
Chapter 3

Bayesian Inference for Point Patterns

3.1. A general inference approach

Here, we consider inference exclusively within the Bayesian framework. As we have
noted earlier, our general approach follows a simulation-based strategy predicated
upon the ability to draw realizations (point patterns) under the model after model
fitting. Customarily, model fitting is done using a Markov chain Monte Carlo al-
gorithm. However, in Section 5.3 we discuss approximate Bayesian computation
(ABC) model fitting which only requires simulation under the model and thus, fits
in well with our general approach.

In particular, with posterior samples of model parameters, we can obviously do
arbitrary inference on the model parameters. With posterior predictive samples of
point patterns, we can perform arbitrary inference on any process features. With
prior and/or predictive samples of point patterns, following Section 1.2, we can
study model adequacy and model comparison, as well as make prior-posterior com-
parison. We adapt and extend familiar tools. In particular, for model adequacy, we
propose examination of Bayesian residuals (drawing on the work of [9, 14]), both
realized and predictive, as well as empirical coverage, and prior predictive checks
through Monte Carlo tests. For model selection, we use predictive mean square er-
ror, empirical coverage, and ranked probability scores. We consider both in-sample
and, when possible, out-of-sample approaches.

Specifically, at a high level, we consider the generic model form [S|θ][θ]. We
observe Sobs. Upon model fitting, we obtain posterior samples θ∗l from [θ|Sobs].
These enable inference about a function of θ, b(θ), assuming it is available explicitly.
Next, using composition sampling, we create posterior predictive samples S∗l from
[S|Sobs] by drawing S∗l from [S|θ∗l ]. Using these point pattern samples, we create
posterior samples of any function h of S as {h(S∗l ), l = 1, 2, . . . , L} from [h(S)|Sobs].
So, if we can fit and if we can sample, we can carry out arbitrary inference.

Important Bayesian contributions for analyzing spatial point patterns have been
made by Møller and colleagues [see, e.g., 142, 143] and references therein. In ad-
dition, there has been a recent strand which considers Poisson process models,
focusing on a rich range of specifications for the intensity [see, e.g., 115, 195].
Some recent Bayesian work has employed integrated nested Laplace approxima-
tion (INLA) [176] for inference. Bayesian point pattern analysis using INLA can
be found in [102, 104, 112]. Work that follows our inference paradigm is suggested
in a conference address by Møller [139]. With regard to model adequacy, posterior
predictive model checking has also been proposed. We can demonstrate that prior
predictive model checking is needed for effective assessment of model adequacy.
Finally, recent Bayesian model checking work, primarily validating intensities, is
found in [194, 219, 220].

A primary feature we are trying to infer about is a (random) surface, i.e., an in-
tensity. It is important to appreciate that λ(s) informs about observed data points
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36 Bayesian Inference for Point Patterns

but also about unobserved points. That is, a point pattern provides more informa-
tion than just the locations of the observed points. Absence at other locations is
informative [14]. This leads to a consequential challenge: we never observe a point
on this surface. We can see the analogue with density estimation. In fact, we have
empirical kernel intensity estimates, as shown in Section 2.2. However, unlike den-
sity estimation, here, the number of points is random. This implies that comparison
of point patterns must be done with care.

To see the challenge in its simplest form, consider a homogeneous Poisson process
(HPP) setting. Any observed point pattern will give a two-dimensional step surface
which is not at all close to a flat surface and similarly a kernel intensity estimate
which is not close to flat unless a very large bandwidth is employed (Section 2.2).
How far from a constant surface can we be and still believe that a constant intensity
is operating? In this regard, the null hypotheses, Ho : λ(s) = λ seems silly ; it would
never be operating in practice except perhaps under a simulation setting. Rather,
it is more sensible to compare inference under an HPP model with that from other
models.

In general, with spatial point patterns, it is hard to criticize models and to
choose between models. For instance, a regression based intensity using spatially
referenced covariates, say an NHPP, and a clustering-based intensity using say a
Neyman Scott process, may equally well explain peaks in an intensity. Often, the
choice will be made according to the nature of the process generating the observed
data. There is not a large literature here (but we do review some below and the
spatstat package [12] offers some tools). There is essentially no Bayesian work.

Returning to the general inference framework, let us elaborate posterior study of
features. Posteriors of interest might include: for arbitrary setsA andB, [N(A)|Sobs],

[N(A), N(B)|Sobs], [N(A)|N(B),Sobs], and [N(A)
N(D) |Sobs]. We might also seek the pos-

terior for the G and K functions under a given model. This is novel territory since
the literature only considers empirical estimates of these function (Section 2.2).
Comparison of the posterior distribution for G or K with the associated empirical
estimate could be informative. Comparison, if appropriate, with the G or K func-
tions under an HPP could also be informative. Here, comparison is through formal
inference rather than exploratory comparison (again, as in Section 2.2).

Turning to model assessment, residuals are a commonly used tool. In particular,
[9, 14] develop various notions of residuals for point patterns. For example, they
define a raw residual, analogous to the standard residual from a regression model,
as

(3.1) Rˆθ
(B) ≡ N(B)−

∫
B

λ̂(s|S)ds

for B ⊆ D, where λ̂(s|S) ≡ λ(s|S; θ̂) is the estimated Papangelou conditional
intensity function. In the Bayesian setting, we would work with the realized residual,
which considers the posterior of (3.1), employing λ(s|S,θ).

More generally, [14] define the h-weighted innovation measure as

(3.2) I(B, h, λ) ≡
∑

si ∈S∩B
h(si,S\si)−

∫
B

h(s,S\s)λ(s|S)ds.

These innovations have mean 0 under the true model, as can be seen using (3.7),
developed below. Choices of h include h(s,S\s) = 1/λ(s|S) which defines the in-
verse λ residuals, in the spirit of [191]. With h(s,S\s) = 1/

√
λ(s|S), we obtain an
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analogue of the Pearson residual from Poisson regression. Estimators are obtained
by inserting an estimator of λ(s|S). A final residual, which we shall not consider
here, is the pseudoscore residual, which sets h(s,S\s) = ∂

∂θ
log{λ(s|S)}, where θ

denotes the parameters of the intensity function λ.
Again, from a Bayesian perspective, the posterior distribution of

∫
B
h(s,S\s)

λ(s|S)ds and I(B, h, λ) would be studied. In particular, these innovations are of the
form t(S,θ) and so their posteriors can be obtained through simulation as detailed
below. We can use the posterior mean, E(

∫
B
h(s,S\s)λ(s|S)ds | Sobs ), to obtain a

point estimate and can also examine whether 0 falls in a given credible interval.
[9, 14] provide formulas for the variance calculations of residuals and innovations.

With regard to validation, under a given model, consider credible intervals cre-
ated from these innovation distributions developed over many sets. If the model is
true, should we expect to achieve empirical coverage of 0 at roughly the nominal
level? For the raw/realized innovations, the answer is clearly no. The raw innova-
tions compare an observed count with the posterior distribution for the expectation
of that count. Though we hope the expectations are close to the raw innovations,
the credible intervals provide coverage for the expected counts rather than for the
counts themselves. Thinking of the regression analogue, the raw innovations are
akin to employing the distribution [y− μy|Data] when we should be employing the
distribution for the predictive innovations, [y − ypred|Data].

So instead, we adopt predictive residuals,

(3.3) Rpred(B) = Nobs(B)−Npred(B),

where, as above, posterior samples S∗l supply the draws N∗
l (B), hence the posterior

predictive distribution of Npred(B) and, in turn, of Rpred(B).
Finally, for an h-scaled innovation as in (3.2), [14] define the smoothed innovation

field r(u;θ) at location u ∈ D as

r(u;θ) = e(u)

∫
D

k(u− v)dI(v,h,θ)

= e(u)

[ ∑
si∈S

k(u− si)h(si,S\{si})−
∫
D

k(u− v)h(v,S)λ(v|S;θ)dv
]
,(3.4)

where k(s) is a probability density on R
2 used as a smoothing kernel and e(u) ≡

1/
∫
D
k(u−v)dv is an edge correction. This field puts positive atoms at each si ∈ S

and a negative value elsewhere and then smoothes using the kernel. So, positive
values indicate locations where the empirical intensity was higher than the intensity
of the fitted model while negative values indicate areas where the intensity of the
fitted model was higher.

[14] estimate θ to obtain a residual field, r(u; θ̂). For us, for the NHPP and
LGCP models, with a posterior distribution for λ(s;θ), we can obtain a posterior
distribution for r(u;θ). Additionally, we can create a plot showing those regions
that have a credible interval (for the smoothed innovation) which contains 0, as
well as those regions that have a credible interval above or below 0.

To summarize our overall inference strategy in light of the above, under the
model, suppose we have interest in b(θ) using [b(θ)|Sobs]. With posterior samples
{θ∗l }, we obtain {b(θ∗l )}. If interest is in [h(S)|Sobs], then for each θ∗l , we generate
S∗l obtaining {S∗l } and thus {h(S∗l )}.

Often, b(θ) is not available explicitly (see below). Then, we need to find an h(S)
such that E(h(S)|θ) = b(θ). As a result, in order to obtain a b(θ∗l ), for each θ∗l , we
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need to generate replicates, the set {S∗lb, b = 1, 2, . . . , B}. These replicates provide
a Monte Carlo integration for b(θ∗l ), i.e.,

1
B

∑
b h(S∗lb).

The most general objects of interest would take the form t(S,θ), leading to the
posterior, [t(S,θ)|Sobs]. With t available explicitly (as it will be in practice), we can
use the {θ∗l ,S∗l } to create posterior draws.

Again, examples of b(θ) include E(N(A)|θ) and E(N(A)N(B)|θ). They also
include λ(s;θ), γ(d;θ), λ(A;θ), g(d;θ) (the pair correlation function), G(d;θ), and

K(d;θ). To be more explicit, E(N(A)|Sobs) ≈ 1
L

∑L
l=1

∑
s∗li∈S∗l 1(s

∗
li ∈ A). This

suggest how we could create model-based Bayesian intensity estimates in the setting
where we do not have an explicit form for λ(s). (With an explicit form, we would
directly obtain the posterior mean E(λ(s)|Sobs) from posterior samples and plot this
as a surface using a fine grid of s.) Taking A = ∂s yields the Bayes estimator for
λ(∂s) ≈ λ(s)|∂s|, hence for λ(s). Therefore, again with a fine grid of s, a Bayesian
estimator of the intensity surface results. The size of ∂s can be viewed as analogous
to a bandwidth selection for a kernel intensity estimate. In fact, recall the usual
kernel smoothing yields kernel intensity estimate, λτ (s) =

1
τ2

∑
si∈S h(||s− si||/τ)

discussed in Section 2.2. We can contrast the model-based posterior estimate of the
intensity with the empirical kernel intensity estimate.

Turning things around, if we can write λ as a parametric function, λ(s;θ) (say
for an NHPP but not for a LGCP), posterior samples of θ yield an estimate of
λ(s;θ). Then, numerical integration would enable a posterior estimate of λ(A;θ).
Details for the G and K functions, as parametric functions, are presented below.

Examples of h(S)’s include: N(A), (N(A), N(B)), N(A)
N(D) along with the foregoing

predictive residuals , e.g., the distribution [Nobs(A) − N(A)|Sobs]. We could also
estimate conditional events with distribution [N(A)|N(B) = m;Sobs]. Examples of
t(S,θ) include: realized residuals, e.g., the distribution of [N(A)−λ(A;θ)|Sobs] and
the inhomogeneous K function Kinhom(d;θ) [15] discussed below.

3.1.1. Campbell’s Theorem and the GNZ result

The main theoretical tool we employ here is Campbell’s Theorem [101], which gives
the expectation of the summation over S ∩D of a function h(si) (restriction to D
ensures that realizations of S are finite so that expectations exist). It states that

(3.5) ES∩D
( ∑
si ∈S∩D

h(si)
)
=

∫
D

h(s)λ(s) ds.

For example, letting h(s) = 1(s ∈ A) for some set A ⊂ D, Campbell’s Theorem
says that

∑
si∈S 1(si ∈ A) is an unbiased estimator for

∫
D
1(s ∈ A)λ(s) ds =∫

A
λ(s) ds = λ(A) based on S, i.e., N(A) is an unbiased estimator of λ(A), as we

already know. However, more generally,
∑

si∈S∩D h(si) is an unbiased estimator

of
∫
D
h(s)λ(s)ds. More usefully, (3.5) suggests Monte Carlo integration to obtain

the right side. With samples S∗l ? from [S ∩D|λ(s)], or, more generally, [S ∩D|θ],
averaging the sum on the left side of (3.5) over these replicates provides a Monte
Carlo integration for the left side, hence for the right side. That is, we can compute
integrations relative to λ(s) even if we can not obtain λ(s) explicitly!

The utility of this approach for Bayesian inference is immediately evident. Now,
λ(s) is random and so, for a given h as above, the right side of (3.5) is random.
However, with posterior (prior) predictive samples of point patterns, we can directly
create a Monte Carlo integration for the expectation on the left side, hence a Monte
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Carlo integration for the posterior (prior) mean of the integral on the right side.
Again, the right side of (3.5) is viewed as b(θ) which typically will not be available
explicitly. So, for example, to obtain E(

∫
D
h(s)λ(s)ds|Sobs), posterior draws of λl(s)

would provide posterior predictive draws, S∗l ?, to which we apply the sum on the
left side of (3.5). Averaging over these draws produces the posterior mean for the
right side.

Similarly, Campbell’s Theorem has a bivariate form for h, a function of two
points in S:

(3.6) ES∩D
( ∑
si, sj ∈S∩D

i�=j

h(si, sj)
)
=

∫
D

∫
D

h(s, s′)γ(s, s′) ds ds′.

(3.6) is useful for exploring second-order properties of a point process, e.g., the sec-
ond order intensity which is defined (Section 2.1.2) through h(s, s′) = 1(s ∈ A, s′ ∈
B). Another application arises for the Strauss process (Section 2.5) where we con-
sider the “close pairs” function (Section 4.3), sR(S) =

∑
si,sj∈S⊂D 1(||si − sj || ≤

R). Applying Campbell’s Theorem, we find ES∩D(sR(S)) =
∫
D

∫
D
1(||u − v|| ≤

R)γ(u,v)dudv =
∫ ∫

||u−v||≤d
γ(u,v)dudv. Therefore, it enables similar Monte

Carlo integration for the posterior mean of the right side.
A more general result is the Georgii-Nguyen-Zessin (GNZ) formula [80, 218],

which applies to h of the form h(s;S\{s}) and gives the equality

(3.7) ES∩D
( ∑
si∈S

h(si,S\{si})
)
= ES∩D

( ∫
D

h(s,S\s)λ(s|S)ds),
where λ(s|S) is the Papangelou conditional intensity. Again, Monte Carlo integra-
tion enables a posterior mean for the right side. Here, a choice for h(si|S\si) might
be 1(minsj∈S\si ||si − sj || ≤ d) for a given d which connects to the G function
(Section 2.2) shown below.

Returning to Campbell’s Theorem, it was noted above that by summing over
the indicator function 1(si ∈ A), we provide an unbiased estimator for E(N(A)) =
λ(A;θ) whose usual Bayes estimate is E(λ(A;θ)|Sobs). If λ(A;θ) is available ex-
plicitly, a Monte Carlo integration for E(λ(A;θ)|Sobs) is 1

L

∑
l λ(A;θ∗l ). When

we cannot calculate λ(A;θ), we note that E(λ(A;θ)|Sobs) = E(N(A)|Sobs) ≈
1
L

∑L
l=1

∑
s∗li∈S∗l 1(s

∗
li ∈ A), providing the desired Monte Carlo integration as shown

at the end of Section 3.1. Of course, the elements of the set {∑s∗li∈S∗l 1(s
∗
li ∈ A)}Ll=1

provide posterior samples of N(A).
Summarizing, we may be interested in inference on b(θ) based upon [b(θ)|Sobs].

With posterior samples, {θ∗l }, we obtain {b(θ∗l )} for such inference, as usual. If
interest is in [h(S)|Sobs], then the set {S∗l } provides the set {h(S∗l )} for inference.
For [t(S,θ)|Sobs] with t available explicitly, we can use {θ∗l ,S∗l }. Again, if b(θ) is not
available explicitly, the strategy is then to find h(S) such that E(h(S)|θ) = b(θ).

With regard to the G and K functions, they are parametric functions of the form
G(d;θ) and K(d;θ), respectively. Except in special cases, they are not available in
closed form, leading to the use of empirical, rather than model-based, estimation.
However, we have expressions (2.2) and (2.3) from Section 2.2. For each of these, the
summation on the left side is over terms of the form h(s,S\s). Hence the GNZ result
in (3.7) applies enabling Monte Carlo integrations with respect to the Papangelou
conditional intensity. In other words, these Monte Carlow integrations can provide
the posterior mean of the G and K functions under a specified model given Sobs.
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That is, we obtain model based estimates for G and K rather than the empirical
estimates supplied in Section 2.2. Comparison between the model based estimate
and the empirical estimate can be enlightening with regard to the adequacy of the
model. The same argument can be applied to the inhomogeneous K function [15]
defined above. However, there we have a form t(S,θ) to which we would apply the
results as well.

The discussion of residuals above (Section 3.1) provides another set of quantities
of interest to which we can apply the foregoing. For example, suppose h(u;S\u) =
1(u ∈ B). This yields ESN(S ∩B) =

∫
B
ESλ(u|S)du. In turn, this suggests N(S ∩

B)−∫
B
λ(s|S)ds, the realized innovation residuals, which have mean 0 [14]. Suppose

h(u;S\u) = 1(u ∈ B)/λ(u|S). This yields ES(
∑

si∈S 1(si ∈ B)/λ(si|S\si)) = |B|
[191], the so-called “inverse” residuals. Application to other scaled residuals is clear.

Consider the GNZ applied to a LGCP with random intensity logλ(s) = z(s)
where z(s) is a GP. Then, given D, ES∩D(

∑
si∈S∩D h(si; (S ∩ D)\si) =∫

D
h(s)E(λ(s))ds if h depends only on s. Again, with restriction to D, a finite

point pattern and posterior samples immediately provide a Monte Carlo integra-
tion yielding a Bayes estimate of the right side.

Suppose h(u;S\u) = 1(u ∈ ∂s) yielding ESN(S ∩ ∂s) =
∫
∂s

ESλ(u|S)du.
The left side is

∫
∂s

λ(u)du ≈ λ(s)|∂s|. The right side is ES(
∫
∂s

λ(u|S)du) =
ES(λ(∂s|S)) ≈ ES(λ(s|S))|∂s|. So, marginally, λ(s) ≈ ES(λ(∂s)|S).

Continuing with the GNZ result, now suppose hD(S) ≡ ∑
si∈S∩D h(si; (S ∩

D)\si). Then, ES∩D|θ(h(S)) = ES∩D|θ(
∫
D
h(s; (S ∩ D)\s)λ(s|S)ds) ≡ bhD

(θ). In
order to achieve a normalization, we propose to work with h̄D(S) ≡ hD(S)/N(S ∩
D). If N(S ∩ D) = 0, then hD(S) = 0 and we define 0

0 = 1. So, we consider
ES∩D|θ(h̄(S)) ≡ bh̄D

(θ). Evidently, we need a different version of the GNZ result
which we offer in the next subsection.

3.1.2. An iterated expectation version

We turn to a different way of calculating expectations which suggests a different
way of developing Monte Carlo integrations. We can imagine that our model can
provide a realization S over R2 which induces S∩D over D with an associated finite
N(S ∩ D). Alternatively, suppose, given D, we first generate N(S ∩ D) = n and
then we locate S over D given N(S ∩ D) = n, assuming the si are exchangeable.
This is the generative view that we have noted before for, e.g., a NHPP or a cluster
process as opposed to a modeling or mechanistic view, e.g., a Gibbs process.

Regardless, there is a joint distribution [S ∩D,N(S ∩D)], hence a conditional
times marginal version [S ∩D|N(S ∩D)][N(S ∩D)]. We may not be able to write
down these densities explicitly but, formally, we can calculate the expectation it-
eratively (and we can obtain expectations explicitly in certain cases as we show
below).

That is,

ES∩D(
∑

si∈S∩D
h(si; (S ∩D)\si)) = EN(S∩D)ES∩D|N(S∩D)

∑
si∈S∩D

h(si; (S ∩D)\si)

= EN(S∩D)(N(s∩D)ES∩D|N(S∩D(h(s, (S ∩D)\s)).

And, using the normalized form (and defining 0/0 = 1), ES∩D(
∑

si∈S∩D h(si; (S ∩
D)\si))/N(S ∩ D) = ES∩Dh(s; (S ∩ D)\s). Attractively, we remove N(S ∩ D)
from the right side. With this notation, ES∩D|θh̄D(S) = bh̄D

(θ) where bh̄D
(θ) =
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ES∩D|θh(s; (S ∩ D)\s). Below, we propose choices for h(s; (S ∩ D)\s) which are
of interest. A usual Bayes estimate for bh̄D

(θ) is E(bh̄D
(θ)|Sobs). With posterior

samples, {θ∗l }, a Monte Carlo integration for the posterior mean is 1
L

∑
l bhD

(θ∗l ).
Of course, typically, we can not calculate bh̄D

(θ) explicitly. However, from above,
ES∩D|Sobs

h̄(S) = Eθ|Sobs
ES∩D|θh̄(S) = Eθ|Sobs

bh̄(θ). So, a direct Monte Carlo

integration becomes 1
L h̄(S∗l ).

Suppose we want posterior samples of bh̄D
(θ). Obviously, they are {bh̄D

(θ∗l )}.
But again, we can’t calculate bh̄D

(θ∗l ). With a sample of point patterns {S∗lb, b =
1, 2, . . . , B} from [S|θ∗l ], we have Monte Carlo integrations for {bh̄D

(θ∗l )}. Alto-
gether, we need a nested sampling of point patterns to obtain the desired posterior
samples.

3.2. Model adequacy and model comparison

Model assessment using a fitting/training sample and an independent validation/
test sample is now becoming standard practice. With point pattern data, such an
approach may not be available. With a conditionally independent location distri-
bution, as with NHPPs and LGCPs, the answer is yes. However, with an inhibition
model, holding out points will alter the geometry of the point pattern. It will change
the nature of the inter-point distances, hence the interaction structure. This will be
true in general for a point pattern model where there is dependence between the
locations of the points as with a Gibbs process.

For models with conditionally independent locations, we develop training and
test datasets. Suppose we decide to administer 20% holdout. We can not simply
remove 20% of the data at random. This will fix the size of the point pattern rather
than allowing it to be random. Rather, the p-thinning approach, as in [101], can be
applied to create appropriate training and test data. Letting p denote the retention
probability, p-thinning proceeds by independently, point-by-point, removing si ∈ S
with probability 1 − p. This produces a training point pattern Strain and test
point pattern Stest, which are independent, conditional on λ(s). In fact, Strain has
intensity pλ(s), Stest has intensity (1− p)λ(s), and the revised validation intensity
compared with the fitting intensity is λtest(s) =

(
1−p
p

)
λtrain(s).

3.2.1. Model adequacy through empirical coverage

When cross-validation is possible, for a given set B, posterior predictive point pat-
terns will supply the posterior predictive distribution of N(B). The predictive resid-
uals discussed in Section 3.1 should be centered around zero for an adequate model.
If we look at many subregions Bk, we expect the empirical coverage to be roughly
the nominal level of coverage if the model is adequate. How shall we create a set
{Bk}? [14, section 11.1] propose to analyze a set of residuals over disjoint partitions
Bk of the domain, similar to quadrat counting [54]. With an irregular domain D,
division into disjoint subregions of similar size can be time-consuming and is, in
fact, unnecessary. We suggest to draw random subregions uniformly over D and
then evaluate the residuals or innovations in each subregion. Moreover, there is no
reason to require the Bk be disjoint. If not, this allows us to draw as many Bk as
desired, subject to the requirement that each Bk has the same area. Denote the
area of each Bk by q|D| where q ∈ (0, 1) such that q represents the size of each Bk

relative to D. For various q’s we can evaluate the innovation or residual measures on
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each of the Bk’s and obtain the observed empirical coverage of 0. Intuition suggests
that larger regions will validate better than smaller ones.

In the sequel, we take the shape of each Bk to be a square but, depending upon
D, there may be some reason to choose the shape more carefully. The use of squares
sometimes limits the placement of the Bk when q is large and also access to the
edges of D. Furthermore, with randomly placed, overlapping Bk, it can be hard to
identify regions where the model fits poorly. Disjoint Bk alleviate this problem but,
with regard to empirical coverage, the success rate of Bernoulli trials based upon
random Bk’s will suffice.

In-sample model adequacy

When we can not develop a test data set, how can we investigate model ade-
quacy? Evidently, the foregoing empirical coverage approach can be implemented
in-sample. However, we would not expect it to criticize the model well. This leads
to the work on posterior model checks [79, henceforth GMS] and prior model checks
[50, henceforth DGSV] discussed in Section 1.2. As noted there, GMS is more com-
mon and easier to do. However, it doesn’t criticize the model well enough and
uses the data twice (once to fit, once to check). DGSV is more computationally
demanding but is formally more coherent and uses the data only once.

We elaborate both the GMS and DGSV approaches in the context of spatial
point patterns. Both employ Monte Carlo tests in looking at discrepancy measures,
D(S;θ) which, for instance, might take the form of a realized residual, N(A) −
λ(A;θ). GMS looks at draws from [D(S;θ)|Sobs] and compares with draws from
[D(Sobs;θ)|Sobs]. The problem is evident; the data is used twice. Draws of S∗l from
[S;θ|Sobs] will look too much like Sobs; discrepancies, D(S∗l ,θ), will look too much
like D(Sobs;θ). The model checking will not be critical enough.

DGSV create draws from [D(S,θ)|S] by sampling θ from the prior, then sampling
S under the model given θ. Fitting the model enables draws from [θ|S] and, hence,
with a collection S∗l , draws from [D(S∗l ,θ)|S∗l ]. Then, comparison is made between
[D(S∗l ,θ)|S∗l ] and [D(Sobs;θ)|Sobs]. This is an “apples vs. apples” comparison which
uses the data only once. That is, DGSV compare the observed discrepancy with the
discrepancies you expect under the model; GMS compare the observed discrepancy
with what you expect under the model and the observed data. The computational
demand required for DGSV is evident; one must fit and sample for every S∗l .

In-sample, our empirical coverage model adequacy check also suffers the GMS
problem; it will not be critical enough. Again, for a collection of Bk’s, we look at
the set {[Nobs(Bk)−N(Bk)|Sobs]} and check empirical coverage relative to nominal
coverage. We see that the S∗l ’s will be too similar to Sobs (using noninformative
priors) so the N(Bk) that we generate given Sobs will tend to look too much like
Nobs(Bk), since the latter is a function of Sobs. So, we assert that there is no role
for empirical coverage here unless we can do it out-of-sample. In-sample empirical
coverage will be inadequate to criticize the model.

As an alternative, it is better to generate N∗
l (B) through S∗l ’s from the marginal

distribution rather than from the posterior distribution. Now, we can run a Monte
Carlo test comparison between [Nobs(Bk)−N(Bk)|Sobs] and {[N∗

l (Bk)−N(Bk)|S∗l ]}.
Unfortunately, this demands a lot of comparison. For each Bk, we compare an “ob-
served” posterior distribution vs. say 99 generated posterior distributions, say using
quantiles. This presents the challenge of lots of simultaneous inference.

Let’s consider a simpler checking function approach which can be expected to
supply model criticism through the prior predictive framework without requiring
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the computation associated with DGSV. Consider h(S), a function only of the point
pattern. For instance, in assessing the adequacy of an HPP or a Strauss process,
given a radius R, suppose we consider the statistic, sR(S) discussed in Section
2.5. We can implement a Monte Carlo test for sR(Sobs) and the set {sR(S∗l ), l =
1, 2, . . . , L} where the S∗l ’s are generated under the model. If there is interaction
between the points in S, then, as we run through a set of R’s (motivated by the size
of the region), these Monte Carlo tests should criticize the HPP model but poten-
tially support Strauss process models in the vicinity of a suitable R. Unfortunately,
we may need a large number of points in the point pattern to extract criticism.

3.2.2. Model comparison

Model selection tools are notably lacking for point pattern models. A typical analy-
sis uses ad hoc tests of the homogeneity and independence assumptions of CSR but,
having decided which assumption to relax, there is no clear procedure for compar-
ing models. Often model comparison is not even considered; as we noted earlier, a
model is adopted on mechanistic or behavioral grounds. Lack of fit using the meth-
ods described above can eliminate some models but will not help when choosing
among adequately fitting models.

Again, following Section 1.2, we argue that model comparison should be done
in predictive space since parameters have no meaning across models. So, then the
question is, “What would we be predicting?” A natural choice would focus on the
distribution, [N(A)|Sobs] for A ⊂ D. In particular, we would compare Nobs(A) with
[N(A)|Sobs;Mj ] for each model, j = 1, 2, . . . , J . Here, for model j with parameters
θj , we obtain posterior samples, θ∗j,l and then S∗j,l. Again, we would want to do this
out of sample through p-thinning, as with NHPPs, LGCPs, and cluster processes,
which are superpositions of NHPPs.

As for criteria, we can look at predictive mean square error (PMSE), perhaps
normalized by the expected number (the usual loss function for Poisson counts)
and we can look at ranked probability scores (RPS) [85]. The RPS arises from
proper scoring rules and offers a useful metric for assessing the performance of a
predictive distribution. That is, it compares an entire distribution (in this case a
posterior predictive distribution) to the observed value. The more concentrated the
distribution is around the observation, the smaller the RPS. That is, RPS prefers
models which provide predictions that are concentrated around the observed value.
For count data, the RPS is appropriate [63]. Specifically, the RPS compares the
posterior predictive distribution for a cell count with the degenerate distribution
associated with the observed cell count using a sum of squares over the set of
support values {0, 1, 2, . . . }.

We propose choosing subregions Bk uniformly over D, with each Bk having the
same size and potentially overlapping other Bk′ . In fact, we can use the same Bk as
in the Monte Carlo assessment above. We obtain N(Bk) from the hold-out dataset
and compare with [N(Bk|Sfitted)] using posterior predictive point patterns. For
any Bk, we can write the RPS as RPS(Bk) =

∑∞
n=0[FN(Bk)|Sfitted

(n) − 1[n ≥
Nobs(Bk)]]

2. We would average over k to compare models. That is, model selection
would choose the model with the smallest average RPS.

If cross-validation is available, we would employ the RPS with our hold-out data,
comparing observed counts in subsets to posterior predictive distributions for these
counts. If holding out data is not possible, we would examine these same metrics
in-sample.
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Finally, we remark that we can’t use diagnostics like G, F , K, and Kinhom to
compare models. For example, we can’t say that G for one model is “better” than
G for another model? That is, posterior distributions, e.g., [G(d : θj)|Sobs;Mj ],
can criticize say CSR which has known distance functions when CSR is nested
within the fitted model. With a set of models say {Mj}, using the G function, we

can compare, e.g., [G(d : θj)|Sobs;Mj ] with the empirical estimate Ĝ(d). Since the
latter is a nonparametric estimate, such comparison could be used to criticize Mj .
However, with regard to the K function, since it involves parameters, the empirical
estimate will be semiparametric with parameter estimates based upon some model.
In any event, plotted across values of d, we see an analogy with theoretical Q-Q
plots.

3.2.3. Bayesian edge correction

We conclude this chapter with a brief section on Bayesian edge correction. As with
all of the other approaches we have discussed, the edge correction we propose here
will also be simulation based. We start with the G function.

Recall the definition of ND(si, d,S) ≡ N(si, d,S ∩ D), the number of points in
S ∩ D within distance d of location si ∈ S. There can be points in S (viewed
over R

2) that are within d of si. The number of these points is N(si, d,S). We
are interested in events associated with the latter but we only observe the former,
ND(si, d,S) ≤ N(si, d,S). This is the challenge of edge correction.

From our previous notation, for a stationary process, G(d) = P (N(s, d,S) > 0).
In Section 2.2 we considered the estimator

(3.8) h̄G,d(S) =
∑

si∈S∩D

1(ND(si, d,S) > 0)

N(S ∩D)

which has expected value P (ND(s, d,S) > 0). So, here, we are estimating
P (ND(s, d,S) > 0), yet we want to estimate P (N(s, d,S) > 0). From the inequality
above, G(d) = P (N(s, d,S) > 0) ≥ P (ND(s, d,S) > 0), again confirming the need
for edge correction.

Suppose we adjust h̄G,d(S) to

(3.9) h̄G,cd(S) =
∑

si∈S∩D

1(ND(si, d,S) > 0, cd(si) ⊂ D)

N(S ∩D)
.

Here, cd(si) is a circle of radius d around si. Then, ES∩Dh̄G,cd(S) = P (ND(s, d,S) >
0, cd(s) ⊂ D). The right side is the probability that, for a random S and s ∈ S,
cd(s) ⊂ D and at least one s′ ∈ (S\{s}) ∩ D is in cd(s). Define bG,cd(θ) =

P (ND(s, d,S) > 0, cd(s) ⊂ D|θ) and let G̃(d) = P (ND(s, d,S) > 0 | cd(s) ⊂ D).

With P (cd(s) ⊂ D) ≡ bcd(θ), G̃(d) =
bG,cd

(θ)

bcd (θ)
.

The Bayes estimator for G̃(d) is E(G̃(d)|Sobs) = E

(
bG,cd

(θ)

bcd (θ)
|Sobs

)
. With pos-

terior samples, Monte Carlo integration becomes 1
L

∑L
l=1

bG,cd
(θ∗l )

bcd (θ
∗
l )

. As in examples

above, we can not compute bG,cd(θ
∗
l ) or bcd(θ

∗
l ) explicitly. So, again, we turn to the

nested sampling idea. 1
B

∑
b h̄G,cd(S∗lb) provides a posterior estimate for bG,cd(θ

∗
l )

and 1
B

∑
b h̄cd(S∗lb) provides an estimate for bcd(θ

∗
l ). (h̄cd(S) =

∑
si∈S∩D 1(cd(si) ⊂
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D)/N(S ∩D)). Putting the pieces together, the edge corrected model based Bayes
estimate for G̃(d) becomes

(3.10)
1

L

∑
l

1
B

∑
b h̄G,cd(S∗lb)

1
B

∑
b h̄cd(S∗lb)

.

Now, we return to the K function. Here, edge correction is a bit more compli-
cated. Again, for a model with constant first order intensity, λ,

ES∩D

( ∑
si∈S∩D

ND(si, d,S\si)
N(S ∩D)

)
= ES∩DND(s, d,S\s).

As with G(d), K(d) ≡ EN(s, d,S\s)/λ. However, what we can create, since we
can only observe ND(s, d,S) is KD(d) ≡ ES∩DND(s, d, \s)/λ. So the uncorrected

estimator is based on h̄K,d(S) =
∑

si∈S∩D
ND(si,d,S\si)

N(S∩D)λ whose expectation isKD(d).

Again, we see the need for edge correction. We are estimating KD(d) rather than
K(d). Similar to G(d), since ND(s, d,S) ≤ N(s, d,S), KD(d) ≤ K(d).

Consider h̄K,cd(S) =

(3.11)

∑
si∈S∩D ND(si, d,S)

N(S ∩D)
=

∑
si∈S∩D

∑
j �=i 1(sj ∈ cd(s) ∩D)

N(S ∩D)
.

Given si ∈ D, E 1(sj ∈ cd(si)∩D) = P (cd(si)∩D). However, we want P (cd(si)). But
P (cd(si)) = P (cd(si)∩D)/P (D|cd(si)). The denominator provides the appropriate
inflation of the probability. Each of these probabilities is a function of θ.

In the literature (Section 2.2), P (D|cd(si)) is considered in terms of the empirical
estimate for the K function, that is, for a given sj in terms of dij = ||si − sj ||. It is
denoted by w(si, sj), and is approximated as the proportion of the circumference of
cdij

(si) contained in D. This estimate is not model-based. For us, given si ∈ S ∩D,
we can create a Monte Carlo integration, i.e., draw s’s in cd(si) and obtain the
proportion which fall in D. So, the edge-adjusted h̄ becomes

(3.12) h̄K,adj(S) =
∑

si∈S∩D

∑
j �=i 1(sj ∈ cd(si) ∩D)

N(S ∩D)P (D|cd(si))

which has expectation ES∩D|θ
(

ND(s,d,S)
P (D | cd(s))

)
≡ bK(θ).

What is bK(θ)?

ES∩D

( ∑
si∈S∩D

∑
j �=i 1(sj ∈ cd(si) ∩D)

N(S ∩D)P (D|cd(si))

)
= ES∩D

( ∑
si∈S∩D

ND(si, d,S)
N(S ∩D)P (D|cd(si))

)

= ES∩D

(
ND(s, d,S)
P (D | cd(s))

)
.(3.13)

Now, given s, ND(s, d,S) is the number of successes in N(s, d,S) Bernoulli trials
with success probability P (D | cd(s)). So, ES∩D

(
ND(s, d,S) |N(s, d,S), P (D | cd(s))

)
= N(s, d,S)P (D | cd(s)) i.e., ES∩D

(
ND(s,d,S)
P (D | cd(s))

∣∣N(s, d,S), P (D | cd(s))
)

=

N(s, d,S). Hence, conditioning and unconditioning, ES∩D
(

ND(s,d,S)
P (D | cd(s))

)
=

ES∩DN(s, d,S), which is exactly what we want.
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Finally, we can create the edge corrected estimator for K(d). We want

E
(

bK(θ)
λ |Sobs

)
where bK(θ) ≡ ES∩D|θ

(
ND(s,d,S)
P (D | cd(s))

)
. Again, with posterior sam-

ples θ∗l , a Monte Carlo integration becomes 1
L

∑
l
bK(θ∗l )

λ∗l
. As above, bK(θ∗l ) can

not be calculated explicitly. So, again, we need the nesting strategy, a Monte Carlo
integration for each θ∗l . With S∗bl, we calculate 1

B

∑
b h̄K,adj(S∗bl) as the approxima-

tion. Here, for a given S∗bl, we need an internal Monte Carlo integration for each of
the desired conditional probabilities, i.e., for each sm ∈ S∗lb ∩ D. Altogether, it is
clear that this effort is computationally demanding.

For K(d) in general, we need an extension. We remember that K(d) is designed
to be parameter-free under a constant first order intensity. Therefore, the foregoing
works when λ is a parameter in the model with E[N(S ∩ D)] = λ|D|. However,
for say, a stationary Gibbs process model, the Gibbs density is only known up to
a normalizing constant that is not computable. We have a conceptual λ(θ) but it
does not appear in the model, it is not calculable, and scaling by it, as above, is
precluded.

However, K(d) is still well defined and we would like a model based estimate for
it, particularly to compare with K(d) for the CSR specification. We offer a strategy
to accomplish this. First, consider the special case where we can obtain λ explicitly
as a function of θ. Then, in the foregoing, we simply replace λ∗l with λ(θ∗l ).

In general, with K(d) = EN(s, d,S\s)/λ what does λ mean? Clearly, λ|D| =
EN(S∩D) so λ = EN(S∩D)/|D|, i.e., λ(θ) = ES∩D|θN(S∩D)/|D|. So, posterior
draws θ∗l yield posterior draws S∗lb which yield posterior draws N(S∗lb ∩ D). As
a result, given θ∗l , we can learn about ES∩D|θ∗l (N(S ∩ D), hence about λ(θ∗l ).

Explicitly, change bK(θ)
λ to |D| bK(θ)

bλ(θ)
where bλ(θ) = ES∩DN(S ∩ D). After the

Monte Carlo approximation to the posterior expectation, we will need bλ(θ
∗
l ). We

can use the S∗lb’s to obtain the approximation.
We conclude with a look at the inhomogeneous K function [15].. The inhomoge-

neous K function is associated with a nonstationary process so that we have λ(s)
rather than a constant λ. Kinhom(d) is defined with regard to a bounded set, D,
i.e.,

(3.14) Kinhom(d) =
1

|D|ES∩D|θ
∑

si∈S∩D

∑
sj∈S/si

1(||si − sj || ≤ d)

λ(si)λ(sj)
.

This form is ideally suited for us to create a Monte Carlo integration with repli-
cates from [S|Sobs]. However, the second sum is over sj ∈ S/si but we only observe
sj ∈ (S/si ∩D). That is, we have
(3.15)

KD,inhom(d) =
1

|D|ES∩D|θ
∑

si∈S∩D

∑
sj∈(S/si∩D)

1(||si − sj || ≤ d)

λ(si)λ(sj)
≤ Kinhom(d).

So, again we need edge correction. With λ(sj) in the denominator, now we find
that we divide the inner sum by |D ∩ cd(si)||cd(si)|.

The edge corrected unbiased estimator of Kinhom offered by [15] is

(3.16) K̂inhom(d) =
1

|D|
∑

si ∈S∩D

∑
sj∈S∩D\{si}

1(||si − sj || ≤ d)

w(si, sj)λ(si)λ(sj)

where w(si, sj) is earlier edge-correction. Though K̂inhom(d) is unbiased, it is not
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an estimator since λ(s) is unknown. In practice, we would replace λ(s) with an
empirical kernel intensity estimate, sacrificing unbiasedness.

Following our path, let

h̃Kinhom
(S) = 1

|D|N(S ∩D)

∑
si ∈S∩D

∑
sj∈(S∩D)\si

1(||si − sj || ≤ d)

λ(si)λ(sj)

=
1

|D|N(S ∩D)

∑
si∈S∩D

1

λ(si)
aD(si;S\si)

(3.17)

where aD(si;S\si) =
[∑

sj∈S
1(sj∈cd(si)∩D)

λ(sj)

]
. Then,

ES∩D|θh̃Kinhom
(S) = 1

|D|ES∩D|θ
aD(s;S\s)

λ(s)
≡ bKinhom

(θ).

The right side cannot be collapsed into a form involving ND(si, d,S) as in the
homogeneous case. What we want to do is to modify aD(si;S\si) to a(si;S\si) =[∑

sj∈S
1(sj∈cd(si))

λ(sj)

]
. We want to provide edge correction so that bKinhom,corr

(θ) =

1
|D|ES∩D

a(s;S\s)
λ(s) which is Kinhom(d).

To make the correction, given si,

E

(
1(sj ∈ cd(si) ∩D)

λ(sj)

)

E

(
1(sj ∈ cd(si))

λ(sj)

)

=

∫
D

1(s ∈ cd(si) ∩D)

λ(s)
λ(s) ds∫

D

1(s ∈ cd(si))

λ(s)
λ(s) ds

=
|cd(si) ∩D|
|cd(si)|

=
|cd(si) ∩D|

πd2
≡ wD(si).

We note that wD(si) is not model dependent. It is a ratio of areas and can be
obtained for any si by uniformly sampling over cd(si) and recording the proportion
of points falling in D. Hence, we revise h̃Kinhom(S) to h̃Kinhom,corr(S)=

(3.18)
1

|D|N(S ∩D)

∑
si∈S∩D

1

λ(si)wD(si)
aD(si;S\si).

Again, the Bayes estimator for Kinhom,corr(d) is the posterior mean,
E(bKinhom,corr(θ)|Sobs) ≈ 1

L

∑
l bKinhom(θ∗l ). With posterior replications S∗lb, we

obtain a Monte Carlo integration for each bKinhom,corr(θ
∗
l ).
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