposed to the long-run approximations from the birth-death MCMC proce-
dure, perfect simulation provides an alternative method for simulating from Gibbs



54 Bayesian Computation for Point Patterns

processes [163, 164]. The benefit of perfect simulation is that it solves the problem
of having to assess when approximate equilibrium of the target distribution has
been reach. Perfect simulation is a Markov chain simulation algorithm such that
the exact equilibrium is attained when the algorithm completes; it is therefore able
to return perfect simulations from the target distribution. Perfect simulation based
on coupling from the past (CFTP) repeatedly generates upper and lower Markov
chains starting increasingly further back in time until the pair of chains merge at
time 0. Then, the chains return a perfect simulation from the specified target distri-
bution. While CFTP is the most common perfect sampler, other perfect samplers
exist in the literature [24, 138].

The general approach for perfect simulation using CFTP assumes that the state
space is finite, has an ordering such that the sampler is monotone, and that there
are unique minimal and maximal elements in which the lower and upper processes
are started, respectively [163]. Then, starting the two chains at any time t ≤ 0 in
any arbitrary state, the chain produced by the sampler is contained between the two
chains. [163] showed that for sufficiently large t, under weak ergodicity conditions,
the two chains will coalesce and yield a simulation from the target distribution.

[109] and [95] show how perfect simulation using CFTP algorithms can be used
to conduct perfect simulation for point processes. Whereas the original simulation
work of [163] assumed the target distribution to be attractive, [109] generalized
the approach for repulsive processes. In particular, they generalized the algorithm
for an area-interaction point process to obtain perfect simulations from its target
equilibrium distribution of a spatial birth-death process.

[110] outline a dominated CFTP for pairwise interaction point processes, where
“dominating” processes are used for generating the upper and lower processes of
the CFTP algorithm. The dominating processes are generated backward in time
and are used to generate the upper and lower processes. The upper and lower pro-
cesses are generated forward in time starting at t ≤ 0 using birth-death processes
until the upper and lower processes at time 0 are equal. In addition, they pro-
pose an algorithm for doing perfect simulation for spatial point patterns using the
Metropolis-Hastings algorithm.

Pairwise interaction processes are also addressed in [25], where the dominated
CFTP perfect simulation and path sampling [78] are combined for likelihood based
inference and non-parametric Bayesian inference. [95] extend the perfect simula-
tion algorithm using a two component Gibbs sampler for a bivariate point process
model in order to obtain exact samples from a mixture model. They investigate the
algorithm in terms of computational feasibility through simulation and find that
exact samples from the target distribution can be obtained as long as the rate of the
underlying Poisson processes is small or moderate. Perfect simulation algorithms
are further utilized for simulating from multivariate discrete and continuous target
distributions by [137].

Finally, as we briefly mentioned in Section 2.5, the determinantal point process is
another example of an inhibition process. Simulation for this process is challenging
and is presented in full detail in [119]. Such simulation makes it a natural candidate
for model fitting using approximate Bayesian computation (ABC) as discussed in
[184]. (See Section 4.3 below, as well).

The spatstat package in R includes functions for simulating from Gibbs pro-
cesses using various simulation algorithms. Versions of these simulation algorithms
include a Metropolis-Hastings algorithm, which reaches approximate convergence
to the underlying Gibbs process, as well as perfect simulation, which guarantees
convergence but often at the expense of large computation time. In general, as the



Simulating point patterns 55

strength of inhibition in the Gibbs process increases, the computation time needed
to reach convergence also increases, thus, requiring more advanced algorithms. Sim-
ulated tempering [82, 131] is one such approach for processes with strong inhibition
where auxiliary variables are introduced into the algorithm to decrease autocor-
relation. The spatstat package, using a Metropolis-Hastings algorithm, provides
a method for simulating point patterns using tempering. Details of the simulated
tempering algorithm as they pertain to simulation and inference for hard-core Gibbs
processes can be found in [133].

4.1.6. Marked point patterns

Marked point patterns offer rich opportunities to think about the process(es) gen-
erating the joint distribution of the locations and marks of the point pattern and
to specify models that suitably capture these patterns. A marked point pattern is a
collection of observations in the form (s,m) where s represents the random spatial
location of the point and m the mark. As discussed in Section 2.6, marks can be
continuous, where the support of the marks, M is a subset of R1, or discrete, where
M is a set of labels, l, l = 1, 2, . . . , L. For continuous marks, the marked point pat-
tern is equivalent to a point pattern over D ×M . Given a model for the intensity
function λ(s,m), (s,m) ∈ D×M , such as an NHPP, Cox process, or Gibbs process,
the marked point pattern can be simulated using the respective procedure specified
above.

For discrete marks, referred to here as labels, it makes sense to first decompose
the joint distribution of (s,m) into the product of a conditional and marginal. From
a Bayesian modeling perspective, the joint distribution of (s,m) ∈ D ×M can be
specified as either [S|label = l]P (label = l) or P (L(s) = l|s ∈ S)[S] (Section 2.6).
The former arises from specification of a marginal distribution for the marks along
with a conditional distribution for the point pattern given the mark. The latter
assumes a point pattern model for the locations and then a conditional distribution
for the mark at each location in the pattern; the mark is viewed as a response at
the location. As discussed in Section 2.6, these two joint modeling approaches are
incompatible; one must make a process-based decision as to which specification to
choose. As a result, the simulation approaches differ for each of the specifications.

We first consider the [S|label = l]P (label = l) approach. Here, the marginal
distribution of discrete marks could be modeled using a discrete distribution with
L categories, such as a multinomial distribution with probability pl of being in
category l. Then, the conditional distribution [S|label = l], could be modeled using
any of the aforementioned processes. For example, with processes specified using
intensities, each λl(s) could be defined as an NHPP such that logλl(s) = xT (s)γl

where γl denotes label-specific coefficients. To simulate, first draw a random mark,
l, from the multinomial distribution with categories, 1, 2, . . . , L. Then, given the
mark, simulate a location from the process λl(s). Together, this yields the realization
(s, L(s) = l). Now, this poses the question of how many points to simulate? For
each of the l = 1, 2, . . . , L point processes, first compute λl,max = max

s∈D
λl(s). Then,

sample Nmax ∼ Po(
∑L

l=1 plλl,max). Now, for i = 1, 2, . . . , Nmax, simulate a random
mark, mi from the multinomial distribution. Then, given the mark mi = l, follow
the two step procedure of sampling from an NHPP by simulating uniformly over D,

and retaining the point, si, with probability p = λl(si)
λl,max

. The collection of retained

points yields the marked point pattern.



56 Bayesian Computation for Point Patterns

The alternative process model decomposes the joint likelihood into the product
P (L(s) = l|s ∈ S)[S]. Here, we have a marginal process model for a realization
of a point pattern of locations, and a conditional distribution for the mark at a
location in the realized pattern. Therefore, we need only specify one process, for
instance, with λ(s) for s ∈ D and a discrete distribution for labels, l = 1, 2, . . . , L
which depends upon location. The point process can be modeled using any of the
models discussed. The conditional distribution for marks could follow a multi-
nomial regression model with location-specific covariates, x(s). For example, the
distribution of a mark (e.g., species label) could be driven by a set of environ-
mental conditions, such that for a given location (environmental conditions), the
distribution reflects the relative chances for the species at that location. Given
the set of simulated locations S, the only additional step is sampling from a con-
ditional labeling distribution for each s ∈ S to obtain the collection of marked
points.

4.1.7. Other considerations for constructing and simulating point
patterns

The procedures outlined above yield realizations of spatial point patterns under
various explicit model specifications. Other considerations for the construction and
simulation of point patterns include irregularly shaped spatial domains, domains
of higher dimension, as well as possible process enrichment through thinning pro-
cedures, displacement, censoring, and superposition. In this section we give a brief
overview of these ideas, highlighting how they might be used in practice to better
specify the underlying process and mechanism for data collection.

Irregular spatial domains

In the procedures outlined above, we assumed the spatial domain was the unit
square, which enabled us to sample locations by independently drawing from two
standard uniform distributions. In practice, the spatial domain can take any shape
(and be of any dimension). Here, we offer a few comments regarding simulating point
patterns for general domains. It is trivial to extend the sampling to rectangular
spatial domains with non unit-length widths and heights by applying appropriate
shifts and/or scalings of the uniform distributions above.

For irregularly shaped domains, e.g., state or county boundaries, lakes, national
forests, even after shifts, scalings, or rotations, a realization of the spatial point
process can not be obtained by drawing from two independent uniform distribu-
tions. In this case, an efficient approach for simulating the point pattern entails
embedding the irregular domain of interest, D, into a rectangular domain, D∗ such
that D ⊂ D∗. Then, under any of the process models outlined above, we can sim-
ulate points under D∗ and use rejection sampling to retain only those in D ∩D∗.
Note, here that we reject each point with p = 1 if it is outside D, retain it with
p = 1 if it is in D. While D∗ can be defined to be any rectangle such that D ⊂ D∗,
in practice it should be specified as small as possible to obtain maximum effi-
ciency in sampling points (i.e., retaining a high percentage of points.) Under an
NHPP model, for example, N∗

max ∼ Po(λmax|D∗|), and points are located uni-
formly over D∗. Points that are not contained in D are rejected, and those in D
are retained according to their specified probability using an appropriate Bernoulli
trial.



Simulating point patterns 57

Thinned processes

Thinned processes are obtained through two surfaces, namely, the intensity associ-
ated with the point process, λ(s) along with a thinning surface, p(s), with realized
values 0 ≤ p(s) ≤ 1. Here, λ(s) might be specified using any of the point process
models discussed above. The thinning process p(s) can take various forms. A simple
thinning process, known as p-thinning assumes p(s) = p for all s ∈ D such that each
point in the spatial point pattern is retained independently with probability p. Other
versions might view p(s) as say a population density surface so that the thinning
corresponds to a population density thinning. That is, if λ(s) is an intensity associ-
ated with the incidence of locations of a particular disease, then p(s)λ(s) provides a
population (at risk) adjustment to the intensity surface. A more stochastic thinning
process could view p(s) arising as a cdf transformation of a Gaussian process.

With regard to simulating thinned processes, a spatial point pattern is first sim-
ulated according to λ(s). The thinning process is applied at the second stage of
the simulation, analogous to the second stage in the NHPP simulation procedure,
where each point simulated in the first stage is retained independently with associ-
ated probability p(s). The collection of retained points yields the simulated thinned
spatial point pattern [54].

Simple p-thinning has also been proposed as a tool for model validation with
spatial point patterns (Section 3.2). The thinning is used to create training and
test datasets [121]. Recall that in traditional model validation, a training set, say,
consisting of 80% of the data is randomly partitioned from the test set consisting
of the remaining 20%. In spatial point pattern analyses, p-thinning entails using a
Bernoulli random variable with probability p of being retained for each data point
in S, yielding the training point pattern Strain. The random collection of points
not retained creates the test point pattern, Stest. Under proper rescaling by the
ratio 1−p

p to the fitted intensity surface obtained from training the modeling using
Strain, model cross-validation can be conducted using Stest.

We note that this p-thinning procedure can be applied to any spatial point
process model with a conditionally independent location density, e.g., an NHPP, a
LGCP, even more general Cox processes, with care. The resulting induced intensity
will agree with that of the underlying process of the spatial point pattern up to
a scaling. With, e.g., pairwise dependence between locations to prescribe the joint
location density, as in a Gibbs process, p-thinning can not be applied. Such thinning
will reduce the size of the point pattern and, as a result, change the interpoint
distance structure.

Again, richer specifications of p(s) are also common and often take a more
process-based approach for point process modeling and simulation. For example,
assume that a given spatial domain provides a suitable habitat for a particular
species and the distribution of this species is defined according to a spatial process
with intensity λ(s). In addition, based on some biotic or abiotic environmental con-
ditions, e.g., soil moisture or a high abundance of predator species, there may be
subregions within the spatial domain that are less likely to contain the particular
species. The thinning process, p(s), offers an additional stochastic modification that
is independent of the primary process and can be employed to capture such devia-
tions to the primary spatial process. Therefore, given realizations from the primary
process, λ(s), using the simulation approaches outlined above, each point is retained
according to a realization from the thinning process with respective probabilities
p(s). The operating intensity for the observed point pattern becomes p(s)λ(s). (See
Section 5.1 for an example in this regard.)



58 Bayesian Computation for Point Patterns

In practice, we note that sampling from and applying the thinning process, p(s)
may also require a disjoint partition of the spatial domain and a collection of repre-
sentative points. For example, in the thinning by population density example above,
the population density surface will be at areal unit scale, e.g., block or census tracts.

Superposition

The superposition, or aggregation, of two or more component spatial point pro-
cesses offers a natural way of enriching the specification of a point process. For
instance, let S1 and S2 each denote a spatial point pattern with intensity functions,
λ1(s) and λ2(s), respectively. Then, their superposition S = S1 ∪ S2 also forms a
spatial point pattern. Simulating from a superposition spatial point process entails
simulating from each of the component process using the procedures outlined above
and combining them onto one underlying space. Realizations of a marked spatial
point pattern where the marks are discrete labels can be easily simulated by a su-
perposition point process. Here, letting λl(s) define the intensity of the process for
label l where l = 1, 2, . . . , L, a superposition point process could be obtained by
L∪

l=1
Sl.

Various specifications of the component spatial point processes offer useful flexi-
bility in building a marginal point pattern from the superposition point process. As
a special case, when each component process is a Poisson point process, the result-
ing marginal superposition point process is also a Poisson process with intensity
λ(s) =

∑L
l=1 λl(s). An early version of this considers a point pattern of disease in-

cidence which resulted from a background intensity surface, essentially the baseline
process, with an overlay of an intensity for points during a high risk season or a
disease outbreak setting [107]. If λB(s) is the baseline intensity and λE(s) is the

elevated risk intensity, then an interesting ratio here would be λE(s)
λB(s)+λE(s) .

Going further, [54] shows that the superpositioned point process of a homoge-
neous Poisson process and a Poisson cluster process has second-order properties that
are equivalent to pure Poisson cluster processes. However, interestingly, the nearest
neighbor properties between the Poisson cluster process and the superpositioned
process remain quite different. Similarly, the superposition of inhibition processes,
such as two Gibbs processes, can also yield point processes with complex second-
order and nearest neighbor properties. While each Gibbs process will itself exhibit
inhibition between points, within a specified radius, the superposition point process
need not retain minimum distance behavior between points or number of points.

Lastly, shot noise process realizations can also naturally be developed by additive
superposition. That is, the shot noise process is the superposition of the realizations

of each of the random kernels. Recall the shot noise process λ(s) = ex
T (s)γλ0(s)

where λ0(s) is the shot process such that λ0(s) =
∑

si∈Sshot
f(s−si)m(si) and Sshot

is the realization of the shot locations. Let λsi(s) denote the random kernel for shot

si ∈ S such that λsi(s) = ex
T (s)γf(s − si)m(si). Realizations from each random

kernel, λsi(s), can be easily simulated, from which their superposition yields the
realization of the shot noise process. Lastly, the shot noise process can be defined
by the summation λ(s) =

∑
si∈Sshot

λsi(s).

Displacement

Displacement is a point process operation that entails random relocations of the
point pattern, obtained by randomly moving points of the point process to other



Simulating point patterns 59

locations within the defined domain. For each iteration of the operation, each point
si ∈ S is randomly and independently displaced, such that si → si + hi and the
collection of displaced points, si+hi yields the new realization of the point process.
There are many ways of specifying the methods of displacement, such as rectangular
or radial displacement. In simulation, care needs to be taken to control for the edges
of the domain to ensure that displaced points remain in D. Toroidial boundaries
are one choice, such that when points disappear off the right edge, they re-appear
at the left. Adding a buffer zone is another choice, such that the point pattern is
imbedded in a larger region and the maximum distance of the rectangular or radial
shift is less than the size of the buffer [36, 197].

Most commonly, displacement is used in testing hypotheses pertaining to the
underlying processes of observed point patterns. Monte Carlo randomization tests,
for example, can be used to test claims regarding distributional assumptions of a
point pattern by comparing values of a test statistic, such as the K function, K(d),
for some distance, d, to assess clustering. The test statistic is first computed using
the observed point pattern and compared to values of the statistic computed using
a random and independent sequence of displaced point patterns. We note here that
the function rshift() in the R package spatstat conducts random shifts of point
patterns that could be used in this capacity.

Another interesting application of displacement would be for a superposition of
component point patterns. For example, consider the superposition of locations of
male adults and yearlings of a species of birds, or two different species of trees across
a forest with continuous marks denoting the diameter at breast height. There may
be scientific insight to understanding not only the distribution of both adults and
yearlings or the different tree species and sizes, but also in the their interaction.
The continuous marks could be treated as a third dimension of the point pattern
where the domain is defined as D × M , M ∈ R

1. In this particular case, random
and independent displacements of the points could be used to test whether or not
there is clustering or inhibition between species of tree (or adults and yearlings)
and whether or not these patterns are similar for different sizes of trees.

Censoring

Consider spatial point patterns as observational data in ecological studies, such as
a collection of locations where a particular bird call was heard and identified, or
the locations of observed grass species across a field site. In each of these examples,
based on the sampling effort of the individuals who are collecting the data or the
rate of missed detections, both of which could vary across space, the observed
spatial point pattern would be a censored, degraded, or partially-realized version
of the true point process. When censoring is homogenous across the spatial region,
the observed point pattern would resemble that of a p-thinned point pattern as
discussed above. Imperfect detection might be an example of a constant censoring
process such that the ability to detect a species is the same across the entire spatial
region. On the other hand, censoring that might vary across space could be the
result of varying sampling effort across a region. For regions within the domain
with zero sampling effort, p = 0. Nonhomogeneous censoring would mimic that of
a p(s)-thinned process.

Section 5.1 below describes censoring in the context of presence-only data for
species distributions. For a given bounded region D, there is a finite set of species
locations which can be considered as a point pattern, i.e., the full census of in-
dividuals in D. However, in practice, money and time considerations imply that



60 Bayesian Computation for Point Patterns

sampling effort over D will be sparse. The observed point pattern of locations will
be a degraded/censored point pattern of the full census of locations due to the
fact that some regions have never been sampled. The operating intensity for those
regions is censored to 0.

As another example, the Breeding Bird Survey (BBS) is a massive citizen science
survey database of birds seen and identified across North America3. It is common
for birders to revisit the same locations, resulting in high sampling effort in regions
such as nature areas or parks. Therefore, the observed spatial point pattern of
a particular species of interest might exhibit clustering of points in these high
traffic areas and few to no points in other areas. From an inferential standpoint for
spatial point pattern analysis, the effects of both homogenous and nonhomogeneous
censoring can be dramatic, as they could lead to vastly underestimating abundance
of a species or misinformation with regard to its spatial distribution. To simulate
a censored point pattern, the procedures outlined above for simulating p-thinning
and p(s)-thinning can be applied.

Measurement error in locations

In many applications, the observed point pattern S may not represent the collection
of true locations of the points. For example, a forest inventory analysis may rely
on remotely sensed data from, say, light detection and ranging technology [LiDAR,
124], which yields spatial location of a species of tree in a forest. Due to measure-
ment error of LIDAR, whether known or unknown, the observed point pattern may
differ from the true locations of the trees. These discrepancies are often referred
to as map positional error in geographic information systems (GIS) applications.
In practice, ignoring measurement error could have important impacts on model
inference, especially since these data products often transcend map projections and
scalings.

From a modeling perspective, we can account for this uncertainty by defining
the model hierarchically and adding a measurement error model to the data level.
This would suggest looking at the observed location as sobs = strue + ε(s) where
ε(s) is a bivariate noise process capturing the error in measurement. Here, the
collection of points si ∈ S is treated as one realization. [18] develop models that
address map positional error in order to infer the true location of feature coordi-
nates. (See also [45]). In addition, they consider multiple realizations of the point
pattern from different sources with possibly varying accuracy, and propose model
averaging strategies to improve estimation of the true locations of the points. Model-
based inference also yields uncertainty quantification where model averaging yields
predictions with smaller uncertainty than any individual model. The hierarchical
form of the model can be naturally handled within the Bayesian framework; both
model fitting and simulation are easily attainable under general specification of the
latent process generating the true point pattern along with a measurement error
specification.

4.2. Computation strategies for Bayesian model fitting

Following Section 3.1, our generic strategy for Bayesian model fitting requires sim-
ulation of point patterns under a given model along with fitting the given model

3https://www.pwrc.usgs.gov/bbs/



Computation strategies for Bayesian model fitting 61

to a dataset. For us, the broad range of Bayesian inference described in Chap-
ter 3 proceeds subsequent to the model fitting. In this section we attend to the
computational approaches for such model fitting.

4.2.1. General comments on model fitting

We begin with a few words regarding general fitting of spatial point process models.
A broad tool is the minimum contrast method as advocated by Diggle [54]. This is
essentially a method of moments idea. First, a summary function, typically the K
function (Section 2.2), is computed from the observed point pattern. Second, the
theoretical expected value of this summary statistic under the point process model
is derived (if possible, as an algebraic expression involving the parameters of the
model) or estimated from simulations of the model. Then the model is fitted by
finding the optimal parameter values for the model to give the closest match between
the theoretical and empirical curves. With a single parameter, the criterion becomes∫
(K̂(d)−K(d))2dd. With additional parameters, often powers are introduced.
More generally, for a model with parameter vector θ, the minimum contrast

estimator arises as the value of θ which minimizes
∑

d |K̂d(S)a − Kθ(d)
a|b where

Kθ is the theoretical K function, K̂d(S) is the empirical estimator for the K func-
tion (Section 2.2), and a and b are user-specified parameters [54]. The summation
replaces the integral by using a set of radii d for the K function.

From our perspective, likelihood-based methods are more attractive and have
recently become more common practice [12]. For instance, with the homogeneous
Poisson process (HPP), we have a closed form likelihood and the MLE is straight-
forward. For the nonhomogeneous process (NHPP), the Berman-Turner device [22]
is attractive. It connects the NHPP log likelihood to a weighted Poisson regression
log likelihood using quadrature to do numerical integration. It is also well suited
for Bayesian model fitting of the NHPP and is detailed in Section 4.2.2 below. As
mentioned in Section 2.3.1, for the log Gaussian Cox process (LGCP), we have a
stochastic integral in the likelihood which can never be obtained explicitly. Custom-
arily, we resort to numerical integration using so-called “representative points” as
remarked in Section 2.3.1. Since we need likelihood evaluation in Bayesian model fit-
ting, it is employed there as well (Section 4.2.2 below). Very recently, [87] proposed
a fitting strategy that avoids numerical integration of the stochastic integral.

For Neyman-Scott clustering processes, likelihood-based inference is computa-
tionally very demanding and is not straightforward to implement. Hence, the method
of minimum contrast is the usual choice; implementation with a Cauchy distribu-
tion kernel is offered in spatstat. For Markov and Gibbs processes, a common
approach is to employ the pseudo-maximum likelihood using the Papangelou con-
ditional intensity. That is, the pseudo-likelihood is expressed through Πiλ(si|S/si).
Again, the spatstat package [12] is a very useful piece of software which offers
likelihood fitting for many spatial point pattern models.

4.2.2. Bayesian computational strategies for log Gaussian Cox
processes

Bayesian inference for Cox processes is natural since the observed point pattern
depends on the latent random process. In the case of the LGCP, the point pattern
depends on the latent Gaussian process. Using Bayes’ Theorem, we can derive the
inverse relationship and obtain inference for the latent random process given the



62 Bayesian Computation for Point Patterns

observed point pattern. [94] offer a nice overview of Bayesian inference for point
processes, focusing attention on Poisson processes, doubly stochastic processes (e.g.,
the LGCP), as well as cluster processes.

In this section we begin with a brief review of Bayesian model fitting for the
HPP. We then continue with the extension of Bayesian inference to the NHPP
using the Berman-Turner device [22]. Building on these process specifications, we
address Bayesian modeling fitting of the LGCP. In particular, due to its wide us-
age, we introduce a collection of Markov chain Monte Carlo methods for obtaining
Bayesian inference for the LGCP. Then, we discuss integrated nested Laplacian
approximation (INLA) as a computationally efficient approach for obtaining ap-
proximate Bayesian inference.

For what follows, as usual, let D denote the spatial domain and S the collection
of observed spatial points, s1, s2, . . . , sn such that si ∈ D for all i = 1, 2, . . . , n. The
intensity function of the HPP is λ(s) ≡ λ over the entire domain, D. Bayesian pos-
terior inference for the parameter λ requires specification of the likelihood function
and prior distribution. Here, it is convenient and computationally efficient to assign
a conjugate Gamma prior distribution to λ such that λ ∼ Gamma(α, β) where α
is the shape parameter and β is the rate parameter. The posterior distribution of
λ given the data, S can be written

[λ|S] ∝ L(λ;S)[λ]
∝ e−λ(|D|+β)λn+α−1

where |D| denotes the area of D. This posterior follows a Gamma distribution with
shape n+α and rate |D|+β. As such, direct samples from the posterior distribution
can be obtained efficiently.

In the context of the NHPP and the LGCP, our likelihood function takes of the
form

L((λ(s), s ∈ D);S) = e−λ(D)
n∏

i=1

λ(si)

where λ(D) =
∫
D
λ(s)ds. For NHPPs, this is a regular integral, whereas for the

LGCP, this integral is stochastic, requiring further computational considerations.
Except for in the simplest forms where the true intensity λ(s) varies as a tiled
surface across D, numerical integration will yield an approximation to λ(D). The
Berman-Turner device [22], using numerical quadrature, offers a simple and ef-
ficient approach for numerical integration. Here, we discuss it in the context of
spatial point patterns and as a method of approximating

∫
D
λ(s)ds. We assume the

intensity function of the NHPP is specified with parameter vector γ. For example,
the intensity could take a log-linear form where logλγ(s) = x(s)′γ with x(s) denot-
ing a vector of covariates for location s and γ a vector of coefficients needing to be
estimated.

To begin, we will approximate the integral using the weighted sum
∑m

j=1 wjλγ(uj)
where the wj > 0 are the quadrature weights that sum to |D| and uj ∈ D for
j = 1, 2, . . . ,m are the quadrature points. We can approximate the log likelihood
of the NHPP using these quadrature weights and points as

logL(γ;S) ≈
n∑

i=1

logλγ(si)−
m∑
j=1

wjλγ(uj).

A natural and convenient choice for quadrature points includes both the observation
points si ∈ S along with other randomly sampled points within D. Additional



Computation strategies for Bayesian model fitting 63

comments with regard to the quadrature points and weights are given below. Letting
1j denote an indicator variable such that 1j = 1 if point uj is a point in S and 0
otherwise, we can write the log likelihood as

logL(γ;S) ≈
m∑
j=1

1j logλγ(uj)− wjλγ(uj).

By defining yj = 1j/wj , we can conveniently rewrite this as

logL(γ;S) ≈
m∑

y=1

(yj logλγ(uj)− λγ(uj))wj ,

which now takes the form of a weighted log likelihood of independent Poisson vari-
ables Yj ∼ Po(λγ(uj)). Standard generalized linear model software can be employed
to obtain approximate MLE estimates under this specification.

In obtaining inference within the Bayesian framework, we can utilize this ap-
proximation of the log likelihood in a Metropolis-Hastings algorithm for sampling
from the posterior distribution of γ. In practice, note that inference in either
paradigm requires evaluation of λγ(uj) for all uj . That is, for all observed points in
S as well as the quadrature points. Under a loglinear speciation of the NHPP
where logλγ(s) = x(s)Tγ, this requires obtaining the covariates x(uj) for all
j = 1, 2, . . . ,m. Now, sampling from the posterior distribution of γ given S will re-
quire a Metropolis-Hastings algorithm. Assuming a vector form for γ, these could
be updated individually or as a block. In either case, the standard Metropolis-
Hastings ratio comprised of likelihood, prior, and proposal can be employed where
the approximate likelihood is used instead of the true likelihood.

One final consideration when using numerical quadrature in practice is the choice
of quadrature points and weights. In general, numerical integration provides more
accurate approximations to an integral when the resolution of the discretized surface
is high. Discretizing the spatial region using a fine resolution grid is one possible
choice to ensure adequate spatial coverage of the domain. In such a case, weights
can then be computed as the ratio of the area of each grid cell relative to |D|. For an
NHPP specified above with location-specific covariates, the resolution of the grid
need only be as fine as the scale at which the covariates are observed. In ecological
applications, for example, variables such as soil moisture or canopy cover may only
be observable at a specified scale, e.g., hectare scale, in which case the resolution
of the tiled surface of λγ(s) will only be at the hectare scale.

The discussion of quadrature points and weights above with regard to numerical
integration provides a nice motivation for the specifications required for Bayesian
inference for the LGCP. Recall that the extension from NHPPs to LGCPs arises
from adding a Gaussian process to the intensity function such that λ(s) is now
stochastic. For example, we might write logλ(s) = x(s)Tγ + z(s) where z(s) is a
Gaussian process. In the literature, these point processes are often referred to as
doubly stochastic processes.

As noted above, the random, infinite dimensional λ(s) yields a stochastic integral
in the likelihood that cannot be evaluated explicitly, and thus, exact Bayesian
inference is intractable. Discretization approaches have been proposed [e.g., 20, 165]
in order to obtain a tractable expression of the likelihood where the continuous
surface is approximated by a piecewise constant function over a collection of grid
cells that form a disjoint partition of the spatial domain. This is analogous to step
functions in one dimension. As the resolution of the grid used to approximate the



64 Bayesian Computation for Point Patterns

continuous surface increase, [206] showed that the posterior density converges to the
true posterior. In practice however, the choice of grid reflects the trade-off between
the accuracy of the approximation and its computational complexity, recognizing
that inference can be sensitive to the discretization scheme that is applied.

Recall the Berman-Turner device above, which relies on being able to evaluate
λ(s) at all quadrature points. Under the LGCP specification, λ(s) is now random so
direct application of numerical integration techniques is not possible. Here, in order
to complete the numerical integration, we will need to condition on a realization of
the Gaussian process at a set of representative points. For example, if we obtain a
realization of the Gaussian process at all quadrature locations, uj , j = 1, 2, . . . ,m,
we can evaluate the approximate log likelihood using the approach above. Note,
however, that in addition to the possible hyperparameters in the mean and covari-
ance function of the Gaussian process, the realization of the Gaussian process at the
representative points is now also part of the joint posterior distribution. Common
specification of the Gaussian process assumes a mean −σ2/2 (this choice is made in

order that, for λ(s) = ex(s)
Tγez(s), we have Eez(s) = 1), variance σ2, and correlation

specified using an appropriate covariance kernel (e.g., Matérn covariance function),
with parameter(s) φ. Collectively, our MCMC sampling algorithm requires iterative
sampling of the parameters γ, σ2, φ, as well as obtaining the needed realizations
of the Gaussian process, z(s).

While this may seem straightforward, sampling from the Gaussian process can
pose many computational challenges. First, using standard geostatistical models
with spatial random effects, such as Gaussian processes, MCMC algorithms are
much more computational efficient when the models are specified marginally [16].
That is, when the Gaussian process is integrated out. Even when inference is ob-
tained conditionally, a linear model form with normal errors enables conjugate,
direct sampling of the spatial random effects. Here, under a LGCP, we do not have
closed form conditional distributions for posterior sampling and cannot marginal-
ize over the Gaussian process since we require realizations for numerical integra-
tion.

In general, Markov chain Monte Carlo methods are common for fitting LGCPs.
MCMC can be computationally challenging, and often require precise tuning in
order to obtain proper mixing and convergence. Some advanced sampling algorithms
that mitigate these challenges are discussed in detail below. As an alternative to
MCMC, approximate model fitting and inference for LGCPs can be obtained using
integrated nested Laplace approximation (INLA) [176]. In the remainder of this
section, we will visit some of the common and more recent approaches proposed in
the literature for Bayesian model inference of LGCPs.

Elliptical slice sampling

[144] proposed the elliptical slice sampler as an efficient way to obtain samples of a
multivariate latent Gaussian random variable in a generalized linear model when the
likelihood function prohibits the posterior distribution of the latent random variable
to be sampled directly. The elliptical slice sampler is suitable for obtaining samples
from a posterior distribution that is proportional to the product of a multivariate
Gaussian distribution and a likelihood function that connects the Gaussian prior
to the data. Sampling from the posterior distribution of the random variable z(s)
of the LGCP is an example of this form, where the log intensity is specified as
logλ(s) = xT (s)γ + z(s) and z(s) is modeled as a Gaussian process.



Computation strategies for Bayesian model fitting 65

Let z denote a realization of the Gaussian process at a collection of representative
spatial locations defining a lattice over the spatial region. These points, representing
grid cells, should be specified at a sufficiently fine resolution such that with low
probability, two points in the observed point pattern are in the same grid cell and
the error in using a piecewise constant approximation for the continuous intensity
surface is negligible. For a finite set of locations, z follows a multivariate normal
distribution with covariance Σ capturing the spatial correlation across locations. In
specifying the algorithm, we will assume z is mean 0, however this can easily be
generalized to non-zero mean distributions by a shift through a change of variables.

Let z denote the current value of the process realization at the specified set of
locations. Step one of the algorithm entails sampling from the prior distribution of
z to define the ellipse for the algorithm. More precisely, ν ∼ MVN(0,Σ). Then,
the threshold for the log likelihood used in the accept/reject step of the algorithm
is obtained by sampling u ∼ Unif [0, 1]. Now, to draw the initial sample, zc, we
first sample θ ∼ Unif [0, 2π] and define the bracket [θmin, θmax] = [θ−2π, θ]. Then,
the candidate value, zc, is obtained by setting zc = zcosθ + νsinθ. This draw
of zc is accepted as a sample from the posterior distribution if logL(zc;S,γ) −
logL(z;S,γ) > logu where logL(zc;S,γ) and logL(z;S,γ) are the log likelihoods
evaluated at zc and z, respectively, given the data, S, and other parameters, γ.
If zc is rejected, we shrink the bracket above such that if θ < 0, θmin = θ, or if
θ ≥ 0, θmax = θ. A new value of θ is then sampled such that θ ∼ Unif [θmin, θmax]
and we obtain our new candidate value of z as above. We continue through this
procedure of shrinking the bracket and obtaining new draws of θ and candidate
values of z until we accept the draw based on the log likelihoods and threshold
draw. Therefore, each iteration of the MCMC algorithm results in a unique sample
of z.

Computationally, the most expensive part of the elliptical slice sampler outlined
above for obtaining realizations of the Gaussian process in the LGCP model is
in sampling ν. For m representative points, this cost is O(m3). Conditional on
the realization of z, and, thus, the intensity surface λ(s), the observations of the
point pattern are independent and computing the log likelihood potentially costs
O(m + n) if the representative points and the observed points are distinct. If the
observed points are projected to the nearest representative points then the cost
becomes O(m).

This sampler can easily be imbedded into an MCMC algorithm where other
model parameters are updated using traditional Gibbs sampling or Metropolis-
Hastings algorithms. One benefit of the elliptical slice sampler is that it allows z to
be sampled in block. This is an advantage in terms of mixing over algorithms that
sample each component separately, especially when the random effects z exhibit
strong dependence. Additionally, the step-size within the algorithm is controlled
by the bracket [θmin, θmax]. Whereas other algorithms require tuning to obtain
appropriate step sizes, the elliptical slice sampler properly controls the step-size
within each iteration of the algorithm to more efficiently draw likely candidate
values of the latent Gaussian random variable.

Metropolis-Adjusted Langevin algorithm

A second MCMC method for inference for the LGCP uses the Metropolis-Adjusted
Langevin algorithm (MALA) [142]. Traditional Metropolis-Hastings algorithms tend
to perform poorly in terms of mixing and convergence when proposal distributions



66 Bayesian Computation for Point Patterns

and tuning parameters are poorly chosen, and the problem is compounded when
parameters and latent processes are highly dependent [84]. The Metropolis-Hastings
algorithm with a Langevin-type proposal offers an efficient approach when the gra-
dient of the transition density can be written down explicitly. MALA simulates
from the posterior distribution based on a linear transformation of the variable(s)
of interest. Proposals of the new states for the (transformed) parameters or random
variables are obtained using the gradient of the target posterior density and they
are accepted or rejected using the Metropolis-Hastings algorithm [171, 174]. For
traditional Metropolis-Hastings algorithms, the target acceptance rate for a ran-
dom walk proposal and Gaussian target distribution has been shown to be 0.234
[170]. [171, 173] found 0.57 to be the optimal acceptance rate for MALA and [6]
developed an algorithm to find the tuning parameter to achieve this optimal rate.

Let U denote the set of grid cells in the discretization such that uj , j = 1, 2, . . . ,m
are the grid cell centroids and |uj | is the area of grid cell j. Here, λ(uj) is the
piecewise constant intensity for grid cell j. Let z = (z(u1), z(u2), . . . , z(um)) denote
the realization of the Gaussian process at the set of m locations. Now, we are
interested in obtaining samples from π(z|S,θ) where S is the observed spatial point

pattern and θ are all other parameters. Let z ∼ MVN(−σ2

2 1,Σ) where Σ is a spatial
covariance matrix with variance σ2 and spatial dependence specified according to a

spatial covariance function. The transformation of z is such that z̃ = Σ−1/2(z+σ2

2 1).
Now, MALA is used to obtain samples from π(z̃|S,θ) ∝ π(S|z,θ)π(z̃).

The Langevin-type proposal distribution for z̃ is

p(z̃cand|z̃) ∼ MVN(z̃+
1

2
∇log(π(z̃|S,θ)), h2I)

where ∇log(π(z̃|S,θ)) is the gradient of the posterior density of interest, h is a
tuning parameter, and I is the identity matrix. We note that modifications to the
proposal covariance matrix have been proposed and are discussed below.

Now,

log(π(z̃|S,θ)) = constant− 1

2
||z̃||+

∑
uj∈U

(nujz(uj)− |uj | exp(xT (uj)γ + z(uj)))

where nuj
is the number of observed points in grid cell j. The Discrete Fourier

Transform (DFT) can then be used to compute the gradient, ∇log(π(z̃|S,θ)).
See [142, 143] for further discussion of MCMC with Langevin-Hastings updates

for LGCPs as well as applications to environmental spatial point patterns. Modifi-
cations to the specification of the proposal covariance matrix that further improve
convergence of the MCMC algorithm have been proposed by [84]. They demonstrate
the improvements of these methods through exhaustive simulations and applications
for LGCPs as well as other models with intractable likelihoods. In particular, these
modified specifications can increase efficiency with increases in both the dimension
of the parameter space and correlation in the latent spatial processes.

The modifications to the proposal distribution of the MALA algorithm arise
from using an approximation of the Fisher information matrix evaluated at the
maximum likelihood estimate of the transformed process z̃. Convergence can be
further improved by modifying the tuning parameter h within the chain using an
adaptive MCMC algorithm [172]. Details and an application using the modified
proposals for the MALA algorithm are given in [54]. Lastly, code for fitting LGCPs
using the algorithm outlined above is provided in [142]. The lgcp package in R
[196] also includes functions for fitting LGCPs using MALA.



Computation strategies for Bayesian model fitting 67

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [126, 146–148] algorithms pose an alternative
to Metropolis-Hastings algorithms for Bayesian inference of LGCPs. In general, in
order to learn about a high dimensional density, we must efficiently explore the
parameter space for θ, and can not stay near the mode(s) since there is very little
mass concentrated at these locations. Of course, there are also regions, away from
the modes, where there is little mass. So, we need the informal concept of a “typical
set.” Such a set is a high mass set within the parameter space. That is, random
walk Metropolis is a “guess and check” style approach where proposals are drawn
from a specified distribution. High acceptance is not favorable for exploring the
parameter space as it is too local, and low acceptance means the candidates are
being drawn too far from the mass of the density.

This suggests that information about p(θ) and the gradient, or rather, a moving
direction, should be leveraged to make efficient proposals with regard to exploring
the density. Whereas MALA suggests that the direction should be back towards
the mode, in high dimension, the mode contains very little mass. Instead, the goal
here is to choose a direction to move to (or stay in) the foregoing typical set. This
approach for a probabilistic specification with (mode, gradient, typical set), is
analogous to a physical system with (planet, gravitational field, orbit). For a
physical system, staying in orbit requires momentum to be added or subtracted
in order to appropriately offset the gravitational pull. The HMC approach moves
from probability densities to energies associated with the physical system, where
latent momentum is added for each component of θ. The energy is specified through
the Hamiltonian and Hamilton’s equations are used to control the behavior of the
associated physical system.

Here, we describe the simplest version of the HMC approach. First, for θ of p-
dimensions, the latent joint distribution is specified in 2p-dimensions. We introduce
p auxiliary parameters, φ, an associated vector of momentums. We set π(θ,φ) =

e−H(θ,φ) where H is the Hamiltonian, or energy, at (θ,φ) The Hamiltonian is de-
fined H(θ,φ) = P (θ)+K(φ,θ), where P (θ) is the potential energy and K(φ,θ) is

the kinetic energy. In the density space, this is written π(θ,φ) ∝ e−P (θ)×e−K(φ,θ),
which can be viewed as a conditional times a marginal form. The potential energy
function is already determined through the density function for θ which we wish
to sample. So, we are left to choose the kinetic energy function, equivalently, the
(conditional) density for the momentums. Every choice of kinetic energy, K(φ,θ),
yields a new Hamiltonian transition that will interact differently with a given target
distribution for θ. So, careful tuning is required to “stay in orbit’.’ The Hamilto-
nian equations provide an approach to achieve this equilibrium, since Hamilton’s
equations maintain energy, equivalently, orbit. That is, they maintain a level set for
H(θ,φ).

In implementation, the algorithm proceeds by drawing from [φ|θ]. The simplest
choice is so-called Euclidean-Gaussian kinetic energy,K(φ|θ) ∝ φTM−1φ implying
a multivariate normal for the momentums, i.e., φ ∼ MVN(0,M) Theory shows
that a good choice for M is Σθ, which can be learned from the MCMC samples,
bringing in some conditional dependence. A draw from [φ|θ] implies a draw, h,
from [H(θ,φ)|θ], which yields a fixed energy.

Then, to maintain the energy/orbit, we explore the level set determined by h
through random trajectories over the level set. The level set is the set of (θ∗,φ∗)
such that H(θ∗,φ∗) = h. This set is determined by solutions to Hamilton’s equa-



68 Bayesian Computation for Point Patterns

tions which don’t exist in closed form. Therefore, the main obstruction to im-
plementing the Hamiltonian Monte Carlo method is generating the Hamiltonian
trajectories themselves. Aside from a few trivial examples, we cannot solve Hamil-
ton’s equations exactly and any implementation must instead solve them numeri-
cally.

In practice, the proposal step in HMC is more costly than the traditional pro-
posal draws in usual MCMC, making the computational cost of a single iteration
higher. The benefit, however, is a more efficient exploration of the space for the high
dimensional distribution, making it more efficient overall. The HMC algorithm is
built into the STAN software packages [34], which is easily accessible and adaptable
to a wide range of models. As with all MCMC algorithms, HMC can still struggle
to capture isolated local maxima that do not fall in the typical set. See [84] for
additional details and modifications to the proposal covariance matrix that further
improve convergence of the MCMC algorithm.

Integrated nested Laplace approximation

The integrated nested Laplace approximation (INLA) approach to Bayesian infer-
ence for LGCP models circumvents the challenges of programming, fine-tuning,
and running computationally challenging MCMC algorithms [102, 104]. INLA has
become a popular method for parameter inference and model fitted for the class of
latent Gaussian models, of which LGCPs are a special case [176]. The main aim of
INLA is to approximate the posterior distributions; it is not a sampling scheme like
the algorithms discussed above. For the LGCP, INLA will approximate, marginally,
the posterior distribution of the latent field as well as the model parameters. The
approximate (marginal) posterior distributions can then be used to obtain estimates
of means, standard deviations, etc.

The speed of model inference using INLA relies on approximating the continuous
Gaussian process with a discrete Gaussian Markov random field (GMRF). Recall
the LGCP specification where the intensity function of the spatial point pattern is
written as logλ(s) = xT (s)γ + z(s) and z(s) is a Gaussian process. INLA requires
the Gaussian process, which is capturing the spatial dependence in the process
not accounted for the covariates, to be approximated by a GMRF. The GMRF
is specified through its precision matrix Q (the inverse of the covariance matrix,
i.e., Σ−1 = Q) and when sparse, results in a large reduction in computation time.
For example, Q may be specified as a precision matrix of a GMRF with first- or
second-order neighbor structure. This differs from the spatial covariance matrix of
the Gaussian process, z(s), which is specified by a covariance function, such as a
Matérn covariance function, resulting in a dense matrix.

Below we provide some details of the Laplace approximation, first generally,
and then as used in obtaining posterior inference. Laplace approximations are used
to approximate

∫∞
−∞ g(v)dv where g(·) > 0. To begin, write h(v) = logg(v) and

expand h(v) in a Taylor series as h(v) ≈ h(v∗) + (v − v∗)T∇h(v)|v=v∗ − (v −
v∗)TH(v∗)(v−v∗). Here, v∗ is the mode and H is the Hessian for h. Then, plugging
these values in and integrating out the d-dim multivariate normal for v yields the
approximation to the integral, (2π)d/2|H(v∗)|.5eh(v∗).

In practice, using the Laplace approximation, and thus, INLA, to obtain posterior
inference, begins with writing the joint posterior distribution f(θ|y) ∝ elog(f(y|θ)f(θ)).
The Laplace approximation entails using a second-order expansion of log(f(y|θ)f(θ))
to create what is essentially a multivariate normal density approximation for the



Computation strategies for Bayesian model fitting 69

posterior. In a hierarchical setting this can be extended to

Πif(yi|zi,θy)f(z|θz)f(θ)

where, typically z are latent variables and f(z|θz) is MVN(0,Σz). Now, the pos-
terior of interest is f(θ, z|y) ∝ Πif(yi|zi,θy)f(z|θz)f(θ). This approach requires
that we can assume θ is low dimensional in order to obtain posteriors for each
component of θ. More importantly, θ must be low dimensional to obtain f(z|y) =∫
f(z|θ,y)f(θ|y)dθ.
The first step is to obtain the Laplace approximation for the full conditional,

f(z|θ,y) for a given θ, which requires first computing the mode of the full condi-
tional, z∗, and Hessian. Let f̃(z|θ,y) denote this approximation. Next, f(θ|y) ∝
f(y,z,θ)
f(z|θ,y) regardless of z. Then, our approximation to the posterior of θ can be written

f̃(θ|y) ∝ f(y,z,θ)

f̃(z|θ,y) |z=z∗ . Lastly, f̃(z|y) =
∫
f̃(z|θ,y)f̃(θ|y)dθ, which can be approx-

imate using a grid over θ-space and replacing the integral by a sum approximation.
From this, it is easy to see the computational challenge when the dimension of θ
gets large, say, more than 8 to 10.

The inla package in R contains functions for fitting spatial point process mod-
els using INLA under various model specifications. For example, the (log)intensity
function can be specified with a variety of location-specific covariates and/or spa-
tially structured random effects observed on different spatial scales. Some of these
model specifications are discussed in detail in [102]. Multiple alternatives also exist
within the inla packages for modeling the spatial dependence in the latent GMRF,
such as first- and second-order random walks or conditional autoregressive mod-
els. Extensions that allow for an irregular grid for the GMRF and neighborhood
dependence structure [125, 186] are also available.

Comparisons between MCMC and INLA approaches to inference for LGCP mod-
els can be found in [167, 196]. In general, there are advantages and disadvantages
to each of these approaches. MCMC, and, thus, fully Bayesian approaches benefit
from producing full Bayesian inference; namely, full joint posterior distributions
which can be used to obtain parameter inference (means, credible intervals) and
to obtain full posterior predictive distributions. In addition, inference is obtained
for the Gaussian process with full a covariance matrix, rather than from a process
approximated by a GMRF. Overwhelmingly, computational efficiency in obtain-
ing inference is the main benefit of INLA. In particular, model comparison and
validation greatly benefit from the rapid computation time of INLA, making it a
convenient method for assessing a collection of candidate models. As above, INLA
will struggle, however, when the dimension of θ grows large in a point process model
because of the challenge of the above numerical integration over θ.

4.2.3. Application: Modeling earthquake epicenters with a LGCP

We illustrate some of the above concepts using a dataset of earthquake epicenter
locations. The earthquake data comes from USGS Earthquake Hazards Program,
which is publicly available4. The data in this analysis consist of 1035 earthquakes
of magnitude ≥ 2.5 occurring in 2017 with epicenters in northern Oklahoma and
southern Kansas, as depicted in Figure 4.1.

The intensity function for the LGCP is specified as

logλ(s) = μ+ z(s).

4https://earthquake.usgs.gov/earthquakes/



70 Bayesian Computation for Point Patterns

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●●

●●

●

●

●

●

●

●
● ●

●

●

●

● ●●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●●
●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●●●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●●●

●

●●

●

●●●●
●

●●

●

●●

●

●

●

●

●●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●●

●●●

●
●●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●●

●

●

●●

●

● ●

● ●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●

●
●

●

●●
●

●●

●●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●
●

●

●●●●●●
●

●

●●

●

●

−99.5 −98.5 −97.5 −96.5

35
.0

35
.5

36
.0

36
.5

37
.0

37
.5

longitude

la
tit

ud
e

Fig 4.1. Epicenters of earthquakes with magnitude greater than 2.5 during 2017 across northern
Oklahoma and southern Kansas.

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●●

●●

●

●

●

●

●

●
● ●

●

●

●

● ●●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●●
●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●●●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●●●

●

●●

●

●●●●
●

●●

●

●●

●

●

●

●

●●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●●

●●●

●
●●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●●

●

●

●●

●

● ●

● ●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●

●
●

●

●●
●

●●

●●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●
●

●

●●●●●●
●

●

●●

●

●

−99.5 −98.5 −97.5 −96.5

35
.0

35
.5

36
.0

36
.5

37
.0

37
.5

longitude

la
tit

ud
e

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Fig 4.2. The grid of representative points used for model fitting and inference. The points were
located on a 12×12 km grid using UTM coordinates, however they are projected here to latitude
and longitude.

That is, we have no regressors but z(s) is a Gaussian process with mean −σ2/2 and
covariance specified by the exponential covariance function where cov(z(s), z(s′)) =
σ2 exp−||s−s′||/φ, where σ2 is the variance and φ is the range parameter.

A collection of representative points was used for model fitting and inference as
discussed in Section 4.1.3. The locations of the earthquake epicenters were projected
from latitude and longitude to UTM coordinates. Distances between points were
computed using Euclidian distance of the UTM coordinates, given in kilometers
(km). The maximum distance between epicenters was 390 km. The locations of
the representative points were defined on a 12×12 km grid as shown in Figure
4.2. A total of 529 representative points were used for model fitting and inference,



Computation strategies for Bayesian model fitting 71

μ

D
en

si
ty

−1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

σ2

D
en

si
ty

5 6 7 8 9 10 11

0.
0

0.
1

0.
2

0.
3

φ

D
en

si
ty

20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

Fig 4.3. Posterior distributions of the parameters μ, σ2, and φ.

as outlined in Section 4.2.2. Specifically, realizations of the Gaussian process were
obtained at these representative points and used for numerical integration when
evaluating the likelihood.

Inference was implemented within a Bayesian framework. Independent prior dis-
tributions were assigned to each of the three parameters, μ, σ2, and φ. Specifically,
a noninformative prior was assigned to μ such that μ ∼ N(0, 1002). For the covari-
ance parameters, σ2 ∼ IG(2, 2) and φ ∼ Unif(8, 60). The parametrization of the
inverse gamma distribution is highly noninformative; σ2 has non-finite variance.
The specification of the uniform distribution is based on the spatial domain of the
data, and controls the effective range to be between approximately 24 and 180 km.
These values were chosen such that the effective range is at least two times the
resolution of the grid of representative points and less than approximately half the
maximum distance over the domain.

Model fitting was carried out using a MCMC algorithm. Posterior samples were
obtained for each of the three parameters using Metropolis-Hastings algorithms.
Samples of the Gaussian process, z(s), at the set of representative points were
obtained using the elliptical slice sampler [144, and Section 4.2.2]. The chain was
run for 100,000 iterations. The first half of the chain was disregarded as burn-in
and every 10th iteration post burn-in was retained for posterior inference in order
to reduce dependence in the retained samples. Marginal posterior distributions for
the parameters μ, σ2, and φ are shown in Figure 4.3.

The posterior mean intensity surface is shown in Figure 4.4, highlighting ar-
eas of increased earthquake activity. Figure 4.5 shows two simulated realizations
of the spatial point pattern using samples from the posterior distribution of the
model parameter given the data following the procedure outlined in Section 4.1.3.
By generating a collection of realizations of the point pattern using the posterior
distribution of the model parameters, we also obtained samples from the posterior
predictive distribution of N(D), the number of points in the domain. The posterior
mean of N(D) was 1041.2 and the 90% credible interval was (987.5, 1109.1). Recall
that the true number of earthquakes in the dataset was 1035, and, thus, our credible
interval captures the true number of events.

The numbers of observed events for the three counties, Blaine County (Figure
4.5, green), Garfield County (Figure 4.5, red), and Oklahoma County (Figure 4.5,
blue), were 15, 92, and 54, respectively. We obtained posterior predictive distribu-
tions of N(B), N(G), and N(O), the marginal distribution of the number of events
in Blaine, Garfield, and Oklahoma County. The posterior means and 90% credible



72 Bayesian Computation for Point Patterns

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●●

●●

●

●

●

●

●

●
● ●

●

●

●

● ●●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●●
●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●●●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●●●●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●●●

●

●●

●

●●●●
●

●●

●

●●

●

●

●

●

●●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●●

●●●

●
●●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●●●

●

●

●●

●

● ●

● ●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●

●
●

●

●●
●

●●

●●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●
●

●

●●●●●●
●

●

●●

●

●

−99.5 −98.5 −97.5 −96.5

35
.0

35
.5

36
.0

36
.5

37
.0

37
.5

longitude

la
tit

ud
e

0.001

0.01

0.1

1

Fig 4.4. Posterior mean intensity surface.

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

−99.5 −98.5 −97.5 −96.5

35
.0

35
.5

36
.0

36
.5

37
.0

37
.5

longitude

la
tit

ud
e

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

−99.5 −98.5 −97.5 −96.5

35
.0

35
.5

36
.0

36
.5

37
.0

37
.5

longitude

la
tit

ud
e

Fig 4.5. Two realizations of the spatial point pattern from the posterior distribution. Blaine
County (green), Garfield County (red), and Oklahoma County (blue) are also highlighted.

intervals, from the LGCP model, for these random variables are given in Table 4.1.
Each credible interval captured the true number of events for the county. In ad-
dition, we obtained posterior predictive distributions of N(B), N(G), and N(O)
conditional on the number of events in Oklahoma. For each conditional distribution,
we set the number of events in Oklahoma equal to 930, which was the number of ob-
served events in the state. The posterior mean and 90% credible intervals for N(B),
N(G), and N(O) are also given in Table 4.1. The marginal and conditional means
for each county are similar. However, these intervals indicate that the conditional
distributions have smaller variance, as expected given a fixed total.

To assess the predictive performance of the model, we created training and test
spatial point patterns using p-thinning, discussed in Section 4.1.7. We thinned the
observed point pattern using p(s) = 0.5 for all s ∈ S, which resulted in a training



Computation strategies for Bayesian model fitting 73

Table 4.1
Posterior mean (90% CI) of the posterior predictive distributions of N(B), N(G), and N(O)

from the LGCP model.

Observed Marginal Conditional
N(B) 15 16.6 (8.0 26.1) 15.8 (8.0, 25.0)
N(G) 92 92.9 (71.8 115.1) 91. 5 (69.9, 111.0)
N(O) 54 53.2 (37.0, 69.0) 54.5 (39.0, 68.1)

dataset of 500 points and a test dataset of 535 points. We refitted the LGCP model
to the training dataset, along with an HPP model for comparison. The intensity
of the HPP model was specified as logλ(s) = μ for all s ∈ D. The same prior
distributions were assigned to each of the parameters; μ ∼ N(0, 1002) for the HPP.
Both models were fitted using MCMC.

Figure 4.6 illustrates the posterior predictive distributions of residuals, Rpred as
outlined in Section 3.1. For the three counties, Blaine, Garfield, and Oklahoma,
we obtain samples from the posterior predictive distribution of the residuals under
the two models. For Blaine county, this is computed as Rpred(B) = Nobs(B) −
Npred(B). The distributions for the other two counties were obtained analogously.
Figure 4.6 shows boxplots of the predictive distribution under each model for the
three counties. The predictive distributions of the residuals under the LGCP are
all centered at approximately 0, whereas the predictive distributions under the
HPP are far from 0. The HPP model overestimates the number of events in Blaine
County while underestimating the number of events in both Garfield and Oklahoma
County.

We also compared the LGCP and HPP models based on empirical coverage.
For radial distances 6kms, 12kms, and 20kms, we randomly generated 400 points
within the domain and defined circular regions. Then, using the test point pattern,
we computed the true number of events within each circular region. We obtained
the predictive distribution of the number of events within each circular region for
each model and computed the 90% credible interval of the residual, Rpred. Empirical
coverage was computed as the proportion of regions having 90% credible intervals of
Rpred containing 0. The empirical coverage for the HPP model was 0.915, 0.585, and
0.350 for the three radial distances, indicating that the HPP is unable to capture
the clustering behavior in the data for moderate or large regions. Under the LGCP
model, empirical coverage was 0.945, 0.880, and 0.895, much closer to the nominal
level for all distances.

Figure 4.7 consider the G function, showing four estimates. One is the empirical
G(d) function with edge correction (Section 2.2). The second arises as the estimated
G(d) function under the HPP. That is, we insert the posterior mean for λ into the
explicit expression for G(d). The third and fourth show two estimators arising
under the LGCP model. Formally, the G function is only applicable to stationary
processes (again, Section 2.2) but since our model is “marginally” stationary, we
compute it for the LGCP. The one in blue was obtained by applying the empirical
estimator of G(d) in Section 2.2 to posterior point pattern samples under the model
and averaging the resulting functions. The one with a dashed line is the fully model-
based estimator arising from using the formal Bayesian edge correction presented
in Section 3.2.3. The two versions of the estimator are indistinguishable, suggesting
that the more computationally demanding edge-corrected version may not be worth
the effort to obtain. More importantly, due to the clustering in earthquake locations
(departure from complete spatial randomness), the LGCP function is above the
HPP function for all distances. Finally, we see that the LGCP G function lies



74 Bayesian Computation for Point Patterns

●●

LGCP HPP

−2
0

0
20

40

R
pr

ed

LGCP HPP

−2
0

0
20

40

R
pr

ed

●

LGCP HPP

−2
0

0
20

40

R
pr

ed

Oklahoma
County

Garfield
County

Blaine
County

Fig 4.6. Posterior predictive distributions of residuals Rpred for the LGCP and HPP models for
the three counties, Blaine, Garfield, and Oklahoma, shown in Figure 4.5.

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

G
(d

)

Empirical
HPP
LGCP
Bayesian

Fig 4.7. The empirical G function as well as the estimated G function under the HPP and LGCP
models. Also shown is the estimated G function with Bayesian edge correction as computed in
Section 3.2.3.

below the customary empirical G function. This does not criticize the LGCP model
since the latter is conditionally nonstationary; comparison between the curves is
not meaningful. The empirical G function only criticizes the HPP as a choice of
stationary model.

4.2.4. Bayesian fitting of Gibbs processes

There are two primary strategies in the literature for fitting Bayesian models to
Gibbs processes. One proceeds by using pseudo-maximum likelihood, a fairly easy
but approximate approach. The second extends to enable fully Bayesian inference
for Gibbs processes using data augmentation strategies. We briefly review both
approaches here.



Computation strategies for Bayesian model fitting 75

Pseudo-likelihood approach for Gibbs processes

To begin, we offer a maximum pseudo-likelihood alternative to likelihood based
inference for the Gibbs process as a way to avoid the challenges of the intractable
likelihood function [10, 27, 30, 88, 112, 179]. As outlined in Section 4.2.1, the pseudo-
likelihood can be written as the product of the Papangelou conditional intensities.
The main advantage of using the conditional intensity function is that it is easy to
compute and the pseudo-likelihood can be maximized. Maximum pseudo-likelihood
estimates are obtained by maximizing

PL(θ;S) = e−
∫
D

λθ(u|S)du
∏
si∈S

λθ(si|S).

For a nonhomogeneous Gibbs process, we might define the conditional intensity as

λ(s|S) = exp

(
−
(
xT (s)γ +

∑
si∈S

||s− si||2/τ2
))

where x(s) are location specific covariates, γ is a vector of coefficients, ||s−si||2 is the
squared distance between s and si, and τ2 controls the amount of inhibition. Except
for the most simple specifications of the Gibbs process, the integral

∫
D
λθ(u|S)du

will have to be approximated using numerical integration. In addition, maximizing
the pseudo-likelihood will require having x(s) available at all representative points
used in the numerical integration.

The disadvantage of this approach is that for small sample sizes, the pseudo-
likelihood has been shown to be statistically inefficient; the maximum pseudo-
likelihood estimates have greater bias than maximum likelihood estimates [13].
Fitting Gibbs processes by maximizing the pseudo-likelihood function can be con-
ducted in spatstat given that the conditional intensity is defined to be log-linear
in the parameters. See [10, chapter 13] for details of the various forms of first- and
second-order terms available in spatstat for the conditional intensity function.

An auxiliary variable method for Bayesian fitting of Gibbs processes

The normalizing constant for Gibbs processes is a function of the model parame-
ters, meaning it cannot be avoided in likelihood-based inference (e.g., MCMC with
Metropolis-Hastings algorithm). Due to the statistical inefficiencies of maximum
pseudo-likelihood, there is reason to explore more complex algorithms for fitting
Gibbs process models. In a sequence of papers [25, 26, 140], efficient, fully Bayesian
model fitting strategies using auxiliary variables are proposed which avoid having to
compute the normalizing constant in the Metropolis-Hastings ratio. This approach
is a data augmentation strategy; such approaches have been developed extensively
for Bayesian inference and iterative samplings algorithms for a variety of model
structures.

Letting θ denote the parameters of the model and S the data, we seek to obtain
samples from [θ|S] ∝ [S|θ][θ]. The challenge here is [S|θ] = gθ(S)/Cθ is only known
up to a normalizing constant Cθ, which is a function of θ. Whereas Cθ drops out
when writing the Gibbs process using Papangelou conditional intensities, it needs
to be evaluated in the traditional Metropolis-Hastings algorithm.



76 Bayesian Computation for Point Patterns

Introduce the auxiliary variable U with density [U|θ,S] that takes the same
support as the data, S. Then the Metropolis-Hastings ratio takes the form

m(θ′,U ′;θ,U) = min

(
1,

[U ′|θ′,S]gθ′(S)[θ′]Cθ[θ,U|θ′,U ′]
[U|θ,S]gθ(S)[θ]Cθ′ [θ

′,U ′|θ,U ]
)

Now, partitioning the joint proposal as [θ′,U ′|θ,U ] = [U ′|θ′,θ,U ][θ′|θ,U ], we can
let [U ′|θ′,θ,U ] = gθ′(U ′)/Cθ′ and simplify [θ′|θ,U ] to [θ′|θ]. Plugging these in we
find that the former Metropolis-Hastings ratio is now

m(θ′,U ′;θ,U) = min

(
1,

[U ′|θ′,S]gθ(U)gθ′(S)[θ′][θ|θ′,U ′]
[U|θ,S]gθ′(U)gθ(S)[θ][θ′|θ,U ]

)

where the normalizing constants have dropped out. A simple choices for [U|θ,S]
would be an HPP with intensity a function of S, taken as N(D)

|D| , where N(D) is the

number of points in S. Sampling proposals U ′ from gθ′(U ′)/Cθ′ is likely inefficient
and computationally expensive; [25] suggest using perfect sampling to draw the
proposal U ′. Sampling [θ′|θ] could be done using a traditional random walk.

Bayesian fitting of Neyman Scott processes

Likelihood inference based on MCMC methods is easier for parametric Gibbs point
process models than for the class of Cox processes, which includes the Neyman-
Scott process [143]. Under a fully Bayesian approach to inference for the Neyman
Scott process, the nodes of the parent process are treated as unknown parameters
to be estimated along with the parameters of the offspring process. Let [U|λ] denote
the density of the parent process of nodes U with intensity λ for the region D.

Here, we will assume an HPP for the parent process. Then, the offspring process
density given the knowledge of the parent locations U , is denoted [S|U , μ, τ2] where
μ and τ2 are parameters of offspring process. The expected number of offspring for
each parent is μ and τ2, along with the kernel function, controls the dispersal of
the offspring process conditional on the parent nodes. This conditional density of
the offspring can be written

[S|U , μ, τ2] = exp

(
−|D| −

∫
D

f̃(s)ds

)∏
s∈S

f̃(s)

where f̃(s) = δ
∑

u∈U f(s−u, τ2) and the kernel f(s−u, τ2) is a probability density
function parameterized by τ2. For a bivariate Gaussian intensity specification of the
offspring process (making this a modified Thomas process), f(s−u, τ2I) is a mean
0 bivariate normal density with variance τ2. The joint posterior distribution of
interest can then be written

[U , λ, μ, τ2|S] = [S|U , μ, τ2][U|λ][λ, μ, τ2].
An MCMC simulation algorithm can be used to obtain posterior samples. Specif-

ically, samples of the parameters λ, μ, and τ2 can be obtained through traditional
Metropolis-Hastings algorithms. Samples of U , however, require more advanced al-
gorithms for simulation in order to be efficient in practice. Common choices for
obtaining updates of U uses the spatial birth-death algorithm [142, Chapter 11] or
its extension, the spatial birth-death-move algorithm, and the coupling-from-the-
past algorithm [114, 143, 202]. For multimodal densities, these algorithms might



Computational strategies for inhibition and clustering processes 77

result in slow mixing and could be incorporated into a simulated tempering pro-
cedure [82, 133, 143]. Additional details for Bayesian inference for Neyman-Scott
processes and the wider class of Cox processes along with examples can be found
in [94, 142, 143, 208]. As a final comment, we suggest approximate Bayesian com-
putation (ABC) as a computationally attractive alternative approach for inference
for spatial point processes with point-level dependence. Details with regard to the
ABC approach are given in the next section.

4.3. Computational strategies for inhibition and clustering processes

As discussed in Section 2.3, the most widely adopted class of spatial point pattern
models is the nonhomogeneous Poisson processes (NHPP) or, more generally, the
log Gaussian Cox processes (LGCP) (see [142] and references therein). Such models
assume conditionally independent event locations given the process intensity. How-
ever, in many applications, we find evidence of clustering or of inhibition, following
Section 2.5. Here, we focus on inhibition and refer to associated models as repul-
sive spatial point processes. Most common in this setting are Gibbs point processes
(here, denoted as GPP) [see, e.g., 101, and Section 2.5]. These processes specify the
joint location density, up to normalizing constant, in the form of a Gibbs distribu-
tion, introducing potentials on cliques of order 1 but also potentials on cliques of
higher order, which capture interaction. The most familiar example in the literature
is the Strauss process and its extreme version, the hardcore process [106, 193]. An
attractive alternative is the determinantal point process (here, denoted as DPP).
Though these processes have some history in the mathematics and physics commu-
nities, they have only recently come to the attention of the statistical community
thanks, most notably, to recent efforts of Jesper Møller and colleagues. See, for
instance, [119].

Approximate Bayes computation (ABC)to fit both classes of models is discussed
in detail in [184]. Here, we confine ourselves to ABC model fitting for GPPs. In the
literature, Markov chain Monte Carlo (MCMC) model fitting has been proposed
for GPPs as discussed briefly in Section 4.2.4 and in greater detail in [2, 3, 86, 140].
The algorithms are complex and implementation can often result in poorly behaved
chains with concerns regarding posterior convergence. Here, we demonstrate much
simpler model fitting using ABC. ABC is particularly promising for GPPs since
these processes allow straightforward simulation of point pattern realizations given
parameter values. Additionally, such simulation facilitates posterior inference as
well as consideration of model adequacy and model comparison, as we have argued
in the previous chapters.

ABC methods are now attracting considerable attention [19, 130, 132, 162, 187].
The scope of ABC applications is also increasing, e.g., population genetics [19],
multidimensional stochastic differential equations [161], macroparasite populations
[58] and the evolution of HIV-AIDS [31]. As for spatial statistical applications, [64]
implemented ABC for max-stable processes in order to model spatial extremes and
[188] applied ABC with functional summary statistics to fit a cluster and marked
spatial point process.

Supplementing the discussion in Section 2.5, the Gibbs point process offers a
mechanistic model with interpretable parameters and has been used for modeling re-
pulsive point patterns in environmental science and biology [86, 113, 134, 192]). The
main challenge for fitting models using these processes is that likelihoods have in-
tractable normalizing constants which depend on parameters. Hence, likelihood in-
ference is difficult [142] and standard Bayesian inference using Markov chain Monte



78 Bayesian Computation for Point Patterns

Carlo (MCMC)) is not directly available. Maximum pseudo-likelihood estimation
was proposed in [28, 30] and [105] (Section 4.2.4). These estimators show poor per-
formance in the presence of strong inhibition [e.g., 100]. In the Bayesian framework,
a clever auxiliary variable MCMC strategy was developed by [140] (again, Section
4.4.2) and extended by [145]. However, perfect simulation within the MCMC algo-
rithm is needed along with approximations.

Here, following [184], we show how to implement the ABC algorithm for fitting
GPP’s based on ABC-MCMC proposed by [132]. We include discussion about how
to choose summary statistics, kernel functions, and tune user-specific parameters.
Again, the attractiveness of ABC for repulsive point processes rests in the fact
that it is straightforward to generate realizations under these point processes given
parameter values. This enables the ABC presumption: randomly draw parameters
and then randomly draw point patterns given parameters. Further, as has been our
theme for the entire monograph, with posterior inference achieved for the model
parameters, we can use composition sampling to draw posterior predictive point
patterns, enabling posterior inference about features of point patterns realized un-
der the models. In addition, through these posterior samples of point patterns, we
can propose model assessment for repulsive point processes, following the discussion
in [121] and Section 3.2.

Briefly reviewing, for GPPs, since c0(θ) cancels out of the Papangelou conditional
intensity, the pseudo-likelihood, in log form, logPL(S|θ) = − ∫

D
λ(u|S,θ)du +∑

i log λ(si|S,θ), has been proposed [30] yielding the maximum pseudo-likelihood
estimator. Although the maximum pseudo-likelihood estimator is consistent [see
105], the performance of the maximum pseudo-likelihood estimator is poor in the
case of a small number of points and strong repulsion [100].

The pseudo-likelihood can be used for MCMC in the Bayesian framework [e.g.,
113]. [140] and [26] proposed an auxiliary variable MCMC method (AVM) where,
conveniently, c0(θ) cancels out of the Hastings ratio. The challenge is to obtain the
conditional density of the auxiliary variable. A partially ordered Markov model is
used to approximate this density. A similar approach is the exchange algorithm pro-
posed by [145]. Both algorithms require perfect simulation from the likelihood given
θ for each MCMC iteration. Although, perfect simulation is available for GPPs, this
step can be computationally burdensome and obtaining a good acceptance rate is
difficult.

More recently, [123] proposed the double MCMC algorithm which does not re-
quire perfect simulation from the likelihood. It only requires simulation from the
Markov transition kernel and is faster than the AVM and exchange algorithms but
convergence to the stationary distribution is not guaranteed. [86] implement this
algorithm, with an application, for a class of GPP models.

For ABC, we need to simulate realizations of a GPP given parameter values. This
is usually based on a birth-and-death algorithm [e.g., 81, 101, 142]. An alternative
simulation algorithm to generate the point pattern is “dominated coupling from
the past” [111] as implemented by [24] and [25]. This algorithm can be called as a
default setting in spatstat [12].

4.3.1. Approximate Bayesian Computation for repulsive point
processes

Let Sobs be the observed point pattern and S∗ be a simulated point pattern. For
a Bayesian model of the form π(S|θ)π(θ), ABC consists of three steps: (1) gener-
ate θ ∼ π(θ), (2) generate S∗ ∼ π(S|θ), (3) compare summary statistics for the



Computational strategies for inhibition and clustering processes 79

generated S∗, T(S∗), with those of the observed data, T(Sobs), and accept θ if
Ψ(T(S),T(Sobs)) < ε for a selected kernel(distance) measure Ψ. Accepted θ are
samples from the approximate posterior distribution, πε(θ|T(Sobs)). Approximation
error relative to the exact posterior distribution π(θ|Sobs) comes from the choice of
T(·), Ψ, and ε. If T(·) is a sufficient statistic for θ, then π(θ|T(Sobs)) = π(θ|Sobs)
and, given Ψ, the only approximation error is from ε. Since sufficient statistics
are not usually available, the selection of informative summary statistics T(·) is
critically important. Small values of ε are desired but require more simulation of
θ ∼ π(θ) and S ∼ π(S|θ) in order to retain S. Again, with regard to simulation of
S for the GPP, we can utilize perfect simulation (Section 4.1.5).

Summary Statistics

The Strauss process was discussed in Section 2.5. It is a Gibbs point process (GPP)
with density often written as [e.g., 142]

π(S) = βN(S)γsR(S)/c(β, γ), S ⊂ D(4.1)

where β > 0, 0 ≤ γ ≤ 1,N(S) is the number of points, and c(β, γ) is the normalizing
constant. Here,

sR(S) =
∑

{si,sj}⊆S⊂D

1(‖si − sj‖ ≤ R)(4.2)

is the number of R-close pairs of points in S. Given R, N(S) and sR(S) are suf-
ficient statistics for (β, γ). γ is an interaction parameter indicating the degree of
repulsion. Large values of γ suggest weak repulsion while small values of γ indi-
cate strong repulsion. γ = 0 provides the hardcore Strauss process which does not
allow occurrence of any points within the interaction radius R. γ = 1 provides a
homogeneous Poisson process.

Hence, the appropriate summary statistics would be T = (logN(S),KR(S)). In
practice, R is not known but we can choose a radius R though profile pseudo like-
lihoods. Alternatively, creating a set of R values yields a set of summary statistics,
indexed by R.

In other repulsive point process settings, second order summary statistics would
emerge as potential summary statistics because they illuminate clustering or inhi-
bition behavior. For instance, with a stationary point process, the K function with
radius d, K(d), the expected number of the remaining points in the pattern within
distance d from a typical point, is a useful measure. The empirical estimator of Kd

given in Section 2.2 provides such a choice. The actual summary statistics would
employ a set of d’s.

The variance stabilized version could also be considered. This is the L function

[29]; L̂d(S) =

√
K̂(d;S)/π is often preferred because the fluctuations of the esti-

matedK function increase with increasing d while the root transformation stabilizes
these fluctuations [e.g., 101]. Again, a set of D’s would be employed.

4.3.2. Explicit specification of an ABC algorithm

The ABC algorithm we present here is based on a semi-automatic approach pro-
posed by [65]. They argue that the optimal choice of T(Sobs) is E(θ|Sobs) and



80 Bayesian Computation for Point Patterns

then discuss how to construct E(θ|Sobs). They consider a linear regression ap-
proach to construct the summary statistics through a pilot run. In our setting,
we generate L sets of {θ�,S�}L�=1. Then, we implement a linear regression for
E(θ�|Sobs) = a + bη(S�,Sobs) where η(S�,Sobs) is a vector of functions of the
summary statistics constructed from the simulated and observed point patterns5.
Following above, we take η(S,Sobs) = (η1(S,Sobs),η2(S,Sobs)) where η1(S,Sobs)
and the M × 1 vector η2 are

η1(S,Sobs) = log n(S)− log n(Sobs), and

η2,d(S,Sobs) =

∣∣∣∣
√

K̂d(S)−
√
K̂d(Sobs)

∣∣∣∣
2

.
(4.3)

for d = 1, 2, . . .M .

After obtaining â and b̂ by least squares, we can calculate θ̂
∗
= â+ b̂η(S∗,Sobs)

for any simulated S∗. We set θ̂obs = â and specify our distance function for the

ABC through Ψ(θ̂
∗
, θ̂obs) with Ψ specified below. To facilitate the regression, one

can take a log transformation of the parameter vector, e.g., θ = (log β, log γ) for
the Strauss process.

Given the results of the pilot run, the approach proposed by [65] implements
the ABC-MCMC algorithm by [132]. ABC-MCMC is a straightforward extension of
the standard MCMC framework to ABC; convergence to the approximate posterior
distribution, πε(θ|T(Sobs)), is guaranteed. Specifically, with t denoting iterations
and q(·|·) denoting a proposal density,

1. Let t = 1.
2. Generate θ∗ ∼ q(θ|θ(t−1)) and S∗ ∼ π(S|θ∗) and calculate θ̂

∗
= â +

b̂η(S∗,Sobs). Repeat this step until Ψ(θ̂
∗
, θ̂obs) < ε where θ̂obs = â and

Ψ(θ̂
∗
, θ̂obs) is defined below.

3. Calculate the acceptance ratio α = min

{
1, π(θ∗)q(θ(t−1)|θ∗)

π(θ(t−1)
)q(θ∗|θ(t−1)

)

}
. If u < α

where u ∼ Unif(0, 1), retain θ(t) = θ∗, otherwise θ(t) = θ(t−1). Return to
step 2 and t → t+ 1.

As a distance measure, we use the component-wise sum of quadratic loss for the log
of the parameter vector, i.e., Ψ(θ̂�, θ̂obs) =

∑
j(θ̂�,j − θ̂obs,j)

2/v̂ar(θ̂j) where v̂ar(θ̂j)

is the sample variance of j-th component of θ̂. To choose an acceptance rate ε,
through the pilot run, we obtain the empirical percentiles of {Ψ(θ̂�, θ̂obs)}L�=1 and
then select ε according to these percentiles. Step 2 is the most computationally
demanding. We need to simulate the proposed point pattern S∗ ∼ π(S|θ∗) until

Ψ(θ̂
∗
, θ̂obs) < ε.

With regard to choice of number of summary statistics, when M is large more
information is obtained but, if too large, overfitting, relative to the number of
points in the point pattern, results. As a strategy for this selection, we specify M
with equally spaced d’s, and implement a lasso [198]. We determine the penalty
parameter for the lasso by cross-validation and preserve the regression coefficients
corresponding to the optimal penalty by using glmnet [71]. A simpler alternative
is to fit using several choices of M and assess the sensitivity of posterior inference.

As noted in Section 2.2, in frequentist analysis, the minimum contrast estimator
is often used to fit models using the K function. The minimum contrast estimator

5[65] implement linear regression for each component of θ. However, with a small number of
parameters, we keep the notation as linear regression for multivariate responses.



Computational strategies for inhibition and clustering processes 81

requires the analytical form for the functional statistics which are not necessarily
available for repulsive point processes. ABC does not require analytical expressions
for the functional statistics because the approach compares the “estimated” K
function for observed and simulated point patterns. However, if analytical forms for
the functional summary statistics are available, the minimum contrast estimator or
composite likelihood estimators [11, 92] would be available and easy to implement.
Furthermore, software for these estimators has already been developed [12].

As a final comment here, [184] compared this proposed ABC-MCMC algorithm
with the straightforward exchange algorithm of Murray et al. (2006), mentioned
above, for a Strauss point process. They considered inefficiency factors (IF) for
parameters, i.e., the ratio of the numerical variance of the estimate from the MCMC
samples relative to that from hypothetical uncorrelated samples, using both model
fitting approaches. They found that IFs for the exchange algorithm tend to be an
order of magnitude greater than those from the ABC-MCMC algorithm. Also, the
ABC-MCMC algorithm allows simple parallelization, which is not possible for the
exchange algorithm. So, computationally, the ABC-MCMC algorithm can be much
faster.

4.3.3. Neyman Scott process and shot noise processes

In a sense, ABC easier for the Neyman Scott and the shot noise processes than for
Gibbs processes because simulation of samples is so straightforward. See [188] in
this regard. That is, the Neyman Scott processes are defined in a generative fashion
(Section 4.1) while the shot noise processes are generated in two straightforward
stages. That is, first a realization of an HPP(λ) yields the shot noise intensity,
followed by a realization of an NHPP given the shot noise intensity (Section 4.1)
Shot noise process realizations can also be developed by additive superposition,
i.e., summing up realizations over each of the random kernels. We note that [188]
illustrate the use of ABC for a Thomas process.

The question to ask here is, in general, what should be the choice of summary
statistics for spatial point patterns? Again, usual measures are the K function or
the pair correlation function. For ABC we only require the empirical K function or
the empirical partial correlation function. K̂(d) was given in Section 2.2. The em-
pirical correlation function ĝ(d) is derived from the relationship, g(d) = K ′(d)/2πd
using either a smoothing spline for K ′(d) or else a direct kernel estimate for g(d).
Whichever is selected, the infinity of statistics is reduced to a single measure for
ABC comparison by a weighted integration,

∫
d≤do

w(d)(K̂(d) − K̂obs(d))
2dd for a

suitable maximum distance, do. See [188] for further details.


	Bayesian Computation for Point Patterns
	Simulating point patterns
	Homogeneous Poisson Process (HPP)
	Nonhomogeneous Poisson Process (NHPP)
	Log Gaussian Cox Process (LGCP)
	Cluster Processes 
	Gibbs Process
	Marked point patterns
	Other considerations for constructing and simulating point patterns

	Computation strategies for Bayesian model fitting
	General comments on model fitting
	Bayesian computational strategies for log Gaussian Cox processes
	Application: Modeling earthquake epicenters with a LGCP
	Bayesian fitting of Gibbs processes

	Computational strategies for inhibition and clustering processes
	Approximate Bayesian Computation for repulsive point processes
	Explicit specification of an ABC algorithm
	Neyman Scott process and shot noise processes



